

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA.pdf

		
				 AN52705
PSoC® 3 and PSoC 5LP - Getting Started with DMA
Authors: Anu M D, Lakshmi Natarajan
Associated Project: Yes
Associated Part Families: All PSoC ® 3 and PSoC 5LP parts
Software Version: PSoC ® Creator™ 3.0 SP1 and higher
Related Application Notes: AN61102, AN84810
Abstract
AN52705 provides an introduction to direct memory access (DMA) in PSoC® 3 and PSoC 5LP. PSoC DMA can transfer
data between on-chip peripherals and memory with no CPU intervention. The application note illustrates how to
configure the DMA for simple data transfers, including peripheral to memory, memory to peripheral, peripheral to
peripheral and memory to memory, using example projects.
Contents
Introduction ... 1
Basic Concepts of DMA .. 2
DMA Configuration .. 4
Channel Configuration .. 4
TD Configuration .. 4
DMA component overview .. 6
Hardware Connections of DMA component 6
Firmware Configuration of DMA .. 7
Example 1: Peripheral-to-Peripheral Transfer 8
Example 1 DMA Configuration 9
Example 1 Project Files .. 9
Example 1 DMA Configuration Code 10
Example 2: Peripheral-to-Memory Transfer 11
Example 2 DMA Configuration 12
Example 2 Project Files .. 12
Example 3: Memory-to-Peripheral Transfer 13
Example 3 DMA Configuration 14
Example 3 Project Files .. 14
Example 4: Memory-to-Memory Transfer 15
Example 4 DMA Configuration 16
Example 4 Project Files .. 16
Example 5: TD Chaining ... 17
Example 5 DMA Configuration 18
Example 5 Project Files .. 18
Summary ... 18
About the Author ... 18
Appendix A: DMA Configuration Steps............................ 19
Other Important DMA API Functions 21
www.cypress.com
Appendix B: DMA Wizard Configuration 21
Appendix C: Setting DMA Channel Priority 23
Appendix D: Example Projects – Test Setup 24
Example 1: Peripheral-to-Peripheral Transfer –
Eg1_ADC_DMA_DAC .. 24
Example 2: Peripheral-to-Memory Transfer
–
Eg2_ADC_DMA_Mem ... 24
Example 3: Memory-to-Peripheral Transfer
–
Eg3_Mem_DMA_DAC ... 25
Example
4:
Memory-to-Memory
Transfer
–
Eg4_Mem_DMA_Mem ... 25
Example 5: TD Chaining– Eg5_TD_Chaining 26
Appendix E: Frequently Asked Questions: 27
Introduction
The DMA controller (DMAC) in PSoC 3 and PSoC 5LP
can transfer data from a source to a destination with no
CPU intervention. This allows the CPU to handle other
tasks while the DMA does data transfers, thereby
achieving a ‘multiprocessing’ environment.
The PSoC DMA Controller (DMAC) is highly flexible – it
can seamlessly transfer data between memory and on
chip peripherals including ADCs, DACs, Filter, USB,
UART, and SPI. There are 24 independent DMA channels.
Document No. 001-52705 Rev. *I
1
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
This application note describes how to configure the DMA
for simple data transfers. It includes projects that show
several different types of DMA transfers:

This application note assumes that you are familiar with
developing applications using PSoC Creator for PSoC 3 or
PSoC 5LP. If you are new to PSoC 3 or PSoC 5LP,
introductions can be found in AN54181, Getting Started
with PSoC 3 and AN77759, Getting Started with PSoC 5.
Advanced DMA topics are documented in AN84810. If you
are new to PSoC Creator, see the PSoC Creator home
page.
Peripheral-to-Memory
Memory-to-Peripheral
Peripheral-to-Peripheral
Memory-to-Memory
Basic Concepts of DMA
The DMAC in PSoC 3 and PSoC 5LP is a part of a central hub called the Peripheral HUB (PHUB) that connects on-chip
peripherals, as Figure 1 shows. The DMAC is one of the two PHUB bus masters.
Figure 1. Peripheral HUB
USB
Spoke 4
System
resources
32 bit
32 bit
Spoke
Arbitration
www.cypress.com
16 bit
IO Interface
ADCs
External
memory
interface
(EMIF)
Other Analog
Peripherals
DACs
32 bit
Digital filter
block (DFB)
Document No. 001-52705 Rev. *I
Spoke 7
16 bit
Spoke 3
Spoke 1
DMAC
16 bit
16 bit
PHUB
Spoke 5
CPU
Spoke 0
SRAM
Univarsal
Digital Blocks
(UDB)
Spoke 6
EEPROM
Fixed
Function I2C
Fixed
Function
Timers
Spoke 2
CAN
16 bit
Univarsal
Digital Blocks
(UDB)
2
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
The PHUB has eight data buses that are called spokes.
Each spoke connects the CPU and DMAC to one or more
peripherals. Spokes can have widths of either 16 bits or 32
bits. Peripherals attached to a spoke can have widths of 8
bits, 16 bits, or 32 bits.
The data width of a peripheral is usually less than or equal
to the data width of the spoke to which it is attached. If a
peripheral data width is greater than that of the spoke
attached to it, the PHUB can transact with the peripheral
at the width of the spoke.
The PHUB has two bus masters, the CPU and the DMAC.
The CPU and the DMAC can access different PHUB
spokes at the same time. If the CPU and DMAC try to
access the same spoke at the same time, bus arbitration
occurs. See the PSoC 3 and PSoC 5LP Technical
Reference Manuals for details.
Each of the 24 DMA channels can independently transfer
data. Each channel has a Transaction Descriptor (TD)
chain, as Figure 2 shows. The TD contains information
such as source address, destination address, transfer
count, and the next TD in the chain. There can be as
many as 128 TDs. The combination of channel and TD
describes the complete DMA transfer.
Figure 2. DMA Channel
DMA Channel
Source
DMA Request
Signal
Read
Write
DRQ
NRQ
Destination
DMA done signal typically tied to interrupt
TD
Pointer
TD0
Source
Destination
TD1
Transfer
Count
Next TD
Each DMA channel has a separate DMA request input that
initiates a transaction. A DMA request can be initiated by
the CPU or by a peripheral. When a DMA request is
www.cypress.com
Source
Destination
Transfer
Count
Next TD
received, the DMAC accesses the spokes attached to the
source and destination and moves data as configured in
the channel and the associated TD.
Document No. 001-52705 Rev. *I
3
®
PSoC 3 and PSoC 5LP - Getting Started with DMA

DMA Configuration
Request Per Burst (0 or 1)
A DMA transfer is configured using channel and TD
configuration registers. Figure 3 shows the channel and
the TD configuration parameters.
When multiple burst transfers are required to finish the
DMA data transfer, this bit determines the nature of
the bursts.
Figure 3. DMA Configuration
0: All subsequent bursts after the first burst are
automatically done without a separate DMA request.
Only the first burst transfer must have a DMA request.
Channel
Configuration
TD
Configuration
Source Address
(Upper 16 bits)
Source Address
(Lower 16 bits)
Destination Address
(Upper 16 bits)
Destination Address
(Lower 16 bits)
Burst Count
(1-127)
Transfer Count
(0 to 4095)
Request per Burst
(TRUE or FALSE)
TD Property
First TD of Channel
Next TD
1: Every burst transfer requires a separate request.

