KTVR500UG, KITVR500EVM Evaluation Board - User s Guide

Freescale Semiconductor
User’s Guide
Document Number: KTVR500UG
Rev. 1.0, 8/2014
KITVR500EVM Evaluation Board
Figure 1. KITVR500EVM
Contents
1
2
3
4
5
6
7
8
9
Important Notice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Getting to Know the Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Installing the GUI and Setting up the Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Board Layout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Board Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
© Freescale Semiconductor, Inc., 2014. All rights reserved.
Important Notice
1
Important Notice
Freescale provides the enclosed product(s) under the following conditions:
This evaluation kit is intended for use of ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY.
It is provided as a sample IC pre-soldered to a printed circuit board to make it easier to access inputs, outputs, and
supply terminals. This evaluation board may be used with any development system or other source of I/O signals
by simply connecting it to the host MCU or computer board via off-the-shelf cables. This evaluation board is not a
Reference Design and is not intended to represent a final design recommendation for any particular application.
Final device in an application will be heavily dependent on proper printed circuit board layout and heat sinking
design as well as attention to supply filtering, transient suppression, and I/O signal quality.
The goods provided may not be complete in terms of required design, marketing, and or manufacturing related
protective considerations, including product safety measures typically found in the end product incorporating the
goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate
precautions with regard to electrostatic discharge. In order to minimize risks associated with the customers
applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or
procedural hazards. For any safety concerns, contact Freescale sales and technical support services.
Should this evaluation kit not meet the specifications indicated in the kit, it may be returned within 30 days from the
date of delivery and will be replaced by a new kit.
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters
can and do vary in different applications and actual performance may vary over time. All operating parameters,
including “Typical”, must be validated for each customer application by customer’s technical experts.
Freescale does not convey any license under its patent rights nor the rights of others. Freescale products are not
designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or
other applications intended to support or sustain life, or for any other application in which the failure of the Freescale
product could create a situation where personal injury or death may occur.
Should the Buyer purchase or use Freescale products for any such unintended or unauthorized application, the
Buyer shall indemnify and hold Freescale and its officers, employees, subsidiaries, affiliates, and distributors
harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or
indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such
claim alleges Freescale was negligent regarding the design or manufacture of the part.Freescale™ and the
Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property
of their respective owners.© Freescale Semiconductor, Inc. 2014
KTVR500UG Rev. 1.0 8/2014
2
Freescale Semiconductor, Inc.
Getting Started
2
Getting Started
2.1
Kit Contents/Packing List
The KITVR500EVM contents include:
• Assembled and tested evaluation board/module in anti-static bag.
• Warranty card and Technical support brochure
2.2
Jump Start
Freescale’s analog product development boards help to easily evaluate Freescale products. These tools support analog mixed signal and
power solutions including monolithic ICs using proven high-volume SMARTMOS mixed signal technology, and system-in-package devices
utilizing power, SMARTMOS and MCU dies. Freescale products enable longer battery life, smaller form factor, component count reduction,
ease of design, lower system cost and improved performance in powering state of the art systems.
• Go to www.freescale.com/analogtools
• Locate your kit
• Review your Tool Summary Page
• Look for
Jump Start Your Design
• Download documents, software and other information
Once the files are downloaded, review the user guide in the bundle. The user guide includes setup instructions, BOM and schematics.
Jump start bundles are available on each tool summary page with the most relevant and current information. The information includes
everything needed for design.
2.3
Required Equipment and Software
To use this kit, you need:
• Power supply:
•
Output voltage range from 3.1 to 4.5 V
•
Current capability from 3.0 to 5.0 A (current requirement is dependent on output loading)
• Supply to board connection cables (capable of withstanding up to 5.0 A current)
• USB (male) to mini USB (male) communication cable
• USB-enabled computer
• Multimeter is recommended
2.4
System Requirements
The kit requires the following to function properly with the software:
• Windows XP or Windows 7 operating system
• VR500_GUI_REV_1.1.zip: Graphical User Interface (GUI) for KITVR500EVM
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
3
Getting to Know the Hardware
3
Getting to Know the Hardware
3.1
Board Overview
The KITVR500EVM evaluation board allows full evaluation capability of the 34VR500 PMIC for the QorlQ LS102x family of application
processors. It provides access to all output voltage rails as well as control and signal pins through terminal block connectors for an easier
out-of-the-box evaluation experience. A single terminal block connector for the input power supply allows the user to supply the board with
an external DC power supply to fully evaluate the performance of the device.
3.2
Board Features
The board features are as follows:
• Input voltage operation range from 3.1 to 4.5 V
• Output voltage supplies accessible through detachable terminal blocks
•
Four buck converters
•
Five general purpose LDO regulators
•
One DDR memory termination voltage reference
• On/off push button support
• Hardware configuration flexibility through various jumper headers and resistors
• Integrated USB to I2C programming interface for full control/configuration
•
Onboard PMIC control through the I2C register map
• On board connectors for interfacing with future evaluation/debug tools
• Compact form factor (4 x 4 in2)
3.3
Device Features
This evaluation board features the following Freescale products:
Table 1. Features
Device
Description
Features
• Four buck converters
MC34VR500
Multi-output DC/DC Regulator for QorIQ LS1
Family of Communications Processors
• Five general purpose linear regulators
• Programmable output voltage, sequence, and timing
• DDR termination reference voltage
• Power control logic with processor interface and event detection
• Individually programmable ON, OFF, Standby, and Sleep modes
• 8-bit HCS08 Central Processing Unit (CPU)
MC9S08JM60
8-bit USB Cost-Effective JM MCUs
• Up to 24 MHz internal bus (48 MHz HCS08 core) frequency offering 2.7
to 5.5 V across temperature range of -40 °C to +85 °C
• Support for up to 32 peripheral interrupt/reset sources
• On-chip Memory
• Up to 60 k flash read/program/erase over the full operating voltage and
temperature
• Up to 4.0 k RAM
• 256 Byte USB RAM
• Support for up to 32 peripheral interrupt/reset sources
KTVR500UG Rev. 1.0 8/2014
4
Freescale Semiconductor, Inc.
Getting to Know the Hardware
3.4
Board Description
Figure 2 describes the main blocks of the KITVR500EVM.
