IRF IRGS4062DPBF

PD - 97355B
IRGS4062DPbF
IRGSL4062DPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
Features
•
•
•
•
•
•
•
•
•
•
Low VCE (ON) Trench IGBT Technology
Low switching losses
Maximum Junction temperature 175 °C
5 µS short circuit SOA
Square RBSOA
100% of the parts tested for 4X rated current (ILM)
Positive VCE (ON) Temperature co-efficient
Ultra fast soft Recovery Co-Pak Diode
Tight parameter distribution
Lead Free Package
C
VCES = 600V
IC = 24A, TC = 100°C
tSC ≥ 5µs, TJ(max) = 175°C
G
VCE(on) typ. = 1.65V
E
n-channel
C
C
Benefits
• High Efficiency in a wide range of applications
• Suitable for a wide range of switching frequencies due to
Low VCE (ON) and Low Switching losses
• Rugged transient Performance for increased reliability
• Excellent Current sharing in parallel operation
• Low EMI
E
G
G
D2 Pak
IRGS4062DPbF
G
Gate
C
E
TO-262
IRGSL4062DPbF
C
Collector
E
Emitter
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
48
IC @ TC = 100°C
Continuous Collector Current
24
ICM
96
ILM
Pulse Collector Current
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
IF @ TC = 100°C
IFM
Diode Continous Forward Current
Diode Maximum Forward Current
VGE
Continuous Gate-to-Emitter Voltage
±20
Transient Gate-to-Emitter Voltage
±30
PD @ TC = 25°C
Maximum Power Dissipation
250
PD @ TC = 100°C
Maximum Power Dissipation
125
TJ
Operating Junction and
TSTG
Storage Temperature Range
c
96
A
48
24
d
96
V
W
-55 to +175
Soldering Temperature, for 10 sec.
°C
300 (0.063 in. (1.6mm) from case)
Thermal Resistance
Min.
Typ.
Max.
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.60
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
1.53
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
80
–––
1
Units
°C/W
www.irf.com
12/07/09
IRGS/SL4062DPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
V(BR)CES
Collector-to-Emitter Breakdown Voltage
Parameter
600
—
—
∆V(BR)CES/∆TJ
Temperature Coeff. of Breakdown Voltage
—
0.30
—
—
1.60
1.95
VCE(on)
VGE(th)
Collector-to-Emitter Saturation Voltage
Gate Threshold Voltage
Max. Units
—
2.03
—
—
2.04
—
4.0
—
6.5
V
Conditions
VGE = 0V, IC = 100µA
V
CT6
5,6,7
IC = 24A, VGE = 15V, TJ = 150°C
9,10,11
IC = 24A, VGE = 15V, TJ = 175°C
V
VCE = VGE, IC = 700µA
Threshold Voltage temp. coefficient
—
-18
—
gfe
ICES
Forward Transconductance
—
17
—
S
VCE = 50V, IC = 24A, PW = 80µs
Collector-to-Emitter Leakage Current
—
2.0
25
µA
VGE = 0V, VCE = 600V
—
775
—
VFM
Diode Forward Voltage Drop
—
1.80
2.6
—
1.28
—
—
—
±100
Gate-to-Emitter Leakage Current
CT6
V/°C VGE = 0V, IC = 1mA (25°C-175°C)
IC = 24A, VGE = 15V, TJ = 25°C
∆VGE(th)/∆TJ
IGES
Ref.Fig
e
9, 10,
mV/°C VCE = VGE, IC = 1.0mA (25°C - 175°C)
11, 12
VGE = 0V, VCE = 600V, TJ = 175°C
V
IF = 24A
8
IF = 24A, TJ = 175°C
nA
VGE = ±20V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Total Gate Charge (turn-on)
Parameter
—
50
Max. Units
75
Qge
Gate-to-Emitter Charge (turn-on)
—
13
20
Conditions
Ref.Fig
IC = 24A
nC
24
VGE = 15V
CT1
VCC = 400V
Qgc
Gate-to-Collector Charge (turn-on)
—
21
31
Eon
Turn-On Switching Loss
—
115
201
Eoff
Turn-Off Switching Loss
—
600
700
Etotal
Total Switching Loss
—
715
901
td(on)
Turn-On delay time
—
41
53
IC = 24A, VCC = 400V, VGE = 15V
RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C
tr
Rise time
—
22
31
td(off)
Turn-Off delay time
—
104
115
tf
Fall time
—
29
41
Eon
Turn-On Switching Loss
—
420
—
Eoff
Turn-Off Switching Loss
—
840
—
Etotal
Total Switching Loss
—
1260
—
td(on)
Turn-On delay time
—
40
—
tr
Rise time
—
24
—
td(off)