Initial TD
Defines the first TD associated with the channel. The
pointer to the first TD is stored in channel
configuration memory. Subsequent TD pointers are
stored in TD configuration memory, similar to a linked
list.

Preserve TD (0 or 1)
Defines whether to save the original TD configuration
for re-use, for subsequent DMA transfers. Typically
TD configurations are preserved.
0: Do not preserve the TD configuration.
1: Preserve the TD configuration.
If TDs are preserved, the channel uses a separate TD
memory (corresponding to the channel number) to
track the ongoing transaction; otherwise the original
TD configuration registers are used as working
registers to track the ongoing transaction.
Preserve TD
(TRUE or FALSE)
Channel Configuration
DMA channel configuration parameters are explained as
follows:

TD configuration parameters are explained below:
Upper Source Address (16 bits)
The upper 16 bits of the 32-bit source address is
configured in channel configuration register

Upper Destination Address (16 bits)
The upper 16 bits of the 32-bit destination address is
configured in this channel configuration register

TD Configuration

The lower 16 bits of the 32-bit source address
configured in TD configuration registers

Defines the number of bytes the DMA channel must
move from the source to destination before it releases
the spoke. The DMAC acquires the spoke, transfers
the specified number of bytes from the source to the
destination and then releases the spoke. For the next
burst transfer, it re-acquires the spoke.
Limit burst count for intra spoke DMA transfers to less
than or equal to16.
Lower Destination Address (16-bit):
The lower 16-bits of the 32-bit destination address

Burst Count (1 to 127)
Lower Source Address (16-bit)
Transfer Count (0 to 4095 bytes)
The total number of bytes to be transferred from the
source to the destination.
The transfer count is used along with the burst count
parameter. For example, if you want to move 50
2-byte words of data from a 16-bit peripheral to a
memory buffer, the burst count is set to 2 and transfer
count is set to 100.

Next TD
The next TD, similar to a linked list
www.cypress.com
Document No. 001-52705 Rev. *I
4
®
PSoC 3 and PSoC 5LP - Getting Started with DMA

