Demonstration Note for CS5301

12 V to 1.45 V, 60 A Three–Phase
Synchronous Buck Converter
Demonstration Board for Northwood
Processor
http://onsemi.com
DEMONSTRATION NOTE
•
•
•
•
•
Features
• 1″ × 4.5″ Footprint
• Three–Phase Architecture
• Lossless Active Current Sharing
• Lossless Adaptive Positioning
5–Bit DAC with 1% Tolerance
200 kHz Constant Frequency Design
Hiccup Mode Current Limit
Individual Current Limits for Each Phase
Adaptable to Intel Voltage Transient Test (VTT) Tool
Figure 1. CS5301 Demonstration Board
 Semiconductor Components Industries, LLC, 2002
January, 2002 – Rev. 1
1
Publication Order Number:
CS5301DEMO/D
CS5301DEMO/D
ATX Connector
VID0
VID1
VID2
VID3
VID4
ENABLE
Unused
ATX On
8 7 6 5 4 3 2 1
Power Supply
1″ × 4.5″
RETURN
(Bottom)
OUTPUT
(Top)
Figure 2. Layout
MAXIMUM RATINGS (TA = 25°C)
Input/Output Name
Minimum
Maximum
Unit
5.0 V Input
–0.3
7.0
V
12 V Input
–0.3
14
V
–
Internally Limited
A
Output Current
ELECTRICAL CHARACTERISTICS (TA = 25°C, Still Air, 4.75 V < 5.0 VIN < 5.25 V, 9.0 V < 12 VIN < 13.2 V)
Parameter
Test Conditions
Min
Typ
Max
Unit
Output Voltage
3.0 A Load, DAC = 10000
–
1.45
–
V
Output Voltage
60 A Load, DAC = 10000
–
1.37
–
V
VOUT Peak Transient Response
Step between 0 A and 60 A @ 400 A/µs
–
80
–
mVPK
Output Ripple and Noise
60 A Load
–
20
–
mVP–P
Current Sharing Between Phases
Difference between the Phases with
Highest and Lowest Current
–
1.5
–
A
Conversion Efficiency from 12 V
Supply
1.45 V, 60 A Out
–
78
–
%
5.0 V Supply Current
–
–
100
–
mA
Switching Frequency
–
–
200
–
kHz
Enable/Soft Start Time
–
–
5.0
–
ms
Overcurrent Threshold
–
–
65
–
A
5.0 V UVLO Start
–
4.05
4.6
4.7
V
http://onsemi.com
2
CS5301DEMO/D
ELECTRICAL CHARACTERISTICS (continued) (TA = 25°C, Still Air, 4.75 V < 5.0 VIN < 5.25 V, 9.0 V < 12 VIN < 13.2 V)
Parameter
Test Conditions
Min
Typ
Max
Unit
5.0 V UVLO Stop
–
3.75
4.4
4.65
V
5.0 V UVLO Hysteresis
–
100
200
300
mV
–
7.0
–
V
–
–
±1.0
%
12 V UVLO Start/Stop
5.0 VIN Supply = 5.0 V
VID Codes (VID Code Sets Max Output Voltage; 0 = Connected to VSS, 1 = Open or Pull–Up to 3.3 V)
Accuracy (All Codes)
Measure VFB = COMP
VID4
VID3
VID2
VID1
VID0
1
1
1
1
1
Note 1.
1.064
1.075
1.086
V
1
1
1
1
0
Note 1.
1.089
1.100
1.111
V
1
1
1
0
1
Note 1.
1.114
1.125
1.136
V
1
1
1
0
0
Note 1.
1.139
1.150
1.162
V
1
1
0
1
1
Note 1.
1.163
1.175
1.187
V
1
1
0
1
0
Note 1.
1.188
1.200
1.212
V
1
1
0
0
1
Note 1.
1.213
1.225
1.237
V
1
1
0
0
0
Note 1.
1.238
1.250
1.263
V
1
0
1
1
1
Note 1.
1.262
1.275
1.288
V
1
0
1
1
0
Note 1.
1.287
1.300
1.313
V
1
0
1
0
1
Note 1.
1.312
1.325
1.338
V
1
0
1
0
0
Note 1.
1.337
1.350
1.364
V
1
0
0
1
1
Note 1.
1.361
1.375
1.389
V
1
0
0
1
0
Note 1.
1.386
1.400
1.414
V
1
0
0
0
1
Note 1.