Power
supply
Logic and
monitoring outputs
Power
Management
LDO’s
outputs
PC
interface
via the
USB bus
Buck regulators
outputs
Figure 2. Board Description
Table 2. Board Description
Name
Summary Description
Power Supply
Main power supply connection (3.1 to 4.5 V)
Logic and monitoring outputs
I2C, INTB, EN, PORB and STBY connections for monitoring
LDO’s outputs
LDO1, 2, 3, 4, 5 REFOUT output connections (can be used to connect a load)
Buck regulators outputs
SW1, 2, 3, 4 output connections (can be used to connect a load)
PC Interface
To be connected to the PC running the GUI
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
5
Getting to Know the Hardware
3.5
Jumper Description
Verify that the jumpers are placed in the right position as shown in Figure 3. For a detailed description of the jumper functionality, refer to
Table 3.
KITVR500EVM
Figure 3. Default Jumper Configuration Diagram
KTVR500UG Rev. 1.0 8/2014
6
Freescale Semiconductor, Inc.
Getting to Know the Hardware
Table 3. Jumper Description
Jumper
Default
Description
J6
Closed
Shorts PVIN and SWVIN. Allows supply isolation to provide more accurate efficiency readings on the switching
supplies
J7
Closed
Shorts PVIN to VIN. Allows one to isolate or connect the 34VR500 logic input supply to PVIN net. (debugging option)
J8
Closed
Short EN to the MCU
J9
Open
Short to pull STBY to PVIN voltage supply
J10
Open
Short to hold EN pin low
J11
Open
Shorts SWVIN to VIN. Allows one to isolate or connect the 34VR500 logic input supply to SWVIN net. (debugging
option)
J12, J13, J14
Closed
Short to connect VLDOIN to VIN
J15
Closed
Short to connect SCL and SDA to the MCU
J16
Closed
Short to connect EN to PVIN
J17
1-2
J19, J23, J24
Closed
J22
1-2
3-4
J25
2-3
3.6
VCCI2C Supply selector
• 1-2: Connect VCCI2C to 3V3 LDO
• 3-4: Connect VCCI2C to SW2 output
Buck regulators input power path isolation
Short these jumpers to allow PVINx to be powered from the SWVIN supply
Buck regulators input power path isolation
Control Interface input supply selector
• 1-2: Enables PVIN node as the input supply source for the control interface
• 2-3: Enables USB power as the input supply source for the control interface
Connectors and Terminal Blocks Description
Table 4 presents pin connection for each header present on the KITVR500EVM.
Table 4. Terminal Blocks Descriptions
Terminal Block
Function
Pin definition
Pin 1 – GND
Pin 2 – PVIN
Pin 3 – SWVIN
J1
Main Input Supply
J2
I²C Signals
J3
VCCI2C
Pin 1 – VCCI2C
Pin 2 – GND
J4
Interfacing 1
Pin 1 – INT_B
Pin 3 – POR_B
J5
Interfacing 2
Pin 1 – STBY
Pin 2 – EN
Pin 3 – GND
J18
LDO4 / LDO5
Pin 1 – LDO4 Output
Pin 2 – GND
Pin 3 – LDO5 Output
J21
LDO2 / LDO3
Pin 1 – LDO2 Output
Pin 2 – GND
Pin 3 – LDO3 Output
J27
REFOUT / LDO1
J29
SW1
Pin 1 – SCL
Pin 2 – SDA
Pin 1 – REFOUT Output
Pin 2 – GND
Pin 3 – LDO1 Output
Pin 1 – SW1 Output
Pin 2 – GND
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
7
Getting to Know the Hardware
Table 4. Terminal Blocks Descriptions (continued)
J30
SW4
Pin 1 – SW4 Output
Pin 2 – GND
J31
SW2
Pin 1 – SW2 Output
Pin 2 – GND
J32
SW3
Pin 1 – SW3 Output
Pin 2 – GND
Table 5. Connector Description
Connector
Function
J20
Debug Port 1
J26
Pin definition
Debugging connector for future development tools
Pin 1 - BKGD_JM60
Pin 2 - GND
Pin 3 - NC
Pin 4 - RST_JM60
Pin 5 - NC
Pin 6 - USB_PWR
BDM Connector
Pin 1 - VBUS
Pin 2 - DPin 3 - D+
Pin 4 - NC
Pin 5 - GND
Chassis - GND
J28
Mini USB Connector
J33
Debug Port 2
Debugging connector for future development tools
J34
Debug Port 3
Debugging connector for future development tools
J35
Debug Port 4
Debugging connector for future development tools
3.6.1 LDO Input Supply Source Selection
It is possible to modify the LDO input supply sources by removing the Jumpers J12, J13, J14, J17 and connecting another power supply,
as one of the buck converters outputs.
LDO OUTPUT SENSE POINTS
LDO INPUT SENSE POINTS
TP11
VLDOIN45
TP13
VLDOIN23
TP12
VLDOIN1
DNP
DNP
DNP
VIN
J12
2
1
VLDOIN1
17
VLDOIN23
27
HDR 1X2 TH
J13
2
1
HDR 1X2 TH
LDO1
VLDOIN1
LDO2
VLDOIN23
LDO
J14
2
1
VLDOIN45
40
HDR 1X2 TH
C33
1.0UF
LDO4
VLDOIN45
30
29
TP37
REFIN
DNP
V_SW3
0
18
V_LDO1
26
V_LDO2
28
V_LDO3
39
V_LDO4
41
V_LDO5
C63
1.0UF
Default:
1-2 shunt
R11
LDO3
LDO5
C54
1.0UF
TP30
V_LDO1
TP40
V_LDO2
TP36
V_LDO3
TP18
V_LDO4
TP9
V_LDO5
DNP
DNP
DNP
DNP
DNP
V_LDO1
V_LDO2
V_LDO3
V_LDO4
V_LDO5
U1B
C62
4.7uF
REFIN
REF
REG
REFOUT
31
C32
2.2UF
C34
4.7uF
C10
2.2UF
C4
2.2UF
REFOUT
VHALF
MC34VR500V1ES
TP34
REFOUT
REFOUT
REFIN
DNP
C35
0.1UF
C31
1.0UF
VHALF
TP38
VHALF
DNP
C29
1.0UF
C37
0.1UF
Figure 4. LDO Schematic Configuration
KTVR500UG Rev. 1.0 8/2014
8
Freescale Semiconductor, Inc.
