IRFI3306G Data Sheet (657 KB, EN)

IRFI3306GPbF
Applications
 High Efficiency Synchronous Rectification in SMPS
 Uninterruptible Power Supply
 High Speed Power Switching
 Hard Switched and High Frequency Circuits
VDSS
Package Type
IRFI3306GPbF
TO-220 Full-Pak
© 2013 International Rectifier
D
D
G
G
S
D
S
TO-220 Full-Pak
G
D
S
Gate
Drain
Source
Standard Pack
Form
Quantity
Tube
50
Thermal Resistance Symbol
Parameter
Junction-to-Case

RJC
Junction-to-Ambient (PCB Mount) 
RJA
www.irf.com
4.2m
71A
ID
Absolute Maximum Ratings
Symbol
Parameter
ID @ TC = 25°C
Continuous Drain Current, VGS @ 10V
ID @ TC = 100°C
Continuous Drain Current, VGS @ 10V
IDM
Pulsed Drain Current 
PD @TC = 25°C
Maximum Power Dissipation
Linear Derating Factor
VGS
Gate-to-Source Voltage
EAS
Single Pulse Avalanche Energy (Thermally Limited) 
TJ
Operating Junction and
TSTG
Storage Temperature Range
Soldering Temperature, for 10 seconds (1.6mm from case)
Mounting torque, 6-32 or M3 screw
1
3.3m
max.
Benefits
 Improved Gate, Avalanche and Dynamic dV/dt
Ruggedness
 Fully Characterized Capacitance and Avalanche
SOA
 Enhanced body diode dV/dt and dI/dt Capability
 Lead-Free
 Halogen-Free
Base Part Number
60V
RDS(on) typ.
Orderable Part Number
IRFI3306GPbF
Max.
71
50
300
46
0.31
± 20
311
-55 to + 175
Units
A
W
W/°C
V
mJ
°C 300
10lbin (1.1Nm)
Typ.
–––
–––
Submit Datasheet Feedback
Max.
3.23
65
Units
°C/W
October 7, 2013
IRFI3306GPbF
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
Min. Typ. Max.
V(BR)DSS
Drain-to-Source Breakdown Voltage
60
–––
–––
––– 0.068 –––
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient
–––
3.3
4.2
RDS(on)
Static Drain-to-Source On-Resistance
VGS(th)
Gate Threshold Voltage
2.0
–––
4.0
–––
–––
20
IDSS
Drain-to-Source Leakage Current
–––
–––
250
IGSS
Gate-to-Source Forward Leakage
–––
–––
100
Gate-to-Source Reverse Leakage
–––
––– -100
RG(int)
Internal Gate Resistance
––– 0.72 –––
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Symbol
Parameter
Min. Typ. Max.
gfs
Forward Transconductance
89
–––
–––
Qg
Total Gate Charge
–––
90
135
Qgs
Gate-to-Source Charge
–––
22
–––
Qgd
Gate-to-Drain ("Miller") Charge
–––
26
–––
Qsync
Total Gate Charge Sync. (Qg - Qgd)
–––
116
–––
td(on)
Turn-On Delay Time
–––
15
–––
tr
Rise Time
–––
30
–––
td(off)
Turn-Off Delay Time
–––
45
–––
Fall Time
–––
33
–––
tf
Ciss
Input Capacitance
––– 4685 –––
Coss
Output Capacitance
–––
506
–––
Crss
Reverse Transfer Capacitance
–––
310
–––
Coss eff. (ER) Effective Output Capacitance (Energy Related)  –––
733
–––
Coss eff. (TR) Effective Output Capacitance (Time Related)
–––
822
–––
Diode Characteristics Symbol
Parameter
Min. Typ. Max.
Continuous Source Current
–––
–––
71
IS
(Body Diode)
Pulsed Source Current
–––
–––
300
ISM
(Body Diode) 
VSD
Diode Forward Voltage
–––
–––
1.3
dv/dt
Peak Diode Recovery 
–––
2.3
–––
–––
43
–––
trr Reverse Recovery Time
–––
47
–––
–––
63
–––
Qrr
Reverse Recovery Charge
–––
78
–––
IRRM
Reverse Recovery Current
–––
2.5
–––
Notes:
 Repetitive rating; pulse width limited by max. junction
temperature.
