EMC1423 DATA SHEET (08/10/2012) DOWNLOAD

EMC1423/EMC1424
1°C Temperature Sensor with
Hardware Thermal Shutdown
PRODUCT FEATURES
Datasheet
General Description
Applications
The EMC1423 and EMC1424 are high accuracy, low
cost, System Management Bus (SMBus) temperature
sensors. Advanced features such as Resistance Error
Correction (REC), Beta Compensation (to support CPU
diodes requiring the BJT/transistor model including
45nm, 65nm and 90nm processors) and automatic
diode type detection combine to provide a robust
solution for complex environmental monitoring
applications.
„
Additionally, the EMC1423 and EMC1424 provide a
hardware programmable system shutdown feature that
is programmed at part power-up via two pull-up resistor
values and that cannot be masked or corrupted through
the SMBus.
Each device provides ±1° accuracy for external diode
temperatures and ±2°C accuracy for the internal diode
temperature. The EMC1423 monitors three temperature
channels (two external and one internal). The EMC1424
monitors four temperature channels (three external and
one internal).
Resistance Error Correction automatically eliminates the
temperature error caused by series resistance allowing
greater flexibility in routing thermal diodes. Beta
Compensation eliminates temperature errors caused by
low, variable beta transistors common in today's fine
geometry processors. The automatic beta detection
feature monitors each external diode/transistor and
determines the optimum sensor settings for accurate
temperature measurements regardless of processor
technology. This frees the user from providing unique
sensor configurations for each temperature monitoring
application. These advanced features plus ±1°C
measurement accuracy provide a low-cost, highly
flexible and accurate solution for critical temperature
monitoring applications.
SMSC EMC1423/EMC1424
„
„
„
Notebook Computers
Desktop Computers
Industrial
Embedded applications
Features
„
Hardware Thermal Shutdown
— triggers dedicated SYS_SHDN pin
— hardware configured range 77°C to 112°C in 1°C steps
— cannot be disabled or modified by software
„
Support for diodes requiring the BJT/transistor model
„
Automatically determines external diode type and
optimal settings
Resistance Error Correction
External Temperature Monitors
— supports 45nm, 65nm, and 90nm CPU thermal diodes.
„
„
—
—
—
—
±1°C Accuracy (60°C < TDIODE < 100°C)
0.125°C Resolution
Supports up to 2.2nF diode filter capacitor
Anti-parallel diodes for extra diode support
„
Internal Temperature Monitor
„
3.3V Supply Voltage
Programmable temperature limits for ALERT
Available in Small 10-pin MSOP Lead-free RoHS
Compliant Package
— ±2°C accuracy
„
„
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Ordering Information:
EMC1423-1-AIZL-TR FOR 10-PIN, MSOP LEAD-FREE ROHS COMPLIANT PACKAGE
EMC1424-1-AIZL-TR FOR 10-PIN, MSOP LEAD-FREE ROHS COMPLIANT PACKAGE
Note: See Table 1.1, "Part Selection" for SMBus addressing options.
REEL SIZE IS 4,000 PIECES.
This product meets the halogen maximum concentration values per IEC61249-2-21
For RoHS compliance and environmental information, please visit www.smsc.com/rohs
Please contact your SMSC sales representative for additional documentation related to this product
such as application notes, anomaly sheets, and design guidelines.
Copyright © 2012 SMSC or its subsidiaries. All rights reserved.
Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for
construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC
reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications
before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent
rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated
version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors
known as anomalies which may cause the product's functions to deviate from published specifications. Anomaly sheets are available upon request. SMSC products are not
designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property
damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of
this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC’s website at http://www.smsc.com. SMSC is a registered
trademark of Standard Microsystems Corporation (“SMSC”). Product names and company names are the trademarks of their respective holders.
SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE
OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL
DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT;
TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD
TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Revision 2.0 (08-10-12)
2
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table of Contents
Chapter 1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1
Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Chapter 2 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
3.2
3.3
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SMBus Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Chapter 4 System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
System Management Bus Interface Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Write Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Read Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Send Byte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Receive Byte. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Alert Response Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMBus Timeout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
15
15
15
15
16
16
16
Chapter 5 Product Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.0.1
Conversion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.0.2
Dynamic Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SYS_SHDN Output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Thermal Shutdown Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ALERT Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1
ALERT Pin Interrupt Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.2
ALERT Pin Comparator Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ALERT and SYS_SHDN Pin Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Beta Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Resistance Error Correction (REC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Programmable External Diode Ideality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Diode Faults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consecutive Alerts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Digital Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Measurement Results and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Anti-parallel Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Diode Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
18
18
19
20
21
21
21
21
22
22
22
23
23
23
25
25
26
26
Chapter 6 Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
Data Read Interlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Conversion Rate Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Scratchpad Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Therm Limit Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Diode Fault Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC EMC1423/EMC1424
3
DATASHEET
31
31
32
32
33
34
35
36
36
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
Software Thermal Shutdown Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Hardware Thermal Shutdown Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Beta Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External Diode Ideality Factor Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
THERM Limit Status Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Filter Control Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SMSC ID Register (FEh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Revision Register (FFh) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
37
38
38
39
40
41
43
43
44
44
45
45
46
Chapter 7 Typical Operating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Chapter 8 Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.1
Package Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Chapter 9 Datasheet Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Revision 2.0 (08-10-12)
4
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
List of Figures
Figure 1.1
Figure 2.1
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 8.1
EMC1423/EMC1424 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
EMC1423/EMC1424 Pin Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
SMBus Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
System Diagram for EMC1423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
System Diagram for EMC1424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Block Diagram of Hardware Thermal Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Isolating ALERT and SYS_SHDN Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Temperature Filter Step Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Temperature Filter Impulse Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Block Diagram of Temperature Monitoring Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Diode Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
10-Pin MSOP / TSSOP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
SMSC EMC1423/EMC1424
5
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
List of Tables
Table 1.1 Part Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 2.1 EMC1423 and EMC1424 Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3.2 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3.3 SMBus Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 4.1 Protocol Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 4.2 Write Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.3 Read Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.4 Send Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.5 Receive Byte Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 4.6 Alert Response Address Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Table 5.1 Supply Current vs. Conversion Rate for EMC1423 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 5.2 Supply Current vs. Conversion Rate for EMC1424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 5.3 SYS_SHDN Threshold Temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 5.4 Temperature Data Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 6.1 Register Set in Hexadecimal Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6.2 Temperature Data Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 6.3 Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6.4 Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 6.5 Conversion Rate Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.6 Conversion Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 6.7 Temperature Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 6.8 Scratchpad Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Table 6.9 Therm Limit Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 6.10 External Diode Fault Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 6.11 Software Thermal Shutdown Configuration Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 6.12 Hardware Thermal Shutdown Limit Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.13 Channel Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 6.14 Consecutive ALERT Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 6.15 Consecutive Alert / THERM Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6.16 Beta Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 6.17 CPU Beta Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.18 Ideality Configuration Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.19 Ideality Factor Look-Up Table (Diode Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model) . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 6.21 High Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 6.22 Low Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 6.23 THERM Limit Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.24 Filter Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 6.25 Filter Settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.26 Product ID Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.27 Manufacturer ID Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 6.28 Revision Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 9.1 Customer Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Revision 2.0 (08-10-12)
6
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 1 Block Diagram
VDD
Switching
Current
SYS_SHDN Limit
EMC1423 / EMC1424
Conversion Rate Register
DN2
External
Temperature
Register(s)
Internal
Temperature
Register
Low Limit Registers
SMBus Interface
Anti-parallel
diodes
ΔΣ ADC
Digital Mux
Analog
Mux
DP2
Digital Mux
DN1
Limit Comparator
DP1
High Limit Registers
Internal
Temp Diode
SMCLK
Configuration Register
Status Registers
SMDATA
Interupt Masking
ALERT
SYS_SHDN
GND
Figure 1.1 EMC1423/EMC1424 Block Diagram
1.1
Part Selection
The EMC1423 and EMC1424 device configuration is highlighted below.
Table 1.1 Part Selection
FUNCTIONALITY
PART
NUMBER
SMBUS
ADDRESS
EXTERNAL
DIODES
DIODE 1
DEFAULT
CONFIGURATION
DIODE 2
DEFAULT
CONFIGURATION
OTHER
PRODUCT
ID
Software programmable and maskable High Limits
EMC1423 - 1
100_1100b
2
Detect Diode w/ REC
enabled
Detect Diode w/ REC
enabled
Software programmable and maskable SYS_SHDN
Limits
23h
Hardware set
SYS_SHDN Limit
on External Diode
1
SMSC EMC1423/EMC1424
7
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 1.1 Part Selection (continued)
FUNCTIONALITY
PART
NUMBER
SMBUS
ADDRESS
EXTERNAL
DIODES
DIODE 1
DEFAULT
CONFIGURATION
DIODE 2
DEFAULT
CONFIGURATION
OTHER
PRODUCT
ID
Software programmable and maskable High Limits
EMC1424 - 1
100_1100b
3
Detect Diode w/ REC
enabled
Fixed 2N3904 in antiparallel diode configuration
Note 1.1
Software programmable and maskable SYS_SHDN
Limits
27h
Hardware set
SYS_SHDN Limit
on External Diode
1
Note 1.1
Revision 2.0 (08-10-12)
External 2 and external 3 channels have beta configuration hard wired to ‘0111b’ and REC
enabled.
8
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 2 Pin Description
VDD 1
10 SMCLK
DP1 2
9
SMDATA
DN1 3
8
ALERT
DP2 / DN3 4
7
SYS_SHDN
DN2 / DP3 5
6
GND
Figure 2.1 EMC1423/EMC1424 Pin Diagram
Table 2.1 EMC1423 and EMC1424 Pin Description
PIN NUMBER
NAME
FUNCTION
TYPE
1
VDD
Power supply
Power
2
DP1
External diode 1 positive (anode)
connection
AIO
3
DN1
External diode 1 negative (cathode)
connection
AIO
DP2 / DN3
External diode 2 positive (anode)
connection / External Diode 3
negative (cathode) connection for
anti-parallel diodes
AIO
DN2/ DP3
External diode 2 negative (cathode)
connection / External Diode 3
positive (anode) connection for antiparallel diodes
AIO
GND
Ground
Power
SYS_SHDN
System Shutdown output signal requires pull-up resistor which
selects the Hardware Thermal
Shutdown Limit
OD (5V)
8
ALERT
Active low digital ALERT output
signal - requires pull-up resistor
OD (5V)
9
SMDATA
SMBus Data input/output - requires
pull-up resistor
DIOD (5V)
10
SMCLK
SMBus Clock input - requires pull-up
resistor
DI (5V)
4
5
6
7
SMSC EMC1423/EMC1424
9
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
APPLICATION NOTE: For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, SYS_SHDN, and
ALERT), the voltage difference between VDD and the pull-up voltage must never exceed
3.6V.
The pin types are described below:
Power - these pins are used to supply either VDD or GND to the device.
AIO - Analog Input / Output.