1.411
1.425
1.439
V
1
0
0
0
0
–
1.436
1.450
1.465
V
0
1
1
1
1
–
1.460
1.475
1.490
V
0
1
1
1
0
–
1.485
1.500
1.515
V
0
1
1
0
1
–
1.510
1.525
1.540
V
0
1
1
0
0
–
1.535
1.550
1.566
V
0
1
0
1
1
–
1.559
1.575
1.591
V
0
1
0
1
0
–
1.584
1.600
1.616
V
0
1
0
0
1
–
1.609
1.625
1.641
V
0
1
0
0
0
–
1.634
1.650
1.667
V
0
0
1
1
1
–
1.658
1.675
1.692
V
0
0
1
1
0
–
1.683
1.700
1.717
V
0
0
1
0
1
–
1.708
1.725
1.742
V
0
0
1
0
0
–
1.733
1.750
1.768
V
0
0
0
1
1
–
1.757
1.775
1.793
V
0
0
0
1
0
–
1.782
1.800
1.818
V
0
0
0
0
1
–
1.807
1.825
1.843
V
0
0
0
0
0
–
1.832
1.850
1.869
V
Input Threshold
VID4, VID3, VID2, VID1, VID0
1.0
1.25
1.5
V
Input Pull–Up Resistance
VID4, VID3, VID2, VID1, VID0
25
50
100
kΩ
3.15
3.3
3.45
V
Pull–Up Voltage
–
1. Operation may require a lower (than 12 V) input voltage or a lower switching frequency.
http://onsemi.com
3
CS5301DEMO/D
CONTROL SWITCH DESCRIPTION
S b l
Symbol
D
Description
i ti
Output
Low impedance connection for output voltage.
Return
Low impedance return for output voltage.
SW1 Position 1–4
VID0–VID4. Place switch in the open position for “1.” If VTT tool is used to set the output voltage, place
switches 1–4 in open position.
SW1 Position 6
ENABLE converter function. This pin grounds the CS5301 COMP pin. Place this switch in the open position
to enable the converter.
SW1 Position 8
ATX ON function. Place this switch in the closed position to enable the ATX power supply.
TEST SIGNAL DESCRIPTION
S b l
Symbol
D
Description
i ti
VCORE
Output voltage of power supply.
Gate(H)1–3
Gate drive signals for top MOSFETs of phases 1–3.
Gate(L)1–3
Gate drive signals for bottom MOSFETs of phases 1–3.
SW1–3
Switching nodes of phases 1–3.
COMP
Output of the error amplifier.
PERGD
Power good signal, pulled up to 5.0 V.
VOUT(BNC)
Output voltage of power supply.
OPERATING INSTRUCTIONS
Input Power
low impedance connection for the converter output. The
gold plated area on the solder side is a low impedance
return connection.
ATX Power Supply or separate +5.0 and +12 V supplies.
The 12 V supply must be capable of supplying 12 A to
power full load.
Voltage Transient Test Tool
Output Load
The PGA–423 socket is intended to accept Intel Voltage
Transient Test Tool.
The converter will run with any load between 0 A and
60 A. The gold plated area on component side provides a
http://onsemi.com
4
5
Figure 3. Circuit Schematic
http://onsemi.com
VID0
VID1
VID2
VID3
VID4
TP10
PWRGD
10 k
R9
open
R7
R8 30.1 k
C12 10 nF
C15
10 nF
C14
open
R12
30.1 k
1.91 k
R6
3.09 k
R5
COMP
VFB
VDRP
CS1
CS2
CS3
CSREF
PWRGD
VID0
VID1
VID2
VID3
VID4
PWRGDS
ILIM
REF
U1
C3 0.1 µF