Getting to Know the Hardware
TP10
VR500_EN
PVIN
DNP
1
EN
EN
3,5
2
2
HDR 1X2 TH
Default:
No shunt
2
DNP
Default:
1-2 shunt
J10
SW1
FSMSM
DNP
1
TP8
VIN_SENSE
VIN
2
HDR 1X2 TH
1
R7
1M
J8
VR500_EN
PVIN
TP14
VBG
DNP
TP15
VCC
DNP
C52
1.0UF
V_SW2
3V3
C7
1.0UF
C53
0.22uF
50
51
VBG
52
VCC
49
VBIAS
43
C8
0.47uF
55
VIN
VDIG
EN
VBG
POR
VCC
STBY
VBIAS
Control
INT
56
J9
HDR 1X2 TH
Default:
No shunt
3
TP3
POR_B
4
1
POR_B
INT_B
DNP
TP5
INT_B
DNP
TP4
STBY
R10
10.0K
R8
10.0K
1
VDIG
DNP
VIN
VDIG
2
U1A
TP16
1
J16
HDR 1X2 TH
Default:
1-2 shunt
C51
1.0UF
DNP
POR_B 3
INT_B 3
VCCI2C
STBY
J17
STBY
VCCI2C
1
3
2
4
3
VCCI2C
54
HDR 2X2
C3
1.0UF
DNP
Default:
1-2 shunt
C6
0.1UF
53
SCL
ICTEST1
SDA
ICTEST2
5
47
C2
1.0UF
R9
100K
VCCI2C
MC34VR500V1ES
R5
4.7K
J15
3,5
3,5
MCU_SCL
MCU_SDA
MCU_SCL
MCU_SDA
1
3
2
4
I2C_SCL
I2C_SDA
R6
4.7K
TP6
SCL
DNP
TP7
SDA
DNP
HDR 2X2
Default:
1-2 shunt,
3-4 shunt.
Figure 5. Logic and Core Supplies Schematic
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
9
Getting to Know the Hardware
Table 6. LDO Input Supply Configuration Chart
Input Pin
Input options
VLDOIN1
Input supply for LDO1:
J12 Closed: VIN
J12 Open: User's choice
VLDOIN23
Input supply for LDO2 and LDO3:
J13 Closed: VIN
J13 Open: User's choice
VLDOIN45
Input supply for LDO4 and LDO5:
J14 Closed: VIN
J14 Open: User's choice
REFIN
VCCI2C
Input supply for REFOUT:
R11 = V_SW3
R11 removed: User's choice
Input supply for VCCI2C:
1 - 2: 3V3
3 - 4: V_SW2
3.6.2 Test point
All test points are clearly marked on the evaluation board. Figure 6 shows the location of various test points of interest during evaluation.
PORB
INTB
STBY
EN
VBG
LDO5
VDIG
SW1
VCC
LDO4
LDO1
SW3
REFOUT
SW2
LDO3
SW4
LDO2
Figure 6. Key Test Point Locations
KTVR500UG Rev. 1.0 8/2014
10
Freescale Semiconductor, Inc.
Getting to Know the Hardware
3.7
Miscellaneous Components
3.7.1 Power on Push Button
A footprint for a normally open, momentary push-button is provided at the EN terminal to allow a momentary low state by pressing the
push button. J8 allows isolation of the EN terminal from the MCU GPIO controlling this pin.
TP10
VR500_EN
PVIN
DNP
1
EN
EN
3,5
2
2
HDR 1X2 TH
Default:
No shunt
2
DNP
Default:
1-2 shunt
J10
SW1
FSMSM
DNP
1
TP8
VIN_SENSE
VIN
2
HDR 1X2 TH
1
R7
1M
J8
VR500_EN
PVIN
C51
1.0UF
TP14
VBG
DNP
TP15
VCC
DNP
C52
1.0UF
V_SW2
3V3
C53
0.22uF
C7
1.0UF
50
51
VBG
52
VCC
49
VBIAS
43
C8
0.47uF
55
VIN
VDIG
EN
VBG
POR
VCC
STBY
VBIAS
Control
INT
56
J9
HDR 1X2 TH
Default:
No shunt
3
TP3
POR_B
4
1
POR_B
INT_B
DNP
TP5
INT_B
DNP
TP4
STBY
R10
10.0K
R8
10.0K
1
VDIG
DNP
VIN
VDIG
2
U1A
TP16
1
J16
HDR 1X2 TH
Default:
1-2 shunt
DNP
POR_B 3
INT_B 3
VCCI2C
STBY
J17
STBY
VCCI2C
1
3
2
4
3
VCCI2C
54
HDR 2X2
C3
1.0UF
DNP
Default:
1-2 shunt
C6
0.1UF
53
SCL
ICTEST1
SDA
ICTEST2
5
47
C2
1.0UF
R9
100K
VCCI2C
MC34VR500V1ES
R5
4.7K
J15
3,5
3,5
MCU_SCL
MCU_SDA
MCU_SCL
MCU_SDA
1
3
2
4
I2C_SCL
I2C_SDA
R6
4.7K
TP6
SCL
DNP
TP7
SDA
DNP
HDR 2X2
Default:
1-2 shunt,
3-4 shunt.
Figure 7. Power on Circuit
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
11
Getting to Know the Hardware
3.7.2
PMIC LED Indicators
LED indicators are provided to notify the PMIC status to the user. Figure 8 shows the PMIC status LEDs D2 and D4, and a Reserved
LED indicator D3, that allows for an external rework connection to the transistor gate if any given signal debug is required.
PVIN
PVIN
2
SHUTDOWN INDICATOR
2
INTERRUPT INDICATOR
RESET INDICATOR
PVIN
Q1
INT_B
1
3 ,5
Q3
FDV302P
EN
EN
1
POR_B
POR_B
S
2
3 G
Q2
FDV302P
PVIN
D
4
D
6
R1
200 OHM
3
IN T_B
3
3
3
R4
200 OHM
1 G
1
3
4
D3
LED_RED-GRN
POR_B
A
A
Grn
R2
200 OHM
Red
R3
200 OHM
5
2
S
FDC6327C
INT_B
EN
C
D1
LED Red
C
D2
LED Red
Figure 8. PMIC Status Indicators
Table 7 describes the meaning of the LED state.
Table 7. LED State Description
LED
Description
D2
Interrupt Notification
ON = PMIC has detected an unmasked interrupt
OFF = No interrupt detected
D3
PORB Notification
Green = PMIC is in regulation and operating properly
Red = PMIC is out of regulation
D1
Reserved debug LED
ON = Q3 gate (R84 pad) is low
OFF = Q3 gate (R84 pad) is high or floating
KTVR500UG Rev. 1.0 8/2014
12
Freescale Semiconductor, Inc.