DI - Digital Input.
OD - Open Drain Digital Output.
DIOD - Digital Input / Open Drain Output.
Revision 2.0 (08-10-12)
10
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 3 Electrical Specifications
3.1
Absolute Maximum Ratings
Table 3.1 Absolute Maximum Ratings
DESCRIPTION
RATING
UNIT
Supply Voltage (VDD)
-0.3 to 4.0
V
Voltage on 5V tolerant pins (V5VT_pin)
-0.3 to 5.5
V
Voltage on 5V tolerant pins (|V5VT_pin - VDD|) (see Note 3.1)
-0.3 to 3.6
V
-0.3 to VDD +0.3
V
Operating Temperature Range
-40 to +125
°C
Storage Temperature Range
-55 to +150
°C
Voltage on any other pin to Ground
Lead Temperature Range
Refer to JEDEC Spec. J-STD-020
Package Thermal Characteristics for MSOP-10
Thermal Resistance (θj-a)
ESD Rating, All pins HBM
132.2
°C/W
2000
V
Note: Stresses at or above those listed could cause permanent damage to the device. This is a stress
rating only and functional operation of the device at any other condition above those indicated
in the operation sections of this specification is not implied. When powering this device from
laboratory or system power supplies, it is important that the Absolute Maximum Ratings not be
exceeded or device failure can result. Some power supplies exhibit voltage spikes on their
outputs when the AC power is switched on or off. In addition, voltage transients on the AC
power line may appear on the DC output. If this possibility exists, it is suggested that a clamp
circuit be used.
Note 3.1
SMSC EMC1423/EMC1424
For the 5V tolerant pins that have a pull-up resistor (SMCLK, SMDATA, SYS_SHDN, and
ALERT), the pull-up voltage must not exceed 3.6V when the device is unpowered.
11
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
3.2
Electrical Specifications
Table 3.2 Electrical Specifications
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
DC Power
Supply Voltage
VDD
Supply Current
IDD
3.0
3.3
3.6
V
430
850
uA
1 conversion / sec, dynamic
averaging disabled
930
1200
uA
4 conversions / sec, dynamic
averaging enabled
uA
> 16 conversions / sec, dynamic
averaging enabled
1120
Internal Temperature Monitor
Temperature Accuracy
±0.25
Temperature Resolution
±1
°C
-5°C < TA < 100°C
±2
°C
-40°C < TA < 125°C
0.125
°C
External Temperature Monitor
Temperature Accuracy
Temperature Resolution
Capacitive Filter
±0.25
±1
°C
+20°C < TDIODE < +110°C
0°C < TA < 100°C
±0.5
±2
°C
-40°C < TDIODE < 127°C
0.125
°C
tCONV
190
ms
EMC1423, default settings
tCONV
150
ms
EMC1424, default settings
CFILTER
2.2
nF
Connected across external diode
2.5
ALERT and SYS_SHDN pins
Output Low Voltage
VOL
Leakage Current
ILEAK
Power up time
Note 3.2
Revision 2.0 (08-10-12)
0.4
V
ISINK = 8mA
±5
uA
ALERT and SYS_SHDN pins
Device powered or unpowered
TA < 85°C
pull-up voltage < 3.6V
15
ms
Temp selection read
Note 3.2
During the power up time, SMBus communication is permitted, however the SYS_SHDN
and ALERT pins must not be pulled low.
12
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
3.3
SMBus Electrical Characteristics
Table 3.3 SMBus Electrical Specifications
VDD = 3.0V to 3.6V, TA = -40°C to 125°C, all typical values are at TA = 27°C unless otherwise noted.
CHARACTERISTIC
SYMBOL
MIN
TYP
MAX
UNITS
CONDITIONS
SMBus Interface
Input High Voltage
VIH
2.0
VDD
V
5V Tolerant
Input Low Voltage
VIL
-0.3
0.8
V
5V Tolerant
Input High/Low Current
IIH / IIL
±5
uA
Powered or unpowered
TA < 85°C
Hysteresis
Input Capacitance
CIN
Output Low Sink Current
IOL
420
mV
5
pF
8.2
15
mA
SMDATA = 0.4V
SMBus Timing
Clock Frequency
fSMB
Spike Suppression
tSP
Bus free time Start to
Stop
tBUF
1.3
us
Hold Time: Start
tHD:STA
0.6
us
Setup Time: Start
tSU:STA
0.6
us
Setup Time: Stop
tSU:STP
0.6
us
Data Hold Time
tHD:DAT
0
us
When transmitting to the master
Data Hold Time
tHD:DAT
0.3
us
When receiving from the master
Data Setup Time
tSU:DAT
100
ns
Clock Low Period
tLOW
1.3
us
Clock High Period
tHIGH
0.6
us
Clock/Data Fall time
tFALL
300
ns
Min = 20+0.1CLOAD ns
Clock/Data Rise time
tRISE
300
ns
Min = 20+0.1CLOAD ns
Capacitive Load
CLOAD
400
pF
per bus line
SMSC EMC1423/EMC1424
10
400
kHz
50
ns
13
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 4 System Management Bus Interface Protocol
4.1
System Management Bus Interface Protocol
The EMC1423 and EMC1424 communicate with a host controller, such as an SMSC SIO, through the
SMBus. The SMBus is a two-wire serial communication protocol between a computer host and its
peripheral devices. A detailed timing diagram is shown in Figure 4.1.
For the first 15ms after power-up the device may not respond to SMBus communications.
.
TLOW
THIGH
THD:STA
TSU:STO
TRISE
SMCLK
THD:STA
TFALL
THD:DAT
TSU:STA
TSU:DAT
SMDTA
TBUF
P
S
S
S - Start Condition
P - Stop Condition P
Figure 4.1 SMBus Timing Diagram
The EMC1423 and EMC1424 are SMBus 2.0 compatible and support Send Byte, Read Byte, Write
Byte, Receive Byte, and the Alert Response Address as valid protocols as shown below.
All of the below protocols use the convention in Table 4.1.
Table 4.1 Protocol Format
DATA SENT
TO DEVICE
# of bits sent
DATA SENT TO
THE HOST
# of bits sent
Attempting to communicate with the EMC1423 and EMC1424 SMBus interface with an invalid slave
address or invalid protocol will result in no response from the device and will not affect its register
contents. Stretching of the SMCLK signal is supported, provided other devices on the SMBus control
the timing.
Revision 2.0 (08-10-12)
14
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
4.2
Write Byte
The Write Byte is used to write one byte of data to the registers as shown below Table 4.2:
Table 4.2 Write Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
REGISTER
DATA
ACK
STOP
1 -> 0
1001_100
0
0
XXh
0
XXh
0
0 -> 1
4.3
Read Byte
The Read Byte protocol is used to read one byte of data from the registers as shown in Table 4.3.
Table 4.3 Read Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
START
SLAVE
ADDRESS
RD
ACK
REGISTER
DATA
NACK
STOP
1 -> 0
1001_100
0
1
XXh
0
1 -> 0
1001_100
1
1
XX
1
0 -> 1
4.4
Send Byte
The Send Byte protocol is used to set the internal address register pointer to the correct address
location. No data is transferred during the Send Byte protocol as shown in Table 4.4.
Table 4.4 Send Byte Protocol
START
SLAVE
ADDRESS
WR
ACK
REGISTER
ADDRESS
ACK
STOP
1 -> 0
1001_100
0
0
XXh
0
0 -> 1
4.5
Receive Byte
The Receive Byte protocol is used to read data from a register when the internal register address
pointer is known to be at the right location (e.g. set via Send Byte). This is used for consecutive reads
of the same register as shown in Table 4.5.
Table 4.5 Receive Byte Protocol
START
SLAVE
ADDRESS
RD
ACK
REGISTER DATA
NACK
STOP
1 -> 0
1001_100
1
0
XXh
1
0 -> 1
SMSC EMC1423/EMC1424
15
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
4.6
Alert Response Address
The ALERT output can be used as a processor interrupt or as an SMBus Alert.
When it detects that the ALERT pin is asserted, the host will send the Alert Response Address (ARA)
to the general address of 0001_100xb. All devices with active interrupts will respond with their client
address as shown in Table 4.6.
Table 4.6 Alert Response Address Protocol
START
ALERT
RESPONSE
ADDRESS
RD
ACK
DEVICE
ADDRESS
NACK
STOP
1 -> 0
0001_100
1
0
1001_1000
1
0 -> 1
The EMC1423 and EMC1424 will respond to the ARA in the following way:
1. Send Slave Address and verify that full slave address was sent (i.e. the SMBus communication
from the device was not prematurely stopped due to a bus contention event).
2. Set the MASK bit to clear the ALERT pin.
APPLICATION NOTE: The ARA does not clear the Status Register and if the MASK bit is cleared prior to the Status
Register being cleared, the ALERT pin will be reasserted.
4.7
SMBus Address
The EMC1423 and EMC1424 respond to hard-wired SMBus slave address as shown in Table 1.1.
Note: Other addresses are available. Contact SMSC for more information.
4.8
SMBus Timeout
The EMC1423 and EMC1424 support SMBus Timeout. If the clock line is held low for longer than
30ms, the device will reset its SMBus protocol. This function can be enabled by setting the TIMEOUT
bit in the Consecutive Alert Register (see Section 6.13).
Revision 2.0 (08-10-12)
16
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 5 Product Description
The EMC1423 and EMC1424 are SMBus temperature sensors with Hardware Thermal Shutdown. The
EMC1423 monitors one internal diode and two externally connected temperature diodes. The
EMC1424 monitors one internal diode and three externally connected temperature diodes.
Thermal management is performed in cooperation with a host device. This consists of the host reading
the temperature data of both the external and internal temperature diodes of the EMC1423 and
EMC1424 and using that data to control the speed of one or more fans.
The EMC1423 and EMC1424 have two levels of monitoring. The first provides a maskable ALERT
signal to the host when measured temperatures meet or exceed user programmable limits. This allows
the EMC1423 or EMC1424 to be used as an independent thermal watchdog to warn the host of
temperature hot spots without direct control by the host.
The second level of monitoring asserts the SYS_SHDN pin when the External Diode 1 temperature
exceeds a hardware specified threshold temperature. Additionally, the internal diode and External
Diode 2, and External Diode 3 (EMC1424 only) can be configured to assert the SYS_SHDN pin when
the measured temperature exceeds user programmable limits.
Since the EMC1423 and EMC1424 automatically correct for temperature errors due to series
resistance in temperature diode lines, there is greater flexibility in where external diodes are positioned
and better measurement accuracy than previously available with non-resistance error correcting
devices. The automatic beta detection feature means that there is no need to program the device
according to which type of diode is present on the External Diode 1 channel. This also includes CPU
diodes that require the transistor or BJT model for monitoring their temperature. Therefore, the
EMC1423/EMC1424 can power up ready to operate for any system configuration.
