

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN50987 Getting Started with I2C in PSoC® 1.pdf

		
				 AN50987
Getting Started with I 2C in PSoC ® 1
Author: Todd Dust and M. Ganesh Raja
Associated Project: Yes
Associated Part Family: CY8C21x23, 21x34, 21x45,
22x45,23x33, 24x23A, 24x33, 24x94, 27x43, 28xxx, 29x66
®
Software Version: PSoC Designer™5.4
2
®
2
AN50987 gives an overview of the I C standard and explains how a PSoC 1 device handles I C communications.
2
After reading this application note, you should have an understanding of how I C works, how to implement it in
PSoC 1, and how to choose the correct user module for a design. Example projects demonstrate how to configure
2
2
PSoC 1 as an I C master/slave to communicate with other I C devices on the bus.
Contents
Introduction ...2
2
I C Basics ..2
The Physical Layer ...2
The Protocol Layer ...2
2
I C in PSoC 1 ..4
Hardware ..5
2
I C User Modules ...6
Firmware ...8
Slave Operation..8
Master Operation ..9
Multimaster Slave Operation 10
2
I Cm ... 11
2
Special I C Considerations .. 12
2
I C Addressing ... 12
Pull-up Resistors .. 12
2
I C and ISSP Programming Conflicts 12
Pin Glitches at Power-up .. 13
Clock Speeds ... 13
Clock Stretching and Interrupt Latency 14
Hot Swapping ... 14
Glitch Filtering .. 14
2
I C and Sleep ... 14
2
I C and Dynamic Reconfiguration 15
2
Dynamic Slave Addressing in I CHW UM 15
The SCL Line Gets Stuck LOW 15
Summary ... 16
www.cypress.com
Appendix A .. 17
Hardware Registers.. 17
Firmware Requirements ... 17
Arbitration ... 18
Appendix B .. 20
EzI2Cs_ADC_LED_DAC Example Project................. 20
2
I CHW Slave Example Project 24
2
I CHW Master Example Project 25
Migrating Example Project ... 26
Worldwide Sales and Design Support 28
Document No. 001-50987 Rev. *E
1
Getting Started with I2C in PSoC® 1
Figure 2. Open Drain Drives LOW Pin Configuration
Introduction
Vdd
2
Inter-integrated circuit (IIC or I C) is a common chip-tochip serial communications standard developed by the
2
Philips semiconductor division (now NXP). I C provides a
simple way for ICs to communicate on the same printed
2
circuit board (PCB). I C consists of a simple physical layer
that requires only two pins and minimal external
2
components. One advantage of I C over a communication
standard such as SPI is that it has a built-in
communication protocol that allows easy, error-free
communication between devices.
The Cypress PSoC 1 device offers several choices for
2
implementing I C in a design. These choices come in the
form of user modules (UMs) that are found in the
PSoC Designer™ integrated development environment
(IDE). This application note first describes the basics of
2
I C to help you understand how the PSoC 1 device
2
2
handles I C. If you already have an understanding of I C
basics, skip to I2C in PSoC 1. If you are looking for help
2
troubleshooting your I C design, skip to the Special I2C
Considerations section.
This application note assumes that you are familiar with
the PSoC 1 device and PSoC Designer IDE.
I2C Basics
SDA
I2C
Master 1
SCL
I2C
Slave 1
I2C
Master 2
I2C Slave 2
Drive
Line LOW
Receive
Data
2
Devices on the I C bus have a master-slave relationship.
The master initiates all data transfers on the bus and
generates all clock signals. Each slave has a unique
address; the master must first address a specific slave
and receive an acknowledgment before the data transfer
can begin. Multiple masters and multiple slaves can exist
2
together on the same bus. The I C bus operates at a
variety of frequencies; typical frequencies are 100 kHz and
2
400 kHz. The I C specification allows higher frequencies
of 1 MHz and 3.4 MHz.
2
The Physical Layer
2
2
Figure 1 shows how I C devices connect to the I C bus.