C5
1.0 µF
C17
10 nF
C10
0.1 µF
ROSC
VCCL
VCCL1
Gate(L)1
GND1
Gate(H)1
VCCH12
Gate(H)2
GND2
Gate(L)2
VCCL2,3
Gate(L)3
GND3
Gate(H)3
VCCH3
LGND
R10
1.0 Ω
C7
1.0 µF
C9 1.0 µF
R13
30.1 k
C6
1.0 µF
C8 0.1 µF
69.8 k
R4
D1
BAT54S
TP3
GH1
D2
BAT54S
Q1–Q6: NTB85N03 or NTB85N03T4 by ON Semiconductor
C16
10 nF
10 k
R3
C2 1.0 nF
TP9
COMP
R11
30.1 k
C13 10 nF
C11
open
R2
100 k
R1 22.1 k
C4 470 pF
C1
330 pF
+5.0 V
ENABLE
TP2
+5.0 V
R14
20 k
TP1
+12 V
CS5301
+12 V
TP8
GL3
TP5
GH3
TP7
GL2
TP4
GH2
TP6
GL1
300 nH
L1
Q6
Q5
Q4
Q3
Q2
Q1
+
TP24
SW3
T23
SW2
TP22
SW1
+
C18
16SP270M
600 nH
TP19
GND
TP18
GND
TP17
GND
TP16
GND
TP15
GND
TP14
GND
TP13
GND
TP21
VOUT Return
TP20
VCORE
C20
16SP270M
L4
600 nH
L3
600 nH
L2
+
C19
16SP270M
CS5301DEMO/D
6
http://onsemi.com
Figure 4. Circuit Schematic (continued)
R17
20 k
Q8
MMBT2222LT1
10 µF MBZ 1800 µF
C69 C36
+
10 µF
10 µF
C53
10 µF MBZ 1800 µF
C68 C35
10 µF MBZ 1800 µF
C67 C34
+
R16
20 k
10 µF
C52
10 µF MBZ 1800 µF
C66 C33
+
ENABLE
+5.0 V
10 µF
C51
+12 V
10 µF MBZ 1800 µF
C65 C32
+
Q7
MMBT2907LT1
10 µF
C50
10 µF
C49
10 µF MBZ 1800 µF
C64 C31
+
VID0
VID1
VID2
10 µF MBZ 1800 µF
C63 C30
+
R15
10 k
12
11
10
9
5
6
7
8
10 µF
C48
10 µF
C47
10 µF MBZ 1800 µF
C62 C29
+
VID3
VID4
10 µF MBZ 1800 µF
C61 C28
+
16
15
14
13
ENABLE
10 µF
C46
10 µF
C45
10 µF MBZ 1800 µF
C60 C27
10 µF MBZ 1800 µF
C59 C26
10 µF MBZ 1800 µF
C58 C25
+
1
2
3
4
S1 SW DIP–8
+12 V
10 µF MBZ 1800 µF
C57 C24
+
GND 1
GND 2
10 µF
C44
10 µF
C43
10 µF
C42
10 µF
C41
10 µF MBZ 1800 µF
C56 C23
+
3
+12 V
4
+12 V
+5.0 V
10 µF
C40
+
JP2 Header 2×2
9
10
5
6
7
8
1
2
3
4
10 µF MBZ 1800 µF
C55 C22
C21
+
+5.0
3.3
3.3
GND
+5.0
GND
+5.0
GND
PWRGD
5.0 VSB
+12
10 µF
C39
C54
+
19
+5.0
20
–5.0
11
3.3
12
–12
13
GND
14
PSON
15
GND
16
GND
17
GND
18
JP1 Header 10×2_1
C38
+
–12 V
TP11
–12 V
VOUT
+
10 µF MBZ 1800 µF
C37
+
MBZ 1800 µF
VID0
VID2
VID1
VID4
VID3
A1
A3
A5
A7
A9
A11
A13
A15
A17
A19
A21
A23
A25
A27
A29
A31
A33
A35
A37
A39
B2
B4
B6
B8
B10
B12
B14
B16
B18
B20
B22
B24
B26
B28
B30
B32
B34
B36
B38
C1
C3
C5
C7
C9
C11
C13
C15
C17
C19
C21
C23
C25
C27
C29
C31
C33
C35
C37
C39
U5
D2
D4
D6
D8
D10
D12
D14
D16
D18
D20
D22
D24
D26
D28
D30
D32
D34
D36
D38
E1
E3
E5
E7
E9
E11
E13
E15
E17
E19
E21
E23
E25
E27
E29
E31
E33
E35
E37
E39
F2
F4
F6
F8
F10
F12
F14
F16
F18
F20
F22
F24
F26
F28
F30
F32
F34
F36
F38
G1
G3
G5
G7
G9
G11
G13
G15
G17
G19
G21
G23
G25
G27
G29
G31
G33
G35
G37
G39
H2
H4
H6
H8
H36
H38
J1
J3
J5
J7
J35
J37
J39
K2
K4
K6
K8
K36
K38
L1
L3
L5
L7
L35
L37
L39
M2
M4
M6
M8
M36
M38
N1
N3
N5
N7
N35
N37
N39
U6
P2
P4
P6
P8
P36
P38
R1
R3
R5
R7
R35
R37
R39
T2
T4
T6
T8
T36
T38
U1
U3
U5
U7
U35
U37
U39
V2
V4