For the EMC1424, External Diode channels 2 and 3 are only compatible with general purpose diodes
(such as a 2N3904).
Figure 5.1 shows a system level block diagram of the EMC1423. Figure 5.2 shows a system level block
diagram of the EMC1424.
CPU
Thermal
diode
EMC1423
Host
DP1
DN1
Internal
Diode
SMCLK
SMDATA
ALERT
SMBus
Interface
DP2
DN2
SYS_SHDN
Power Control
Figure 5.1 System Diagram for EMC1423
SMSC EMC1423/EMC1424
17
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
CPU
Thermal
diode
EMC1424
Host
DP1
DN1
Internal
Diode
SMCLK
SMDATA
ALERT
SMBus
Interface
DP2
Anti-parallel
diodes
DN2
SYS_SHDN
Power Control
Figure 5.2 System Diagram for EMC1424
5.0.1
Conversion Rates
The EMC1423 and EMC1424 may be configured for different conversion rates based on the system
requirements. The conversion rate is configured as described in Section 6.5. The default conversion
rate is 4 conversions per second. Other available conversion rates are shown in Table 6.6.
5.0.2
Dynamic Averaging
Dynamic averaging causes the EMC1423 and EMC1424 to measure the external diode channels for
an extended time based on the selected conversion rate. This functionality can be disabled for
increased power savings at the lower conversion rates (see Section 6.4). When dynamic averaging is
enabled, the device will automatically adjust the sampling and measurement time for the external diode
channels. This allows the device to average 2x or 16x longer than the normal 11 bit operation
(nominally 21ms per channel) while still maintaining the selected conversion rate. The benefits of
dynamic averaging are improved noise rejection due to the longer integration time as well as less
random variation of the temperature measurement.
When enabled, the dynamic averaging will affect the average supply current based on the chosen
conversion rate as shown in Table 5.1 for EMC1423.
Table 5.1 Supply Current vs. Conversion Rate for EMC1423
AVERAGE SUPPLY CURRENT
AVERAGING FACTOR (BASED ON
11-BIT OPERATION)
CONVERSION RATE
ENABLED
(DEFAULT)
DISABLED
ENABLED
(DEFAULT)
DISABLED
1 / sec
660uA
430uA
16x
1x
2 / sec
930uA
475uA
8x
1x
4 / sec (default)
950uA
510uA
4x
1x
8 / sec
1010uA
630uA
2x
1x
16 / sec
1020uA
775uA
1x
1x
Revision 2.0 (08-10-12)
18
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 5.1 Supply Current vs. Conversion Rate for EMC1423 (continued)
AVERAGE SUPPLY CURRENT
AVERAGING FACTOR (BASED ON
11-BIT OPERATION)
CONVERSION RATE
ENABLED
(DEFAULT)
DISABLED
ENABLED
(DEFAULT)
DISABLED
32 / sec
1050uA
1050uA
0.5x
0.5x
64 / sec
1100uA
1100uA
0.25x
0.25x
When enabled, the dynamic averaging will affect the average supply current based on the chosen
conversion rate as shown in Table 5.2 for EMC1424.
Table 5.2 Supply Current vs. Conversion Rate for EMC1424
AVERAGE SUPPLY CURRENT
AVERAGING FACTOR (BASED ON 11-BIT
OPERATION)
CONVERSION RATE
ENABLED
(DEFAULT)
DISABLED
ENABLED
(DEFAULT)
DISABLED
1 / sec
660uA
430uA
8x
1x
2 / sec
930uA
475uA
4x
1x
4 / sec (default)
950uA
510uA
2x
1x
8 / sec
1010uA
630uA
1x
1x
16 / sec
1020uA
775uA
0.5x
0.5x
32 / sec
1050uA
1050uA
0.25x
0.25x
64 / sec
1100uA
1100uA
0.125x
0.125x
5.1
SYS_SHDN Output
The SYS_SHDN output is asserted independently of the ALERT output and cannot be masked. If the
External Diode 1 temperature exceeds the Hardware Thermal Shutdown Limit for the programmed
number of consecutive measurements, then the SYS_SHDN pin is asserted.
The Hardware Thermal Shutdown Limit is defined at power-up via the pull-up resistors on the
SYS_SHDN and ALERT pins as shown in Table 5.3. This limit cannot be modified or masked via
software.
In addition to External Diode 1 channel triggering the SYS_SHDN pin when the measured temperature
exceeds to the Hardware Thermal Shutdown Limit, each of the measurement channels can be
configured to assert the SYS_SHDN pin when they exceed the corresponding THERM Limit.
When the SYS_SHDN pin is asserted, it will not release until the External Diode 1 temperature drops
below the Hardware Thermal Shutdown Limit minus 10°C and all other measured temperatures drop
below the THERM Limit minus the THERM Hysteresis value (when linked to SYS_SHDN).
Figure 5.3 shows a block diagram of the interaction between the input channels and the SYS_SHDN
pin.
SMSC EMC1423/EMC1424
19
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Internal Diode
S/W Set Sensor
(EMC1424 only)
S/W Set Sensor
Temperature
Conversion
and up to 4
THERM Limit
Registers
S/W Set Sensor
Hardware Thermal Shutdown
SMBus
Traffic
Software
Shutdown Enable
H/W Thermal
Shutdown Sensor
3.3V
SW_SHDN
Temperature
Conversion
3.3V
SYS_SHDN
HW_SHDN
ALERT
Function
Select
Figure 5.3 Block Diagram of Hardware Thermal Shutdown
5.2
Hardware Thermal Shutdown Limit
The Hardware Thermal Shutdown Limit temperature is determined by pull-up resistors on the
SYS_SHDN and ALERT pins shown in Table 5.3.
Table 5.3 SYS_SHDN Threshold Temperature
SYS_SHD
PULL-UP
ALERT
PULL-UP
4.7K OHM
±10%
6.8K OHM
±10%
10K OHM
±10%
15K OHM
±10%
22K OHM
±10%
33K OHM
±10%
4.7K OHM ±10%
77°C
83°C
89°C
95°C
101°C
107°C
6.8K OHM ±10%
78°C
84°C
90°C
96°C
102°C
108°C
10K OHM ±10%
79°C
85°C
91°C
97°C
103°C
109°C
15K OHM ±10%
80°C
86°C
92°C
98°C
104°C
110°C
22K OHM ±10%
81°C
87°C
93°C
99°C
105°C
111°C
33K OHM ±10%
82°C
88°C
94°C
100°C
106°C
112°C
Revision 2.0 (08-10-12)
20
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
5.3
ALERT Output
The ALERT pin is an open drain output and requires a pull-up resistor to VDD and has two modes of
operation: interrupt mode and comparator Mode. The mode of the ALERT output is selected via the
ALERT / COMP bit in the Configuration Register (see Section 6.4).
5.3.1
ALERT Pin Interrupt Mode
When configured to operate in interrupt mode, the ALERT pin asserts low when an out of limit
measurement (> high limit or < low limit) is detected on any diode or when a diode fault is detected.
The ALERT pin will remain asserted as long as an out-of-limit condition remains. Once the out-of-limit
condition has been removed, the ALERT pin will remain asserted until the appropriate status bits are
cleared.
The ALERT pin can be masked by setting the MASK bit. Once the ALERT pin has been masked, it
will be de-asserted and remain de-asserted until the MASK bit is cleared by the user. Any interrupt
conditions that occur while the ALERT pin is masked will update the Status Register normally.
The ALERT pin is used as an interrupt signal or as an Smbus Alert signal that allows an SMBus slave
to communicate an error condition to the master. One or more ALERT outputs can be hard-wired
together.
5.3.2
ALERT Pin Comparator Mode
When the ALERT pin is configured to operate in comparator mode it will be asserted if any of the
measured temperatures exceeds the respective high limit. The ALERT pin will remain asserted until
all temperatures drop below the corresponding high limit minus the THERM Hysteresis value.
When the ALERT pin is asserted in comparator mode, the corresponding high limit status bits will be
set. Reading these bits will not clear them until the ALERT pin is deasserted. Once the ALERT pin is
deasserted, the status bits will be automatically cleared.
The MASK bit will not block the ALERT pin in this mode, however the individual channel masks (see
Section 6.12) will prevent the respective channel from asserting the ALERT pin.
5.4
ALERT and SYS_SHDN Pin Considerations
Because of the decode method used to determine the Hardware Thermal Shutdown Limit, it is
important that the pull-up resistance on both the ALERT and SYS_SHDN pins be within the tolerances
shown in Table 5.3. Additionally, the pull-up resistor on the ALERT and SYS_SHDN pins must be
connected to the same 3.3V supply that drives the VDD pin.
For 15ms after power up, the ALERT and SYS_SHDN pins must not be pulled low or the Hardware
Thermal Shutdown Limit will not be decoded properly. If the system requirements do not permit these
conditions, then the ALERT and SYS_SHDN pins must be isolated from their respective busses during
this time.
One method of isolating this pin is shown in Figure 5.4.
SMSC EMC1423/EMC1424
21
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
+3.3V
VDD 1
10
SMCLK
DP1 2
9
SMDATA
DN1 3
8
ALERT
7
GND
SYS_SHDN
4
4.7K 33K
+2.5 - 5V
22K
Shared Alert/
Figure 5.4 Isolating ALERT and SYS_SHDN Pins
5.5
Beta Compensation
The EMC1423 and EMC1424 are configured to monitor the temperature of basic diodes (e.g. 2N3904),
or CPU thermal diodes. It automatically detects the type of external diode (CPU diode or diode
connected transistor) and determines the optimal setting to reduce temperature errors introduced by
beta variation for the External Diode 1 channel only. Compensating for this error is also known as
implementing the transistor or BJT model for temperature measurement.
For discrete transistors configured with the collector and base shorted together, the beta is generally
sufficiently high such that the percent change in beta variation is very small. For example, a 10%
variation in beta for two forced emitter currents with a transistor whose ideal beta is 50 would contribute
approximately 0.25°C error at 100°C. However for substrate transistors where the base-emitter junction
is used for temperature measurement and the collector is tied to the substrate, the proportional beta
variation will cause large error. For example, a 10% variation in beta for two forced emitter currents
with a transistor whose ideal beta is 0.5 would contribute approximately 8.25°C error at 100°C.
The External Diode 2 and External Diode 3 channels do not support Beta Compensation.
5.6
Resistance Error Correction (REC)
Parasitic resistance in series with the external diodes will limit the accuracy obtainable from
temperature measurement devices. The voltage developed across this resistance by the switching
diode currents cause the temperature measurement to read higher than the true temperature.
Contributors to series resistance are PCB trace resistance, on die (i.e. on the processor) metal
resistance, bulk resistance in the base and emitter of the temperature transistor. Typically, the error
caused by series resistance is +0.7°C per ohm. The EMC1423 and EMC1424 automatically correct up
to 100 ohms of series resistance.