Installing the GUI and Setting up the Hardware
4
Installing the GUI and Setting up the Hardware
4.1
Installing the GUI Interface
The new “driverless” environment allows automatically detecting and recognizing the board connected through the USB port, enabling the
specific features and controls for each board.
1. Create a directory on your PC as follows: C:\Freescale\KITVR500GUI
2. Extract the KITVR500GUI.zip file into that directory.
3. Launch the "setup.exe" program.
4. When the following popup dialog appears, click the “Install” button.
Figure 9. KITVR500EVM Installation Window
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
13
Installing the GUI and Setting up the Hardware
4.2
Configuring the Hardware
The KITVR500EVM operates with a single power supply from 3.1 to 4.5 V and is controlled via USB with help of an integrated USB-I2C
communication bridge. By applying the input voltage supply, the KITVR500EVM powers up according to the default power-up sequence
(34VR500V1) described in the MC34VR500 Data Sheet.
Connect the power supply and the USB communication cables as shown in Figure 10. Multimeter is optional but it is recommended in
order to accurately verify that each one of the output supplies is providing the correct voltage level.
Figure 10. KITVR500EVM Board Setup
Note:
The KITVR500EVM allows the selection of SW2 regulator output or an external 3.3 V LDO
output as the VCCI2C/I2C pull-up supply. By default, the 3.3 V LDO regulator is the source
for the VDDIO supply (J17 = 1–2). If the SW2 regulator is to be set below 3.0 V then make
sure the 3.3 V LDO output is connected to VCCI2C.
KTVR500UG Rev. 1.0 8/2014
14
Freescale Semiconductor, Inc.
Installing the GUI and Setting up the Hardware
4.2.1 Step-by-step Instructions for Setting up the Hardware using GUI
To perform the demonstration examples, the following connections and setup must be performed:
1. Connect the power supply to J1, PVIN, and GND pins.
2. Switch on the power supply with a voltage set up between 3.1 and 4.5 V.
3. Connect the mini USB cable to J28 and to the computer.
4. Launch the VR500GUI, the description on how to use the GUI is provided in KTVR500SWUG
Figure 11. KITVR500GUI
The main features of the KITVR500GUI are:
• Automatic detection of the KITVR500EVM
• Read/write access to the 34VR500 PMIC
• Intuitive interface for controlling the 34VR500
• Monitoring all interrupts manually or continuously
• Scrip editor for prototyping, test emulation, or customized operation of the 34VR500 device
• Saving and recalling customized scripts files
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
15
Schematic
5
Schematic
LDO OUTPUT SENSE POINTS
LDO INPUT SENSE POINTS
TP11
VLDOIN45
TP13
VLDOIN23
TP12
VLDOIN1
DNP
DNP
DNP
VIN
TP30
V_LDO1
TP40
V_LDO2
TP36
V_LDO3
TP18
V_LDO4
TP9
V_LDO5
DNP
DNP
DNP
DNP
DNP
J12
2
1
VLDOIN1
17
HDR 1X2 TH
J13
2
1
VLDOIN23
27
HDR 1X2 TH
LDO1
VLDOIN1
LDO2
VLDOIN23
LDO3
LDO
J14
1
2
VLDOIN45
40
HDR 1X2 TH
LDO4
VLDOIN45
LDO5
C54
1.0UF
C33
1.0UF
30
29
TP37
REFIN
DNP
0
R11
18
V_LDO1
26
V_LDO2
28
V_LDO3
39
V_LDO4
41
V_LDO5
C63
1.0UF
Default:
1-2 shunt
V_SW3
V_LDO1
V_LDO3
V_LDO2
V_LDO4
V_LDO5
U1B
C62
4.7uF
REFIN
REF
REG
REFOUT
31
C32
2.2UF
C34
4.7uF
C4
2.2UF
C10
2.2UF
REFOUT
VHALF
MC34VR500V1ES
TP34
REFOUT
REFOUT
REFIN
DNP
C35
0.1UF
C31
1.0UF
TP38
VHALF
DNP
C29
1.0UF
VHALF
C37
0.1UF
TP10
VR500_EN
PVIN
DNP
EN
EN
3,5
2
2
HDR 1X2 TH
Default:
No shunt
2
DNP
1
J10
SW1
FSMSM
DNP
1
TP8
VIN_SENSE
VIN
2
HDR 1X2 TH
1
R7
1M
Default:
1-2 shunt
J8
VR500_EN
PVIN
TP14
VBG
DNP
TP15
VCC
DNP
C52
1.0UF
V_SW2
3V3
C53
0.22uF
50
51
VBG
52
VCC
49
VBIAS
C7
1.0UF
C8
0.47uF
43
55
VIN
VDIG
EN
VBG
POR
VCC
STBY
VBIAS
Control
INT
56
J9
3
HDR 1X2 TH
Default:
No shunt
TP3
POR_B
4
1
POR_B
INT_B
DNP
TP5
INT_B
DNP
TP4
STBY
R10
10.0K
R8
10.0K
1
VDIG
DNP
VIN
VDIG
2
U1A
TP16
1
J16
HDR 1X2 TH
Default:
1-2 shunt
C51
1.0UF
DNP
POR_B 3
INT_B 3
VCCI2C
STBY
J17
STBY
VCCI2C
1
3
2
4
3
VCCI2C
54
HDR 2X2
C3
1.0UF
DNP
Default:
1-2 shunt
C6
0.1UF
53
SCL
ICTEST1
SDA
ICTEST2
5
47
C2
1.0UF
R9
100K
VCCI2C
MC34VR500V1ES
R5
4.7K
J15
3,5
3,5
MCU_SCL
MCU_SDA
MCU_SCL
MCU_SDA
1
3
2
4
I2C_SCL
I2C_SDA
R6
4.7K
TP6
SCL
DNP
TP7
SDA
DNP
HDR 2X2
Default:
1-2 shunt,
3-4 shunt.
Figure 12. Evaluation Board Schematic, Part 1
KTVR500UG Rev. 1.0 8/2014
16
Freescale Semiconductor, Inc.