TD Properties
Table 1 shows the TD properties defined by the bit fields in the TD property configuration register.
Table 1. TD Properties
Property
Description
Increment Source Address
If this bit is set, the source address is incremented as the DMA transaction proceeds.
Increment Destination Address
If this bit is set, the destination address is incremented as the DMA transaction proceeds
Swap Enable
If set, DMA swaps the data bytes while it moves data from the source to destination.
Swap Size
Defines the size of the swap performed, if Swap Enable is set.
0: Every 2 bytes are endian swapped during the DMA transfer.
1: Every 4 bytes are endian swapped during the DMA transfer
Auto Execute Next TD
0: The next TD in the chain is executed only after the next DMA request.
1: The next TD in the chain is automatically executed after the current TD transfer is finished.
DMA Completion Event
If set, generates a DMA “done signal” after the data transfer is finished. This is typically used
to create an interrupt after the transfer is finished.
Enable TD termination
If set, the ongoing transaction can be terminated using hardware signal
The PSoC 3 Keil Compiler uses big endian format to store 16-bit and 32-bit variables. But the PSoC 3 peripheral registers use
little endian format. For this reason, the DMA must be configured to swap bytes when it moves multi-byte data between the
peripheral registers and memory in PSoC 3. This is not required for PSoC 5LP as both peripherals and memory uses the
same endian format.
Now let us see how to configure the DMA using PSoC Creator.
www.cypress.com
Document No. 001-52705 Rev. *I
5
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Hardware Connections of DMA component
DMA component overview
Figure 4 shows the DMA channel component in PSoC
Creator. This component can be found under the Systems
tab in the Component Catalog.
You can set the following parameters in the component
configuration window as Figure 5 shows.
Figure 5. DMA component Configuration
Figure 4. DMA Channel Component
Optional
Terminals
The DMA channel component and an associated API are
used to configure the DMA to transfer data.
Hardware Request (drq): This setting defines the type of
signal (rising edge/level) used to trigger the DMA channel.
Any selection for this parameter except "Disabled" adds a
drq terminal to the component. The drq can be connected
to any hardware signal, to trigger the DMA channel.
Without the drq terminal, the DMA transaction is triggered
only by the CPU.
When this parameter is set to “derived”, the DMA trigger
type - edge/level is determined from the source of the
DMA trigger. For more information, see the DMA
component datasheet.
Hardware Termination (trq): When this option is set to
true, another input terminal (trq) is displayed in the
component. If TD termination is enabled, a rising edge on
this terminal stops an ongoing DMA transaction. Note that
trq terminates a TD chain only if there is an ongoing DMA
burst transaction. Refer to the component datasheet for
more details.
Transfer complete (nrq): In order to indicate that the
DMA transfer is finished, the TD can be configured to
create a pulse of width 2 bus clocks at the NRQ terminal
of the DMA channel, when the transfer is finished. The nrq
terminal can be connected to an interrupt, or to another
component for further actions.
Set the TD properties to define whether or not to generate
a signal on the nrq terminal, and whether or not to enable
TD termination using trq.
www.cypress.com
Document No. 001-52705 Rev. *I
6
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Firmware Configuration of DMA
The DMA component generates a source file and corresponding header file for each DMA instance during the project build
process. For example, if there is a DMA component instance in your design that has the name DMA_1, then the files DMA_1_dma.c and DMA_1_dma.h are created during the build process. These files include the “DmaInitialize” API that is
used to initialize the DMA channel. Other channel and TD configuration functions are included in CyDmac.c and CyDmac.h
files in the Generated Source folder.
Following are the firmware configuration steps for DMA:
1.
Start the DMA channel
Channel_Handle = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST,
HI16(Source Address), HI16(Destination Address))
2.
Create an instance of a TD
TD_Handle = CyDmaTdAllocate();
3.
Set the TD configuration
CyDmaTdSetConfiguration(TD_Handle,Transfer_Count,Next_TD,TD_Property);
4.
Set the TD address
CyDmaTdSetAddress(TD_Handle, LO16(Source Address), LO16(Destination Address))
5.
Set the channel’s initial TD
CyDmaChSetInitialTd(Channel_Handle, TD_Handle)
6.
Enable the DMA channel
CyDmaChEnable(Channel_Handle, preserve_TD)
The above firmware steps are detailed in Appendix A: DMA Configuration Steps on page 19. A DMA wizard can be used to
automatically generate the code to configure the DMA channel; see Appendix B: DMA Wizard Configuration on page 21 for
more details.
Note that the DMA wizard supports DMA transactions between only a limited set of PSoC peripherals. If the DMA wizard does
not support a peripheral, you must manually configure the DMA channel using the functions detailed in Appendix A.
Following are a set of four examples that show in detail how to do DMA transfers between memory and peripherals. A fifth
example shows how to build a multiple-TD chain.
www.cypress.com
Document No. 001-52705 Rev. *I
7
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 1: Peripheral-to-Peripheral Transfer
This example shows how to use DMA to do a simple peripheral-to-peripheral transfer, that is, from an ADC data out register to
a DAC data input register as Figure 6.
Figure 6. Block Diagram, Peripheral-to-Peripheral Transfer
Source – ADC
Destination – DAC
DMA Channel
ADC
1 Byte
Read
Write
1Byte
DAC
EoC
DMA
Request
(DRQ)
TD
Pointer
DMA
Done
(NRQ)
TD[0]
Source
Destination
Transfer
Count
Next TD
TD Property: None
As Figure 7 shows, the ADC is configured in 8-bit, singleended mode to match the data format of the VDAC, which
is a single-ended 8-bit voltage DAC. The hardware
request (DRQ) of the DMA channel is enabled and
connected to the ADC EoC signal so that ADC can make
a request for data transfers whenever an ADC result is
available.
After it receives the request, the DMA channel reads one
byte of data from the ADC output register and writes to the
DAC data register.
Figure 7. Top Design, Peripheral-to-Peripheral Transfer
www.cypress.com
Document No. 001-52705 Rev. *I
8
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 1 DMA Configuration
The DMA channel and TD configurations for this project
are given in Table 2 and Table 4.
Table 2. Channel Configuration Settings
Parameter
Project Setting
The TDs can be viewed as an array of chained TDs; in this
case we need only a one-element array TD[0].
Table 4. TD[0] Configuration Settings
Parameter
Project Setting
Lower Source
Address
LO16(ADC_Delsig_DEC_OUTSAMP_PTR)
LO16(VDAC8_DATA_PTR)
Upper Source
Address
HI16(CYDEV_PERIPH_BASE)
Upper Destination
Address
HI16(CYDEV_PERIPH_BASE)
Lower
Destination
Address
Burst Count
1 (One byte)
Transfer
Count
1 (One byte)
Request Per Burst
1 (True)
TD property
None(0)
Initial TD
TD[0]
Next TD
TD[0] (Loop back to the same TD)
Preserve TD
1 (True)
The channel configuration has the upper 16 bits of the 32bit address for both the source and destination addresses.
CYDEV_PERIPH_BASE, defined in the PSoC Creator
auto-generated file cydevice.h, defines the base address
of all PSoC peripherals including the ADC and the DAC.
HI16 is a PSoC Creator macro that returns the upper 16
bits of a 32-bit value. This macro is used to get the upper
16 bits of the source and destination address.
As an alternative, you can assign the upper source and
destination addresses relative to the component registers,
as Table 3 shows. The address definitions can be found in
the component files ADC_DelSig.h, and VDAC8.h,
respectively.
The DMA channel must move one byte for each DMA
request, so the burst count is set to 1 byte and the request
per burst is set to True.
The next TD to be executed is set to the same TD
(looped), so the same transaction is repeated on each
DMA request. The Preserve TD parameter is set to True.
Example 1 Project Files
The project Eg1_ADC_DMA_DAC in the AN52705.zip file
attached to this application note demonstrates this
example. See Appendix D: Example Projects – Test Setup
for details on how to test this project
The DMA configuration code for this example is given
below. See Appendix B: DMA Wizard Configuration for
details on how to generate this configuration code using
the DMA wizard.
Table 3. Alternative Upper Addresses
Parameter
Project Setting
Upper Source
Address
HI16(ADC_Delsig_DEC_OUTSAMP_PTR)
Upper
Destination
Address
HI16(VDAC8_DATA_PTR)
www.cypress.com
The LO16 macro returns the lower 16-bits of a 32-bit
value.
Document No. 001-52705 Rev. *I
9
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 1 DMA Configuration Code
/* Define for DMA Configuration */
#define DMA_BYTES_PER_BURST
1
#define DMA_REQUEST_PER_BURST 1
#define DMA_SRC_BASE (CYDEV_PERIPH_BASE)
#define DMA_DST_BASE (CYDEV_PERIPH_BASE)
/* Variable declarations for the
* DMA_Chan is used to store the
uint8 DMA_Chan;
/* DMA_TD array is used to store
* Since there is only one TD in
uint8 DMA_TD[1];
DMA channel.
DMA channel */
all of the TDs associated with the channel
this example, DMA_TD array contains only one element */
/* DMA Configuration steps */
/* Step 1 */
/* DMA Initializations done for both the DMA Channels
* Burst count = 1, (8 bit data transferred to VDAC one at a time)
* Request per burst = 1 (transfer burst only on new request)
* High byte of source address = Upper 16 bits of ADC data register
* High byte of destination address = Upper bytes of the VDAC8 data register
* DMA_Chan holds the channel handle returned by the ‘DmaInitialize’ function. This is
* used for all further references of the channel */
DMA_Chan = DMA_DmaInitialize(DMA_BYTES_PER_BURST, DMA_REQUEST_PER_BURST,
HI16(DMA_SRC_BASE), HI16(DMA_DST_BASE));
/* Step 2 */
/* Allocate TD for DMA Channel
* DMA_TD[0] is a variable that holds the TD handle returned by the TD allocate function.
* This is used for all further references of the TD */
DMA_TD[0] = CyDmaTdAllocate();
/* Step 3 */
/* Configure TD[0]
* Transfer count = 1 (total number of bytes to transfer from the ADC to DAC)
* Next Td = DMA_TD[0]. The same td has to repeat itself for every ADC EoC.
* Configuration = No special TD configurations required */
CyDmaTdSetConfiguration(DMA_TD[0], 1, DMA_TD[0], 0);
/* Step 4 */
/* Configure the td address
* Source address = Lower 16 bits of ADC data register
* Destination address = Lower 16 bits of VDAC8 data register */
CyDmaTdSetAddress(DMA_TD[0], LO16((uint32)ADC_DelSig_DEC_SAMP_PTR),
LO16((uint32)VDAC8_Data_PTR));
/* Step 5 */
/* Map the TD to the DMA Channel */
CyDmaChSetInitialTd(DMA_Chan, DMA_TD[0]);
/* Step 6 */
/* Enable the channel
* The Channel is enabled with Preserve TD parameter set to 1. This preserves the
* original TD configuration and reload it after the transfer is complete so that the TD
* can be repeated */
CyDmaChEnable(DMA_Chan, 1);
www.cypress.com
Document No. 001-52705 Rev. *I
10
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 2: Peripheral-to-Memory Transfer
This example shows how to do a peripheral-to-memory transfer from an ADC data out register to a 16-bit memory array, as
Figure 8 shows.
Figure 8. Block Diagram, Peripheral-to-Memory Transfer
Destination : RAM Buffer
(adc_sampleArray)
16 bit
Source : ADC
ADC
2 Bytes
Sample 1
1
rst
Bu
Burst2
DMA Channel
Sample 2
Write
Read
Increment
Destination
Address
...
EoC
...
Bu
rs
t‘
DMA
DMA
Request Done
(DRQ)
(NRQ)
N’
….
Interrupt
(ISR)
Sample ‘N’
DMA Transaction
complete
TD Pointer
TD[0]
Source
Destination
Transfer
Count
Next TD
DMA_DISABLE_TD
TD Properties : Increment Destination address,
: Generate transaction complete signal
Figure 9 shows the top design of the project. Each time
the Pin_Switch is pressed; ISR_Switch is triggered, and a
flag is set in the isr to enable the DMA channel. Once the
DMA channel is enabled, the EoC signal from ADC
activates the DMA channel request.
On each DMA request, the DMA fetches 2 bytes from the
source – the ADC output register - writes them to the
destination RAM buffer, and increments the destination
address by 2. The transfer count is decremented by 2 after