5.7
Programmable External Diode Ideality Factor
The EMC1423 and EMC1424 do not support a programmable Ideality Factor for the External Diode 1
channel. It is hard-wired for an ideality factor of 1.008.
The EMC1423 External Diode 2 channel defaults to measuring external diodes with an ideality factor
of 1.008. Likewise, the EMC1424 External Diode 2 and 3 channels default to measuring external
diodes with an ideality factor of 1.008.
Not all external diodes, processor or discrete, will have this exact value. This variation of the ideality
factor introduces error in the temperature measurement which must be corrected for. This correction
is typically done using programmable offset registers. Since an ideality factor mismatch introduces an
error that is a function of temperature, this correction is only accurate within a small range of
temperatures. To provide maximum flexibility to the user, the EMC1423 and EMC1424 provides a 6-
Revision 2.0 (08-10-12)
22
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
bit register for the External Diode 2 channel (and External Diode 3 channel for the EMC1424) where
the ideality factor of the diode can be programmed to eliminate errors across all temperatures.
APPLICATION NOTE: When monitoring a substrate transistor or CPU diode and beta compensation is enabled, the
Ideality Factor should not be adjusted. Beta Compensation automatically corrects for most
ideality errors.
5.8
Diode Faults
The EMC1423 and EMC1424 detect an open on the DP and DN pins, and a short across the DP and
DN pins. For each temperature measurement made, the device checks for a diode fault on the external
diode channel(s). When a diode fault is detected, the ALERT pin asserts (unless masked, see
Section 5.9) and the temperature data reads 00h in the MSB and LSB registers (note: the low limit will
not be checked). A diode fault is defined as one of the following: an open between DP and DN, a short
from VDD to DP, or a short from VDD to DN.
If a short occurs across DP and DN or a short occurs from DP to GND, the low limit status bit is set
and the ALERT pin asserts (unless masked). This condition is indistinguishable from a temperature
measurement of 0.000degC (-64°C in extended range) resulting in temperature data of 00h in the MSB
and LSB registers.
If a short from DN to GND occurs (with a diode connected), temperature measurements will continue
as normal with no alerts.
5.9
Consecutive Alerts
The EMC1423 and EMC1424 contain multiple consecutive alert counters. One set of counters applies
to the ALERT pin and the second set of counters applies to the SYS_SHDN pin. Each temperature
measurement channel has a separate consecutive alert counter for each of the ALERT and
SYS_SHDN pins. All counters are user programmable and determine the number of consecutive
measurements that a temperature channel(s) must be out-of-limit or reporting a diode fault before the
corresponding pin is asserted.
See Section 6.13 for more details on the consecutive alert function.
5.10
Digital Filter
To reduce the effect of noise and temperature spikes on the reported temperature, the External Diode
1 channel uses a programmable digital filter. This filter can be configured as Level 1, Level 2, or
Disabled. The typical filter performance is shown in Figure 5.5 and Figure 5.6.
SMSC EMC1423/EMC1424
23
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Filter Step Response
Temperature (C)
90
Disabled
80
70
Level1
Level2
60
50
40
30
20
10
0
0
2
4
6
8
10
12
14
Samples
Figure 5.5 Temperature Filter Step Response
Filter Impulse Response
90
Temperature (C)
80
Disabled
70
60
50
Level1
40
Level2
30
20
10
0
0
2
4
6
8
10
12
14
Samples
Figure 5.6 Temperature Filter Impulse Response
Revision 2.0 (08-10-12)
24
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
5.11
Temperature Monitors
In general, thermal diode temperature measurements are based on the change in forward bias voltage
of a diode when operated at two different currents. This ΔVBE is proportional to absolute temperature
as shown in the following equation:
where:
Δ V BE =
η kT
q
⎞
⎟⎟
⎠
⎛ I
ln ⎜⎜ HIGH
⎝ I LOW
k = Boltzmann’s constant
T = absolute temperature in Kelvin
[1]
q = electron charge
η = diode ideality factor
Figure 5.7 shows a block diagram of the temperature measurement circuit. The negative terminal for
the remote temperature diode, DN, is internally biased with a forward diode voltage referenced to
ground.
IHIGH
ILOW
Substrate
PNP
DP
AntiAliasing
Filter
Resistance
Error
Correction
ΔΣ
ADC
DN
Figure 5.7 Block Diagram of Temperature Monitoring Circuit
5.12
Temperature Measurement Results and Data
The temperature measurement results are stored in the internal and external temperature registers.
These are then compared with the values stored in the high and low limit registers. Both external and
internal temperature measurements are stored in 11-bit format with the eight (8) most significant bits
stored in a high byte register and the three (3) least significant bits stored in the three (3) MSB
positions of the low byte register. All other bits of the low byte register are set to zero.
The EMC1423 and EMC1424 have two selectable temperature ranges. The default range is from 0°C
to +127°C and the temperature is represented as binary number able to report a temperature from 0°C
to +127.875°C in 0.125°C steps.
The extended range is an extended temperature range from -64°C to +191°C. The data format is a
binary number offset by 64°C. The extended range is used to measure temperature diodes with a large
known offset (such as AMD processor diodes) where the diode temperature plus the offset would be
equivalent to a temperature higher than +127°C.
Table 5.4 shows the default and extended range formats.
SMSC EMC1423/EMC1424
25
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 5.4 Temperature Data Format
TEMPERATURE (°C)
DEFAULT RANGE 0°C TO 127°C
EXTENDED RANGE -64°C TO 191°C
Diode Fault
000 0000 0000
000 0000 0000
-64
000 0000 0000
000 0000 0000
Note 5.2
-1
000 0000 0000
001 1111 1000
0
000 0000 0000
Note 5.1
010 0000 0000
0.125
000 0000 0001
010 0000 0001
1
000 0000 1000
010 0000 1000
64
010 0000 0000
100 0000 0000
65
010 0000 1000
100 0000 1000
127
011 1111 1000
101 1111 1000
127.875
011 1111 1111
101 1111 1111
128
011 1111 1111
Note 5.3
110 0000 0000
190
011 1111 1111
111 1111 0000
191
011 1111 1111
111 1111 1000
>= 191.875
011 1111 1111
111 1111 1111
Note 5.4
5.13
Note 5.1
In default mode, all temperatures < 0°C will be reported as 0°C.
Note 5.2
In the extended range, all temperatures < -64°C will be reported as -64°C.
Note 5.3
For the default range, all temperatures > +127.875°C will be reported as +127.875°C.
Note 5.4
For the extended range, all temperatures > +191.875°C will be reported as +191.875°C.
Anti-parallel Diode Connections
The EMC1424 supports reading two external diodes on the same set of pins (DP2, DN2). These
diodes are connected as shown in Figure 5.2. Due to the anti-parallel connection of these diodes, both
diodes will be reverse biased by a VBE voltage (approximately 0.7V). Because of this reverse bias,
only discrete thermal diodes (such as a 2N3904) are recommended to be placed on these pins.
5.14
External Diode Connections
The EMC1423 is hard-wired to measure a specific type of thermal diode on the External Diode 1
channel only (DP1 and DN1 pins). The External Diode 2 channel can be configured to measure a CPU
substrate transistor, a discrete thermal diode such as a 2N3904, or an AMD processor diode. The
supported configurations for the external diode channels are shown in Figure 5.8.
The EMC1424 is hard-wired to measure a specific type of thermal diode on the External Diode 1
channel only (DP1 and DN1 pins). The External Diode 2 and External Diode 3 channel are configured
to measure a pair of discrete anti-parallel diodes (shared on pins DP2 and DN2). The supported
configurations for the external diode channels are shown in Figure 5.8.
Revision 2.0 (08-10-12)
26
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
to
DP
to
DP
to
DP
to
DN
to
DN
to
DN
Local Ground
Typical remote
substrate transistor
i.e. CPU substrate PNP
Typical remote
discrete PNP transistor
i.e. 2N3906
Typical remote
discrete NPN transistor
i.e. 2N3904
Figure 5.8 Diode Configurations
SMSC EMC1423/EMC1424
27
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 6 Register Description
The registers shown in Table 6.1 are accessible through the SMBus. An entry of ‘-’ indicates that the
bit is not used and will always read ‘0’.