Schematic
SWVIN
PVIN
Default:
No shunt
SWVIN
J1
2
3
2
1
1
J4
HDR 1X2 TH
INT_B
1
2
POR_B 3
IN T_B
2
3
2
3
J6
J7
HDR 1X2 TH
HDR 1X2 TH
Default:
1-2 shunt
Default:
1-2 shunt
1
SUB_TB_3X1
1
SWVIN
PVIN
GND
I2C Terminal Blocks
VR500 - CONTROL SIGNALS
TERMINAL BLOCK SECTION
VIN
J11
POR_B
3,5
3,5
MCU_SCL
MCU_SDA
MCU_SCL 1
MCU_SDA 2
SUB_TB_3X1
SUB_TB_2X1
VCCI2C
J3
J5
Input Terminal Block J1 pin 2
VIN VR500 Main chip supply &
Input supply for LDO.
Feed the power from PVIN
by shunting the header J7
(or)
Feed the power from SWVIN
by shunting the header J11.
INTERRUPT INDICATOR
SHUTDOWN INDICATOR
PVIN
PVIN
3
RESET INDICATOR
IN T_B
INT_B
2
Input Terminal Block J1 pin 3
(or)
Feed the power from PVIN
by shunting the header J6.
2
SWVIN VR500 Swithcing Regulator input
SUB_TB_2X1
SUB_TB_3X1
1
Q3
FDV302P
EN
3
PVIN
3 ,5
EN
1
Q2
FDV302P
3
PVIN Main Input supply to the board
VCCI2C 1
2
GND
1
2
3
STBY
EN
GND
3 ST BY
3 ,5 E N
Input Source
Supply
J2
Q1
3
POR_B
POR_B
S
2
3 G
PVIN
D
4
D
6
S
5
R3
200 OHM
R1
200 OHM
R2
200 OHM
R4
200 OHM
A
D1
LED Red
INT_B
EN
C
D2
LED Red
C
Grn
D3
LED_RED-GRN
POR_B
3
4
Red
2
FDC6327C
1
A
1 G
VR500 - LDO & REFOUT O/P HEADER SECTION
V_LDO1
J34
1
3
5
7
9
11
13
15
17
19
2
4
6
8
10
12
14
16
18
20
V_LDO2
V_LDO3
V_LDO4
V_LDO5
REFOUT
V_LDO1
V_LDO2
V_LDO3
V_LDO4
V_LDO5
REFOUT
CON_2X10
Figure 13. Evaluation Board Schematic, Part 2
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
17
Schematic
VR500 - CONTROL/I2C SIGNALS HEADER
J33
3
2
4
6
8
10
12
14
16
18
20
1
3
5
7
9
11
13
15
17
19
STBY
ST BY
EN
INT_B
EN 3,5
INT_B 3
POR_B
POR_B
VCCI2C
MCU_SCL
MCU_SDA
PVIN
SWVIN
VCCI2C
3
MCU_SCL
MCU_SDA
3,5
3,5
PVIN
SWVIN
CON_2X10
VR500 - LDO & REFOUT O/P
TERMINAL BLOCK SECTION
V_LDO1
REFOUT
J27
1
2
3
REFOUT
GND
V_LDO1
REFOUT= DDR memory reference
voltage,10 mA.
V_LDO1= 0.80 to 1.55 V, 250 mA
SUB_TB_3X1
V_LDO3
V_LDO2
J21
V_LDO2
GND
V_LDO3
1
2
3
V_LDO2 = 1.8 to 3.3 V, 100 mA
V_LDO3 = 1.8 to 3.3 V, 350 mA
SUB_TB_3X1
V_LDO5
V_LDO4
J18
V_LDO4
GND
V_LDO5
1
2
3
V_LDO4 = 1.8 to 3.3 V, 100 mA
V_LDO5 = 1.8 to 3.3 V, 200 mA
SUB_TB_3X1
GROUND TEST POINTS
MOUNTING HOLES
BH3
BH1
BH4
BH2
TP2
GND
MTG
MTG
MTG
MTG
DNP
TP1
GND
DNP
TP42
GND
DNP
TP41
GND
TP31
GND
DNP
DNP
TP28
GND
DNP
Figure 14. KITVR500EVM LDO/Control Schematic Part 3
KTVR500UG Rev. 1.0 8/2014
18
Freescale Semiconductor, Inc.
Schematic
TP17
TP25
TP26
PVIN1_1 PVIN1_2 PVIN1_3
SWVIN
J19
DNP
DNP
U1C
TP21
LX1
DNP
PVIN1_1
PVIN1_2
PVIN1_3
2
4
6
1
3
5
HDR 2X3
Default:
1-2 shunt,
3-4 shunt,
5-6 shunt.
C19
C21
C56
C55
C64
C59
4.7uF
0.1UF
4.7uF
0.1UF
4.7uF
0.1UF
7
10
12
LX1_1
LX1_2
LX1_3
SW1
FB1
8
9
11
J22
LX1
DNP
V_SW1
2
6.0A
C26
22UF
DNP
FB1
13
C15
22UF
DNP
C14
22UF
DNP
C13
22UF
DNP
C24
22UF
C25
22UF
C22
22UF
TP23
PVIN3_1
TP19
PVIN3_2
DNP
DNP
HDR 2X2
Default:
1-2 shunt,
3-4 shunt.