2
The I C bus consists of two physical lines: serial data
(SDA) and serial clock (SCL). All devices on the bus must
connect to these two physical lines. The only external
hardware required are pull-up resistors to VDD (high rail)
on SDA and SCL. For more information, see the Pull-up
Resistors section.
2
Figure 1. Typical I C Bus
The I C bus operates at different voltage levels depending
on the individual devices themselves. To determine if two
devices can successfully communicate, review their
respective datasheets to ensure that the logic levels are
compatible.
2
The I C specification offers a solution for bridging between
buses of different voltage levels, in the event that the
voltage and logic levels of two devices are not compatible.
The Protocol Layer
2
Understanding the protocol layer of I C is the next major
step in mastering this digital communication technique.
Vdd
2
Each I C transaction consists of the following elements:
start (or repeated start), address, data, and stop.
SDA
I2C
Master 1
SCL
I2C
Slave 1
I2C
Slave 2
Start or Repeated Start
The master device controls the clock line and therefore
initiates all communication on the bus. To gain control of
the bus and initiate a transaction, the master first sends a
start condition; see Figure 3.
I2C
Master 2
SDA and SCL are bidirectional; the master can
communicate data to the slave and vice versa. SDA and
SCL have an open-drain drive mode and drive LOW. A
device can drive the line to a logic LOW, or it can be highimpedance. Therefore, no device can drive the lines
HIGH. This configuration prevents power-to-ground shorts
on the bus; see Figure 2. The pull-up resistors on SDA
and SCL produce a HIGH logic level.
www.cypress.com
A start condition signals to every device on the bus that a
master has taken control and is ready to send an address.
The bus is considered busy, so other masters must wait
for the bus to be freed by a stop condition to initiate a
transfer.
Start = HIGH to LOW transition on SDA when SCL is
HIGH
Document No. 001-50987 Rev. *E
2
Getting Started with I2C in PSoC® 1
Figure 3. Start Condition
Figure 5. 10-Bit Address
Start
S
11110XX
R/W A/N
2 MSBs of Address
SDA
SCL
A repeated start condition is physically identical to a start
condition. It gives a signal that the master has maintained
control of the bus and that the bus is not free.
XXXXXXXX
A/N
Remaining 8 bits
Data
After the master has sent the address and the slave has
acknowledged it, data can be transferred eight bits at a
time. Both the master and the slave can transmit and
receive, so together they control the SDA line.
Address
The address is the first data byte sent by the master after
the start condition. Each slave device has a unique
2
address. Most I C addresses are seven bits long. A
read/write (R/W) bit completes the 8-bit byte and indicates
the direction of communication for the rest of the
transaction; see Figure 4. A read signifies that the master
wants to read data from the slave. A write indicates that
the master wants to write data to the slave. All address
and data bytes are sent in the order of most significant bit
(MSB).
Data on the SDA line must be stable before the rising
edge of SCL. Data on SDA can change only when SCL is
LOW; see Figure 6.
For example, if the 7-bit address is 0x20, the full 8-bit byte
for a read will be 0x40; the full 8-bit byte for a write will be
0x41.
If the master is performing a write operation, it writes out
eight bits of data on SDA and provides eight clock cycles
on SCL. After the master sends eight bits of data, the
slave must send an ACK or NAK on the ninth clock cycle;
see Figure 7.
Figure 4. 7-Bit Address
ACK
SDA
D7
D1
R/W
SCL
1
7
8
SDA
Stable
Data
SCL

9
ACK/NAK
After the master transmits the address, it waits for an
acknowledgment (ACK) from the slave. The ACK is an
additional status bit at the end of each data byte; thus,
2
each I C transaction is nine bits long.
Each slave on the bus is responsible for reading the
incoming address and comparing it with its own internal
address. If the address matches, the slave must send out
an ACK on the ninth clock cycle. If the address does not
match, the slave does not acknowledge (NAK).

Figure 6. SDA Data Change
Data
Change
ACK = Slave has room for more data
NAK = Slave cannot take any more data
The alternate condition is that the master wants to read
data from the slave. In this case, the master provides the
eight clock cycles but the slave transmits eight data bits on
SDA. After the eight data bits are transferred, the master
must send the ACK or NAK.

