

	
		
			
				
					
					
					
				
				
					DtSheet				

			


			
					
							
								
									
									
										
											
										
									
								

							

						



				

						
                        Upload
                        
                    
				
			

		

	


    
		





    
        
            AN60317 PSoC 3 and PSoC 5LP I2C Bootloader.pdf

        

    


    
		            
				                    AN60317
PSoC® 3 and PSoC 5LP I2C Bootloader
Authors: Anu M D, Tushar Rastogi
Associated Project: Yes
Associated Part Family: All PSoC ® 3 and PSoC 5LP parts
Software Version: PSoC Creator™ 3.0 SP1 and higher
Related Application Notes: For a complete list of the application notes, click here
2
®
AN60317 describes an I C-based bootloader for PSoC 3 and PSoC 5LP. In this application note you will learn how
2
to use PSoC Creator™ to quickly and easily build an I C-based bootloader project, and bootloadable projects. It also
2
shows how to build an I C-based embedded bootloader host program.
Contents
Introduction
Introduction .......................................................................1
Terms and Definitions ..................................................2
Using a Bootloader .......................................................2
Bootloader Function Flow .............................................2
Techniques to Enter Bootloader ...................................3
Projects .............................................................................4
2
I C Bootloader ..............................................................4
Bootloadables...............................................................6
2
I C Bootloader Host .................................................... 10
Testing the Projects......................................................... 13
Kit configuration.......................................................... 13
Verifying the Results .................................................. 13
Summary ......................................................................... 14
Related Application Notes ............................................... 14
Related Projects .............................................................. 14
Appendix A – Memory ..................................................... 15
Appendix B – Project Files .............................................. 18
Appendix C – Host / Target Communications ................. 19
Appendix D – Host Core APIs ......................................... 23
Appendix E – Bootloader and Device Reset ................... 24
Why is Device Reset Needed? ................................... 24
Effect on Device I/O Pins............................................ 24
Effect on Other Functions ........................................... 25
Example: Fan Control ................................................. 26
Appendix F – Miscellaneous Topics ................................ 27
Worldwide Sales and Design Support ............................. 31
Bootloaders are a common part of MCU system design. A
bootloader makes it possible for a product's firmware to be
updated in the field. At the factory, initial programming of
firmware into a product is typically done through the
MCU's Joint Test Action Group (JTAG) or Serial Wire
Debugger (SWD) interface. However, these interfaces are
usually not accessible in the field.
This is where bootloading comes in. Bootloading is a
process that allows you to upgrade your system firmware
over a standard communication interface such as USB,
2
I C, UART or SPI. A bootloader communicates with a host
to get new application code or data, and writes it into the
device's flash memory.
In this application note you will learn:

How to add an I2C bootloader to a PSoC Creator™
project for PSoC® 3 or PSoC 5LP


How to use the Bootloader Host Tool
The basic building blocks and functionality of a
bootloader host system

How to create an embedded I2C bootloader host
using PSoC 5LP
This application note assumes that you are familiar with
PSoC and the PSoC Creator IDE. If you are new to
PSoC 3 or PSoC 5LP, refer to AN54181, Getting Started
with PSoC 3 or AN77759, Getting Started with PSoC 5LP.
If you are new to PSoC Creator, see the PSoC Creator
home page.
This application note also assumes that you are familiar
with bootloader concepts. If you are new to these
concepts, see AN73854, PSoC 3 and PSoC 5LP
Introduction to Bootloaders. For a complete list of other
application notes on bootloading, click here.
www.cypress.com
Document No. 001-60317 Rev. *L
1
PSoC® 3 and PSoC 5LP I2C Bootloader
Finally, this application note assumes that you are familiar
2
2
with the I C protocol and the PSoC Creator I C Master and
Slave Components. If you are new to these Components,
see the PSoC Creator I2C Component datasheet. You can
also get the datasheet by right-clicking on an I2C
Component in PSoC Creator.
Using a Bootloader
Terms and Definitions
Once the bootloader is running, the host can send a "start
bootload" command over the communication channel. If
the bootloader sends an "OK" response, bootloading can
begin.
Figure 1 illustrates the main elements in a bootloader
system. It shows that the product's embedded firmware
must be able to use the communication port for two
different purposes – normal operation and updating flash.
That portion of the embedded firmware that knows how to
update the flash is called a bootloader. The other terms in
Figure 1 are defined below.
Figure 1: Bootloading System Diagram
MCU
Communication
Channel
I2C
Application
During bootloading, the host reads the file for the new
application, parses it into flash write commands, and
sends those commands to the bootloader. After the entire
file is sent, the bootloader can pass control to the new
application.
Bootloader Function Flow
Target
Flash
Memory
A bootloader communication port is typically shared
between the bootloader and the actual application. The
first step to use a bootloader is to manipulate the product
so that the bootloader, and not the application, is
executing.
Host
Application
File
Bootloader
The system that provides the data to update the flash is
called the host, and the system being updated is called
the target. The host can be an external PC or another
MCU on the same PCB as the target.
Typically when the device resets, the bootloader is the first
function to execute. It then performs the following actions:




Checks the application's validity before letting it run
Manages the timing to start host communication
Does the bootload / flash update operation
And finally, passes control to the application
Figure 2 on page 3 is a flow diagram that shows how this
works.
The act of transferring data from the host to the target
flash is called bootloading, or a bootload operation, or
just bootload for short. The data that is placed in flash is
called the application or bootloadable.
Another common term for bootloading is in-system
programming (ISP). Cypress has a product with a similar
name called In-System Serial Programmer (ISSP) and an
operation called Host-Sourced Serial Programming
(HSSP). For more information, see AN73054, PSoC
Programming Using an External Microcontroller (HSSP).
www.cypress.com
Document No. 001-60317 Rev. *L
2
PSoC® 3 and PSoC 5LP I2C Bootloader
Figure 2: Bootload Process Flowchart
Techniques to Enter Bootloader
As mentioned previously, the bootloader is the first
function to run at reset. As Figure 2 shows, the bootloader
code waits for the host for a short period of time before
passing control to the application. This may cause the host
to miss an opportunity to start the bootload operation.
However, another way exists to start bootloading, and that
is to pass control from the application or bootloadable
back to the bootloader.
Reset
Bootloader
valid in flash?
No
Halt execution
Bootloadable API
The Bootloadable Component in PSoC Creator has an
API (Application Programming Interface) to start the
bootloader: Bootloadable_Load(). This allows the host to
start a bootload operation at any time.
Yes
Application
valid in flash?
The problem with this method is that you must depend on
the application code to perform an application upgrade.
What happens if the application has a defect that prevents
transfer of control to the bootloader?
No
Customize Bootloader
Instead, it may be better to have the bootloader wait an
infinite amount of time for the host. To do that, we can
customize the bootloader project to check for some user
input before calling Bootloader_Start() and running
through its normal routine.
Yes
Wait for
new application
from host?
No
Yes
Yes
Wait forever?
No
Host comm.
start?
Yes
No
Yes
Host comm.
start?
Receive new
application from
host,
install in flash,
overwriting
existing
application
No
Timeout?
Yes
Go to application
No
www.cypress.com
Document No. 001-60317 Rev. *L
3
PSoC® 3 and PSoC 5LP I2C Bootloader
Projects
Now that you have seen how bootloaders are
implemented in PSoC and PSoC Creator, let us look at
some specific examples of how this is done.
2.
Add I2C Slave Macro and Bootloader Components to
the top design schematic. Rename the Components
and Pins as Table 1 shows.
Table 1. Bootloader Project Component Names
This section shows you the steps to create PSoC Creator
bootloader, bootloadable and embedded bootloader host
projects. The projects are designed to be used with the
CY8CKIT-030 and CY8CKIT-050 kits. They require PSoC
Creator 3.0 SP1 or higher.
Component
I2C Bootloader
2
In this section, we create and build an I C based
bootloader project.
1.
Create a new PSoC Creator project and name it
I2C_Bootloader. Select the Empty PSoC 3 Design or
Empty PSoC 5LP Design template. Create a new
workspace for the project.
Click on the '+' button next to Advanced to expand the
configuration options and select the application type
Bootloader, as Figure 3 shows.
Figure 3: Creating Bootloader Project
Name
Bootloader_1
Bootloader
I2C_1
I2C
SDA_1
Pin_SDAT
SCL_1
Pin_SCLK
The next step is to configure these Components.
3.
To configure the Bootloader, double-click on the
Component. Select I2C as the Communication
component, as Figure 4 shows. Leave the other
parameters at their default settings. For more
information on these configuration parameters, please
refer to the Bootloader Component datasheet.
Figure 4. Bootloader Configuration
www.cypress.com
Document No. 001-60317 Rev. *L
4
PSoC® 3 and PSoC 5LP I2C Bootloader
4.
To configure the I2C Slave Component, double-click
on it. By default, the data rate is set to 100 kbps and
the slave address is set to 4. If you want to use a
different address you can enter it in the slave address
box. Leave the other parameters at their default
settings. Figure 5 shows the basic configuration tab of
2
the I C Slave Component.
6.
Now, with the pull-up resistors added as annotation
Components, the top design of the project looks
similar to Figure 7.
2
Figure 7. Top Design of I C_Bootloader Project
2
Figure 5. Basic I C Slave Configuration
7.
Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
I2C_Bootloader.cydwr file, and click on the Pins tab.
Assign the Pins as Figure 8 shows.
2
Figure 8: I C Pin Assignments
5.
2
Double-click on the I C pins. Set the Drive Mode of
the pins to Open Drain, Drives Low, as Figure 6
shows. You must also provide external resistive pullups of 1.8 kΩ on the SDA and SCL lines.
Figure 6. I2C Pin Configuration
www.cypress.com
8.
Review the main.c file – the CyBtldr_Start() function is
added automatically when you create a bootloader
project. This API function does the entire bootloading
operation. It does not return – it ends with a software
device reset. So, code after this API call is never
executed.
9.
Build the project and program it into a PSoC 3 device
on CY8CKIT-030 or a PSoC 5LP on CY8CKIT-050.
Document No. 001-60317 Rev. *L
5
PSoC® 3 and PSoC 5LP I2C Bootloader
Bootloadables
We shall now create two bootloadable projects. The first
project displays "Bootloaded" on a character LCD. The
second project demonstrates how to enter the bootloader
project from a bootloadable project.
3.
A bootloadable project is always linked to the .hex file
of a bootloader project. To do this, go to the
dependencies tab and then link the bootloadable to
the I2C_Bootloader.hex file, as Figure 10 shows. For
more information on Bootloader Component
configuration, refer to the Bootloader Component
datasheet.
Bootloadable Project – Example 1
This section describes the steps to create the first
bootloadable project:
1.
To configure the Bootloadable Component, doubleclick on it.
Create a new PSoC Creator project of application type
Bootloadable. Name the project as Bootloadable1, as
Figure 9 shows. The devices for this project and the
I2C_Bootloader project must be the same.
Figure 10. Bootloadable Component Configuration
Figure 9. Creating Bootloadable1 Project
You may find the I2C_Bootloader.hex file
bootloader project's Debug / Release folder:
When PSoC 3 is the Bootloader,
..\I2C_Bootloader\I2C_Bootloader.cydsn\DP8051\
DP8051_keil_903\Debug\I2C_Bootloader.hex
in
When PSoC 5LP is the Bootloader,
..\I2C_Bootloader\I2C_Bootloader.cydsn\CortexM3\
ARM_GCC_441\Debug\I2C_Bootloader.hex
4.
2.
For this project we need the Bootloadable and
Character LCD Components. Add these Components
to your top design schematic. Name the Components
according to Table 2.
Now, the top design is complete; it should be similar
to Figure 11.
Figure 11. Top Design of Bootloadable1 Project
Table 2. Bootloadable1 Project Component Names
Component
Name
Bootloadable_1
Bootloadable
LCD_Char_1
LCD_Char
www.cypress.com
5.
Add the following code to main.c to display the
message "Bootloaded" on the LCD:
/* Initialize the LCD and display a
message */
LCD_Char_Start();
LCD_Char_PrintString("Bootloaded");
Document No. 001-60317 Rev. *L
6
PSoC® 3 and PSoC 5LP I2C Bootloader
6.
Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
Bootloadable1.cydwr file and assign the pins as
Figure 12 shows.
ground), as Figure 8 and Figure 13 show. Figure 14
shows the pin connections of the Miniprog3, when
2
used as a USB-I C bridge.
Figure 14. MiniProg3 – I2C Connections
Figure 12. Pin Assignment of Bootloadable1 Project
7.
Build the project. When a bootloadable project is built,
PSoC Creator generates a .cyacd file. This is the file
that is bootloaded onto the target. For more
information on this file and its contents, see
Appendix B.
Note For PSoC Creator versions before 3.0, if the
bootloader is updated, you must also rebuild all
bootloadable projects that depend on that bootloader
project. Use the “Clean and Build” option.
2.
Open the Bootloader Host tool by navigating to
Tools > Bootloader Host in PSoC Creator.
3.
Make sure that the bootloader host application's I C
configuration, shown in Figure 15, is the same as the
bootloader project's I2C Component configuration
(Figure 5).
2
Figure 15. Bootloader Host Application
Note Flash protection settings for a bootloadable project
are ignored; the associated bootloader project’s flash
protection settings take precedence.
Now, let us bootload this project into PSoC 3 using
PSoC Creator.
Bootloading Using a PC Host
A bootloader host executable is provided with PSoC
Creator for bootloading an application from a PC host. The
2
CY8CKIT-002 MiniProg3 is used as a USB-I C bridge to
interface the PC to the bootloader, as Figure 13 shows.
Figure 13. Bootloading Using a PC Host
Vdd
SDA
U
S
B
USB
SCL
GND
I
2
C
PSoC 3
Host Application
The Power setting determines whether to power the
Miniprog3 from the USB host or externally, i.e. from
the target PCB. For details, see the knowledge base
article MiniProg3 Connections for Bootloading Over
2
I C.
Note MiniProg3 has internal pull-up resistors on the SDA
and SCL lines. Therefore we need not use external pullups with MiniProg3.
Follow the steps given below to bootload an application
using the bootloader host program. As noted previously,
you must program the bootloader project to the PSoC
device before starting a bootload operation.
1.
To start, connect the PC to the MiniProg3 through the
2
USB cable. Connect the MiniProg3 to the I C pins (In
the example, SDAT is connected to P0[1], SCLK is
connected to P0[0], and GND is connected to DVK
www.cypress.com
Document No. 001-60317 Rev. *L
7
PSoC® 3 and PSoC 5LP I2C Bootloader
4.
Press the File button and choose the bootloadable file
Bootloadable1.cyacd in the bootloadable project's
Debug/Release folder:
When PSoC 3 is the Bootloader,
..\Bootloadable1.cydsn\DP8051\DP8051_Keil_903\
Debug\Bootloadable1.cyacd
When PSoC 5LP is the Bootloader,
..\Bootloadable1.cydsn\CortexM3\ARM_GCC_441\
Debug \Bootloadable1.cyacd
5.
Bootloadable Project – Example 2
If you want to bootload a new project (application upgrade)
when the current bootloadable project is running, the
bootloadable project can invoke the bootloader by calling
the function Bootloadable_Load().
In this example the Bootloadable_Load() function is called
when a button is pressed. This section describes the steps
for creating this bootloadable project:
1.
Create a new PSoC Creator project of application type
Bootloadable similar to Example 1. Name the project
as Bootloadable2. The PSoC devices for this project
and the I2C_Bootloader project must be the same.
2.
For this project we need the Bootloadable, Pin,
Interrupt, and Character LCD Components. Add these
Components to your top design schematic, and name
them according to Table 3.
To bootload the device, click the Program button. You
should get a screen similar to Figure 16.
Figure 16. Downloading Bootloadable Project
Table 3. Bootloadable Component Names
Component
3.
6.
Name
Bootloadable_1
Bootloadable
Pin_1
Pin_StartBootloader
isr_1
isr_EnterBootloader
LCD_Char_1
LCD_Char
Link the Bootloadable Component to the bootloader
project as Figure 10 shows.
After the bootloadable project is downloaded
successfully, a software reset occurs, and the device
starts executing the new application. The message
"Bootloaded" appears on the LCD.
To bootload another application, reset the device (press
and release the kit reset button), and then quickly hit the
program button of the bootloader host. For details on
bootloader wait time, see Wait For Command Time in the
Bootloader Datasheet.
www.cypress.com
Document No. 001-60317 Rev. *L
8
PSoC® 3 and PSoC 5LP I2C Bootloader
4.
The digital input pin Pin_StartBootloader is used to
switch from the application back to the bootloader.
When the button connected to this pin is pressed, the