 Limited by TJmax, starting TJ = 25°C, L = 0.34mH
RG = 50, IAS = 43A, VGS =10V. Part not recommended for use
above this value.
 Pulse width ≤ 400µs; duty cycle ≤ 2%.
 Rθ is measured at TJ approximately 90°C.
2
www.irf.com
© 2013 International Rectifier
Units
V
V/°C
m
V
µA
nA
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 5.0mA
VGS = 10V, ID = 43A 
VDS = VGS, ID = 150µA
VDS = 60V, VGS = 0V
VDS = 60V, VGS = 0V, TJ = 125°C
VGS = 20V
VGS = -20V

Units
Conditions
S VDS = 25V, ID = 43A
ID = 43A
nC VDS = 30V
VGS = 10V 
ID = 43A, VDS =0V, VGS = 10V
VDD = 39V
ns ID = 43A
RG = 2.7
VGS = 10V 
VGS = 0V
VDS = 50V
pF ƒ = 1.0 MHz
VGS = 0V, VDS = 0V to 48V 
VGS = 0V, VDS = 0V to 48V 
Units
Conditions
A MOSFET symbol
showing the
A integral reverse
p-n junction diode.
V TJ = 25°C, IS = 43A, VGS = 0V 
V/ns
TJ = 25°C
VR = 51V
ns
TJ = 125°C
IF = 43A
TJ = 25°C
di/dt = 100A/µs
nC
TJ = 125°C
A TJ = 25°C
 Coss eff. (TR) is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS.
 Coss eff. (ER) is a fixed capacitance that gives the same energy as
Coss while VDS is rising from 0 to 80% VDSS.
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
1000
1000
BOTTOM
VGS
15V
12V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
15V
12V
10V
8.0V
6.0V
5.5V
5.0V
4.8V
BOTTOM
100
100
4.8V
4.8V
60µs PULSE WIDTH
60µs PULSE WIDTH
Tj = 175°C
Tj = 25°C
10
10
0.1
1
10
0.1
100
Fig. 1 Typical Output Characteristics
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
100
Fig. 2 Typical Output Characteristics
1000
100
T J = 175°C
T J = 25°C
10
VDS = 25V
60µs PULSE WIDTH
1.0
ID = 43A
VGS = 10V
2.0
1.5
1.0
0.5
2
3
4
5
6
7
-60 -40 -20 0 20 40 60 80 100120140160180
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
Fig. 4 Normalized On-Resistance vs. Temperature
Fig. 3 Typical Transfer Characteristics
100000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 43A
C oss = C ds + C gd
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
10000
Ciss
Coss
Crss
1000
100
12.0
VDS= 48V
VDS= 30V
10.0
VDS= 12V
8.0
6.0
4.0
2.0
0.0
1
3
1
10
100
0
20
40
60
80
100
120
VDS, Drain-to-Source Voltage (V)
QG, Total Gate Charge (nC)
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage
www.irf.com
© 2013 International Rectifier
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
1000
100
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
T J = 175°C
T J = 25°C
10
OPERATION IN THIS AREA
LIMITED BY RDS(on)
1msec
100
10msec
10
1
DC
0.1
Tc = 25°C
Tj = 175°C
Single Pulse
VGS = 0V
1.0
0.01
0.2
0.4
0.6
0.8
1.0
1.2
1.4
0.1
VSD, Source-to-Drain Voltage (V)
ID, Drain Current (A)
60
40
20
0
50
75
100
125
100
150
175
80
Id = 5mA
75
70
65
60
55
-60 -40 -20 0 20 40 60 80 100120140160180
TC , Case Temperature (°C)
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs. Case Temperature
1.6
Fig 10. Drain-to-Source Breakdown Voltage
EAS , Single Pulse Avalanche Energy (mJ)
1400
1.4
ID
14A
23A
BOTTOM 43A
TOP
1200
1.2
Energy (µJ)
10
Fig 8. Maximum Safe Operating Area
V(BR)DSS , Drain-to-Source Breakdown Voltage (V)
80
25
1
VDS, Drain-to-Source Voltage (V)
Fig. 7 Typical Source-to-Drain Diode
Forward Voltage
1000
1.0
0.8
0.6
0.4
0.2
0.0
-10
0
10
20
30
40
50
60
70
VDS, Drain-to-Source Voltage (V)
Fig 11. Typical COSS Stored Energy
4 100µsec
www.irf.com
© 2013 International Rectifier
800
600
400
200
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 12. Maximum Avalanche Energy vs. Drain Current
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
1
0.20
0.10
0.05
0.1
0.02
0.01
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case
100
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
Avalanche Current (A)
Duty Cycle = Single Pulse
0.01
10
0.05
0.10
1
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming  j = 25°C and
Tstart = 150°C.