ACK = Master wants to read more data
NAK = Master is done reading
Note The slave does not have a way to inform the master
that it has no data to send.
Figure 7. Eight Data Bits Followed by an ACK Bit
ACK
SDA
D7
D1
D0
SCL
1
7
8
ACK = 0 (LOW logic level)
NAK = 1 (HIGH logic level)
1 0 - B i t Ad d r e s s
2
The I C specification also allows for 10-bit addressing; see
Figure 5. To accomplish this, the master must send two
address bytes to the slave. The first byte, which the slave
must acknowledge, contains the sequence 11110 followed
by the two MSBs of the address followed by the R/W bit.
Next, the master sends the remaining eight bits of the
address. Finally, the slave sends an ACK/NAK.
www.cypress.com
9
Stop
After all bytes are sent, the master sends a stop condition.
A stop indicates that the current transaction is complete
and the bus is free; see Figure 8.
Stop = LOW to HIGH transition on SDA when SCL is
HIGH
Document No. 001-50987 Rev. *E
3
Getting Started with I2C in PSoC® 1
Figure 8. Stop Condition
stop driving the SDA line and must wait until the bus is
free before sending data again.
Stop
As Figure 10 shows, the first master that leaves SDA
HIGH while another tries to drive it LOW loses arbitration
and must wait.
SDA
Figure 10. Arbitration
SCL
SCL
The master can send a repeated start condition instead of
a stop. A repeated start condition is physically the same
as a start. The repeated start allows the master to
maintain control of the bus when it wants to address a
slave device to start a new transaction or change the
direction of data flow.
A repeated start is needed when a master wants to write
data to a specific slave and then turn around and read
data from that same slave. Using a repeated start allows
the master to maintain control of the bus. If the master
uses a stop, other masters on the bus can gain control.
Putting It All Together
Figure 9 shows a complete transaction for a master read
of two bytes and a master write of two bytes. It also shows
a repeated start that first writes two bytes and then reads
two bytes.
Figure 9. Complete Transaction
Device
#1 SDA
1
0
Lost Arbitration
Stops Driving
SDA
Device
#2 SDA
1
0
0
1
SDA of
Bus
1
0
0
1
2
2
2
2
For more information on I C and its protocol, see the I C
Specification from Philips (NXP).
I2C in PSoC 1
In PSoC 1, a dedicated I C hardware block handles I C
transactions, removing much of the processing burden
from the CPU and freeing the CPU for important real-time
tasks. The basic structure of the block is similar for most
PSoC 1 devices; see Table 1 for differences among the
part families.
2
Table 1. I C Hardware Block Differences
Master Read
S
Address
R A
Data
A
Data
N P
Master Write
S
Address
W A
Data
A
Data
N P
Repeated Start Example:
Master Write Followed by Master Read
S
Address
Address
W A
R A
Data
Data
S = Start
W = Write
R = Read
A = ACK
N = NAK
P = Stop
Address = 7-bit Slave Address
A
A
Data
Data
A S
N P
Master
Slave
HW Addr
Match
Two I2C
Blocks
20x34
No
Yes
No
No
20xx6A
No
Yes
Yes
No
21x23
Yes
Yes
No
No
21x34
Yes
Yes
No
No
22xxx/21x45
Yes
Yes
No
No
23x33
Yes
Yes
No
No
Device
24x23A
Yes
Yes
No
No
Master to Slave
24x94
Yes
Yes
No
No
Slave to Master
27x43
Yes
Yes
No
No
28xxx
Yes
Yes
Yes
Yes
29x66
Yes
Yes
No
No
Arbitration
2
The I C protocol allows multiple masters to communicate
on the same bus. Both masters may start communicating
2
at the same time. To prevent loss of data, each I C master
2
must check the I C bus to ensure that the data on the bus
matches what it intended to put on the bus. If the data
2
does not match, the I C master that loses arbitration must
www.cypress.com
Document No. 001-50987 Rev. *E
4
Getting Started with I2C in PSoC® 1
Table 2. Byte Complete Interrupt
Hardware
As Figure 11 shows, the hardware block allows Ports 1.5,
2
1.0, 1.7, and 1.1 to connect to the I C bus. Cypress
2
recommends avoiding Ports 1.1 and 1.0 for I C; these
lines are used for programming.