application enters the bootloader by calling the API
function Bootloadable_Load(). The bootloader waits
indefinitely for the host to start the bootload operation.
5.
Connect the ISR Component isr_EnterBootloader to
the interrupt terminal (irq) of the Pin.
Now, with the addition of an annotation Component
for the button the top design is complete; it should be
similar to Figure 19.
Figure 19. Top Design of the Bootloadable2 Project
When the DVK button is pressed, it shorts to ground,
so configure the drive mode of the Pin to be Resistive
Pull Up, as Figure 17 shows. Also configure it to
generate an interrupt on its falling edge, as Figure 18
shows – the interrupt is generated when the button is
pressed (and not when it is released).
Figure 17. Digital Input Pin Configuration
6.
Assign the Pin Components to physical pins. In the
Workspace Explorer window, double-click the
Bootloadable2.cydwr file and assign the pins as
Figure 20 shows.
Figure 20. Pin Assignment of Bootloadable2 Project
7.
Figure 18. Digital Input Pin Configuration
Build the project; this generates the ISR Component
API files. Then add code to the interrupt service
routine to set the variable 'bootload_flag'. The code is
shown below.
CY_ISR(isr_EnterBootloader_Interrupt)
{
/* Place your Interrupt code here. */
/* `#START
isr_EnterBootloader_Interrupt` */
bootload_flag = 1u;
Pin_StartBootloader_ClearInterrupt();
/* `#END` */
}
Note 'bootload_flag' is defined in main.c, and
therefore must be declared as an extern variable in
the isr_EnterBootloader.c file.
8.
A completed Bootloadable2 project is associated with
this application note. Insert the code listing from the
main.c file of this associated project to the main.c file
of your project.
The main() function continuously
'bootload_flag' variable. If the variable
displays the message "Waiting to BL"
Bootloadable_Load() API. This API
Bootloader.
www.cypress.com
Document No. 001-60317 Rev. *L
checks the
is set, main()
and calls the
invokes the
9
PSoC® 3 and PSoC 5LP I2C Bootloader
9.
I2C Bootloader Host
Build the project again.
10. Download
the
bootloadable
project
Bootloadable2.cyacd using the steps described in the
section Bootloading Using a PC Host. You can see
the message "Bye" and "SW1- P6.1 to BL" displayed
on the screen.
11. Press SW1 (Already connected to P6[1] on the DVK)
to enter the bootloader. The message "Waiting to BL"
is displayed on the LCD on program execution.
In addition to studying the example projects, it is useful to
understand the general structure of a bootloader host
program. This can help you to build your own bootloader
host system.
Bootloader Host Program
Figure 21 illustrates a protocol level diagram of a
bootloader system. The bootloader host and target each
have two blocks – the core and the communication layer.
Figure 21. Protocol Level Diagram of Bootloading
12. Start the bootloader host program and select a
different
bootloadable
file
such
as
Bootloadable1.cyacd and press the Program button.
13. After the new application is successfully bootloaded,
the message on the screen changes to "Bootloaded",
as the Bootloadable1 project is supposed to do.
Bootloader Host
UI Application
Bootloader Target
Bootloader Host Core
command.c / .h
api.c / .h
Note To bootload again you must reset the device and
quickly download the new .cyacd file. This is because the
Bootloadable1
application
does
not
have
the
Bootloadable_Load() function call to invoke the
bootloader, and hence the bootloader can only be invoked
on reset.
Bootloader target core
api2.c / .h
parse.c / .h
I2C
Communication layer
Communication layer
The Core performs all bootloading operations. The host
core sends command packets and flash data to the target.
Based on the response from the target, it decides whether
to continue bootloading.
The target core decodes the commands from the host,
executes them by calling flash routines such as erase row,
program row, and verify row, and forms response packets.
The Communication layer on both the host and the
target provides physical layer support to the bootloading
2
protocol. They contain communication protocol (I C)
specific APIs to perform this function. This layer is
responsible for sending and receiving protocol packets
between the host and the target.
B o o t l o a d e r S ys t e m A P I s
All APIs for the target side core and Communication layer
are automatically generated by PSoC Creator, when you
build a bootloader project.
The host side APIs for the Core are also provided by
PSoC Creator, and can be found at:
PSoC Creator \ 3.0 \ PSoC Creator \ cybootloaderutils
For more information on these API files, see Appendix D.
www.cypress.com
Document No. 001-60317 Rev. *L
10
PSoC® 3 and PSoC 5LP I2C Bootloader
The only code that you need to write is the host side API
functions for the communication layer, which are in a file
pair communication_api.c / .h. There are four functions –
OpenConnection(), CloseConnection(), ReadData() and
WriteData(). They are pointed to by function pointers
within the 'CyBtldr_CommunicationsData' structure,
defined in cybtldr_api.h.
2.
Since the bootloader project has an I2C Slave, the
host project must have an I2C Master. So, add an I2C
Master (Fixed Function) Component to the top design
schematic. Also, add Pin, Interrupt and Character
LCD Components to the top design. Name the
Components according to Table 4.
Table 4. Component List for I2C Bootloader Host
Project
In this project, we shall use Bootloadable Example
Project 2 to generate the .cyacd files that we need to
invoke the bootloader on a switch press. Generate a
.cyacd file for this project which writes "Bye" on the LCD,
and rename it to Bootloadable_Bye.cyacd. Similarly
generate a Bootloadable_Hello.cyacd by modifying the
main.c code to write "Hello" on the LCD. These two files
are provided with the application note for quick reference.
Component
2
Steps to Create an I C Bootloader Host
Project
2
This section shows you how to create an embedded I C
bootloader host project using PSoC 5LP, which can
bootload a PSoC 3 device. With this project, the host can
bootload two different bootloadable files (.cyacd files) on
alternate switch presses.
1.
Create a new PSoC creator project. Select the
PSoC 5LP Design template, name the project
I2C_Bootloader_Host_PSoC5LP, create a new
workspace for the project, and make sure that the
Application Type is Normal, as Figure 22 shows.
Name
I2C_1
I2C
SDA_1
SDA
SCL_1
SCL
Pin_1
Pin_Switch
isr_1
ISR_Switch
LCD_Char_1
LCD_Char
3.
To configure the I2C Master Component, double-click
on it. By default, the data rate is 100 Kbps. Verify that
the slave address in the dialog box is the same as the
address in the I2C Slave Component (refer to I2C
Bootloader).
4.
The digital input pin Pin_Switch is used to initiate the
bootloading operation in the host. When the DVK
button is pressed, it shorts to ground, so we need to
configure this pin to have a resistive pull-up and
generate an interrupt on its falling edge.
Figure 22. Create an I2C_Bootloader_Host Project
Connect the ISR_Switch Component to the interrupt
output (irq) of this pin.
5.
Now, with the addition of an annotation Component
for the button the top design of this project should be
similar to Figure 23.
Figure 23. Top Design of the
I2C_Bootloader_Host_PSoC5LP Project
www.cypress.com
Document No. 001-60317 Rev. *L
11
PSoC® 3 and PSoC 5LP I2C Bootloader
6.
Assign the input and output pins. In the Workspace
Explorer
window,
double-click
the
file
I2C_Bootloader_Host_PSoC5LP.cydwr and assign
the pins as Figure 24 shows.
Figure 24. Pin Assignment for the
I2C_Bootloader_Host_PSoC5LP Project
To include these files, go to the Workspace Explorer
window, right-click on the project name, and select
Add > New Item, as Figure 25 shows. Add the
following files: cybtldr_api.c / .h, cybtldr_command.c /
.h, cybtldr_parse.c / .h, and cybtldr_utils.h. Update
these files by copying from the project attached to this
application note.
Figure 25. Adding API Files
7.
Build the project to generate the ISR Component API
files. Add code to the interrupt service routine to set
the variable 'switch_flag'. The code is shown below.
CY_ISR(ISR_Switch_Interrupt)
{
/* Place your Interrupt code here. */
/* `#START ISR_Switch_Interrupt` */
switch_flag = 1;
Pin_Switch_ClearInterrupt() ;
/* `#END` */
}
Note 'switch_flag' is defined in main.c, and therefore
must be declared as an extern variable in
ISR_Switch.c.
8.
Add
firmware
to
this
project.
The
I2C_Bootloader_Host_PSoC5LP project is attached to
this application note. Insert the code listing from the
main.c file of this associated project to the main.c file
of your project.
The main() function in main.c continuously checks the
'switch_flag' variable. When it is set, bootloading is
initiated. The file main.c has a function called
BootloadStringImage(). This function bootloads the
.cyacd file using the Bootloader Host API files (host
core; see Figure 21).
The main() function has another variable called
'toggle'. It alternates between '0' and '1' on every
button press. This makes the host select alternate
bootloadable files.
9.
As explained previously, a bootloader host core is
built upon four API files. These files do all of the host
bootloading operations. We must include these files in
our project. Find these API files at the following
location:
PSoC Creator \3.0 \ PSoC Creator \ cybootloaderutils
www.cypress.com
10. In addition to the bootloading API files, a host also
requires communication layer support. This support is
provided by adding the communication_api.c / .h files.
You may include the contents of these files from the
I2C_Bootloader_Host_PSoC5LP project associated
with this application note (follow the previous step to
add these files to the project). Update these files by
copying from the project attached to this application
note.
11. Now, include the bootloadable files in the host system.
When a bootloadable file is built, a .cyacd file is
generated; the file is similar to a .hex output file. For
more information on the .cyacd file, see Appendix B.
Copy the contents of this file in the form of an array of
strings such that each line is an element of the array.
Since we have two bootloadable files, we must define
two such arrays, named 'StringImage_1' and
'StringImage_2'. For each array, define a macro to
store the number of lines in that array. Define these
arrays in a separate file named StringImage.h (this file
must be added to the project before defining the
strings).
Refer
to
the
StringImage.h
file
in
the
I2C_Bootloader_Host_PSoC5LP project associated
with this application note.
12. Build the project and program it into a PSoC 5LP on
CY8CKIT - 050.
Document No. 001-60317 Rev. *L
12
PSoC® 3 and PSoC 5LP I2C Bootloader
Testing the Projects
Note In the project I2C_Bootloader_Host_PSoC5LP
main.c has a macro called TARGET_DEVICE. This macro
is used to choose the target device between PSoC 3 and
PSoC 5LP. By default, it is defined as 'PSoC_3' (another
macro in the same file). If you are using a PSoC 5LP as
your target device, change the definition of this macro to
'PSoC_5LP'.
For CY8CKIT–050:
Kit configuration
Make the following connections between the two DVKs:
To test the projects, configure the kits as follows:
1.
P0 [0] of CY8CKIT – 030 to P5 [5] of CY8CKIT–050
2.
P0 [1] of CY8CKIT – 030 to P5 [3] of CY8CKIT–050
3.
Short together the ground pins of the kits
For CY8CKIT–030:
1.
Program the PSoC 3 with the I2C_Bootloader project
2.
Set jumpers J10 and J11 to 5 V
3.
Connect the character LCD to Port 2 [6:0]
1.
Program
the
PSoC 5LP
with
I2C_Bootloader_Host_PSoC5LP project
2.
Set jumpers J10 and J11 to 5 V
3.
Connect the character LCD to Port 2 [6:0]
the
The connections are illustrated in Figure 26.
Figure 26. Host / Target Connections
1.8KΩ
CY8CKIT-050 with mounted character LCD
SW1
P6[1]
Bootloader Host
PSoC 5LP
1.8KΩ
Vdd
CY8CKIT-030 with mounted character LCD
SDA
P5[3]
SDA
P0[1]
SCL
P5[5]
SCL
P0[0]
P6[1]
SW1
Target
PSoC 3
GND
Verifying the Results
After the DVKs are configured, you can test the example
projects, as follows:

On the first button press (P6 [1]) on the CY8CKIT-050,
the Bootloadable_Hello.cyacd file is bootloaded to the
target PSoC 3. On successful completion the
message "Bootloaded - Hello" is displayed on the
CY8CKIT-050 LCD and the message "Hello" is
displayed on the CY8CKIT-030 LCD.

For subsequent bootloading operations, press the
button (P6 [1]) on the CY8CKIT-030. This makes the
PSoC 3 enter the bootloader and be ready to bootload
a new application.

On next button press on CY8CKIT-050,
Bootloadable_Bye.cyacd file is bootloaded to
target PSoC 3. On successful bootloading
message "Bootloaded - Bye" is displayed on
www.cypress.com
the
the
the
the
CY8CKIT-050 LCD and the message "Bye" is
displayed on the CY8CKIT-030 LCD.
If you wish to port the Bootloader Host project from
PSoC 5LP
to
PSoC 3,
refer
to
the
project
I2C_Bootloader_Host_PSoC3 attached to this application
note.
Note PSoC 3 has less flash memory and limited stack
space compared to the PSoC 5LP. Due to flash size
limitations only smaller .cyacd files can be stored in
PSoC 3. And due to limited stack space, the linker
overlays function variables and arguments in memory.
When you use a function pointer, the linker cannot
correctly create a call tree for your program. To overcome
this compiler issue, some modification is required in the
Bootloader Host APIs to make it work with PSoC 3. For
this reason, all references in the 'CommunicationData'
structure, which contains function pointers, are replaced
by
direct
function
calls
in
the
project
I2C_Bootloader_Host_PSoC3.
Document No. 001-60317 Rev. *L
13
PSoC® 3 and PSoC 5LP I2C Bootloader
Summary
Related Application Notes
This application note has explained how to bootload
2
PSoC 3 and PSoC 5LP using I C as the communication
interface. It also introduced the basic building blocks of a
bootloader host, and showed how to build an embedded
2
I C bootloader host.
To better understand bootloaders and flash programming,
Refer to the following application notes:

AN73854 – PSoC 3 and PSoC 5LP Introduction to
Bootloaders
Bootloaders are a standard method for doing field
upgrades. With PSoC Creator doing the entire
configuration for you, it is easy to make a bootloader for
PSoC.

AN73503 – USB HID Bootloader for PSoC 3 and
PSoC 5LP

AN68272 – PSoC 3 and PSoC 5LP Customizing the
Bootloader Communication Channel

AN73054 – PSoC 3 and PSoC 5LP Programming
Using an External Microcontroller (HSSP)

AN61290 – PSoC 3 and PSoC 5LP Hardware Design
Considerations


AN54181 – Getting Started with PSoC 3
For more advanced information, see the Appendix
sections and the PSoC 3 and PSoC 5LP Technical
Reference Manuals.
AN77759 – Getting Started with PSoC 5LP
To learn more about the many other features and
capabilities of PSoC, click here for a complete list of
application notes.
Related Projects
The projects attached to this application note are organized as Table 5 shows.
Table 5. Projects Attached to This Application Note
Design Project Name
Description
I2C_Bootloader
This project demonstrates how to create an I2C bootloader project for PSoC 3 and PSoC 5LP, using
PSoC Creator
Bootloadable1
This project demonstrates how to create bootloadable projects for PSoC 3 and PSoC 5LP using
PSoC Creator. This application prints “Bootloaded” on the LCD.
Bootloadable2
This Project demonstrates how to create bootloadable projects and how to enter the bootloader from
a bootloadable project.
I2C_Bootloader_Host_PSoC5LP
This is a sample bootloader host program demonstrating a PSoC 5LP bootloading a PSoC 3.
I2C_Bootloader_Host_PSoC3
This is a similar sample bootloader host program demonstrating a PSoC 3 device bootloading
another PSoC 3 device by modifying some of the bootloader APIs.
About the Authors
Name:
Anu M D
Title:
Applications Engineer
Title:
Sr. Applications Engineer
Background:
Background:
Anu is an applications engineer
in Cypress Semiconductor
Programmable Systems
Division focused on PSoC
Applications.
Tushar is an applications
engineer in Cypress
Semiconductor Programmable
Systems Division focused on
PSoC Applications.
Contact:
[email protected]
Contact:
[email protected]
Name:
Tushar Rastogi
www.cypress.com
Document No. 001-60317 Rev. *L
14
PSoC® 3 and PSoC 5LP I2C Bootloader
Appendix A – Memory


The bootloader project code and data
The checksum for the bootloader portion of the flash
For PSoC 5LP, the vector table contains the initial stack
pointer (SP) value for the bootloader project, and the
address of the start of the bootloader project code. It also
contains vectors for the exceptions and interrupts to be
used by the bootloader. In PSoC 3, the interrupt vectors
are not in flash. They are supplied by the interrupt
controller.
Flash Memory Details
Flash memory provides storage for firmware, bulk data,
ECC data, device configuration data, factory configuration
data and user defined flash protection data. Figure 27
shows the physical organization of flash memory in
PSoC 3 and PSoC 5LP.
PSoC flash is divided into blocks called arrays. Arrays are
uniquely identified by array IDs. Each array has 256 rows
of flash memory. Each row has 256 data bytes plus, if
enabled, 32 ECC (error correction code) bytes. You can
use the 32 ECC bytes to store configuration data instead
of error correction data. So, an array can have 64 KB or
72 KB for instruction and data storage.
The bootloadable project occupies the flash starting at the
first 256-byte boundary after the bootloader. This region of
the flash includes:

The number of flash arrays depends on the device and the
part. PSoC 3 has a maximum flash of 64 KB, so it has only
one array and the only valid array ID is 0. PSoC 5LP has a
maximum of 256 KB of flash, or 4 flash arrays, with valid
array IDs 0 to 3.
Vector table for the bootloadable project (PSoC 5LP
only)

The bootloadable project code and data
The highest 64-byte block of flash is used as a common
area for both projects. Parameters saved in this block
include:
Flash memory is programmed one row at a time. It can be
erased in 64 row sectors or the entire flash can be erased
at once. Rows are identified by a unique combination of
the array ID and the row number.