Table 6.1 Register Set in Hexadecimal Order
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
00h
R
Internal Diode Data
High Byte
Stores the integer data for the
Internal Diode
00h
01h
R
External Diode 1
Data High Byte
Stores the integer data for External
Diode 1
00h
02h
R
Status
Stores the status bits for the
Internal Diode and External Diodes
00h
Page 32
03h
R/W
Configuration
Controls the general operation of
the device (mirrored at address
09h)
00h
Page 32
04h
R/W
Conversion Rate
Controls the conversion rate for
updating temperature data
(mirrored at address 0Ah)
06h
(4/sec)
Page 33
05h
R/W
Internal Diode High
Limit
Stores the 8-bit high limit for the
Internal Diode (mirrored at address
0Bh)
55h
(85°C)
06h
R/W
Internal Diode Low
Limit
Stores the 8-bit low limit for the
Internal Diode (mirrored at address
0Ch)
00h
(0°C)
55h
(85°C)
PAGE
Page 31
Page 34
07h
R/W
External Diode 1
High Limit High Byte
Stores the integer portion of the
high limit for External Diode 1
(mirrored at register 0Dh)
08h
R/W
External Diode 1 Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode 1
(mirrored at register 0Eh)
00h
(0°C)
09h
R/W
Configuration
Controls the general operation of
the device (mirrored at address
03h)
00h
Page 32
0Ah
R/W
Conversion Rate
Controls the conversion rate for
updating temperature data
(mirrored at address 04h)
06h
(4/sec)
Page 33
Revision 2.0 (08-10-12)
28
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
0Bh
R/W
Internal Diode High
Limit
Stores the 8-bit high limit for the
Internal Diode (mirrored at address
05h)
55h
(85°C)
0Ch
R/W
Internal Diode Low
Limit
Stores the 8-bit low limit for the
Internal Diode (mirrored at address
06h)
00h
(0°C)
55h
(85°C)
PAGE
Page 34
0Dh
R/W
External Diode 1
High Limit High Byte
Stores the integer portion of the
high limit for External Diode 1
(mirrored at register 07h)
0Eh
R/W
External Diode 1 Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode 1
(mirrored at register 08h)
00h
(0°C)
10h
R
External Diode 1
Data Low Byte
Stores the fractional data for
External Diode 1
00h
Page 31
11h
R/W
Scratchpad
Scratchpad register for software
compatibility
00h
Page 35
12h
R/W
Scratchpad
Scratchpad register for software
compatibility
00h
Page 35
13h
R/W
External Diode 1
High Limit Low Byte
Stores the fractional portion of the
high limit for External Diode 1
00h
14h
R/W
External Diode 1 Low
Limit Low Byte
Stores the fractional portion of the
low limit for External Diode 1
00h
15h
R/W
External Diode 2
High Limit High Byte
Stores the integer portion of the
high limit for External Diode 2
55h
(85°C)
16h
R/W
External DIode 2 Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode 2
00h
(0°C)
17h
R/W
External Diode 2
High Limit Low Byte
Stores the fractional portion of the
high limit External Diode 2
00h
18h
R/W
External Diode 2 Low
Limit Low Byte
Stores the fractional portion of the
low limit for External Diode 2
00h
19h
R/W
External Diode 1
THERM Limit
Stores the 8-bit critical temperature
limit for External Diode 1
55h
(85°C)
Page 36
1Ah
R/W
External Diode 2
THERM Limit
Stores the 8-bit critical temperature
limit for External Diode 2
55h
(85°C)
Page 36
1Bh
R-C
External Diode Fault
Stores status bits indicating which
external diode detected a diode
fault
00h
Page 36
1Dh
R/W
SYS_SHDN
Configuration
Controls which software channels,
if any, are linked to the
SYS_SHDN pin
00h
Page 37
1Eh
R
Hardware Thermal
Shutdown Limit
When read, returns the selected
Hardware Thermal Shutdown Limit
N/A
Page 38
Page 34
Page 34
Page 34
SMSC EMC1423/EMC1424
29
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
DEFAULT
VALUE
PAGE
1Fh
R/W
Channel Mask
Register
Controls the masking of individual
channels
00h
Page 38
20h
R/W
Internal Diode
THERM Limit
Stores the 8-bit critical temperature
limit for the Internal Diode
55h
(85°C)
0Ah
(10°C)
Page 36
21h
R/W
THERM Hysteresis
Stores the 8-bit hysteresis value
that applies to all THERM limits
22h
R/W
Consecutive ALERT
Controls the number of out-of-limit
conditions that must occur before
an interrupt is asserted
70h
23h
R
External Diode 2
Data High Byte
Stores the integer data for External
Diode 2
00h
24h
R
External Diode 2
Data Low Byte
Stores the fractional data for
External Diode 2
00h
26h
R/W
External Diode 2
Beta Configuration
Stores the Beta Compensation
circuitry settings for External Diode
2
08h or 07h
Page 40
28h
R/W
External Diode 2
Ideality Factor
Stores the ideality factor for
External Diode 2
12h
(1.008)
Page 41
29h
R
Internal Diode Data
Low Byte
Stores the fractional data for the
Internal Diode
00h
Page 31
2Ah
R
External Diode 3
High Byte
Stores the integer data for External
Diode 3
00h
2Bh
R
External Diode 3 Low
Byte
Stores the fractional data for
External Diode 3
00h
2Ch
R/W
External Diode 3
High Limit High Byte
Stores the integer portion of the
high limit for External Diode 3
55h
(85°C)
2Dh
R/W
External Diode 3 Low
Limit High Byte
Stores the integer portion of the
low limit for External Diode 3
00h
(0°C)
2Eh
R/W
External Diode 3
High Limit Low Byte
Stores the fractional portion of the
high limit for External Diode 3
00h
2Fh
R/W
External Diode 3 Low
Limit Low Byte
Stores the fractional portion of the
low limit for External Diode 3
00h
30h
R/W
External Diode 3
THERM Limit
Stores the 8-bit critical temperature
limit for External Diode 3
55h
(85°C)
Page 36
31h
R/W
External Diode 3
Ideality Factor
Stores the ideality factor for
External Diode 3
12h
(1.008)
Page 41
35h
R-C
High Limit Status
Status bits for the High Limits
00h
Page 43
36h
R-C
Low Limit Status
Status bits for the Low Limits
00h
Page 43
37h
R
THERM Limit Status
Status bits for the THERM Limits
00h
Page 44
40h
R/W
Filter Control
Controls the digital filter setting for
the External Diode 1 channel
00h
Page 44
Page 39
Page 31
Page 31
Page 34
Revision 2.0 (08-10-12)
30
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.1 Register Set in Hexadecimal Order (continued)
REGISTER
ADDRESS
R/W
REGISTER NAME
FUNCTION
FDh
R
Product ID
FEh
R
FFh
R
6.1
DEFAULT
VALUE
PAGE
Stores a fixed value that identifies
each product
Table 6.26
Page 45
SMSC ID
Stores a fixed value that
represents SMSC
5Dh
Page 45
Revision
Stores a fixed value that
represents the revision number
01h or 04h
Page 46
Data Read Interlock
When any temperature channel high byte register is read, the corresponding low byte is copied into
an internal ‘shadow’ register. The user is free to read the low byte at any time and be guaranteed that
it will correspond to the previously read high byte. Regardless if the low byte is read or not, reading
from the same high byte register again will automatically refresh this stored low byte data.
6.2
Temperature Data Registers
Table 6.2 Temperature Data Registers
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
00h
R
Internal Diode
High Byte
128
64
32
16
8
4
2
1
00h
29h
R
Internal Diode
Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
01h
R
External Diode
1 High Byte
128
64
32
16
8
4
2
1
00h
10h
R
External Diode
1 Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
23h
R
External Diode
2 High Byte
128
64
32
16
8
4
2
1
00h
24h
R
External Diode
2 Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
2Ah
R
External Diode
3 High Byte
128
64
32
16
8
4
2
1
00h
2Bh
R
External Diode
3 Low Byte
0.5
0.25
0.125
-
-
-
-
-
00h
As shown in Table 6.2, all temperatures are stored as an 11-bit value with the high byte representing
the integer value and the low byte representing the fractional value left justified to occupy the MSBits.
SMSC EMC1423/EMC1424
31
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.3
Status Register
Table 6.3 Status Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
02h
R
Status
BUSY
-
-
HIGH
LOW
FAULT
THERM
HWSD
00h
The Status Register reports general error conditions. To identify specific channels, refer to Section 6.9,
Section 6.16, Section 6.17, and Section 6.18. The individual Status Register bits are cleared when the
appropriate High Limit, Low Limit, or THERM Limit register has been read or cleared.
Bit 7 - BUSY - This bit indicates that the ADC is currently converting. This bit does not cause the
ALERT pin to be asserted.
Bit 4 - HIGH - This bit is set when any of the temperature channels exceeds its programmed high limit.
See the High Limit Status Register for specific channel information (Section 6.16). When set, this bit
will assert the ALERT pin.
Bit 3 - LOW - This bit is set when any of the temperature channels drops below its programmed low
limit. See the Low Limit Status Register for specific channel information (Section 6.17). When set, this
bit will assert the ALERT pin.
Bit 2 - FAULT - This bit is asserted when a diode fault is detected on any of the external diode
channels. See the External Diode Fault Register for specific channel information (Section 6.9). When
set, this bit will assert the ALERT pin.
Bit 1 - THERM - This bit is set when the any of the temperature channels exceeds its programmed
THERM limit. See the THERM Limit Status Register for specific channel information (Section 6.18).
Bit 0 - HWSD - This bit is set when the External Diode 1 Temperature exceeds the Hardware Thermal
Shutdown Limit set by the pull-up resistors on the ALERT and SYS_SHDN pins. When set, this bit will
assert the SYS_SHDN pin.
6.4
Configuration Register
Table 6.4 Configuration Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
Configuration
MASK_
ALL
-
ALERT/
COMP
-
RECD2
RANGE
DAVG_
DIS
APDD
00h
03h
09h
The Configuration Register controls the basic operation of the device. This register is fully accessible
at either address.
Bit 7 - MASK_ALL - Masks the ALERT pin from asserting.
„
‘0’ (default) - The ALERT pin is not masked. If any of the appropriate status bits are set the ALERT
pin will be asserted.
„
‘1’ - The ALERT pin is masked. It will not be asserted for any interrupt condition unless it is
configured to act in comparator mode. The Status Registers will be updated normally.
Bit 5 - ALERT/COMP - Controls the operation of the ALERT pin.
„
‘0’ (default) - The ALERT pin acts as described in Section 5.3.
„
‘1’ - The ALERT pin acts in comparator mode as described in Section 5.3.2. In this mode the
MASK_ALL bit is ignored.
Revision 2.0 (08-10-12)
32
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Bit 3 - RECD2 - Disables the Resistance Error Correction (REC) for External Diode 2 and External
Diode 3.
„
‘0’ (default) - REC is enabled for External Diode 2 and External Diode 3.
„
‘1’ - REC is disabled for External Diode 2 and External Diode 3.
Bit 2 - RANGE - Configures the measurement range and data format of the temperature channels.
„
‘0’ (default) - The temperature measurement range is 0°C to +127.875°C and the data format is
binary.
„
‘1’ -The temperature measurement range is -64°C to +191.875°C and the data format is offset
binary (see Table 5.4).
Bit 1 - DAVG_DIS - Disables the dynamic averaging feature on all temperature channels.
„
‘0’ (default) - The dynamic averaging feature is enabled. All temperature channels will be converted
with an averaging factor that is based on the conversion rate as shown in Table 5.1 and Table 5.2.
„
‘1’ - The dynamic averaging feature is disabled. All temperature channels will be converted with a
maximum averaging factor of 1x (equivalent to 11-bit conversion). For higher conversion rates, this
averaging factor will be reduced as shown in Table 5.1 and Table 5.2.
Bit 0 - APDD (EMC1424 only) - Disables the anti-parallel diode operation. Beta Compensation is
disabled on External Diode 2 and 3 regardless of APDD setting. In addition, External Diode 2 Beta
Configuration register will be ignored.
6.5
„
‘0’ (default) - Anti-parallel diode mode is enabled. Two external diodes will be measured on the
DP2 and DN2 pins.
„
‘1’ - Anti-parallel diode mode is disabled. Only one external diode will be measured on the DP2
and DN2 pins.
Conversion Rate Register
Table 6.5 Conversion Rate Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
R/W
Conversion
Rate
-
-
-
-
04h
0Ah
B3
B2
B1
B0
DEFAULT
06h
(4/sec)
CONV[3:0]
The Conversion Rate Register controls how often the temperature measurement channels are updated
and compared against the limits. This register is fully accessible at either address.
Bits 3-0 - CONV[3:0] - Determines the conversion rate as shown in Table 6.6.