2
Figure 11. I C Hardware Block
SDA_OUT
SDA_IN
SDO
SDE
SCL_IN
SCL
SDI
GPIO
I2CEN
SDE
Transmitter
After 8 bits of data
+ ACK/NAK
After 8 bits of data
Receiver
After 8 bits of data
After 8 bits of data
+ ACK/NAK
2
I2C Bus
SDO
Slave
For more information on the functionality of the I C
2
hardware block, see Appendix A and the I C sections of
the PSoC Technical Reference Manual.
Port1[5]
or
Port1[0]
I2CBLK
SCL_OUT
Master
SDA
SDI
GPIO
Mode
Port1[7]
or
Port1[1]
The hardware block is a simple block that handles all of
2
the status and timing requirements of the I C transaction.
2
This block generates the I C clock when it is in master
2
mode. It also shifts I C data in and out of PSoC 1 and
2
reports the status of I C transactions and errors.
Interrupts and Transaction Queuing
The block is capable of receiving or transmitting only one
byte of data at a time. At each byte boundary, the block
will generate an interrupt. The CPU must service the
interrupt and provide more data to the block, or it must
read the data that the block received. The CPU need not
service the block immediately, because the block holds
the SCL LOW until the CPU releases it; this process is
referred to as clock stretching. For more information, see
the Clock Stretching and Interrupt Latency section.
The block is capable of queuing only one transaction at a
time. Multiple starts cannot be queued in the block.
2
Therefore, user code must ensure that the current I C
transaction is complete before another transaction can be
initiated.
Hardware Blocks in CY8C28xxx
2
Part family CY8C28xxx offers two separate I C hardware
blocks, allowing hardware connections to more than one
2
I C bus at a time. In addition, each block provides
hardware address matching. The hardware interrupts the
CPU only on an address match. However, it does not
wake PSoC 1 out of a sleep state. After the address, the
hardware interrupts the CPU according to the conditions in
Table 2.
Each of the hardware blocks in part family CY8C28xxx
2
allows for additional I C pin connections either on Ports
1.2 and 1.6 or on Ports 3.0 and 3.2.
2
Having two I C hardware blocks allows for many powerful
applications. Table 3 lists some of the unique applications
that can be achieved.
2
Table 3. Two I C Configurations with Common Use Cases
Configuration
2
Two I C slaves
Common Uses
2
Multi-I C bus systems
I2C shared memory device
One I2C slave, one I2C
master or multimaster
I2C bus switch
I2C hot-swap controller
I2C buffer
Debugging
The block automatically detects and reports arbitration
conditions in multimaster environments. In the case of an
arbitration event, the block reports to the CPU that it has
lost arbitration. User code checks to see if arbitration has
been lost. If so, then the code retries the transfer.
2
Two I C masters or
multimasters
Increase bandwidth
2
The I C hardware block will generate an interrupt on three
conditions: a bus error, a stop, or a byte complete.
Bus errors occur when there is a misplaced start or stop
on the bus. When this occurs, all devices on the bus must
stop their current transfer and return to an idle state.
If enabled, the stop interrupt occurs every time there is a
stop condition on the bus.
The byte complete interrupt is triggered at different points
depending on the direction of data flow; see Table 2. This
table applies for both address and data transfers.
www.cypress.com
Document No. 001-50987 Rev. *E
5
Getting Started with I2C in PSoC® 1
I2C User Modules
2
Cypress provides a set of preconfigured and precoded I C
user modules (UMs), located in PSoC Designer in the UM
Catalog; see Figure 12.
2
Figure 12. I C UMs in PSoC Designer
This UM is best suited for situations when PSoC needs to
stream data continuously to a master device and when
2
you want to write minimal I C code. For example, the UM
®
is popular in CapSense applications. PSoC reads the
state of CapSense buttons and the master device
communicates continuously with PSoC to see if a button
has been pressed. In this situation, expose the CapSense
variables to the EzI2Cs and the master can easily read the
state of the CapSense buttons.