The entry in flash of the bootloadable project (4-byte
address)

Figure 27 also shows that the first X rows of flash are
occupied by the bootloader. X is set such that there is
enough space for:
The amount of flash occupied by the bootloadable
project (number of flash rows)

The checksum for the bootloadable portion of flash
(one byte)

The vector table for the bootloader, starting at address
0 (PSoC 5LP only)


The bootloader project configuration bytes
The size in bytes of the bootloadable portion of flash
(Four bytes).
For more information on the location of metadata in the
flash memory, refer Metadata Layout in Flash.
Figure 27. Physical Organization of Flash Memory in PSoC
Byte0
•••••••
Byte1
Byte L
Byte0
•••••••
Byte1
Byte L
Byte0
•••••••
Byte1
Row1
Row1
Row1
Row2
Row2
Row2
Row3
Row3
Row3
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Row4
Row5
Row6
Row7
Row8
•
•
•
•
•
•••••••
Byte L
Row N
Array0
Array1
Array M
L = 256 or 288 if ECC disabled
N = 32, 64, 128, or 256 depending on part
M = 1 , 2 , 3 , or 4 depending on part
= Bootloader Portion
= Bootloadable Portion
= Reserved for Metadata
www.cypress.com
Document No. 001-60317 Rev. *L
15
PSoC® 3 and PSoC 5LP I2C Bootloader
Memory Usage in PSoC
There are two types of bootloader project types, standard
bootloader and dual-application bootloader. Dualapplication bootloaders are also called multi-application
bootloaders. They are useful for designs that require a
guarantee that there is always a valid application that can
be run. But this guarantee comes with a limitation that
each application has only one half of the flash available.
Figure 28 shows the flash memory usage for each type of
PSoC Creator project.
Address
0x00
PSoC 3
App Checksum
PSoC 5LP
App Checksum
0x01
Reserved
0x02
Application Address
0x03
0x04
Application
Address
0x05
Figure 28. Flash Memory Usage
Metadata
Table 6. Metadata Layout
Metadata# 1
Metadata# 2
0x06
Bootloadable
Application
#2
0x08
0x07
Reserved
Last Bootloader Row
Last Bootloader
Row
Reserved
0x09
Reserved
0x0A
Normal
Application
Address 0
Bootloadable
Application
Bootloadable
Application
#1
Bootloader
Application
Multi- Application
Bootloader
M e t a d a t a L a yo u t i n F l a s h
The metadata section is the highest 64-byte block of flash,
and is used as a common area for both bootloader and
bootloadable projects, as Figure 28 shows. Various
parameters, depending upon the device used, are stored
in this block, as Table 6 shows. For the multi-application
bootloader, there are two sets of metadata. The metadata
of application 1 occupies the highest 64-byte block of flash
and the metadata of application 2 occupies 64 bytes from
the subsequent flash row.
Application Length
0x0B
0x0C
Bootloadable
Application Length
0x0D
0x0E
Reserved
Reserved
0x10
Active
Bootloadable
Application
Active Bootloadable
Application
0x11
Bootloadable
Application
Verification Status
Bootloadable
Application
Verification Status
Bootloader
Application Version
Bootloader Application
Version
Bootloadable
Application ID
Bootloadable
Application ID
Bootloadable
Application Version
Bootloadable
Application Version
Bootloadable
Application Custom
ID
Bootloadable
Application Custom ID
NA
NA
0x0F
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19
0x1A
0x1B
0x20-0x3F
Note For the multi-application bootloader, Last Bootloader
Row for metadata (image 2) signifies the last row of
bootloadable 1in the flash section and not the bootloader
row.
www.cypress.com
Document No. 001-60317 Rev. *L
16
PSoC® 3 and PSoC 5LP I2C Bootloader
Flash Protection
If the bootloader code is invalid, it makes the product
unusable. So it is important to protect the bootloader
portion of the flash from accidental overwrites.
All PSoC 3 and PSoC 5LP devices include a flexible flash
protection system. This feature is designed to prevent
duplication and reverse engineering of proprietary code.
But it can also be used to protect against inadvertent
writes to the bootloader portion of flash.
Once the bootloader portion of the flash is configured to
have a protection level of Full protection, it cannot be
changed in the field. The only way to alter the protection
level or to change the bootloader code is to completely
erase the flash and reprogram it using the JTAG / SWD
interface.
An example for protecting bootloader flash follows:
Four protection levels are provided for flash memory, as
Table 7 shows. Each row of flash can be configured to
have a different protection level, which can be set using
PSoC Creator (the Flash Security tab of the .cydwr file).
Example for Flash Protection
When the bootloader project is built, the PSoC Creator
Output window shows the amount of flash used. For
example, if the flash occupied by the I2C_Bootloader
project is 8886 bytes, then the output is (for PSoC 3 with
64 KB flash):
Table 7. Levels of Flash Protection
Flash used: 8886 of 65536 bytes (13.6 %).
Protection level
Unprotected
Allowed
External read and
write;
Internal read and
write
Factory upgrade
External write;
Not allowed
-
External read
The bootloader thus occupies 35 rows of flash (8886 /
256), i.e., flash locations 0x0000 to 0x2300. Set the flash
protection level as Full protection for these rows (under
the Flash Security tab of the .cydwr file in PSoC Creator).
The protection level for the remaining rows can be
Unprotected (the default) or Field upgrade, as Figure 29
shows.
Internal read and
write
Field upgrade
Internal read and
write
External read
and write
Full protection
Internal read
External read
and write;
Internal write
Figure 29: Flash Protection in PSoC Creator
www.cypress.com
Document No. 001-60317 Rev. *L
17
PSoC® 3 and PSoC 5LP I2C Bootloader
N o n vo l a t i l e L a t c h ( N V L ) S e t t i n g s
NVLs can be configured in a bootloader project or any
other normal PSoC Creator project, but not in the
bootloadable projects. This is because the NVL settings
are always loaded on device bootup. Upon device bootup,
the bootloader project executes first followed by the
bootloadable code. Therefore, a bootloadable project's
NVL settings are those of the bootloader project with
which it is associated.
Some of the PSoC Creator Design wide resource (.cydwr)
settings are programmed using user NVLs. You will get a
warning or error message if some of the .cydwr settings
for bootloadable project are different from bootloader
project's settings.
Appendix B – Project Files
Bootloadable Output Files
When any PSoC Creator project is built, an output file of
type .hex is generated. This is the file that is downloaded
to the PSoC while programming using the JTAG / SWD
interface.
For a bootloadable project, this file is a combined .hex file
of both the bootloadable and the related bootloader
project. This file is typically used to download both projects
via JTAG / SWD in a production environment.
* . c ya c d F i l e F o r m a t
When a bootloadable project is built, an additional file of
type .cyacd (application code and data) is also generated.
This file contains a header followed by lines of flash data.
Excluding the header, each line in the file represents an
entire row of flash data. The data is stored as ASCII data
in big endian format. Hence, while bootloading, the
contents of this file must be parsed (converted from ASCII
to hex). Parsing is not required for programming a file of
type .hex.
The header of this file has the following format:
[4 bytes Silicon ID] [1 byte Silicon rev]
[1 byte checksum type]
The flash lines have the following format:
[1 byte array ID] [2 bytes row number]
[2 bytes data length] [N bytes of data]
[1 byte checksum]
The checksum type in the header indicates the type of
checksum used in the packets sent between the
bootloader and the bootloader host during the bootloading
operation. If this byte is 0, the checksum is a basic
summation. If it is 1, the checksum is CRC-16.
www.cypress.com
Document No. 001-60317 Rev. *L
18
PSoC® 3 and PSoC 5LP I2C Bootloader
Appendix C – Host / Target Communications
Communication Flow
In Bootloader Function Flow, we looked at the operation of a bootloader in PSoC 3 and PSoC 5LP, and SPI Bootloader Host
introduced the building blocks of a bootloader host. With this background, Figure 30 explains the flow of communication
between the host and the target during a bootloading operation. This gives the order in which commands are issued to the
target and responses are received. See Command and Status / Error Codes for a complete list of bootload commands, their
codes and their expected responses.
Figure 30. Communication Flow During Bootloading
Host
Send ‘Enter Bootload’ command to start
the bootload operation
Check whether the Silicon ID and Silicon
Rev received are same as those contained
in the bootloadable file.
Send the ‘Get Flash Size’ command.
With these start and end row numbers, make
sure whether the rows to be programmed are
within the bootloadable area of the flash.
Then, split the row data into small chunks and
send them with the ‘Send Data’ command
PSoC 3 / PSoC 5LP Bootloader
Enter Boot
load
Command
ver
Bootloader
Silicon Rev,
Silicon ID,
Get Flash Si
ze
Command
bers
d row num
Start and En
Send Data
Gets the Silicon ID, Silicon Rev
and bootloader version. Put this in
the response packet
Send the start and end row
numbers of the bootloadable flash
area.
Command
Saves the data in the receive Buffer
ilure
Success / Fa
Issue program row command along with
last chunk of row data
Send ‘Verify Row’ command to
verify the programmed row data.
Verify whether the received
checksum matches with the
expected row checksum.
Send verify checksum
command to verify the
entire application code
checksum
Issue ‘End Bootload
operation’ command
.
.
.
.
Program Ro
w Comman
d
ilure
Success / Fa
Verify Row
Command
Calculates Row checksum and
places it in the return packet buffer
um
Row Checks
.
.
.
.
Verify Appl
ication Chec
ksum
Good / Bad
Checksum
End Bootlo
ad
Command
NACK
www.cypress.com
Erase the specified flash row and
program it with the new row data.
Document No. 001-60317 Rev. *L
Verifies the entire application code
checksum against the checksum stored
in the flash
Give a software reset to jump to the
newly downloaded Application
project
19
PSoC® 3 and PSoC 5LP I2C Bootloader
Protocol Packet Format
The bootloading operation involves exchange of command and response packets between the host and the target. These
packets have specific formats, as Figure 31 shows.
Figure 31. Bootloading Packet Format
Command packets from the host
Start
0x01
1 byte
Command
Data length (N)
code
1 byte
N bytes of data
2 bytes
N bytes
Checksum
End
0x17
2 bytes
1 byte
Checksum
End
0x17
2 bytes
1 byte
Response packets from the target
Start
0x01
1 byte
Status /
Data length (N)
Error code
1 byte
N bytes of data
2 bytes
N bytes
Each packet includes checksum bytes. The checksum is calculated for N + 4 bytes in a packet from Start byte to the N bytes
of data and excludes the End byte. The checksum can be a basic summation (2's complement) or CRC-16 depending on the
bootloader project setting. When sending multi byte data such as DataLength and Checksum, least significant byte is sent first.
The bootloader responds to each command from the host with a response packet. The format of the response packet is similar