0.1
1.0E-06
1.0E-05
1.0E-04
1.0E-03
1.0E-02
1.0E-01
tav (sec)
Fig 14. Typical Avalanche Current vs.Pulsewidth
Notes on Repetitive Avalanche Curves , Figures 13, 14:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a temperature far in
excess of Tjmax. This is validated for every part type.
2. Safe operation in Avalanche is allowed as long as Tjmax is not exceeded.
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase
during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as
25°C in Figure 14, 15).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)
350
TOP
Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 43A
EAR , Avalanche Energy (mJ)
300
250
200
150
100
50
0
25
50
75
100
125
150
175
Starting T J , Junction Temperature (°C)
Fig 15. Maximum Avalanche Energy vs. Temperature
5 www.irf.com
© 2013 International Rectifier
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
Iav = 2T/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
20
IF = 28A
V R = 51V
3.5
TJ = 25°C
TJ = 125°C
15
3.0
2.5
ID
ID
ID
ID
2.0
IRRM (A)
VGS(th) , Gate threshold Voltage (V)
4.0
= 150µA
= 250µA
= 1.0mA
= 1.0A
10
5
1.5
1.0
0
-75 -50 -25
0
25 50 75 100 125 150 175
0
200
T J , Temperature ( °C )
600
800
1000
diF /dt (A/µs)
Fig 17. Typical Recovery Current vs. dif/dt
Fig 16. Threshold Voltage vs. Temperature
20
400
IF = 43A
V R = 51V
IF = 28A
V R = 51V
TJ = 25°C
TJ = 125°C
TJ = 25°C
TJ = 125°C
300
QRR (nC)
15
IRRM (A)
400
10
5
200
100
0
0
0
200
400
600
800
1000
0
200
diF /dt (A/µs)
400
600
800
1000
diF /dt (A/µs)
Fig. 18 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Stored Charge vs. dif/dt
400
IF = 43A
V R = 51V
TJ = 25°C
TJ = 125°C
QRR (nC)
300
200
100
0
0
200
400
600
800
1000
diF /dt (A/µs)
Fig. 20 - Typical Stored Charge vs. dif/dt
6 www.irf.com
© 2013 International Rectifier
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 22a. Unclamped Inductive Test Circuit
Fig 23a. Switching Time Test Circuit
Fig 22b. Unclamped Inductive Waveforms
Fig 23b. Switching Time Waveforms
VDD Fig 24a. Gate Charge Test Circuit
7 www.irf.com
© 2013 International Rectifier
Fig 24b. Gate Charge Waveform
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
TO-220AB Full-Pak packages are not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
8 www.irf.com
© 2013 International Rectifier
Submit Datasheet Feedback
October 7, 2013
IRFI3306GPbF
Qualification information†
Industrial††
Qualification level
(per JEDEC JESD47F ††† guidelines )
Moisture Sensitivity Level
N/A ††††
TO-220 Full-Pak
RoHS compliant
(per JEDEC J-STD-020D††† )
Yes
†
††
Qualification standards can be found at International Rectifier’s web site http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements. Please contact your
International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
††† Applicable version of JEDEC standard at the time of product release.
†††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International
Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
Revision History
Date
10/07/2013
Comments

Removed the “Silicon Limited” from the ID rating, on page 1.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
9 www.irf.com
© 2013 International Rectifier
Submit Datasheet Feedback
October 7, 2013