each burst transfer. This repeats until the transfer count is
0, which generates a transaction complete signal at the
NRQ terminal of the DMA component, which activates the
ISR_DMA_Done interrupt.
In the interrupt service routine a flag is set to indicate that
the transaction is complete .The DMA channel is disabled
when the transaction is completed, and re-enabled when
the switch is pressed again.
Figure 9. Top Design, Peripheral-to-Memory Transfer
www.cypress.com
Document No. 001-52705 Rev. *I
11
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Table 6. TD[0] Configuration Settings
Example 2 DMA Configuration
The DMA channel and TD configurations for the project
are given in Table 5 and Table 6.
Parameter
Project Setting
Lower Source
Address
LO16(ADC_Delsig_DEC_OUTSAMP_PTR)
LO16(&adc_sampleArray)
HI16(CYDEV_PERIPH_BASE)
Lower
Destination
Address
Upper Destination
Address
HI16(CYDEV_SRAM_BASE)
Transfer
Count
Burst Count
2 (Two bytes)
Request Per Burst
1 (True)
Initial TD
TD[0]
Preserve TD
1 (True)
Table 5 Channel Configuration Setting
Parameter
Upper Source
Address
Project Setting
(No. of samples × Bytes per sample)
Increment Destination Address,
Generate DMA done event,
TD properties
Swap Enable required only for PSoC 3.
(TD_INC_DST_PTR |
DMA__TD_TERMOUT_EN |
TD_SWAP_EN)
The channel configuration has the upper 16 bits of the 32bit address for both the source and destination addresses.
The source address is same as in Example1.
CYDEV_SRAM_BASE, defined in the PSoC Creator autogenerated file cydevice.h, defines the base address of
SRAM. This is used with HI16 macro to specify the upper
16 bits of destination address.
As an alternative, the RAM array pointer can be used with
HI16 macro to specify upper 16bits of source address for
PSoC 5LP but not for PSoC 3. This is because the upper
16 bits of the address of RAM variables is zero for
PSoC 3, but the Keil compiler stores Keil-specific
information in the upper 16 bits of the variable address.
For this reason, HI16 (&adc_sampleArray) returns an
incorrect address when used with PSoC 3 – Keil compiler.
In this example, a 2-byte ADC result must be moved from
ADC to RAM array on each DMA request and therefore
the burst count is set to 2 and the request per burst is set
to true.
The Preserve TD is set to 1 (TRUE) so that the original TD
setting, i.e. source address, destination address and
transfer count, are preserved and the transactions can be
repeated.
The lower 16 bits of source and destination address are
specified in the transaction descriptor (TD[0]) configuration
as given in Table 5.
www.cypress.com
200 x 2
Next TD
DMA_DISABLE_TD
The transfer count is set to ‘400’ which is equal to the
‘Number of samples to be buffered × Bytes per Sample’.
The TD property is set to increment the destination
address after each burst transfer and generate a
transaction complete signal once the specified number of
samples is buffered. In PSoC 3 project, the TD is also
configured to swap the bytes while moving data from ADC
to memory as explained in TD property section. The bits
corresponding to each of the TD property is defined in the
PSoC Creator auto-generated file CyDmac.h. The
required property bit fields are OR-ed together to set the
TD property.
In order to stop the DMA transfers after buffering the
specified number of samples, TD[0] is chained to
‘DMA_DISABLE_TD’ which disables the DMA channel.
Example 2 Project Files
The project Eg2_ADC_DMA_Mem in the AN52705.zip file
attached to this application note demonstrates this
example. The DMA configuration code for the example is
similar to Example 1. The arguments passed to the
functions are given in the channel and TD configuration
tables above. See Appendix D: Example Projects – Test
Setup for details on how to test this project.
Document No. 001-52705 Rev. *I
12
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 3: Memory-to-Peripheral Transfer
This example shows how to use the DMA for a memory-to-peripheral data transfer. The example demonstrates wave
generation using a DAC, as Figure 10 shows.
Figure 10. Block Diagram, Memory-to-Peripheral Transfer
Source : Memory Look up table
8 Bit
Destination : DAC
Location 1
Location 2
Increment
Source
Address
DMA Channel
Burst1
Burst2
Read
...
Write
1 Byte
DAC
...
….
N
rst
Bu
Location ‘N’
DMA
Done
(NRQ)
DMA
Request
(DRQ)
DMA Trigger Clock
TD Pointer
TD[0]
Source
Destination
Transfer
Count
Next TD
Loop back to
same TD
TD Property : Increment Source address
A sine lookup table with 128 points is stored in flash
memory. These values are sequentially sent to a DAC,
using DMA, to create a sine wave. Figure 11 shows the
top design for the project.
A clock component is used to periodically generate DMA
requests (drq). When the request is received, the DMA
channel fetches one byte of data from the lookup table
and writes it to the DAC data register. The source address
is incremented by one and the transfer count is
decremented by one after each burst transfer. This
continues until all table values are sent to DAC.
The TD configuration is preserved and reloaded at the end
of the transfer so as to generate a continuous sine wave.
The frequency of the sine wave is equal to the DMA
trigger clock frequency divided by number of points in the
lookup table.
Figure 11. Top Design, Memory-to-Peripheral Transfer
www.cypress.com
Document No. 001-52705 Rev. *I
13
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 3 DMA Configuration
The DMA channel and TD configurations for the project
are given in Table 7 and Table 8.
Table 7. Channel Configuration
Parameter
Table 8. TD[0] Configuration
Parameter
Project Setting
Upper Source
Address
HI16(CYDEV_FLS_BASE) for PSoC 3
Upper Destination
Address
HI16(CYDEV_PERIPH_BASE)
Burst Count
1 (One byte)
Request Per Burst
1 (True)
Initial TD
TD[0]
Preserve TD
1 (True)
HI16 (&sineTable) for PSoC 5LP
Project Setting
Lower Source Address
LO16 (&sineTable)
Lower Destination Address
LO16(VDAC8_DATA_PTR)
Transfer Count
128 (No. of bytes in the sine
look up table)
TD property
Increment source address
(TD_INC_SRC_ADR)
Next TD
TD[0] - Loop back to the same
TD again
The transfer count is set to the total number of bytes in the
sine look up table.
The source for DMA transfer is the sineTable array that is
kept in flash memory. The HI16(&sineTable) sets the
upper 16 bits of the source address for PSoC 5LP
whereas HI16(CYDEV_FLS_BASE) is used to identify the
upper 16 bits of source address for PSoC 3 for the
reasons mentioned in the previous examples.
The DMA channel must move one byte from look up table
array to DAC for each DMA request. So, the burst count is
set to 1 byte and the request per burst is set to true.
The original TD configurations are preserved so that it can
be re-used.
www.cypress.com
The lower 16 bits of source and destination addresses are
set using the LO16 macro as given in Table 8.
The TD is configured to increment the source address, i.e.
look up table pointer, after each burst transfer.
At the end of the transfer, one complete cycle of sine wave
is generated at the DAC output. The TD is preserved and
looped back to itself so as to generate a continuous wave.
Example 3 Project Files
The project Eg3_Mem_DMA_DAC in the AN52705.zip file
attached to this application note demonstrates this
example. The DMA configuration code for the example is
similar to Example 1. The arguments passed to the
functions are given in the channel and TD configuration
tables above. See Appendix D: Example Projects – Test
Setup for details on how to test this project
Document No. 001-52705 Rev. *I
14
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 4: Memory-to-Memory Transfer
This example shows how to use DMA to do a memory-to-memory transfer. It also demonstrates how to trigger a DMA channel
using the CPU. In this example, an 8-byte flash array is copied to an 8-byte RAM array on a CPU request, as Figure 12 shows.
Figure 12. Block Diagram, Memory-to-Memory Transfer
Source – 8 bit flash array
Destination – 8 bit RAM array
8 Bit
8 Bit
DMA Channel
1 byte
SrcArray[0]
Increment
Source
Address
1 byte
SrcArray[1]
Read
DestArray[0]
DestArray[1]
Write
...
...
...
….
…
…
…
…
SrcArray[N-1]
Increment
Destination
Address
...
….
DestArray[N-1]
DMA
Request
CPU Request
DMA transaction
complete
DMA
Done
(NRQ)
Interrupt
(ISR)
TD Pointer
TD[0]
Source
Destination
Transfer
Count
Next TD
DMA_DISABLE_TD
TD Properies : Increment Source address,
: Increment Destination address,
: Generate transaction complete signal
Figure 13 shows the top design of the project. The
CyDmaChSetRequest function is used to activate the
DMA transfer approximately one second after device
power up.
When it receives a request from the CPU, the DMA
transfers 8 bytes from the flash array to the RAM array as
configured in the channel and TD configuration registers.
The TD source and destination
incremented as the transfer proceeds.
addresses
are
When the transfer is complete, a pulse is generated at the
nrq signal terminal of the DMA. This activates the
ISR_DMADone interrupt which sets the flag to indicate
that the transfer is complete. The new RAM contents are
then displayed on the LCD.
Figure 13. Top Design: Memory-to-Memory Transfer
www.cypress.com
Document No. 001-52705 Rev. *I
15
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Table 10. TD[0] Configuration
Example 4 DMA Configuration
The DMA channel and TD configurations for the project
are given in Table 9 and Table 10.
Table 9. Channel Configuration
Parameter
Upper Source
Address
Upper
Destination
Address
Project Setting
Parameter
Project Setting
Source
Address
LO16(&sourceArray)
Destination
Address
LO16(&destinationArray)
Transfer
Count
8 (bytes)
HI16(CYDEV_FLS_BASE), for PSoC 3
HI16(&sourceArray), for PSoC 5LP
Increment source address
HI16(CYDEV_SRAM_BASE)
Increment destination address
Burst Count
1 (One byte)
Request Per
Burst
0 (False)
Initial TD
TD[0]
Preserve TD
0 (False)
TD property
Generate DMA done signal
(TD_INC_SRC_ADR | TD_INC_DST_ADR |
DMA__TD_TERMOUT_EN)
Next TD
The source for DMA transfer is the ‘sourceArrray’ defined
in the flash memory. The destination is ‘destinationArray’
in RAM. The upper 16 bits of the source address in flash
are set to HI16(&sourceArray) in PSoC 5LP and
HI16(CYDEV_FLS_BASE) in PSoC 3, as explained in
previous examples. Similarly, the upper 16 bits of the
destination address in SRAM are set using the macro
HI16(CYDEV_SRAM_BASE).
The burst count is set to 1 byte so that the DMA reads
byte by byte from flash and writes it to the RAM array. You
can set the burst count to 8 bytes for faster data transfers.
However, you should also generally set the burst count to
a low value so as to allow the spoke to be shared by other
DMA channels.
The request per burst parameter is set to false so that
separate requests are not required for each burst transfer.
DMA_DISABLE_TD (0xFE)
The lower 16 bits of the source and the destination
addresses for the TD configuration are identified by the
LO16 macro.
The transfer count is set to 8 so that a total of 8 bytes are
transferred from the source to the destination.
The TD is configured to increment the source address i.e.,
the flash array pointer, and the destination address i.e.,
the RAM array pointer, after each burst transfer. The TD is
also configured to send a termout pulse on the nrq line
after all the 8 bytes are moved from the flash to the RAM
array. This pulse is used to trigger an ISR to indicate that
the transfer is complete. The next TD is set to
DMA_DISABLE_TD (0xFE) to disable the DMA channel after
the transfer is finished.
Since the transaction has to happen only one time, the TD
configuration does not need to be preserved.
Example 4 Project Files
The project Eg4_Mem_DMA_Mem in the AN52705.zip file
attached to this application note demonstrates this
example. The DMA configuration code for the example is
similar to Example 1. The arguments passed to the
functions are given in the channel and TD configuration
tables above. See Appendix D: Example Projects – Test
Setup for details on how to test this project.
www.cypress.com
Document No. 001-52705 Rev. *I
16
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 5: TD Chaining
This example project shows
a single channel and chain
example the ADC data is
buffers, one after the other,
and two TDs.
how to use multiple TDs with
them to one another. In this
sent to two separate RAM
using a single DMA channel
The DMA channel is configured to do two transactions:

Transaction 1: ADC to RAM buffer1
Transaction 2: ADC to RAM buffer2
These two transactions are configured using two separate
transaction descriptors - TD[0] and TD[1] - and are
chained to one another using the TD chaining feature of
the DMA, as Figure 14 shows.
Figure 14. Block Diagram, TD Chaining
Destination1 : RAM
Buffer1
16 bit
Sample 1
Sample 2
1
rst t2
Bu Burs
Source : ADC
...
...
DMA Channel
….
ADC
2 Bytes
Write
Read
Burst N1
Bur
st (
N1+
1)
EoC
Sample N1
Destination2 : RAM
Buffer2
TD0àTD1
TD1àTD0
16 bit
Increment
Destination
Address
Bu
Sample 2
2)
Interrupt
(ISR)
+N
DMA
DMA
Request Done
(DRQ)
(NRQ)
N1
t(
rs
Sample 1
...
...
DMA Transaction
complete signal
….
TD Pointer
Sample N2
TD[1]
TD[0]
Source
Destination
Transfer
Count
Source
Next TD
TD0 Property : Increment Destination address
Destination
Transfer
Count
Next TD
TD1 Properties : Increment Destination address,
: Generate transaction complete signal
This form of TD configuration can also be used to overcome the maximum transfer count limit of a single TD, which is 4096
bytes for a single DMA channel. Note that the upper 16 bits of the source and the destination addresses must be the same for
all of the TDs in a chain.
The top design for the project is the same as in Example 2.
www.cypress.com
Document No. 001-52705 Rev. *I
17
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Table 13. TD[1] Configuration
Example 5 DMA Configuration
The channel and TD configurations for this project are
given in Table 11, Table 12 and Table 13.
Table 11. Channel Configuration
Parameter
Setting
Upper Source Address
HI16(CYDEV_PERIPH_BASE
)
Parameter
Lower Source
Address
LO16(ADC_Delsig_DEC_OUTSAMP_P
TR)
Lower
Destination
Address
LO16(adc_sampleArray2)
Transfer Count
Upper Destination
Address
HI16(CYDEV_SRAM_BASE)
Burst Count
2 (Two Bytes)
Request Per Burst
1 (True)
Initial TD
TD[0]
Preserve TD
1 (True)
Project Setting
N2×2
(No. of samples × Bytes per sample)
Increment Destination Address :
TD_INC_DST_ADR
TD properties
Generate DMA done event :
DMA__TD_TERMOUT_EN
Swap Enable required for PSoC 3 :
TD_SWAP_EN
Next TD
The channel and TD configurations are similar to
Example 2. The Next TD parameter of TD[0] is set to
TD[1], and vice versa, to chain the transactions.
TD[0]
Example 5 Project Files
Lower Source
Address
LO16(ADC_Delsig_DEC_OUTSAMP_P
TR)
Eg5_TD_Chaining in the AN52705.zip file that is
attached to this application note demonstrates the TD
chaining example. The DMA configuration code for
the example is similar to Example 1. The arguments
passed to the functions are given in the channel and
TD configuration tables above. See Appendix D:
Example Projects – Test Setup on page 24 for details
on how to test this project.
Lower
Destination
Address
LO16(adc_sampleArray1)
Summary
Table 12. TD[0] Configuration
Parameter
Transfer Count
Project Setting
N1×2
(No. of samples × Bytes per sample)
Increment Destination Address :
TD_INC_DST_ADR
TD properties
Generate DMA done event :
DMA__TD_TERMOUT_EN
Swap Enable required for PSoC 3 :
TD_SWAP_EN
Next TD
TD[1]
This application note has described the DMA
controller in PSoC 3 and PSoC 5LP. Using simple
PSoC Creator example projects, the application note
has also shown how to configure the DMA for
different types of data transfers. For more advanced
information, see the PSoC 3 and PSoC 5LP Technical
Reference Manuals and the PSoC Creator DMA
component datasheet.
About the Author
Name: Anu M D
Title: Sr. Applications Engineer
Background: BE in Electronics and Communication
from Model Engineering College, Cochin.
Contact:
www.cypress.com
Document No. 001-52705 Rev. *I
18
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Appendix A: DMA Configuration Steps
Step 1: DMA Channel Initialization
Step2: TD allocation
Channel_Handle = DMA_DmaInitialize(
DMA_BYTES_PER_BURST,
DMA_REQUEST_PER_BURST,
HI16(Source Address),
HI16(Destination Address))
TD_Handle = CyDmaTdAllocate();
The API function DmaInitialize() configures several
DMA channel parameters as follows:

DMA_BYTES_PER_BURST: the number of
bytes to be read and written by the DMA channel
in one burst
For example, if you want to define DMA to collect
8-bit ADC data, set this parameter to 1 because
the DMA channel must move 1 byte from source
to destination on each request. Or, if you want to
collect 16-bit ADC data, set this parameter to 2.

DMA_REQUEST_PER_BURST: whether each
burst must have a separate request.
If set to 1, each burst transfer must be individually
requested. If set to 0, all subsequent bursts after
the first burst are automatically carried out without
separate request. (Only the first burst transfer
must have a DMA request.)

HI16(Source Address): the upper 16 bits of the
source address. HI16 is a macro created by
PSoC Creator to specify the upper 16 bits of a
32-bit value or address.

HI16(DestinationAddress): the upper 16 bits of
the destination address. Use macros provided in
the previous table to identify the upper 16 bits of
source and destination addresses in PSoC 3.
The PSoC 3 Keil compiler stores Keil-specific
information in the upper 16 bits of the variable
addresses. For this reason, use the following
constants shown in Table 14. They are defined in
CyDevice.h along with HI16 macro to configure
the upper 16 bits of source and destination
address for PSoC 3 especially when the source
or destination for the DMA transfer is RAM or
flash memory.
The API function CyDmaTdAllocate() creates an
instance of a TD and returns the handle to that TD.
The TD handle is used by other APIs to configure the
TD. To create multiple TDs, call the function multiple
times.
Step 3: TD configuration
CyDmaTdSetConfiguration(TD_Handle,
Transfer_Count,
Next_TD,
TD_Property);
The
API
function
CyDmaTdSetConfiguration()
configures a TD, using the following parameters:

TD_Handle: a handle previously returned by
the CyDmaTdAllocate() function

Transfer_Count: the total number of bytes to be
moved from source to destination.

Next_TD: the index of the next TD in the TD
chain. If this TD is to be the last in the chain, use
the macro DMA_DISABLE_TD (0xFE) as to
disable the DMA channel after the TD transfer is
complete.

TD_Property: use the TD Configuration register
flags shown in Table 15 on page 20 to set the
properties of the DMA transaction. OR the flags
together to configure the TD property. For
example, to configure the TD to swap 4 bytes
during the data transfer, use:
(TD_SWAP_EN | TD_SWAP_SIZE4)
Table 14. Upper 16-bit Address Macros
Source
DMA_SRC_BASE
Peripheral
CYDEV_PERIPH_BASE
RAM
CYDEV_SRAM_BASE
Flash
CYDEV_FLS_BASE
www.cypress.com
Document No. 001-52705 Rev. *I
19
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Table 15. TD Properties
Configuration Flag
Function
TD_SWAP_EN
Perform endian swap; swap bytes while moving data from source to destination.
TD_SWAP_SIZE4
Set swap size = 4 bytes. Default swap size is 2 bytes.
TD_AUTO_EXEC_NEXT
The next TD in the chain is activated automatically when the current TD finishes.
TD_TERMIN_EN
End this TD if a positive edge on the trq input line occurs. The positive edge must occur
during a burst. That is the only time the DMAC listens for it.
DMA__TD_TERMOUT_EN
If this flag is used, a pulse is generated on the nrq line when the TD transfer is complete.
This flag is specific to a DMA component instance and is defined in the component instance
header file. For example, if the DMA component instance name is DMA_1 in the top design,
the termout macro for the instance is ‘DMA_1__TD_TERMOUT_EN’ which is included in
DMA_1_dma.h.
TD_INC_DST_ADR
Increments destination address according to the size of each data burst transaction.
TD_INC_SRC_ADR
Increments source address according to the size of each data burst transaction.
Step 4: Configuring TD source and destination
Step 5: Attach the TD to the channel
CyDmaTdSetAddress(TD_Handle,
LO16(source),
LO16(destination))
CyDmaChSetInitialTd(Channel_Handle,
TD_Handle)
The API function CyDmaTdSetAddress() sets the
source and destination addresses of a TD, using the
following parameters:

TD_Handle: a handle previously returned by the
CyDmaTdAllocate() function

LO16(source): the lower 16 bits of the source
address

LO16(destination): the lower 16 bits of the
destination address
PSoC is highly programmable - many components
are created from the programmable digital and analog
blocks, and the physical location of a peripheral may
change based on the design. Therefore, a
conventional register map listing all the source and
destination addresses is not possible
Instead, the registers for each component are defined
in the component API header files generated by
PSoC Creator during the build process. You should
review these header files to identify the component’s
register addresses.
www.cypress.com
The API function CyDmaChSetInitialTD() sets the first
TD of a DMA channel:

Channel_Handle: the handle of the DMA
instance returned by the DMA_DmaInitialize()
function

TD_Handle: a handle previously returned by the
CyDmaTdAllocate() function
Step 6: Enable DMA channel
CyDmaChEnable(Channel_Handle,
Preserve_TD)
The API function CyDmaChEnable() enables the
DMA channel:

Channel_Handle: the handle of the DMA
instance returned by the DMA_DmaInitialize()
function

Preserve_TD: if TRUE, the DMA channel retains
the TD configurations (source, destination and
transfer count) so that the TD can be repeated
Document No. 001-52705 Rev. *I
20
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Other Important DMA API Functions
To activate a DMA channel from a CPU request, use this function:
CyDmaChSetRequest(Channel_Handle, CPU_REQ);
To disable a DMA channel, use this function:
CyDmaChDisable(Channel_Handle);
Appendix B: DMA Wizard Configuration
As an alternative to the steps described in Appendix
A, the DMA Wizard can make it easy to define the
firmware configuration of a DMA channel and TD.
However, the wizard supports only a few peripherals
as DMA source or destination. If a peripheral is not
supported, follow the configuration steps described in
Appendix A.
Step 2: Select global settings
Select the DMA transfer global settings, as Figure 16
shows:
Figure 16. Global Settings
To start the DMA wizard, go to PSoC Creator >
Tools > DMA Wizard.
Step 1: Select a DMA channel (DMA component
instance)
Select the DMA channel to be configured, as Figure
15 shows:
Figure 15. Select DMA Channel
Use this dialog to select
configuration parameters:
the
DMA
channel
Source and Destination: the upper 16 bits of the
source and destination addresses
Bytes per Burst: the number of bytes to be moved in
a single burst
DMA component
instance name
Each Burst Requires a Request: whether each
burst requires a separate request
Number of TDs: the number of transaction
descriptors to be associated with the DMA channel (1
to 128).
Select the dialog parameters as follows:

Project: name of the PSoC Creator project
DMA: the name DMA component instance in your
project
Click Next when done.
Single Chain or Loop: this defines what ‘Next TD’
for the last TD in the chain. If single chain, the next
TD is DMA_DISABLE_TD (0xFE). If loop, it is the first
TD.
Click Next when done.
www.cypress.com
Document No. 001-52705 Rev. *I
21
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Step 3: Define the transaction descriptors for the channel
Select the DMA transfer global settings, as Figure 17 shows. Table 16 describes each TD configuration parameter.
Figure 17. Add Transaction Descriptors
Table 16. TD Configuration Details
Field
Description
TD#
Displays the logical number for the Transaction Descriptor.
Endian
Enables 2- or 4-byte endian byte swapping. This enables swapping the byte while the data moves from
source to destination. The Bytes per Burst setting must be set as a multiple of the endian selection. This is
usually used for DMA transfers between PSoC 3 memory and peripherals because of the difference in
endianess.
Term In
Enables ending the TD transaction on a rising edge of the TERMIN (trq) signal.
Term Out
Enables the creation of the TERMOUT (nrq) signal when the TD finishes.
Length
This specifies the transfer count for the TD in bytes (0 to 4095). This is the total number of bytes that the
DMA should transfer to complete the transaction.
Source
The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses for the source is
given by the DMA wizard if the source selected is a component (not memory). You can also edit or enter the
source address manually.
Inc (Source)
Enables incrementing of the source address as the DMA does the transaction. If this is enabled, every time
the DMA reads the data from source, the source address is incremented by the number of bytes that the
DMA has read. The DMA increments the source address until the entire transaction (transfer count) is
finished.
Destination
The lower 16 bits of the source address for the DMA transfer. A drop-down list of addresses for the
destination is given by the DMA wizard if the destination selected is a component (not memory). You can
also edit or enter the destination address manually.
Inc(Destination)
Enables incrementing of the destination address as the DMA does the transaction. The DMA increases the
destination address until the entire transaction (transfer count) is finished.
Auto Next
Automatically execute the next TD without another DMA request.
Next TD
The next logical TD in the chain of TDs. Set to END if this TD chain is finished with this TD.
Click Next when done. The required code is then generated.
www.cypress.com
Document No. 001-52705 Rev. *I
22
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Step 4: Copy the code created by the DMA Wizard
Figure 18. Generated Code
After the DMA channels and TD configuration are finished,
the wizard creates code for the DMA channel. This code
includes the configuration for the DMA channel and the
TDs The code is generated in a window in the DMA
Wizard dialog, as Figure 18 shows. To use the code,
select all in the window, copy it, and paste it in your
main.c.
For more information on the wizard, see the PSoC Creator
Help file.
Appendix C: Setting DMA Channel Priority
When multiple DMA channel requests are active, the DMA channels are processed by DMAC based on channel priority
settings. Each DMA channel can be given one of the eight different priorities. DMA channel priority is set in PSoC Creator in
Design Wide Resources (*.cydwr) > DMA, as Figure 19 shows.
Figure 19. Setting DMA Channel Priority
When both the CPU and DMAC request access to the same spoke on PHUB at the same time, the CPU has priority by
default. The PHUB manages arbitration between DMA and CPU, and among the DMA channels. For more information, see
®
®
PSoC 3, PSoC 5LP Architecture TRM.
www.cypress.com
Document No. 001-52705 Rev. *I
23
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Appendix D: Example Projects – Test Setup
Example 1: Peripheral-to-Peripheral Transfer – Eg1_ADC_DMA_DAC
In this example project the ADC sampling frequency (fs) is 384 kHz. The output is reconstructed best if the input frequency is
less than or equal to ~84kHz because the delta sigma ADCs have a low pass nature with a -3dB drop at 0.22 fs. The test
setup is as follows:
1.
Connect the function generator to pin P0[2], the input to the ADC.
2.
Set the function generator to make a sine wave of 100 Hz.
3.
Connect the oscilloscope probe to pin P0[0], the VDAC output.
4.
Build the project and program the device.
5.
Look at the output from pin P0[0] on the oscilloscope. It should be a sine wave of frequency 100 Hz, the same as the
input.
Example 2: Peripheral-to-Memory Transfer – Eg2_ADC_DMA_Mem
The test setup is as follows:
1.
2.
3.
4.
Connect the input signal to pin P0[2], the input to the ADC. Make sure that the input is within the ADC range VSSA to
2.048 V.
Connect P6[1] to switch(SW1) on the DVK.
Build the project.
Press F5 or click the debug icon, as Figure 20 shows, to download the program and start debugging.
Figure 20. Debug Button
5.
Add adc_sampleArray as a watch variable, as Figure 21 shows:
Figure 21. Watch Variable
www.cypress.com
Document No. 001-52705 Rev. *I
24
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
6.
Put a breakpoint inside the if(DMADone_flag) loop, as Figure 22 shows:
Figure 22. Add a Breakpoint
7.
Press F5 to run the program. Press the switch (SW1) connected to P6[1] to enable the DMA to start ADC sample
buffering. The execution stops at the breakpoint after the DMA has transferred the specified number of samples from ADC
to memory. The result can be verified by monitoring the adc_sampleArray in the watch window, as Figure 23 shows:
Figure 23. ADC Samples in Watch Window
Example 3: Memory-to-Peripheral Transfer – Eg3_Mem_DMA_DAC
The test setup is as follows:
1.
Connect the oscilloscope probe to pin P0[0], the VDAC output.
2.
Build the project and program the device.
3.
Observe a sine wave of frequency 7.8 kHz on the oscilloscope.
Example 4: Memory-to-Memory Transfer – Eg4_Mem_DMA_Mem
The test setup is as follows:
1.
Connect a character LCD module to header P18 (LCD Module - Port 2) of the CY8CKIT-001 PSoC Development Kit.
2.
Make sure jumper J12 is in the ON position to power the LCD.
3.
Build the project and program the device.
4.
Look at the LCD display. The first row displays the contents of the destination array. Initially all values are zero. After a
delay of one second the first row displays 00 to 07, showing that the DMA has successfully transferred the data from flash
to RAM. The second row displays the message TRANSFERRED. Figure 24 shows an example of the LCD display:
Figure 24. LCD Display of DMA Transfer
0 0 0 1 0 2 0 3 0 4 0 5 0 6 0 7
T R A N S F E R R E D
www.cypress.com
Document No. 001-52705 Rev. *I
25
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Example 5: TD Chaining– Eg5_TD_Chaining
The test setup for this example is same as that of Example 2. The test setup is as follows:
1.
2.
3.
4.
Connect the input signal to pin P0[2], the input to the ADC. Make sure that the input is within the ADC range VSSA to
2.048 V.
Connect P6[1] to switch(SW1) on the DVK.
Build the project.
Press F5 or click the debug icon, as Figure 25 shows, to download the program and start debugging.
Figure 25. Debug Button
5.
Add adc_samplearray1 and adc_samplearray2 as watch variables as Figure 26 shows.
Figure 26. Watch Variables
6.
Put a breakpoint inside the if(DMADone_flag) loop, as Figure 27 shows.
Figure 27. Add a Breakpoint
www.cypress.com
Document No. 001-52705 Rev. *I
26
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
7.
Press F5 to run the program. Press the switch (SW1) connected to P6[1] to enable the DMA to start ADC sample
buffering. The execution stops at the breakpoint after the DMA has transferred the specified number of samples from ADC
to memory. To verify the result, monitor adc_sampleArray1 and adc_sampleAv rray2 in the watch window, as Figure 28
shows.
Figure 28. ADC Samples in Watch Window
Appendix E: Frequently Asked Questions:
1.
How can you buffer more than 4095 bytes using DMA?
The maximum transfer count of a TD is limited to 4095 bytes. If you need to transfer more than 4095 bytes using a single
DMA channel, use multiple TDs and chain them as shown in Example 5.
2.
How do you find the source and destination addresses of the peripherals for DMA data transfer?
PSoC is highly programmable - many components are created from the programmable digital and analog blocks, and the
physical location of a peripheral may change based on the design. Therefore, a conventional register map listing all the
source and destination addresses is not possible
Instead, the registers for each component are defined in the component API header files generated by PSoC Creator
during the build process. You should review these header files to identify the component’s register addresses.
3.
How do you use DMA with communication protocols such as UART, SPI etc.?
When using communication protocols such as UART and SPI with DMA, set the buffer size to 4 or less so that internal
interrupts are not triggered for data transfers . Use hardware FIFO pointers as read and write data addresses for the DMA
and trigger the DMA using FIFO level status configured as interrupts. Make the Hardware Request of the DMA channel as
level triggered in order to use it with FIFO levels.
4.
Timing Details of DMA transfer?
The timing details of DMA transfer can be found in the PSoC 3, PSoC 5LP Technical Reference Manual. A detailed
discussion on DMA timing is beyond the scope of this application note.
www.cypress.com
Document No. 001-52705 Rev. *I
27
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Document History
Document Title: PSoC® 3 and PSoC 5LP - Getting Started with DMA – AN52705
Document Number: 001-52705
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2710860
LNAT
05/25/09
New Application Note.
*A
2768731
LNAT
09/24/09
Updated the projects for PSoC Creator Beta 3 version.
Added information about configuring the Termout signals
*B
2951774
LNAT
06/14/10
Updated the projects for PSoC Creator Beta 4.1
Added more information regarding the DMA configuration
*C
2966485
LNAT
08/26/10
Updated the projects for PSoC Creator Beta 5.
Used DMA Wizard in the projects.
*D
3269575
LRDK
06/06/11
Rewritten in Simplified English.
*E
3355465
ANUP
08/26/2011
Updated Introduction
Updated TD0 Configuration section
Updated channel configuration table
Updated Figure 8
Updated operation section.
*F
3444066
ANMD
11/22/2011
Project updates for PSoC Creator 2.0.
Updated in new template.
*G
3822782
ANCY
11/27/2012
Updated for PSoC 5LP.
*H
3844498
ANMD
12/18/2012
Re-written to improve clarity
*I
4445042
KRIS
07/16/2014
Updated Software Version in page 1 as “PSoC Creator™ 3.0 SP1 and higher”.
®
Updated Related Application Notes in page 1 as “AN61102, AN84810”.
Updated Introduction.
Updated attached example projects for PSoC Creator 3.0 SP1.
Completing Sunset Review.
www.cypress.com
Document No. 001-52705 Rev. *I
28
®
PSoC 3 and PSoC 5LP - Getting Started with DMA
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Cypress Developer Community
Community | Forums | Blogs | Video
| Training
cypress.com/go/memory
Memory
Optical Navigation Sensors
cypress.com/go/ons
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
PSoC is registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of their
respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2009-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-52705 Rev. *I
29

				

 Open as PDF

 	Similar pages
	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Japanese).pdf

	

										AN84810 PSoC 3 and PSoC 5LP Advanced DMA Topics.pdf

	

										AN52705 PSoC 3 and PSoC 5LP - Getting Started with DMA (Chinese).pdf

	

										AN61102 PSoC 3 and PSoC 5LP ADC Data Buffering Using DMA.pdf

	

										AN89056 PSoC 4 IEC 60730 Class B and IEC 61508 SIL Safety Software Library.pdf

	

										Component - I2S V2.0

	

										AN77835 PSoC 3 to PSoC 5LP Migration Guide.pdf

	

										AN54181 Getting Started with PSoC® 3 (Chinese).pdf

	

										Thermal Printer Development Kit 3 Inch User Manual

	

										Component PSoC 4 CyBoot V5.0 Datasheet.pdf

	

										Component - 8-Bit Voltage DAC (VDAC8) V1.60 Datasheet(Chinese).pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