Turn-Off delay time
—
125
—
tf
Fall time
—
39
—
Cies
Input Capacitance
—
1490
—
IC = 24A, VCC = 400V, VGE = 15V
µJ
CT4
RG = 10Ω, L = 200µH, LS = 150nH, TJ = 25°C
Energy losses include tail & diode reverse recovery
ns
CT4
IC = 24A, VCC = 400V, VGE=15V
µJ
RG=10Ω, L=100µH, LS=150nH, TJ = 175°C
e
Energy losses include tail & diode reverse recovery
IC = 24A, VCC = 400V, VGE = 15V
ns
13, 15
CT4
WF1, WF2
14, 16
RG = 10Ω, L = 200µH, LS = 150nH
CT4
TJ = 175°C
WF1
WF2
pF
VGE = 0V
Coes
Output Capacitance
—
129
—
VCC = 30V
Cres
Reverse Transfer Capacitance
—
45
—
f = 1.0Mhz
TJ = 175°C, IC = 96A
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
SCSOA
Short Circuit Safe Operating Area
5
23
4
VCC = 480V, Vp =600V
CT2
Rg = 10Ω, VGE = +15V to 0V
—
—
µs
VCC = 400V, Vp =600V
22, CT3
Rg = 10Ω, VGE = +15V to 0V
Erec
trr
Reverse Recovery Energy of the Diode
—
Diode Reverse Recovery Time
—
Irr
Peak Reverse Recovery Current
—
WF4
—
µJ
TJ = 175°C
89
—
ns
VCC = 400V, IF = 24A
37
—
A
VGE = 15V, Rg = 10Ω, L =200µH, Ls = 150nH
621
17, 18, 19
20, 21
WF3
Notes:
 VCC = 80% (VCES), VGE = 20V, L = 100µH, RG = 10Ω.
‚ Pulse width limited by max. junction temperature.
ƒ Refer to AN-1086 for guidelines for measuring V(BR)CES safely.
2
www.irf.com
IRGS/SL4062DPbF
50
300
45
250
40
35
200
Ptot (W)
IC (A)
30
25
20
150
100
15
10
50
5
0
0
0
20
40
60
80 100 120 140 160 180
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
1000
100
100
IC (A)
IC (A)
10µsec
10
100µsec
1
10
1msec
Tc = 25°C
Tj = 175°C
Single Pulse
DC
0.1
1
1
10
100
1000
10000
10
100
VCE (V)
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C, TJ ≤ 175°C; VGE =15V
Fig. 4 - Reverse Bias SOA
TJ = 175°C; VGE =15V
90
90
80
80
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
ICE (A)
60
50
70
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
60
ICE (A)
70
40
50
40
30
30
20
20
10
10
0
0
0
1
2
3
4
VCE (V)
5
6
7
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
www.irf.com
1000
8
0
1
2
3
4
5
6
7
8
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
3
IRGS/SL4062DPbF
90
120
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
80
70
80
50
IF (A)
ICE (A)
60
100
40
30
-40°c
25°C
175°C
60
40
20
20
10
0
0
0
1
2
3
4
5
6
7
8
0.0
1.0
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
20
20
18
18
16
16
14
14
ICE = 12A
VCE (V)
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 175°C; tp = 80µs
ICE = 24A
10
ICE = 48A
8
3.0
VF (V)
VCE (V)
12
2.0
12
10
ICE = 48A
8
6
6
4
4
2
2
0
ICE = 12A
ICE = 24A
0
5
10
15
20
5
10
VGE (V)
15
20
VGE (V)
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
120
20
18
100
16
T J = 25°C
TJ = 175°C
80
12
ICE = 12A
ICE (A)
VCE (V)
14
ICE = 24A
ICE = 48A
10
8
60
40
6
4
20
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 175°C
4
20
0
5
10
15
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
www.irf.com
IRGS/SL4062DPbF
1800
1000
1600
1400
Energy (µJ)
1200
Swiching Time (ns)
tdOFF
EOFF
1000
800
EON
600
100
tdON
tF
10
tR
400
200
0
1
0
10
20
30
40
50
60
10
20
30
40
50
IC (A)
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
Fig. 14 - Typ. Switching Time vs. IC
TJ = 175°C; L = 200µH; VCE = 400V, RG = 10Ω; VGE = 15V
1000
1600
1400
EON
1000
Swiching Time (ns)
Energy (µJ)
1200
EOFF
800
600
tdOFF
100
tdON
400
tF
tR
200
10
0
0
25
50
75
100
0
125
25
50
75
100
125
RG (Ω)
Rg (Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
Fig. 16 - Typ. Switching Time vs. RG
TJ = 175°C; L = 200µH; VCE = 400V, ICE = 24A; VGE = 15V
40
45
RG = 10Ω
40
35
35
30
RG = 22Ω
IRR (A)
IRR (A)
30
25
RG = 47Ω
20