Table 6.6 Conversion Rate
CONV[3:0]
HEX
3
2
1
0
CONVERSIONS / SECOND
0h
0
0
0
0
1
1h
0
0
0
1
1
2h
0
0
1
0
1
3h
0
0
1
1
1
4h
0
1
0
0
1
SMSC EMC1423/EMC1424
33
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.6 Conversion Rate (continued)
CONV[3:0]
HEX
3
2
1
0
CONVERSIONS / SECOND
5h
0
1
0
1
2
6h
0
1
1
0
4 (default)
7h
0
1
1
1
8
8h
1
0
0
0
16
9h
1
0
0
1
32
Ah
1
0
1
0
64
Bh - Fh
6.6
All others
1
Limit Registers
Table 6.7 Temperature Limit Registers
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
Internal Diode
High Limit
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
Internal Diode
Low Limit
128
64
32
16
8
4
2
1
00h
(0°C)
R/W
External
Diode 1 High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
External
Diode 1 High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
R/W
External
Diode 1 Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
14h
R/W
External
Diode 1 Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
15h
R/W
External
Diode 2 High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
External
Diode 2 Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
05h
0Bh
06h
0Ch
07h
0Dh
13h
08h
0Eh
16h
Revision 2.0 (08-10-12)
34
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.7 Temperature Limit Registers (continued)
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
External
Diode 2 High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
18h
R/W
External
Diode 2 Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
2Ch
R/W
External
Diode 3 High
Limit High
Byte
128
64
32
16
8
4
2
1
55h
(85°C)
R/W
External
Diode 3 Low
Limit High
Byte
128
64
32
16
8
4
2
1
00h
(0°C)
R/W
External
Diode 3 High
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
R/W
External
Diode 3 Low
Limit Low
Byte
0.5
0.25
0.125
-
-
-
-
-
00h
17h
2Dh
2Eh
2Fh
The device contains both high and low limits for all temperature channels. If the measured temperature
exceeds the high limit, then the corresponding status bit is set and the ALERT pin is asserted.
Likewise, if the measured temperature is less than or equal to the low limit, the corresponding status
bit is set and the ALERT pin is asserted.
The data format for the limits must match the selected data format for the temperature so that if the
extended temperature range is used, the limits must be programmed in the extended data format.
The limit registers with multiple addresses are fully accessible at either address.
6.7
Scratchpad Registers
Table 6.8 Scratchpad Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
11h
R/W
Scratchpad
7
6
5
4
3
2
1
0
00h
12h
R/W
Scratchpad
7
6
5
4
3
2
1
0
00h
The Scratchpad Registers are Read Write registers that are used for place holders to be software
compatible with legacy programs. Reading from the registers will return what is written to them.
SMSC EMC1423/EMC1424
35
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.8
Therm Limit Registers
Table 6.9 Therm Limit Registers
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
19h
R/W
External
Diode 1
THERM Limit
128
64
32
16
8
4
2
1
55h
(85°C)
1Ah
R/W
External
Diode 2
THERM Limit
128
64
32
16
8
4
2
1
55h
(85°C)
20h
R/W
Internal Diode
THERM Limit
128
64
32
16
8
4
2
1
55h
(85°C)
21h
R/W
THERM
Hysteresis
128
64
32
16
8
4
2
1
0Ah
(10°C)
30h
R/W
External
Diode 3
THERM Limit
128
64
32
16
8
4
2
1
55h
(85°C)
The THERM Limit Registers are used to determine whether a critical thermal event has occurred. If
the measured temperature exceeds the THERM Limit, then the SYS_SHDN pin will be asserted (if the
corresponding measurement channel is linked to the SYS_SHDN pin). The limit setting must match
the chosen data format of the temperature reading registers.
6.9
External Diode Fault Register
Table 6.10 External Diode Fault Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Bh
R-C
External
Diode Fault
-
-
-
-
E3FLT
E2FLT
E1FLT
-
00h
The External Diode Fault Register indicates which of the external diodes caused the FAULT bit in the
Status Register to be set. This register is cleared when it is read.
Bit 3 - E3FLT - This bit is set if the External Diode 3 channel reported a diode fault.
Bit 2 - E2FLT - This bit is set if the External Diode 2 channel reported a diode fault.
Bit 1 - E1FLT - This bit is set if the External Diode 1 channel reported a diode fault.
Revision 2.0 (08-10-12)
36
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.10
Software Thermal Shutdown Configuration Register
Table 6.11 Software Thermal Shutdown Configuration Register
ADDR.
1Dh
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
R/W
Software
Thermal
Shutdown
Configuration
-
-
-
-
E3SYS
E2SYS
ESYS
INTSYS
00h
The Software Thermal Shutdown Configuration Register controls whether any of the software channels
will assert the SYS_SHDN pin. If a channel is enabled, the temperature is compared against the
corresponding THERM Limit. If the measured temperature exceeds the THERM Limit, then the
SYS_SHDN pin is asserted. This functionality is in addition to the Hardware Shutdown circuitry.
Bit 3 - E3SYS - configures the External Diode 3 channel to assert the SYS_SHDN pin based on its
THERM Limit.
„
‘0’ (default) - the External Diode 3 channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its THERM Limit, the E3THERM status bit is set but the SYS_SHDN pin is not asserted.
„
‘1’ - the External Diode 3 channel is linked to the SYS_SHDN pin. If the temperature exceeds its
THERM Limit, the E3THERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below it’s THERM Limit minus the THERM Hysteresis.
Bit 2 - E2SYS - configures the External Diode 2 channel to assert the SYS_SHDN pin based on its
THERM Limit.
„
‘0’ (default) - the External Diode 2 channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its THERM Limit, the E2THERM status bit is set but the SYS_SHDN pin is not asserted.
„
‘1’ - the External Diode 2 channel is linked to the SYS_SHDN pin. If the temperature exceeds its
THERM Limit, the E2THERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below it’s THERM Limit minus the THERM Hysteresis.
Bit 1 - E1SYS - configures the External Diode 1 channel to assert the SYS_SHDN pin based on its
THERM Limit.
„
‘0’ (default) - the External Diode 1 channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its THERM Limit, the E1THERM status bit is set but the SYS_SHDN pin is not asserted.
„
‘1’ - the External Diode 1 channel is linked to the SYS_SHDN pin. If the temperature exceeds its
THERM Limit, the E1THERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below its THERM Limit minus the THERM Hysteresis.
Bit 0 - INTSYS - configures the Internal Diode channel to assert the SYS_SHDN pin based on its
THERM Limit.
„
‘0’ (default) - the Internal Diode channel is not linked to the SYS_SHDN pin. If the temperature
exceeds its THERM Limit, the ITHERM status bit is set but the SYS_SHDN pin is not asserted.
„
‘1’ - the Internal Diode channel is linked to the SYS_SHDN pin. If the temperature exceeds its
THERM Limit, the ITHERM status bit is set and the SYS_SHDN pin is asserted. It will remain
asserted until the temperature drops below its THERM Limit minus the THERM Hysteresis.
SMSC EMC1423/EMC1424
37
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.11
Hardware Thermal Shutdown Limit Register
Table 6.12 Hardware Thermal Shutdown Limit Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Eh
R
Hardware
Thermal
Shutdown Limit
128
64
32
16
8
4
2
1
N/A
This read only register returns the Hardware Thermal Shutdown Limit selected by the value of the pullup resistors on the ALERT and SYS_SHDN pins. The data represents the hardware set temperature
in °C using the active temperature setting set by the RANGE bit in the Configuration Register. See
Table 6.5 for the data format.
When the External Diode 1 Temperature exceeds this limit, the SYS_SHDN pin is asserted and will
remain asserted until the External Diode 1 Temperature drops below this limit minus 10°C.
6.12
Channel Mask Register
Table 6.13 Channel Mask Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
1Fh
R/W
Channel
Mask
-
-
-
-
E3
MASK
E2
MASK
E1
MASK
INT
MASK
00h
The Channel Mask Register controls individual channel masking. When a channel is masked, the
ALERT pin will not be asserted when the masked channel reads a diode fault or out of limit error. The
channel mask does not mask the SYS_SHDN pin.
Bit 3 - E3MASK - Masks the ALERT pin from asserting when the External Diode 3 channel is out of
limit or reports a diode fault.
„
‘0’ (default) - The External Diode 3 channel will cause the ALERT pin to be asserted if it is out of
limit or reports a diode fault.
„
‘1’ - The External Diode 3 channel will not cause the ALERT pin to be asserted if it is out of limit
or reports a diode fault.
Bit 2 - E2MASK - Masks the ALERT pin from asserting when the External Diode 2 channel is out of
limit or reports a diode fault.
„
‘0’ (default) - The External Diode 2 channel will cause the ALERT pin to be asserted if it is out of
limit or reports a diode fault.
„
‘1’ - The External Diode 2 channel will not cause the ALERT pin to be asserted if it is out of limit
or reports a diode fault.
Bit 1 - E1MASK - Masks the ALERT pin from asserting when the External Diode 1 channel is out of
limit or reports a diode fault.
„
‘0’ (default) - The External Diode 1 channel will cause the ALERT pin to be asserted if it is out of
limit or reports a diode fault.
„
‘1’ - The External Diode 1 channel will not cause the ALERT pin to be asserted if it is out of limit
or reports a diode fault.
Bit 0 - INTMASK - Masks the ALERT pin from asserting when the Internal Diode temperature is out
of limit.
„
‘0’ (default) - The Internal Diode channel will cause the ALERT pin to be asserted if it is out of limit.
Revision 2.0 (08-10-12)
38
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
„
6.13
‘1’ - The Internal Diode channel will not cause the ALERT pin to be asserted if it is out of limit.
Consecutive ALERT Register
Table 6.14 Consecutive ALERT Register
ADDR.
R/W
REGISTER
B7
22h
R/W
Consecutive
ALERT
TIME
OUT
B6
B5
B4
CTHRM[2:0]
B3
B2
B1
CALRT[2:0]
B0
DEFAULT
-
70h
The Consecutive ALERT Register determines how many times an out-of-limit error or diode fault must
be detected in consecutive measurements before the ALERT or SYS_SHDN pin is asserted.
Additionally, the Consecutive ALERT Register controls the SMBus Timeout functionality.
An out-of-limit condition (i.e. HIGH, LOW, or FAULT) occurring on the same temperature channel in
consecutive measurements will increment the consecutive alert counter. The counters will also be reset
if no out-of-limit condition or diode fault condition occurs in a consecutive reading.
When the ALERT pin is configured as an interrupt, when the consecutive alert counter reaches its
programmed value, the following will occur: the STATUS bit(s) for that channel and the last error
condition(s) (i.e. E1HIGH, or E2LOW and/or E2FAULT) will be set to ‘1’, the ALERT pin will be
asserted, the consecutive alert counter will be cleared, and measurements will continue.
When the ALERT pin is configured as a comparator, the consecutive alert counter will ignore diode
fault and low limit errors and only increment if the measured temperature exceeds the High Limit.
Additionally, once the consecutive alert counter reaches the programmed limit, the ALERT pin will be
asserted, but the counter will not be reset. It will remain set until the temperature drops below the High
Limit minus the THERM Hysteresis value.
For example, if the CALRT[2:0] bits are set for 4 consecutive alerts on an EMC1423 device, the high
limits are set at 70°C, and none of the channels are masked, then the ALERT pin will be asserted after
the following four measurements:
1. Internal Diode reads 71°C and both external diodes read 69°C. Consecutive alert counter for INT
is incremented to 1.