V6
V8
V36
V38
W1
W3
W5
W7
W35
W37
W39
Y2
Y4
Y6
Y8
Y36
Y38
AA1
AA3
AA5
AA7
AA35
AA37
AA39
AB2
AB4
AB6
AB8
AB36
AB38
AC1
AC3
AC5
AC7
AC35
AC37
AC39
AD2
AD4
AD6
AD8
AD36
AD38
AE1
AE3
AE5
AE7
AE35
AE37
AE39
AF2
AF4
AF6
AF8
AF36
AF38
AG1
AG3
AG5
AG7
AG35
AG37
AG39
AH2
AH4
AH6
AH8
AH36
AH38
AJ1
AJ3
AJ5
AJ7
AJ35
AJ37
AJ39
AK2
AK4
AK6
AK8
AK36
AK38
AL1
AL3
AL5
AL7
AL35
AL37
AL39
U7
AM2
AM4
AM6
AM8
AM36
AM38
AN1
AN3
AN5
AN7
AN35
AN37
AN39
AP2
AP4
AP6
AP8
AP10
AP12
AP14
AP16
AP18
AP20
AP22
AP24
AP26
AP28
AP30
AP32
AP34
AP36
AP38
AR1
AR3
AR5
AR7
AR9
AR11
AR13
AR15
AR17
AR19
AR21
AR23
AR25
AR27
AR29
AR31
AR33
AR35
AR37
AR39
AT2
AT4
AT6
AT8
AT10
AT12
AT14
AT16
AT18
AT20
AT22
AT24
AT26
AT28
AT30
AT32
AT34
AT36
AT38
AU1
AU3
AU5
AU7
AU9
AU11
AU13
AU15
AU17
AU19
AU21
AU23
AU25
AU27
AU29
AU31
AU33
AU35
AU37
AU39
PGA423D
PGA423C
PGA423B
PGA423A
AV2
AV4
AV6
AV8
AV10
AV12
AV14
AV16
AV18
AB20
AV22
AV24
AV26
AV28
AV30
AV32
AV34
AV36
AV38
AW1
AW3
AW5
AW7
AW9
AW11
AW13
AW15
AW17
AW19
AW21
AW23
AW25
AW27
AW29
AW31
AW33
AW35
AW37
AW39
U8
VOUT
CS5301DEMO/D
CS5301DEMO/D
TYPICAL PERFORMANCE CHARACTERISTICS
Ch1, Output Voltage, VOUT, 100 mV/div;
Ch2, Gate Drive, Gate(H)1, 10 V/div;
Ch3, Gate Drive, Gate(H)2, 10 V/div;
Ch4, Gate Drive, Gate(H)3, 10 V/div
Ch1, Output Voltage, VOUT, 500 mV/div;
Ch2, Error Amplifier Output, COMP, 500 mV/div;
Ch4, Load Current, IO, 10 A/div
Figure 5. Start–Up with Full Load
Figure 6. Steady State at Full Load, IO = 60 A
Ch1, Output Voltage, VOUT, 100 mV/div;
Ch2, Gate Drive, Gate(H)1, 10 V/div;
Ch3, Gate Drive, Gate(H)2, 10 V/div;
Ch4, Gate Drive, Gate(H)3, 10 V/div
Ch1, Output Voltage, VOUT, 100 mV/div;
Ch2, Gate Drive, Gate(H)1, 10 V/div;
Ch3, Gate Drive, Gate(H)2, 10 V/div;
Ch4, Load Current, IO, 50 A/div
Figure 7. Steady State at No Load
Figure 8. Transient with Pulse Load, between 0 A
and 60 A
http://onsemi.com
7
CS5301DEMO/D
TYPICAL PERFORMANCE CHARACTERISTICS
Ch1, Output Voltage, VOUT, 100 mV/div;
Ch2, Gate Drive, Gate(H)1, 10 V/div;
Ch3, Gate Drive, Gate(H)2, 10 V/div;
Ch4, Load Current, IO, 50 A/div
Ch1, Output Voltage, VOUT, 100 mV/div;
Ch2, Gate Drive, Gate(H)1, 10 V/div;
Ch3, Gate Drive, Gate(H)2, 10 V/div;
Ch4, Load Current, IO, 50 A/div
Figure 9. Transient with Step Load, 0 A to 60 A,
Slew Rate, 400 A/ms
Figure 10. Transient with Step Load, 60 A to 0 A,
Slew Rate, 400 A/ms
100
88
90
86
80
Temperature (°C)
Efficiency (%)
84
82
80
78
70
60
L4
50
40
Q5
30
Q6
20
76
74
10
5
10
15
20
25 30 35 40
Load Current (A)
45
50
55
0
60
0
Figure 11. Conversion Efficienty from 12 V to 1.45 V
5
10
15
20 25 30 35 40
Load Current (A)
45
50