20
RG = 100Ω
15
15
10
10
5
0
10
20
30
40
50
IF (A)
Fig. 17 - Typ. Diode IRR vs. IF
TJ = 175°C
www.irf.com
25
60
0
25
50
75
100
125
RG (Ω)
Fig. 18 - Typ. Diode IRR vs. RG
TJ = 175°C
5
IRGS/SL4062DPbF
45
4000
40
48A
3500
35
10Ω
3000
Q RR (µC)
IRR (A)
30
25
20
22Ω
2500
47Ω
2000
15
1500
10
1000
12A
5
0
500
1000
500
1500
0
500
diF /dt (A/µs)
RG = 22Ω
Time (µs)
RG = 47Ω
RG = 100Ω
400
200
16
280
14
240
12
200
10
160
8
120
6
80
40
4
0
0
10
20
30
40
50
8
60
12
14
16
18
Fig. 22 - VGE vs. Short Circuit Time
VCC = 400V; TC = 25°C
Fig. 21 - Typ. Diode ERR vs. IF
TJ = 175°C
16
VGE, Gate-to-Emitter Voltage (V)
Capacitance (pF)
10
VGE (V)
IF (A)
Cies
1000
Coes
100
Cres
10
V CES = 300V
V CES = 400V
14
12
10
8
6
4
2
0
0
20
40
60
80
VCE (V)
Fig. 23 - Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
6
Current (A)
Energy (µJ)
800
600
1500
diF /dt (A/µs)
1000
RG = 10Ω
1000
Fig. 20 - Typ. Diode QRR vs. diF/dt
VCC = 400V; VGE = 15V; TJ = 175°C
Fig. 19 - Typ. Diode IRR vs. diF/dt
VCC = 400V; VGE = 15V; IF = 24A; TJ = 175°C
10000
24A
100Ω
100
0
5 10 15 20 25 30 35 40 45 50 55
Q G, Total Gate Charge (nC)
Fig. 24 - Typical Gate Charge vs. VGE
ICE = 24A; L = 600µH
www.irf.com
IRGS/SL4062DPbF
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
τC
τ2
τ1
τ
Ri (°C/W) τi (sec)
0.2329 0.000234
0.3631
τ2
0.007009
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
0.001
R2
R2
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
10
1
0.1
0.01
0.001
0.0001
1E-006
D = 0.50
0.20
0.10
0.05
0.02
0.01
τJ
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ3
τ2
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
R3
R3
τC
τ
τ3
Ri (°C/W) τi (sec)
0.476
0.000763
0.647
0.003028
0.406
0.023686
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 26. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGS/SL4062DPbF
L
L
VC C
D UT
0
80 V
DU T
4 80V
Rg
1K
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
d io d e clamp /
DU T
4x
DC
V360V
CC
L
- 5V
DU T /
D RIVER
DUT
VCC
Rg
Fig.C.T.3 - S.C. SOA Circuit
R=
Fig.C.T.4 - Switching Loss Circuit
VCC
ICM
DUT
VCC
Rg
Fig.C.T.5 - Resistive Load Circuit
8
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
IRGS/SL4062DPbF
600
30
600
25
500
60
tf
500
50
90% ICE
20
V CE
300
200
300
5
20
100
0
EOFF Loss
0.60
0
0
-100
11.70
Time(µs)
11.90
600
300
QRR
ICE
500
10
tRR
V CE (V)
IRR (A)
Peak
IRR
10%
Peak
IRR
-30
200
-0.05
0.05
0.15
0.25
time (µS)
Fig. WF3 - Typ. Diode Recovery Waveform
@ TJ = 175°C using Fig. CT.4
www.irf.com
V CE
300
150
200
100
100
50
0
-40
-50
-0.15
250
400
0
-20
-10
12.30
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 175°C using Fig. CT.4
30
-10
12.10
Time (µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 175°C using Fig. CT.4
20
10
5% V CE
EON
-5
0.10
30
90% test
200
5% ICE
-100
-0.40
C
10% ICE
100
0
40
ICE
15
10
5% V CE
tr
I CE (A)
VCE (V)
ICE
400
VCE (V)
400
V CE
C
0
-100
-5.00
0.00
5.00
-50
10.00
time (µS)
Fig. WF4 - Typ. S.C. Waveform
@ TJ = 25°C using Fig. CT.3
9
IRGS/SL4062DPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
10
www.irf.com
IRGS/SL4062DPbF
TO-262 Package Outline
Dimensions are shown in millimeters (inches)
TO-262 Part Marking Information
(;$03/( 7+,6,6$1,5//
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
www.irf.com
11
IRGS/SL4062DPbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
24.30 (.957)
23.90 (.941)
15.42 (.609)
15.22 (.601)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/pkhexfet.html
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/2009
12
www.irf.com