2. Both Internal Diode and External Diode 1 read 71°C and External Diode 2 reads 68°C. Consecutive
alert counter for INT is incremented to 2 and for EXT1 is set to 1.
3. The External Diode 1 reads 71°C and both the Internal Diode and External Diode 2 read 69°C.
Consecutive alert counter for INT and EXT2 are cleared and EXT1 is incremented to 2.
4. The Internal Diode reads 71°C and both external diodes read 71°C. Consecutive alert counter for
INT is set to 1, EXT2 is set to 1, and EXT1 is incremented to 3.
5. The Internal Diode reads 71°C and both the external diodes read 71°C. Consecutive alert counter
for INT is incremented to 2, EXT2 is set to 2, and EXT1 is incremented to 4. The appropriate status
bits are set for EXT1 and the ALERT pin is asserted. EXT1 counter is reset to 0 and all other
counters hold the last value until the next temperature measurement.
Bit 7 - TIMEOUT - Determines whether the SMBus Timeout function is enabled.
„
‘0’ (default) - The SMBus Timeout feature is disabled. The SMCLK line can be held low indefinitely
without the device resetting its SMBus protocol.
„
‘1’ - The SMBus Timeout feature is enabled. If the SMCLK line is held low for more than 30ms,
then the device will reset the SMBus protocol.
Bits 6-4 CTHRM[2:0] - Determines the number of consecutive measurements that must exceed the
corresponding THERM Limit and Hardware Thermal Shutdown Limit before the SYS_SHDN pin is
asserted. All temperature channels use this value to set the respective counters. The consecutive
THERM counter is incremented whenever any of the measurements exceed the corresponding
THERM Limit or if the External Diode 1 measurement exceeds the Hardware Thermal Shutdown Limit.
SMSC EMC1423/EMC1424
39
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
If the temperature drops below the THERM limit or Hardware Thermal Shutdown Limit, then the
counter is reset. If the programmed number of consecutive measurements exceed the THERM Limit
or Hardware Thermal Shutdown Limit, and the appropriate channel is linked to the SYS_SHDN pin,
then the SYS_SHDN pin will be asserted low.
Once the SYS_SHDN pin is asserted, the consecutive THERM counter will not reset until the
corresponding temperature drops below the appropriate limit minus the corresponding hysteresis.
The bits are decoded as shown in Table 6.15. The default setting is 4 consecutive out of limit
conversions.
Bits 3-1 - CALRT[2:0] - Determine the number of consecutive measurements that must have an out of
limit condition or diode fault before the ALERT pin is asserted. All temperature channels use this value
to set the respective counters. The bits are decoded as shown in Table 6.15. The default setting is 1
consecutive out of limit conversion.
Table 6.15 Consecutive Alert / THERM Settings
6.14
NUMBER OF CONSECUTIVE OUT OF LIMIT
MEASUREMENTS
2
1
0
0
0
0
1
(default for CALRT[2:0])
0
0
1
2
0
1
1
3
1
1
1
4
(default for CTHRM[2:0])
Beta Configuration Registers
Table 6.16 Beta Configuration Registers
ADDR.
26h
R/W
REGISTER
R/W
External
Diode 2 Beta
Configuration
B7
-
B6
-
B5
-
B4
-
B3
ENABLE2
B2
B1
B0
BETA2[2:0]
DEFAULT
08h for
EMC1423
or 07h for
EMC1424
This register is used to set the Beta Compensation factor that is used for the external diode channels.
Bit 3 - ENABLEx - Enables the Beta Compensation factor autodetection function. This function shall
be disabled for External Diode 2.
„
‘0’ - The Beta Compensation Factor autodetection circuitry is disabled. The External Diode will
always use the Beta Compensation factor set by the BETAx[2:0] bits.
„
‘1’ (default) - The Beta Compensation factor autodetection circuitry is enabled. At the beginning of
every conversion, the optimal Beta Compensation factor setting will be determined and applied.
The BETAx[2:0] bits will be automatically updated to indicate the current setting.
Bit 2-0 - BETAx[2:0] - These bits always reflect the current beta configuration settings. If autodetection
circuitry is enabled, then these bits will be updated automatically and writing to these bits will have no
effect. If the autodetection circuitry is disabled, then these bits will determine the beta configuration
setting that is used for their respective channels.
Care should be taken when setting the BETAx[2:0] bits when the autodetection circuitry is disabled. If
the Beta Compensation factor is set at a beta value that is higher than the transistor beta, then the
circuit may introduce measurement errors. When measuring a discrete thermal diode (such as
Revision 2.0 (08-10-12)
40
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
2N3904) or a CPU diode that functions like a discrete thermal diode (such as an AMD processor
diode), then the BETAx[2:0] bits should be set to ‘111b’.
Table 6.17 CPU Beta Values
BETAX[2:0]
HEX
ENABLEX
2
1
0
0h
0
0
0
0
0.11
1h
0
0
0
1
0.18
2h
0
0
1
0
0.25
3h
0
0
1
1
0.33
4h
0
1
0
0
0.43
5h
0
1
0
1
1.00
6h
0
1
1
0
2.33
7h
0
1
1
1
Disabled
8h - Fh
1
X
X
X
Autodetection
6.15
MINIMUM BETA
External Diode Ideality Factor Registers
Table 6.18 Ideality Configuration Registers
ADDR.
R/W
REGISTER
B7
B6
28h
R/W
External
Diode 2
Ideality
Factor
-
-
IDEALITY2[5:0]
12h
R/W
External
Diode 3
Ideality
Factor
-
-
IDEALITY3[5:0]
12h
31h
B5
B4
B3
B2
B1
B0
DEFAULT
These registers store the ideality factors that are applied to the external diodes. Table 6.19 defines
each setting and the corresponding ideality factor. Beta Compensation and Resistance Error Correction
automatically correct for most diode ideality errors, therefore it is not recommended that these settings
be updated without consulting SMSC.
Table 6.19 Ideality Factor Look-Up Table (Diode Model)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
08h
0.9949
18h
1.0159
28h
1.0371
09h
0.9962
19h
1.0172
29h
1.0384
0Ah
0.9975
1Ah
1.0185
2Ah
1.0397
SMSC EMC1423/EMC1424
41
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.19 Ideality Factor Look-Up Table (Diode Model) (continued)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
0Bh
0.9988
1Bh
1.0200
2Bh
1.0410
0Ch
1.0001
1Ch
1.0212
2Ch
1.0423
0Dh
1.0014
1Dh
1.0226
2Dh
1.0436
0Eh
1.0027
1Eh
1.0239
2Eh
1.0449
0Fh
1.0040
1Fh
1.0253
2Fh
1.0462
10h
1.0053
20h
1.0267
30h
1.0475
11h
1.0066
21h
1.0280
31h
1.0488
12h
1.0080
22h
1.0293
32h
1.0501
13h
1.0093
23h
1.0306
33h
1.0514
14h
1.0106
24h
1.0319
34h
1.0527
15h
1.0119
25h
1.0332
35h
1.0540
16h
1.0133
26h
1.0345
36h
1.0553
17h
1.0146
27h
1.0358
37h
1.0566
For CPU substrate transistors that require the BJT transistor model, the ideality factor behaves slightly
differently than for discrete diode-connected transistors. Refer to Table 6.20 when using a CPU
substrate transistor.
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
08h
0.9869
18h
1.0079
28h
1.0291
09h
0.9882
19h
1.0092
29h
1.0304
0Ah
0.9895
1Ah
1.0105
2Ah
1.0317
0Bh
0.9908
1Bh
1.0120
2Bh
1.0330
0Ch
0.9921
1Ch
1.0132
2Ch
1.0343
0Dh
0.9934
1Dh
1.0146
2Dh
1.0356
0Eh
0.9947
1Eh
1.0159
2Eh
1.0369
0Fh
0.9960
1Fh
1.0173
2Fh
1.0382
10h
0.9973
20h
1.0187
30h
1.0395
11h
0.9986
21h
1.0200
31h
1.0408
12h
1.0000
22h
1.0213
32h
1.0421
13h
1.0013
23h
1.0226
33h
1.0434
14h
1.0026
24h
1.0239
34h
1.0447
15h
1.0039
25h
1.0252
35h
1.0460
Revision 2.0 (08-10-12)
42
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.20 Substrate Diode Ideality Factor Look-Up Table (BJT Model) (continued)
SETTING
FACTOR
SETTING
FACTOR
SETTING
FACTOR
16h
1.0053
26h
1.0265
36h
1.0473
17h
1.0066
27h
1.0278
37h
1.0486
APPLICATION NOTE: When measuring a 65nm Intel CPUs, the Ideality Setting should be the default 12h. When
measuring 45nm Intel CPUs, the Ideality Setting should be 15h.
6.16
High Limit Status Register
Table 6.21 High Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
35h
R-C
High Limit
Status
-
-
-
-
E3HIGH
E2HIGH
E1HIGH
IHIGH
00h
The High Limit Status Register contains the status bits that are set when a temperature channel high
limit is exceeded. If any of these bits are set, then the HIGH status bit in the Status Register is set.
Reading from the High Limit Status Register will clear all bits if. Reading from the register will also
clear the HIGH status bit in the Status Register.
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and
any of these status bits are set.
The status bits will remain set until read unless the ALERT pin is configured as a comparator output
(see Section 5.3.2).
Bit 3 - E3HIGH - This bit is set when the External Diode 3 channel exceeds its programmed high limit.
Bit 2 - E2HIGH - This bit is set when the External Diode 2 channel exceeds its programmed high limit.
Bit 1 - E1HIGH - This bit is set when the External Diode 1 channel exceeds its programmed high limit.
Bit 0 - IHIGH - This bit is set when the Internal Diode channel exceeds its programmed high limit.
6.17
Low Limit Status Register
Table 6.22 Low Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
36h
R-C
Low Limit
Status
-
-
-
-
E3LOW
E2LOW
E1LOW
ILOW
00h
The Low Limit Status Register contains the status bits that are set when a temperature channel drops
below the low limit. If any of these bits are set, then the LOW status bit in the Status Register is set.
Reading from the Low Limit Status Register will clear all bits. Reading from the register will also clear
the LOW status bit in the Status Register.
The ALERT pin will be set if the programmed number of consecutive alert counts have been met and
any of these status bits are set.
The status bits will remain set until read unless the ALERT pin is configured as a comparator output
(see Section 5.3.2).
SMSC EMC1423/EMC1424
43
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Bit 3 - E3LOW - This bit is set when the External Diode 3 channel drops below its programmed low
limit.
Bit 2 - E2LOW - This bit is set when the External Diode 2 channel drops below its programmed low
limit.
Bit 1 - E1LOW - This bit is set when the External Diode 1 channel drops below its programmed low
limit.