C65
4.7uF
0.1UF
DNP
PVIN2_1
PVIN2_2
LX2
SW2
FB2
22
L4
1uH
1
LX2
C11
22UF
DNP
V_SW2
2
2.4A
C42
22UF
DNP
FB2
25
C43
22UF
DNP
C45
22UF
DNP
C44
22UF
DNP
C40
22UF
C41
22UF
TP24
LX3
TP22
V_SW3
V_SW3
PVIN3_1
PVIN3_2
C58
C57
C17
C18
4.7uF
0.1UF
4.7uF
0.1UF
34
37
PVIN3_1
PVIN3_2
LX3_1
LX3_2
SW3
FB3
35
36
DNP
L2
1uH
DNP
V_SW3
2
1
LX3
2.65A
FB3
38
C36
22UF
DNP
C27
22UF
DNP
C20
22UF
DNP
C1
22UF
DNP
C16
22UF
C9
22UF
TP32
LX4
C28
22UF
C30
22UF
TP39
V_SW4
V_SW4
Default:
DNP
DNP
PVIN4
C66
C61
4.7uF
0.1UF
SW4
PVIN4
LX4
FB4
DNC1
DNC2
DNC3
DNC4
DNC5
DNC6
DNC7
DNC8
21
L3
1UH
1
LX4
DNP
V_SW4
2
2.0A
19
C47
22UF
DNP
FB4
2
6
16
33
42
44
45
46
C48
22UF
DNP
C46
22UF
DNP
C49
22UF
DNP
C38
22UF
C39
22UF
MC34VR500V1ES
57
14
15
32
48
SGND1
SGND2
SGND3
SGND4
HDR 1X2 TH
20
EPGND
J24 1-2 shunt
2
1
C12
22UF
V_SW2
PVIN2
C60
23
24
TP29
PVIN4
SWVIN
C23
22UF
TP35
V_SW2
TP33
LX2
DNP
2
4
1
3
1uH
1
Default:
J23 1-2 shunt
1
2
HDR 1X2 TH
SWVIN
L1
DNP
TP27
PVIN2
SWVIN
TP20
V_SW1
V_SW1
PVIN1_1
PVIN1_2
PVIN1_3
VR500-SWITHCING REGULATOR O/P
TERMINAL BLOCK SECTION
VR500-SWITHCING REGULATOR O/P HDR
J35
V_SW1
1
3
5
7
9
11
13
15
17
19
V_SW1
SW1
SUB_TB_2X1
V_SW1
V_SW4
J29
1
2
V_SW4
V_SW2
0.625 to 1.875 V
4.5 A (Max. Peak)
V_SW2
V_SW3
V_SW3
V_SW2
V_SW1
2
4
6
8
10
12
14
16
18
20
V_SW1
V_SW4
V_SW4
V_SW2
V_SW2
V_SW3
V_SW3
CON_2X10
SW2
J31
1
2
PROGRAMMING INTERFACE
0.625 to 1.975V ,
1.0 A (Max. Peak)
SUB_TB_2X1
3V3
V_SW3
J32
1
2
SUB_TB_2X1
C5
0.1UF
J20
SW3
0.625 to 1.975 V ,
2.5 A (Max. Peak)
3,5
MCU_SDA
GPIO1
MCU_SDA
5 GPIO1
2
4
6
8
1
3
5
7
3V3
MCU_SCL
EN
GPIO2
MCU_SCL
EN 3,5
GPIO2 5
3,5
HDR 2X4
LDO REGULATOR 3.3 V
V_SW4
Layout Note :
Place this LDO section
on the bottom side of the PCB.
SW4
J30
1
2
SUB_TB_2X1
1.0 A
operates in VTT mode
provide DDR termination
at 50% of SW3
VIN_USB
3V3
C79
1.0UF
U3
VIN_USB 1
3V3
5
3V3 R21
LD0_3V3_EN
12.0K
LD0_3V3_EN
LDO_3V3_ADJ 4
C71
R22
20K
3
470PF
2
IN
OUT
5
3V3
EN
ADJ
C74
2.2uF
DNP
+
C80
2.2UF
GND
MIC5205
R1
R2
VOUT = 1.242 X ( (R2/R1) + 1) = 3.3V
R2 = ((VOUT/1.242) -1) X R1
Figure 15. KITVR500EVM Switching Regulators Schematic
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
19
Schematic
ESD PROTECTION
LED INDICATORS
ID1
USB_PWR
USB_PWR
A
MCU_SCL
A
IDO
GPIO1
GPIO2
R20
R19
0
0
32
33
36
37
PTD0
PTD1
2
3
40
RST_JM60_B
BKGD_JM60
34
17
VDDAD/VREFH
VDD
LED_RED_ON
9
10
11
12
13
14
15
16
PTE0/TxD1
PTE1/RxD1
PTE2/TPM1CH0
PTE3/TPM1CH1
PTE4/MISO1
PTE5/MOSI1
PTE6/SPSCK1
PTE7/SS1
LD0_3V3_EN
LED_GRN_ON
LED_RED_ON
LD0_3V3_EN
5
CRYSTAL SECTION
XTAL_JM60
PTC0/SCL
PTC1/SDA
PTC2
PTC3/TxD2
PTC4
PTC5/RxD2
4
5
6
7
8
PTF0/TPM1CH2
PTF1/TPM1CH3
PTF4/TPM2CH0
PTF5/TPM2CH1
PTF6
22
23
38
39
41
42
PTG0/KBIP0
PTG1/KBIP1
PTG2/KBIP6
PTG3/KBIP7
PTG4/XTAL
PTG5/EXTAL
PTD0/ADP8/ACMP+
PTD1/ADP9/ACMPPTD2/KBIP2/ACMPO
PTD7
IRQ/TPMCLK
RESET
BKGD/MS
C70
0.1uF
C67
12PF
Y1
12MHz
C68
12PF
EXTAL_JM60
VUSB33
21
19
20
VUSB33
USBDN
USBDP
VUSB33
+
C77
0.47UF
Layout Note :
Place the crstal section on the
bottom side of the PCB as close
as possible to the JM60 MCU.
C75
4.7UF
35
18
43
49
MC9S08JM60CGTE
R18
1M
GND1
GPIO1
GPIO2
MCU_SCL
MCU_SDA
R15
470
LED_GRN_ON
GND2
5
5
3,5
3,5
44
45
46
47
1
48
PTB0/MISO2/ADP0
PTB1/MOSI2/ADP1
PTB2/SPSCK2/ADP2
PTB3/SS2/ADP3
PTB4/KBIP4/ADP4
PTB5/KBIP5/ADP5
R14
470
Layout Note :
Place this JM60 MCU
on the bottom side of the PCB.
1
4
C72
0.1uF
MCU_SCL
MCU_SDA
C78
10UF
2
3
ID1
IDO
PTA0
PTA5
VSSAD/VREFL
VSS
VSSOSC
GND
26
27
28
29
30
31
EN
+
C76
0.1uF
U2
24
25
C73
0.1uF
C
VIN_USB
Layout Note :
Place the ESD diodes on
the bottom side of the PCB.