Figure 12. Component Temperature
http://onsemi.com
8
55
60
CS5301DEMO/D
BILL OF MATERIALS
Qty
Reference
Part
Mfg. & P/N
Distributor
Converter
1
C1
cer, 330 pF, 50 V, 0805
Panasonic ECU–V1H331KBN
Digi–Key
1
C2
cer, 1.0 nF, 50 V, 0805
Panasonic ECU–V1H102KBN
Digi–Key
2
C3, 10
cer, 0.1 µF, 50 V, 0805
Panasonic ECJ–2YB1H104K
Digi–Key
1
C4
cer, 470 pF, 50 V, 0805
Panasonic ECU–V1H471KBN
Digi–Key
4
C5, 6, 8, 9
cer, 1.0 µF, 25 V, 0805
Panasonic
Digi–Key
1
C7
cer, 1.0 µF, 25 V, 1206
Panasonic ECJ–3YB1E105K
Digi–Key
2
C11, C14 (optional)
5
C12, 13, 15, 16, 17
cer, 0.01 µF, 50 V, 0805
Panasonic ECU–V1H103KBG
Digi–Key
3
C18, 19, 20
Capacitor, 16 V, 270 µF
Sanyo 16SP270M
Sanyo 630–775–0044
15
C21–35 (C36, 37
optional)
Capacitor, 1800 µF, 6.5 V
Rubycon MBZ 1800 µF, 6.5 V
Sanyo
12
C38–43, 46–51 (C44,
45, 52–69 optional)
cer, 10 µF, 6.3 V, 1206
TDK C3216JB0106M
TDK 603–886–6600
2
D1, 2
Dual Schottky
BAT54S
Digi–Key
1
L1
Inductor, 300 nH
Micrometals T30–26 or 3T of
#16AWG
Coiltronics 561–241–7876
CTX15–14771
3
L2, 3, 4
Inductor, 600 nH
6
Q1, 2, 3, 4, 5, 6
1
–
–
–
–
–
MOSFET
ON Semiconductor NTB85N03 or
NTB85N03T4
ON Semiconductor
Q7
PNP
MMBT2907LT1
Newark 800–463–9275
1
Q8
NPN
MMBT2222LT1
Newark
1
R1
res, 22.1 k, 0805
–
Digi–Key
1
R2
res, 100 k, 0805
–
Digi–Key
3
R3, R9, R15
res, 10 k, 0805
–
Digi–Key
1
R4
res, 69.8 k, 0805
–
Digi–Key
1
R5
res, 3.09 k, 0805
–
Digi–Key
1
R6
res, 1.91 k, 0805
–
Digi–Key
1
R7 (optional)
4
R8, 11, 12, 13
res, 30.1 k, 0805
–
Digi–Key
1
R10
res, 1.0 Ω, 0805
–
Digi–Key
3
R14, 16, 17
res, 20 k, 0805
–
Digi–Key
1
U1
–
–
–
Three–Phase Controller
CS5301
ON Semiconductor
Standoff
3M SJ5003–0–ND
Digi–Key
DIP–8 DAC Switch
Grayhill 76PSB08S
Digi–Key
Miscellaneous
6
–
1
S1
24
TP1–24
36 Pos. Header
Sullins PZC36SAAN
Digi–Key
1
JP1
ATX Connector
Molex 039281203
Newark
1
JP2
ATX 12 V Connector
Molex 039293046
Newark
1
J1
BNC, PCB Socket
Multicomp
Farnell
1
U5
CPU Socket, PGA 423
–
http://onsemi.com
9
–
CS5301DEMO/D
( )
PCB LAYOUT
Figure 13. Component and Top Layer
http://onsemi.com
10
( )
CS5301DEMO/D
Figure 14. Ground Layer
http://onsemi.com
11
( )
CS5301DEMO/D
Figure 15. Mid Layer
http://onsemi.com
12
( )
CS5301DEMO/D
Figure 16. Bottom Layer
http://onsemi.com
13
( )
CS5301DEMO/D
Figure 17. Component Location
http://onsemi.com
14
CS5301DEMO/D
Notes
http://onsemi.com
15
CS5301DEMO/D
Intel is a registered trademark of Intel Corporation.
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
For additional information, please contact your local
Sales Representative.
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
http://onsemi.com
16
CS5301DEMO/D