to the command packet except that there will be status/error code instead of command code. The important commands and
data bytes and the bootloader response packet data are given in Table 8 on page 21.
2
I C Packet Information for Bootloader Host
2
The I C packet is a lower level of communication between the two devices. The packet format for reading and writing PSoC
from host is given in Figure 32 and Figure 33.
2
Figure 32. Communication Packet Sent from Host to Bootloader Through I C Interface (Write Packet)
start
slave
address
r/w
(0)
ack
packet
start
(0x01)
ack
command
ack
data
length 1
(LSB)
ack
1 bit
7 bit
1 bit
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
payload
data 1
ack
...
payload
data N
ack
checksum
1
(LSB)
ack
checksum
2
(MSB)
ack
end
packet
(0x17)
ack
stop
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 bit
ack
1 bit
communication from bootloader to host
communication from host to bootloader
www.cypress.com
data
length 2
(MSB)
Document No. 001-60317 Rev. *L
20
PSoC® 3 and PSoC 5LP I2C Bootloader
2
Figure 33. Communication Packet Received From Bootloader Through I C Interface (Read Packet)
start
slave
address
r/w
(1)
ack
packet
start
(0x01)
ack
status/
error
ack
data
length 1
(LSB)
ack
data
length 2
(MSB)
1 bit
7 bit
1 bit
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
payload
data 1
ack
...
payload
data N
ack
checksum
1
(LSB)
ack
checksum
2
(MSB)
ack
end
packet
(0x17)
nack
stop
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 byte
1 bit
1 bit
ack
1 bit
communication from bootloader to host
communication from host to bootloader
Command and Status / Error Codes
As the previous section explains, the command and response packet structures are similar. The only difference is that the
second byte contains a command code or a status / error code.
Table 8 provides a list of commands and their expected responses. Table 9 on page 22 provides a list of status and error
codes.
Table 8. Bootloading Commands
Command
Byte
0x31
Data Byte in the
Command Packet
Command
Verify checksum
N/A
Expected Response Data Bytes
1 byte: Non zero or '0'.
If it is a non-zero byte, then the application checksum matches and it
is a valid application.
If it is a zero byte, then the checksum is bad and the application is
invalid.
0x32
Get flash size
Flash array ID, 1 byte
First row number of the bootloadable flash, 2 bytes;
Last row number of the bootloadable flash, 2 bytes.
The bootloader responds to this command with the first full row after
the bootloader application (first row of the bootloadable application)
and last flash row in the selected flash array.
0x33
0x34
0x35
Get application
status (valid only
for dual
application
bootloader)
Application number, 1 byte
Erase row
Flash array ID, 1 byte;
N/A.
Flash row number, 2 bytes
Erases the contents of the specified flash row.
N/A
N/A.
Sync bootloader
Valid application status, 1 byte;
Active application status, 1 byte.
Checks whether the specified application is valid and it is active. The
application is valid and active if the return byte is zero.
Resets the bootloader to a clean state. Any data which was buffered
in will be thrown out. This command is needed only if the bootloader
and the host go out of sync with each other.
0x36
Set active
application (valid
only for dual
application
bootloader)
www.cypress.com
Application number, 1 byte
N/A.
Sets the specified application as active.
Document No. 001-60317 Rev. *L
21
PSoC® 3 and PSoC 5LP I2C Bootloader
Command
Byte
0x37
Data Byte in the
Command Packet
Command
Send data
Expected Response Data Bytes
N bytes of data to be sent
N/A.
The received data bytes will be buffered by the bootloader in
anticipation of the Program row command.
0x38
Enter bootloader
N/A
Silicon ID, 4 bytes;
Silicon Rev, 1 byte;
Bootloader version, 3 bytes;
All the commands are ignored until this command is received.
0x39
0x3A
Program row
Verify row
Flash array ID, 1 byte;
N/A.
Flash row number, 2 bytes;
N bytes of data to be sent
After sending multiple bytes of data to the bootloader using Send
data command, the last chunk of data is sent along with this
command.
Flash array ID, 1 byte;
Row checksum, 1 byte. This is calculated as the 2’s complement of
sum of all flash row data.
Flash row number, 2 bytes
Returns the checksum of the specified row.
0x3B
Exit bootloader
N/A
N/A.
This command is not acknowledged.
Table 9. Bootloading Status / Error Codes
Status / error
codes
Label
Description
0x00
CYRET_SUCCES
The command was successfully received and executed.
0x01
CYRET_ERR_FILE
File is not accessible.
0x02
CYRET_ERR_EOF
Reached the end of the file.
0x03
CYRET_ERR_LENGTH
The number of data bytes received is not in the expected range.
0x04
CYRET_ERR_DATA
The data is not of the proper form.
0x05
CYRET_ERR_CMD
The command is not recognized.
0x06
CYRET_ERR_DEVICE
The expected device does not match the detected device.
0x07
CYRET_ERR_VERSION
The bootloader version detected is not supported.
0x08
CYRET_ERR_CHECKSUM
The checksum does not match the expected value.
0x09
CYRET_ERR_ARRAY
The flash array is not valid.
0x0A
CYRET_ERR_ROW
The flash row is not valid.
0x0B
CYRET_BTLDR
The bootloader is not ready to process data.
0x0C
CYRET_ERR_APP
The application is not valid and cannot be set as active (valid
only for dual application bootloader).
0x0D
CYRET_ERR_ACTIVE
The application is currently marked as active (valid only for dual
application bootloader).
0x0F
CYRET_ERR_UNK
An unknown error occurred.
0xFF
CYRET_ABORT
The operation was aborted.
www.cypress.com
Document No. 001-60317 Rev. *L
22
PSoC® 3 and PSoC 5LP I2C Bootloader
Appendix D – Host Core APIs
c yb t l d r _ a p i 2 . c / . h
This is a higher level API that handles the entire bootload
operation. It has functions to open and close files. It
invokes the functions of the cybtldr_api.c / .h API for the
bootload operations. This API can be used when building
a GUI based bootloader host.
c yb t l d r _ a p i . c / . h
This is a row-level API file for sending a single row of data
at a time to the bootloader target. It has functions for
setting up the bootload operation, erasing a row,
programming a row, verifying a row and ending the
bootload operation. Table 10 describes in detail the
functions of this API file.
c yb t l d r _ p a r s e . c / . h
This module handles the parsing of the .cyacd file that
contains the bootloadable image to send to the device. It
also has functions for setting up access to the file, reading
the header, reading the row data, and closing the file.
Table 10. Functions of cybtldr_api.c /.h
Function
CyBtldr_StartBootloadOperation
Description
Enables the communication interface and sends an Enter Bootloader command to the target.
From the response packet received, verifies the silicon ID, silicon revision of the target device, and
bootloader version.
CyBtldr_ProgramRow
First validates a row, i.e., sends a Get Flash Size command to the target for a particular array ID of
the target flash. In response to this, the target returns the start and end row numbers of the
bootloadable flash portion in that array. The host reads this response and checks whether the
specified row is in the bootloadable area of the flash.
If row validation is a success, the host breaks the row data into smaller pieces and sends them to
the target using Send Data commands.
Along with the last portion of row data, sends a Program Row command to the target.
CyBtldr_VerifyRow
This function also first validates a row for a particular array ID and row number.
If row validation is successful, sends a Verify Row command for the validated flash row. In
response to this command, the target returns the checksum of the row.
The returned checksum is verified against the expected checksum value.
CyBtldr_EraseRow
This function also first validates a row for a particular array ID and row number.
If row validation is successful, sends an Erase Row command for the validated flash row.
CyBtldr_EndBootloadOperation
Sends an Exit Bootload command and disables the communication interface.
c yb t l d r _ c o m m a n d . c / . h
This API handles the construction of command packets to the target and parsing the response packets received from the
target. The cybtldr_api.c / .h invokes the functions of this API. For example, to send an Enter Bootload command,
CyBtldr_StartBootloadOperation() calls the CyBtldr_CreateEnterBootloadCmd() function of this API. It also has a function for
calculating the checksum of the command packets before sending to the target.
www.cypress.com
Document No. 001-60317 Rev. *L
23
PSoC® 3 and PSoC 5LP I2C Bootloader
Appendix E – Bootloader and Device Reset
As noted elsewhere in this application note, transferring control from the bootloader to the bootloadable, or vice versa, is
always done through a device reset. This may be a consideration if your system must continue to perform mission-critical
functions while changing from one program to the other. This section details why reset must be used, as well as its
implications for device performance in your application.
Why is Device Reset Needed?
To understand why device reset is needed, it is important to note that the bootloader and bootloadable projects in your system
are each completely self-contained PSoC Creator projects. Each project has its own device configuration settings. Thus, when
you change from one project to the other, you can completely redefine the hardware functions of the PSoC device.
To implement complex custom functions, device configuration can involve the setting of thousands of PSoC registers. This is
especially true for PSoC’s digital and analog routing features. When you configure the registers and routing, you must make
sure that, in addition to setting the bits for the new configuration, you reset the bits for the old configuration. Otherwise, the
new configuration may not work, and may even damage the device.
So when changing between bootloader and bootloadable projects, we do a device software reset (SRES). This causes all
PSoC registers to be reset to their default states. Configuration for the new project can then begin. Note that by assuming that
all PSoC registers are initialized to their device reset default states, we can reduce both configuration time and flash memory
usage.
Effect on Device I/O Pins
As described in application notes AN61290, PSoC® 3, PSoC 5LP Hardware Design Considerations, and AN60616, PSoC
Startup Process, during the reset and startup process the PSoC I/O pins are in three distinct drive modes, as Table 11 shows.
Table 11. PSoC I/O Pin Drive Modes During Device Reset
Duration (Typical)
Startup Event
Device reset (SRES) active
I/O Pin Drive Mode
Slow IMO
(12 MHz)
HI-Z Analog
Fast IMO
(48 MHz)
40 µs
While reset is active, the I/Os are held
in the HI-Z Analog mode.
Device reset removed
Nonvolatile Latches (NVLs)
copied to I/O ports
Code starts executing
NVL setting:
HI-Z Analog,
Pull-up, or Pull-down
~12 ms
~4 ms
I/O ports and pins are configured
PSoC Creator
project configuration
n/a
Code reaches main()
Code may change
I/O pin function
n/a
Comment
Duration depends on code execution
speed and configuration complexity.
8 possible drive modes. See device
datasheet for details.
For details on NVL usage in PSoC, see a device datasheet. In your PSoC Creator project, the NVL settings are established in
two places:

The Reset tab for I/O ports, the individual Pin Component configurations

The System tab for all other NVLs, the design-wide resources (DWR) window
The NVLs are updated when the device is programmed with your project. Note that a bootloadable project cannot set NVLs; its
DWR settings must match those in the associated bootloader project.
Final I/O drive modes are set by individual Pin Component configurations.
www.cypress.com
Document No. 001-60317 Rev. *L
24
PSoC® 3 and PSoC 5LP I2C Bootloader
Figure 34 shows the timing diagrams for device startup and configuration. The example in the middle diagram is for PSoC 3;
similar processes exist for PSoC 4 and PSoC 5LP. For more information, see AN60616, PSoC Startup Process.
Figure 34. Device Startup Process Diagrams
Hardware Startup
Reset
Boot
Firmware Startup
CPU Specific
Source File
CPU halted
Main.c
...
CyFitter_cfg.c
Reset Released
...
Hardware Startup
...
No CPU
execution
Firmware Startup
KeilStart.A51
Configure
Debug,
Bootloader
Clear
IDATA
Clear SRAM
Main.c
CyFitter_cfg.c
...
DMAC
configuration
CyFitter_cfg.c
Register
initialization
DSI config,
Digital routing
Digital array,
ClockSetup()
Analog set
default
Effect on Other Functions
At device reset, UDB registers are reset, so all UDB-based Components cease to exist and their functions are stopped. The
same is also true for analog Components based on the configurable SC/CT blocks in PSoC 3 and PSoC 5LP.
2
All fixed peripherals – digital and analog – are reset to their idle states. This includes the DMA, DFB, timers (TCPWM), I C,
USB, CAN, ADCs, DACs, comparators, and opamps. All clocks are stopped except the IMO.
All digital and analog routing control registers are reset. This causes all digital and analog switches to be opened, breaking all
connections within the device. This includes all connections to the I/Os except the NVLs.
All hardware-based functions are restored after configuration (see Figure 34). All firmware functions are restored when the
project’s main() function starts executing.
www.cypress.com
Document No. 001-60317 Rev. *L
25
PSoC® 3 and PSoC 5LP I2C Bootloader
Example: Fan Control
Let us examine how a bootloader and its associated device reset can be integrated into a typical application such as fan
control. PSoC Creator provides a Fan Controller Component, which encapsulates all necessary hardware blocks including
PWMs, tachometer input capture timer, control registers, status registers, and a DMA channel or interrupt. For more
information, see the Fan Controller Application page.
The fan control application is in a bootloadable project. Optionally, the bootloader may be customized to keep the fan running
while bootloading.
The fan can also be kept running while the device is reset, during the transfer between the bootloader to the bootloadable, as
Table 12 shows.
Table 12. PSoC I/O Pin Drive Modes During Device Reset for Fan Controller
I/O Pin Drive Mode
Comment
HI-Z Analog
Optionally add external pull-up or pull-down resistor to the PWM pin, for 100% duty
cycle. This may not be needed because the fan may keep spinning due to inertia.
NVL setting: HI-Z Analog,
Pull-up, or Pull-down
Optionally set the PWM Pin Component reset value to Pull-up or Pull-down, for 100%
duty cycle. This may not be needed because the fan may keep spinning due to inertia.
PSoC Creator
project configuration
Set the PWM Pin Component drive mode and initial state, for 100% duty cycle.
The PWM Component becomes active but does not run.
Main() starts executing
When PWM_Start() is called, the PWM starts driving the PWM pin at the Component’s
default duty cycle.
Firmware can read the tachometer data and start actively controlling the duty cycle.
www.cypress.com
Document No. 001-60317 Rev. *L
26
PSoC® 3 and PSoC 5LP I2C Bootloader
Appendix F – Miscellaneous Topics
B o o t l o a d e r ve r s u s H S S P
The bootloader allows your system firmware to be
upgraded over a communication interface. But for a
complete flash upgrade, including the bootloader flash
area, you must use the JTAG / SWD programmer (Host
Sourced Serial Programming). The in-system serial
programming (ISSP) specifications to create HSSP are
given in AN62391 (PSoC 3) and AN64359 (PSoC 5LP).
If a project is created as a normal project, and then later
changed to a bootloader project by changing the
application type as in Figure 35, you should insert the
CyBtldr_Start() function call in main.c for the bootloader
project to work as expected.
Figure 35. Changing Application Type to Bootloadable
What happens if power fails during the
bootload operation?
If power fails during the bootload operation, then at the
next reset the checksum of the bootloadable project does
not match the expected value (the bootloadable project's
checksum stored in the last row of flash) and the
bootloadable project is considered to be invalid. Program
execution remains in the bootloader until a successful
bootload happens. The bootloader host must send a start
bootload command to re-start the bootload operations.
Wh y do we need a reset to jump between the
bootloader and the bootloadable projects?
PSoC 3 and PSoC 5LP are enormously configurable
devices. The bootloader allows you to change on-chip
hardware resources as well as firmware. Due to its highly
configurable architecture, hardware reconfiguration
(placement, routing, functional) is possible only from a
reset state. Therefore the bootloader requires a reset to
jump between the bootloader and bootloadable projects.
See Appendix E – Bootloader and Device Reset for more
information.
C o n ve r t i n g a N o r m a l A p p l i c a t i o n P r o j e c t t o
a Bootloadable Project
If you have already created a standard (Normal) project
and want to convert it to a bootloadable project, change
the application type of the project to Bootloadable. To do
this right-click on the Project > Build Setting > Code
Generation > General tab and change the Application
Type as Figure 35 shows.
After changing the application type, you must add a
Bootloadable Component onto the top design and add the
bootloader project's .hex file as a dependency, as
Figure 10 shows.
www.cypress.com
Debugging Bootloadable Project s
In the PSoC Creator bootloader system, the bootloader
project executes first and then the bootloadable project.
The jump from the bootloader to the bootloadable project
is done through a software controlled device reset. This
resets the debugger interface, which means that the
bootloadable project cannot be run in debugger mode.
To debug a bootloadable project, convert it to Application
Type Normal (Figure 35), debug it, and then convert it
back to Bootloadable after debugging is done.
Another option is to program the Bootloadable project .hex
file onto the device and then use "Attach to running target"
option for debugging, while the bootloadable project is
running. In this case, you can debug the bootloadable
project only from the point where debugger is attached to
the device.
Document No. 001-60317 Rev. *L
27
PSoC® 3 and PSoC 5LP I2C Bootloader
Multi-Application Bootloader
Multi-Application Bootloader (MABL) is used to put two
bootloadable applications in flash simultaneously. The two
applications can be the same to ensure that there is
always a valid application in the device's flash. Or, the two
applications can be different so that they can be switched
using bootloader commands. This functionality comes with
the obvious limitation that each application has one half of
the available flash memory. Figure 28 on page 16 shows
the project placement in flash memory for a MABL.
4.
Program the device with the multi-application
bootloader project and bootload the applications
(.cyacd files) sequentially, in one of the above
combinations, using the Bootloader Host application.
5.
To switch between applications, follow these steps:
MABL can be implemented by following these steps which
are different from standard bootloader application:
1.
2.
Open Bridge Control Panel by navigating Start >
All Programs > Cypress > Bridge Control Panel