EN
C
C
ESD9L5.0ST5G
D9
C69
0.1uF
3 ,5
D5
LED Red
D4
LED Green
A
C
ESD9L5.0ST5G
D8
A
C
ESD9L5.0ST5G
D7
A
D6
A
ESD9L5.0ST5G
C
MCU_SDA
VUSB33
R23
1.5K
DNP
R24
1.5K
DNP
JM60_USB_DN
90
JM60_USB_DP
Ohm
JM60_USB_DN
5
JM60_USB_DP
5
BDM PROGRAMMER
USB_PWR
USB_PWR
R12
4.7K
R13
4.7K
USB_PWR
J26
BKGD_JM60
1
3
5
2
4
6
RST_JM60_B
HDR 2X3
USB SECTION
USB_PWR
L5
2
1
VUSB_L
2
F1
1
Default:
HI1812V101R-10
0.5A
J28
USB-MiniB
C50
10UF
USB_PWR
2-3 shunt
J25
HDR 1X3
PVIN
VIN_USB
D+
D- VBUS
3
2
1
S1
S3
+
1
VUSB
2
USB_DN
3
USB_DP
90
Ohm
ID
4
G
5
R16
33
R17
33
JM60_USB_DN
90
Ohm
JM60_USB_DP
JM60_USB_DN
5
JM60_USB_DP
5
L6
USB_GND
1
2
S2
S4
HI1812V101R-10
Figure 16. KITVR500EVM Control/programming Interface Schematic
KTVR500UG Rev. 1.0 8/2014
20
Freescale Semiconductor, Inc.
Board Layout
6
Board Layout
6.1
Silkscreen
KITVR500EVM
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
21
Board Bill of Materials
7
Board Bill of Materials
Table 8. Bill of Materials (1)
Item
Qty
Schematic Label
Value
Description
Part Number
Assy
Opt
Active Components
1
1
U1
Freescale IC POWER MANAGEMENT
COMMUNICATION -0.3-4.8 V QFN56
MC34VR500V1ES
(3)
2
1
U2
Freescale IC MCU 8-bit 48 MHZ 60 KB
FLASH 2.7-5.5V QFN48
MC9S08JM60CGTE
(3)
3
1
U3
Micrel IC LIN VREG LDO 1.5-15 V 150
MA 2.5-16 V SOT23-5
MIC5205YM5
(3)
4
1
Y1
12 MHz
Aker XTAL 12 MHZ 12PF -- 3.2X2.5MM
C3E-12.000-12-3030-R
SMT
(3)
Mounting Hole
5
4
BH1,BH2,BH3,BH4
MOUNTING HOLE 0.130 INCH, no part
to order
Capacitors
6
16
C1,C13,C14,C15,C20,C
26,C27,C36,C42,C43,C4 22 F
4,C45,C46,C47,C48,C49
CAP CER 22 F 10 V 20% X5R 0805
LMK212BJ226MG-T
7
9
C2,C7,C29,C31,C33,C5
1,C52,C54,C63
1.0 F
CAP CER 1.0 F 10 V 10% X5R 0402
CC0402KRX5R6BB105
8
1
C3
1.0 F
CAP CER 1.0 F 10V 10% X5R 0402
CC0402KRX5R6BB105
9
3
C4,C10,C32
2.2 F
CAP CER 2.2 F 6.3 V 20% X5R 0402 C0402C225M9PACTU
10
11
C5,C6,C18,C21,C35,C3
0.1 F
7,C55,C57,C59,C61,C65
11
1
C8
12
14
C9,C11,C12,C16,C22,C
23,C24,C25,C28,C30,C3 22 F
8,C39,C40,C41
CAP CER 22 F 10 V 20% X5R 0805
LMK212BJ226MG-T
13
7
C17,C19,C56,C58,C60,
C64,C66
4.7 F
CAP CER 4.7 F 10 V 10% X5R 0603
LMK107BJ475KA-T
14
2
C34,C62
4.7 F
CAP CER 4.7 F 6.3 V 20% X5R 0402 C0402X5R6R3-475MNP
0.47 F
CAP CER 0.1 F 10 V 10% X5R 0402
(2)
(2)
C0402C104K8PAC
CAP CER 0.47 F 16 V 10% X5R 0402 C1005X5R1C474K
(3)
15
2
C50,C78
10 F
CAP TANT 10 F 16 V 10% -- 3216-18 TAJA106K016R
16
1
C53
0.22 F
CAP CER 0.22 F 16 V 10% X7R 0402 GRM155R71C224KA12D
17
2
C67,C68
12 PF
CAP CER 12 PF 25 V 5% C0G 0402
CC0402JRNPO8BN120
18
5
C69,C70,C72,C73,C76
0.1 F
CAP CER 0.1 F 16 V 10% X5R 0402
C1005X5R1C104K
19
1
C71
470 PF
CAP CER 470 PF 50 V 5% COG 0603
06035A471JAT2A
20
1
C74
2.2 F
CAP CER 2.2 F 16 V 10% X5R 0603
GRM188R61C225KE15D
21
1
C75
4.7 F
CAP TANT 4.7 F 10 V 10% -- 3216-18 T491A475K010AT
22
1
C77
0.47 F
CAP CER 0.47 F 16V 10% X7R 0603 C0603C474K4RAC
23
1
C79
1.0 F
CAP CER 1.0 F 16 V 10% X5R 0603
C1608X5R1C105K
24
1
C80
2.2 F
CAP TANT ESR=1.800 OHMS 2.2 F
10 V 10% 3216-18
TPSA225K010R1800
(2)
Diodes
25
3
D1,D2,D5
LED Red
LED RED SGL 30MA 0603
SML-LXFM0603SIC-TR
26
1
D3
LED_RED-GR
N
LED DUAL GRN/RED 30MA SMT
LTST-C195KGJRKT
KTVR500UG Rev. 1.0 8/2014
22
Freescale Semiconductor, Inc.