Bit 0 - ILOW - This bit is set when the Internal Diode channel drops below its programmed low limit.
6.18
THERM Limit Status Register
Table 6.23 THERM Limit Status Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
37h
R-C
THERM
Limit
Status
-
-
-
-
E3
THERM
E2
THERM
E1
THERM
ITHERM
00h
The THERM Limit Status Register contains the status bits that are set when a temperature channel
THERM Limit is exceeded. If any of these bits are set, then the THERM status bit in the Status Register
is set. Reading from the THERM Limit Status Register will not clear the status bits. Once the
temperature drops below the THERM Limit minus the THERM Hysteresis, the corresponding status
bits will be automatically cleared. The THERM bit in the Status Register will be cleared when all
individual channel THERM bits are cleared.
Bit 3 - E3THERM - This bit is set when the External Diode 3 channel exceeds its programmed THERM
Limit.
Bit 2 - E2THERM - This bit is set when the External Diode 2 channel exceeds its programmed THERM
Limit.
Bit 1 - E1THERM - This bit is set when the External Diode 1 channel exceeds its programmed THERM
limit.
Bit 0- ITHERM - This bit is set when the Internal Diode channel exceeds its programmed THERM limit.
6.19
Filter Control Register
Table 6.24 Filter Configuration Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
40h
R/W
Filter Control
-
-
-
-
-
-
B1
B0
DEFAULT
FILTER[1:0]
00h
The Filter Configuration Register controls the digital filter on the External Diode 1 channel.
Bits 1-0 - FILTER[1:0] - Control the level of digital filtering that is applied to the External Diode
temperature measurements as shown in Table 6.25. See Figure 5.5and Figure 5.6 for examples on the
filter behavior.
Revision 2.0 (08-10-12)
44
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Table 6.25 Filter Settings
FILTER[1:0]
6.20
1
0
AVERAGING
0
0
Disabled (default)
0
1
Level 1
1
0
Level 1
1
1
Level 2
Product ID Register
Table 6.26 Product ID Register
ADDR
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FDh
R
Product ID
0
0
1
0
0
0
1
1
23h
EMC1423
FDh
R
Product ID
0
0
1
0
0
1
1
1
27h
EMC1424
The Product ID Register holds a unique value that identifies the device.
6.21
SMSC ID Register (FEh)
Table 6.27 Manufacturer ID Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FEh
R
SMSC ID
0
1
0
1
1
1
0
1
5Dh
The Manufacturer ID register contains an 8 bit word that identifies the SMSC as the manufacturer of
the EMC1423 and EMC1424.
SMSC EMC1423/EMC1424
45
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
6.22
Revision Register (FFh)
Table 6.28 Revision Register
ADDR.
R/W
REGISTER
B7
B6
B5
B4
B3
B2
B1
B0
DEFAULT
FFh
R
Revision
0
0
0
0
0
0
0
1
01h
FFh
R
Revision
0
0
0
0
0
1
0
0
04h
The Revision register contains an 8-bit word that identifies the die revision. It can be 01h or 04h.
ENGINEERING NOTE:
Revision 2.0 (08-10-12)
46
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 7 Typical Operating Curves
Tem perature Error vs. Am bient Tem perature
(2N3904, TDIODE = 42.5°C, VDD = 3.3V)
1.0
1.0
0.8
0.8
0.6
Temperature Error (°C)
Temperature Error (°C)
Tem perature Error vs. Filter Capacitor
(2N3904, TA = 27°C, TDIODE = 27°C, VDD = 3.3V)
0.5
0.3
0.0
-0.3
-0.5
-0.8
-1.0
0
1000
2000
3000
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
4000
-1.0
-40 -25 -10
Filter Capacitor (pF)
5
Temperature Error (°C)
Temperature Error (°C)
SMSC EMC1423/EMC1424
95 110 125
Temperature Error vs. CPU Temperature
Typical 65nm CPU from major vendor
(TA = 27°C, VDD = 3.3V, BETA = 011, CFILTER = 470pF)
Tem perature Error vs. External Diode Tem perature
(2N3904, TA = 42.5°C, VDD = 3.3V)
1.0
0.8
0.6
0.4
0.2
0.0
-0.2
-0.4
-0.6
-0.8
-1.0
-40 -25 -10 5
20 35 50 65 80 95
External Diode Tem perature (°C)
5
20 35 50 65 80
Am bient Tem perature (°C)
4
Beta Compensation
Disabled
3
2
1
0
Beta Compensation Enabled
-1
20
110 125
40
60
80
100
120
CPU Temperature (°C)
47
DATASHEET
Revision 2.0 (08-10-12)
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Tem perature Error vs. Am bient Tem perature
(2N3904, TDIODE = 27°C, VDD = 3.3V)
0.8
100
80
REC Disabled
0.6
60
0.4
40
0.2
20
REC Enabled
0.0
0
50
100
Series R (Ohm)
2.0
0
200
150
EXT2 - APD
1.5
Temperature Error (°C)
120
Temperature Error (°C)
REC Disabled
Temperature Error (°C)
REC Enabled
Temperature Error vs. Series Resistance
1.0
EXT3 - APD
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
-40 -25 -10
5
20 35 50 65 80
Am bient Tem perature (°C)
95 110 125
S upply Curre nt vs. Conve rsion Ra te
1200
1100
1000
Supply Current (uA
900
800
Dy namic
A v eraging
Enabled
700
Dy namic
A v eraging
Dis abled
600
500
400
300
200
1
2
4
8
16
32
64
Conve rsion Ra te
Revision 2.0 (08-10-12)
48
DATASHEET
SMSC EMC1423/EMC1424
D
PIN 1 IDENTIFIER
AREA (D/2 X E1/2)
e
E1
4
2
c
INITIAL RELEASE
DATE
RELEASED BY
3/29/05
S.K.ILIEV
4
E
SEE DETAIL "A"
10X b
END VIEW
TOP VIEW
49
DATASHEET
3
DESCRIPTION
A
Revision 2.0 (08-10-12)
REVISION HISTORY
REVISION
5
3
A2
A
C
SEATING PLANE
A1
ccc C
3-D VIEW
SIDE VIEW
H
C
GAUGE PLANE
0.25
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETER.
2. TOLERANCE ON THE TRUE POSITION OF EACH LEAD IS ± 0.04 mm AT MAXIMUM MATERIAL
CONDITION.
3. PACKAGE BODY DIMENSIONS "D" AND "E1" DO NOT INCLUDE MOLD/INTERLEAD PROTRUSIONS
OR FLASH. MAXIMUM MOLD PROTRUSIONS OR FLASH IS 0.15 mm (0.006 INCHES) PER END AND
SIDE. DIMENSIONS "D" AND "E1" ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE
PLASTIC BODY, INCLUDING ANY MISMATCH BETWEEN TOP AND BOTTOM PLASTIC BODY. THEY
ARE DETERMINED AT DATUM PLANE "H".
4. DIMENSIONS "b" AND "c" APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 mm AND
0.15 mm FROM THE LEAD TIP.
5. DETAILS OF THE PIN 1 IDENTIFIER ARE OPTIONAL, BUT MUST BE LOCATED WITHIN THE ZONE
INDICATED.
SEATING PLANE
0° - 8°
L
(0.95)
UNLESS OTHERWISE SPECIFIED
DIMENSIONS ARE IN MILLIMETERS
AND TOLERANCES ARE:
DECIMAL
X.X
±0.1
X.XX ±0.05
X.XXX ±0.025
THIRD ANGLE PROJECTION
80 ARKAY DRIVE
HAUPPAUGE, NY 11788
USA
ANGULAR
±1°
TITLE
DETAIL "A"
NAME
DATE
S.K.ILIEV
3/29/05
DIM AND TOL PER ASME Y14.5M - 1994
MATERIAL
FINISH
-
CHECKED
S.K.ILIEV
S.K.ILIEV
Figure 8.1 10-Pin MSOP / TSSOP Package
REV
DWG NUMBER
MO-10-TSSOP-3x3
3/29/05
APPROVED
PRINT WITH "SCALE TO FIT"
DO NOT SCALE DRAWING
PACKAGE OUTLINE
10 PIN TSSOP, 3x3 MM BODY, 0.50 MM PITCH
DRAWN
STD COMPLIANCE
SCALE
3/29/05
1:1
JEDEC: MO-187
A
SHEET
1 OF 1
SMSC EMC1423/EMC1424
Datasheet
1°C Temperature Sensor with Hardware Thermal Shutdown
Chapter 8 Package Information
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
8.1
Package Markings
All devices will be marked on the first line of the top side with ”1423” or “1424”. On the second line,
they will be marked with the appropriate -X number (-1, -2, etc), the Functional Revision “B” and
Country Code (CC).
Revision 2.0 (08-10-12)
50
DATASHEET
SMSC EMC1423/EMC1424
1°C Temperature Sensor with Hardware Thermal Shutdown
Datasheet
Chapter 9 Datasheet Revision History
Table 9.1 Customer Revision History
REVISION LEVEL & DATE
SECTION/FIGURE/ENTRY
CORRECTION
Rev. 2.0 (08-10-12)
Table 3.3, "SMBus Electrical
Specifications"
Added conditions for tHD:DAT. Data hold time
minimum of 0.3µs is required when receiving from
the master. Data hold time is 0µs min when
transmitting to the master.
Section 6.22, "Revision
Register (FFh)"
Added row to indicate that revision ID can be 04h.
Revision ID may be 04h or 01h.
Table 2.1, "EMC1423 and
EMC1424 Pin Description"
In pin description table, added to function column:
“requires pull-up resistor” for SMDATA and SMCLK
pins
Table 2.1, "EMC1423 and
EMC1424 Pin Description"
Identified 5V tolerant pins. Added the following
application note below table: “For the 5V tolerant
pins that have a pull-up resistor (SMCLK,
SMDATA, SYS_SHDN, and ALERT), the voltage
difference between VDD and the pull-up voltage
must never exceed 3.6V.”
Table 3.1, "Absolute
Maximum Ratings"
Updated voltage limits for 5V tolerant pins with
pull-up resistors.
Rev. 1.36
(07-02-09)
Added the following note below table: “For the 5V
tolerant pins that have a pull-up resistor (SMCLK,
SMDATA, SYS_SHDN, and ALERT), the pull-up
voltage must not exceed 3.6V when the device is
unpowered.”
Table 3.2, "Electrical
Specifications"
Added leakage current.
Rev. 1.35
(04-17-09)
Table 3.1, "Absolute
Maximum Ratings"
Package thermal characteristics for DFN-10
removed
Rev. 1.34
(02-27-09)
Table 5.4, "Temperature
Data Format"
Extended range for -1 updated from 001 1111 1111
to 001 1111 1000
SMSC EMC1423/EMC1424
51
DATASHEET
Revision 2.0 (08-10-12)
Similar pages