Connect the PC host to the device through a
2
CY3240-I2USB SB-I C Bridge or a MiniProg3.

Set the application type as Multi-App Bootloader while
starting the new project. Check the Multi-App
bootloader checkbox in Bootloader configuration
window
Send command 0x38 to enter the bootloader:
w 04 01 38 00 00 C7 FF 17
r 04 x x x x x x x

Add two bootloadable projects to the workspace, say,
Project_A and Project_B. For each project, add a
dependency to the MABL project. Two .cyacd files are
generated for each project:
To switch from application_1 to application_2,
send the set_active_application command (0x36):
w 04 01 36 01 00 01 C7 FF 17
r 04 x x x x x x x

To switch from application_2 to application_1,
send the set_active_application command (0x36):
w 04 01 36 01 00 00 C8 FF 17
r 04 x x x x x x x


3.

Project_A_1.cyacd and Project_A_2.cyacd
Project_B_1.cyacd and Project_B_2.cyacd

The .cyacd file with suffix 1 always occupies the first
half of flash and .cyacd file with suffix 2 occupies the
second half. Because of this only certain combinations
of .cyacd file can be used. These combinations are:




Send the exit_bootloader command (0x3B) to
launch the application:
w 04 01 3B 00 00 C4 FF 17
r 04 x x x x x x x
These commands are explained in Table 13, using the
example of the set_sctive_application command
(application_1 to application_2):
Project_A_1.cyacd and Project_A_2.cyacd
Project_B_1.cyacd and Project_B_2.cyacd
Project_A_1.cyacd and Project_B_2.cyacd
Project_B_1.cyacd and Project_A_2.cyacd
Table 13. Command Bytes
Bytes
1
1
1
2
N
2
1
Value
04
01
36
00 01
01
C7FF
17
Description
slave address
packet start
byte
command
no. of bytes
to follow
(LSB first)
data bytes
checksum
packet
end byte
www.cypress.com
Document No. 001-60317 Rev. *L
28
PSoC® 3 and PSoC 5LP I2C Bootloader
Memory Requirement for Bootloader
2
A typical I C bootloader project with all the optional
commands included occupies approximately 7 KB of
PSoC 3 flash with Keil 8051 compiler optimization level 5.
Figure 36: Unchecking Optional Commands in Bootloader
Component
It occupies approximately 5.4 KB of PSoC 5LP flash with
GCC compiler optimization set to "size". You can find the
memory used by the bootloader project in the output
window, when you build the project. RAM memory used by
the bootloader project can be reused by the bootloadable
project.
The memory usage of a bootloader project can be
reduced a small amount by removing the optional
commands supported by the Bootloader Component, as
Figure 36 shows.
Set the Device Configuration Mode to Compressed in the
.cydwr > System tab, as Figure 37 shows, to minimize
flash memory usage. Device Configuration Mode to DMA
if startup time is more important than code size.
Figure 37: Device Configuration Mode
www.cypress.com
Document No. 001-60317 Rev. *L
29
PSoC® 3 and PSoC 5LP I2C Bootloader
Document History
®
2
Document Title: PSoC 3 and PSoC 5LP I C Bootloader - AN60317
Document Number: 001-60317
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2896214
ANMD
03/19/2010
New application note.
*A
3011572
ANMD
08/19/2010
Added level 5 Optimization in Memory Organization section.
*B
3119712
ANMD
12/23/2010
Added section Converting a Normal Application Project to Bootloadable Project
*C
3308212
ANMD
07/27/2011
Added details of bootloader communication packets and how to build your own
bootloader host.
*D
3452308
ANMD
12/01/2011
Updated Bootloader in PSoC Creator.
Updated Steps to Create an I2C Bootloader Project.
Updated Bootloadable Project – Example 1.
Updated Bootloading Using PC Host.
Updated Bootloadable Project – Example 2.
Updated Bootloadable Project Output Files.
Updated PSoC 3 or PSoC 5 Bootloader Protocol Packets.
Updated Example Project.
Updated in new template.
*E
3569438
ANMD
04/02/2012
Added Contact information as per the template.
Updated Table 1 and Table 2.
Minor text edits.
*F
3672940
NIDH/ANMD
07/13/2012
Updated application note and example project for PSoC Creator 2.1.
*G
3819268
ANCY
11/22/2012
Updated for PSoC 5LP
*H
3940871
TUSR
03/07/2013
Added appendix on Multi Application Bootloader, Metadata Layout, I2C Packet
format
Revised the bootloader host project for PSoC 5LP
Added new project I2C_Bootloader_Host_PSoC3
Updated and revised content for clarity and uniformity with other bootloader
application notes
*I
3958453
MKEA
04/08/2013
Corrected errors in hyperlinks. Corrected a kit reference.
*J
4339544
RNJT
04/10/2014
Updated for PSoC Creator 3.0 SP1
*K
4435010
MKEA
07/17/2014
Added Appendix E – Bootloader and Device Reset
*L
4605702
RNJT
12/23/2014
Added a note that bootloader flash protection settings take precedence and
bootloadable settings are ignored.
www.cypress.com
Document No. 001-60317 Rev. *L
30
PSoC® 3 and PSoC 5LP I2C Bootloader
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
Products
PSoC® Solutions
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Designer and PSoC Creator are trademarks of Cypress Semiconductor Corp.
All other trademarks or registered trademarks referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2010-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-60317 Rev. *L
31


				            


            
                
                    
                        
                            
                            Open as PDF
                        
                    

                


                
                    
                        	Similar pages
	
                                    
										AN73503 PSoC® USB HID Bootloader.pdf
                                    
                                
	
                                    
										CE95391 PSoC® USB HID Bootloader.pdf
                                    
                                
	
                                    
										AN68272 PSoC® 3 PSoC 4 PSoC 5LP and PSoC Analog Coprocessor UART Bootloader.pdf
                                    
                                
	
                                    
										AN211293 Getting Started with PSoC Analog Coprocessor.pdf
                                    
                                
	
                                    
										RENESAS M65849CFP
                                    
                                
	
                                    
										ZILOG Z87010
                                    
                                
	
                                    
										AN72382 Using PSoC 3 and PSoC 5LP GPIO Pins.pdf
                                    
                                
	
                                    
										AN89611 PSoC 3 and PSoC 5LP – Getting Started With Chip Scale Packages.pdf
                                    
                                
	
                                    
										AN60616 PSoC 3 and PSoC 5LP Startup Procedure.pdf
                                    
                                


                    

                

                
            

		    




	


    
        
            
                
					dtsheet					© 2024
                

                
					
                

                
                    About us
                    DMCA / GDPR
                    Abuse here
                

            

		

    


	

[image: ]