Board Bill of Materials
Table 8. Bill of Materials (1) (continued)
Item
Qty
Schematic Label
Value
Description
Part Number
27
1
D4
LED Green
LED GRN SGL 30MA SMT 0603
SML-LXFM0603SUGCTR
28
4
D6,D7,D8,D9
ESD9L5.0ST5
G
DIODE TVS ESD PROT ULT LOW
CAP 5-5.4V SOD-923
ESD9L5.0ST5G
Assy
Opt
Resistors
29
4
R1,R2,R3,R4
200 
RES MF 200  1/10W 1% 0402
ERJ2RKF2000X
30
4
R5,R6,R12,R13
4.7 K
RES MF 4.7 K 1/16W 1% 0402
RK73H1ETTP4701F
31
2
R7,R18
1.0 M
RES MF 1.0 M 1/16W 1% AEC-Q200
0402
CRCW04021M00FKED
32
2
R8,R10
10 K
RES MF 10 K 1/16W 1% AEC-Q200
0402
CRCW040210K0FKED
33
1
R9
100 K
RES MF 100 K 1/16W 5% 0402
RK73B1ETTP104J
34
1
R11
ZERO 
RES MF ZERO  1/10W 1% 0603
MC0603SAF0000T5E
35
2
R14,R15
470 
RES MF 470  1/16W 1% 0402
CR-02FL6--470R
36
2
R16,R17
33 
RES MF 33  1/16W 1% 0402
CR-02FL6---33R
37
2
R19,R20
ZERO 
RES MF ZERO  1/10W -- 0402
ERJ-2GE0R00X
38
1
R21
12 K
RES MF 12 K 1/10W 1% 0603
RK73H1JTTD1202F
39
1
R22
20 K
RES MF 20 K 1/10W 5% 0603
CR0603-JW-203ELF
40
2
R23,R24
1.5 K
RES MF 1.5 K 1/16W 5% 0402
CRCW04021K50JNED
(2)
41
1
L1
1 H
Coilcraft IND PWR 1 H@100 KHz 6 A
20% SMT
XAL4020-102MEC
(3)
42
1
L2
1 H
Coilcraft IND PWR 1 H@100 KHZ
2.65 A 20% SMT
LPS5015-102MLC
(3)
43
1
L3
1 H
TDK IND PWR 1 H@1 MHZ 2 A 30%
SMT
VLS252010T-1R0N
(3)
44
1
L4
1 H
Coilcraft IND PWR 1 H@100 KHZ 2.4
A 30% SMT
LPS4012-102NLC
(3)
45
2
L5,L6
HI1812V101R10
IND FER 100 @100 MHZ 8 A 25%
SMD/1812
HI1812V101R-10
0.5 A
FUSE PLYSW 0.5A 13.2V SMT
MICROSMD050F-2
210-80542,211-79574
210-80539,211-79573
Inductors
Switches, Connectors, Jumpers, and Test Points
46
1
F1
47
6
J1,J4,J5,J18,J21,J27
SUB_TB_3X1
SUBASSEMBLY HDR 1X3 TH 197MIL
374H SN 138L + CON 1X3 PLUG TB
TH 5MM 449H
48
6
J2,J3,J29,J30,J31,J32
SUB_TB_2X1
SUBASSEMBLY HDR 1X2 TH 197MIL
374H SN 138L + CON 1X2 PLUG TB
TH 5MM 449H
49
12
J6,J7,J8,J9,J10,J11,J12,
J13,J14,J16,J23,J24
HDR 1X2 TH
HDR 1X2 TH 100MIL SP 339H AU 118L 210-91-02GB01
50
3
J15,J17,J22
HDR 2X2
HDR 2X2 TH 100MIL CTR 340H SN
105L
5-146258-2
51
2
J19,J26
HDR 2X3
HDR 2X3 TH 100MIL CTR 335H AU
95L
TSW-103-07-S-D
52
1
J20
HDR 2X4
HDR 2X4 TH 100MIL CTR 425H AU
310L
TSW-104-16-G-D
53
1
J25
HDR 1X3
HDR 1X3 TH 100MIL SP 340H AU 118L M20-9990345
54
1
J28
USB-MiniB
CON 5 USB MINI-B RA SHLD SKT
SMT 31MIL SP AU
675031340
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
23
Board Bill of Materials
Table 8. Bill of Materials (1) (continued)
Qty
55
3
J33,J34,J35
CON_2X10
CON 2X10 SKT SMT 100MIL CTR
390H AU
SSW-110-22-F-D-VS-N
56
1
Q1
FDC6327C
TRAN MOSFET DUAL N & P
CHANNEL 2.5V S-SOT6
FDC6327C
57
2
Q2,Q3
FDV302P
TRAN PMOS SW 120MA 25V SOT23
FDV302P
58
1
SW1
FSMSM
SW SPST PB 12V 50MA SMT
1437566-4
(2)
42
TP1,TP2,TP3,TP4,TP5,
TP6,TP7,TP8,TP9,TP10,
TP11,TP12,TP13,TP14,
TP15,TP16,TP17,TP18,
TP19,TP20,TP21,TP22,
TP23,TP24,TP25,TP26,
TP27,TP28,TP29,TP30,
TP31,TP32,TP33,TP34,
TP35,TP36,TP37,TP38,
TP39,TP40,TP41,TP42
TEST POINT
RED
TEST POINT RED 40 MIL DRILL 180
MIL TH 109L
5000
(2)
59
Schematic Label
Value
Description
Part Number
Assy
Opt
Item
Notes
1. Freescale does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables.
While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.
2. Do not populate
3. Critical components. For critical components, it is vital to use the manufacturer listed.
KTVR500UG Rev. 1.0 8/2014
24
Freescale Semiconductor, Inc.
References
8
References
Following are URLs where you can obtain information on related Freescale products and application solutions:
Freescale.com
Support Pages
Description
URL
KITVR500EVM
Tool Summary Page
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=KITVR500EVM
MC34VR500
Product Summary Page
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MC34VR500
KTVR500SWUG
Software User Guide
http://cache.freescale.com/files/analog/doc/user_guide/KTVR500SWUG.pdf
8.1
Support
Visit www.freescale.com/support for a list of phone numbers within your region.
8.2
Warranty
Visit www.freescale.com/warranty for a list of phone numbers within your region.
KTVR500UG Rev. 1.0 8/2014
Freescale Semiconductor, Inc.
25
Revision History
9
Revision History
Revision
1.0
Date
8/2014
Description of Changes
•
Initial Release
KTVR500UG Rev. 1.0 8/2014
26
Freescale Semiconductor, Inc.
How to Reach Us:
Information in this document is provided solely to enable system and software implementers to use Freescale products.
Home Page:
freescale.com
There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based
Web Support:
freescale.com/support
Freescale reserves the right to make changes without further notice to any products herein. Freescale makes no
on the information in this document.
warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any
and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale data sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each customer application by
customer’s technical experts. Freescale does not convey any license under its patent rights nor the rights of others.
Freescale sells products pursuant to standard terms and conditions of sale, which can be found at the following address:
freescale.com/SalesTermsandConditions.
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.
SMARTMOS is a trademark of Freescale Semiconductor, Inc. All other product or service names are the property of their
respective owners.
© 2014 Freescale Semiconductor, Inc.
Document Number: KTVR500UG
Rev. 1.0
8/2014