2
EzI2Cs is patterned after an I C-based memory such as
EEPROM. It uses subaddressing to write or read to
2
specific data locations within the exposed I C data
2
structure. For example, consider an I C data structure that
appears as follows:
When these UMs are placed in a design, you will not see
them appear in the chip view within PSoC Designer,
because the UMs either use the dedicated hardware block
or are a software master. They use digital blocks only with
the 28xxx family; in that case, the chip view shows both
2
I C hardware blocks visually so you know which block you
have used and how many remain; see Figure 13.
2
Figure 13. Two I C Blocks in 28xxx
2
2
I C UMs, which include EzI2Cs and I CHW, provide a
2
level of abstraction over the I C hardware block. This
section briefly describes each UM and explains when it will
be needed in a design. For more information, see the
specific UM datasheet.
EzI2Cs
Ezl2Cs operates exclusively as a slave; there is no master
2
version. If a design requires master operation, use I CHW
2
or I Cm.
2
EzI2Cs, as the name implies, is an easy-to-implement I C
2
slave interface. It is a firmware layer on top of the I C
hardware block. It implements many of the firmware
requirements mentioned in the hardware block description
found in Appendix A.
EzI2Cs is unique; it requires minimal user knowledge of
2
how the I C bus works. It allows you to set up a data
2
structure in user code and expose that structure to the I C
2
master. All I C transactions happen in the background
through interrupts. You need not worry about any of the
2
I C functionality after the UM is started. The application
code just needs to update the data structure with data for
the master to read and then check and process data that
the master writes.
www.cypress.com
struct MyI2C_Regs {
BYTE bStat;
BYTE bCmd;
int iVolts;
char cStr[6];
} MyI2C_Regs
The above data will be exposed to the master with the
following memory map:
0x00
MyI2C_Regs.bStat
0x01
MyI2C_Regs.bCmd
0x02
MyI2C_Regs.iVolts(MSB)
0x03
MyI2C_Regs.iVolts(LSB)
0x04
MyI2C_Regs.cStr[0]
0x05
MyI2C_Regs.cStr[1]
0x06
MyI2C_Regs.cStr[2]
0x07
MyI2C_Regs.cStr[3]
0x08
MyI2C_Regs.cStr[4]
0x09
MyI2C_Regs.cStr[5]
If the master wants to write to iVolts, it first sends the slave
address, followed by a subaddress (0x02), which indicates
the offset of iVolts in the structure. To calculate the offset,
count the number of bytes before iVolts; in this example,
the subaddress is ‘2.’ To extend the example, a
subaddress of ‘0’ will write to bStat, a subaddress of ‘1’ will
write to bCmd, and a subaddress of ‘4’ will write to the first
element of the cStr array. Figure 14 shows an example of
a master writing data to iVolts in an EzI2Cs UM with a
slave address of 0x04.
Figure 14. EzI2Cs Example: Write to iVolts
S
Slave Addr
0x04
WA
Subaddr
0x02
A
Data to iVolts
0x55
A
0xAA
A P
If the master wants to read iVolts, it first needs to address
the PSoC slave and write the subaddress of ‘2.’ It should
then address the slave again and read out two bytes.
Document No. 001-50987 Rev. *E
6
Getting Started with I2C in PSoC® 1
Each subsequent read will start at iVolts until a new
subaddress is written. Figure 15 shows an example of a
master reading the data in iVolts.
Figure 15. EzI2Cs Example: Read from iVolts
S
Slave Addr
0x04
WA
S
Slave Addr
0x04
R A
Subaddr
0x02
2
I2C_Pins: This parameter selects the pins used for the I C
clock and data.
After the UM parameters are configured, follow these
steps to make the EzI2Cs work in firmware.
A P
Data from iVolts
0x55
A
0xAA
6 MHz, the actual speed of the slave will be 100 kHz. See
the Clock Speeds section for more details.
1.
A P
structMyI2C_Regs {
BYTE bStat;
BYTE bCmd;
int iVolts;
char cStr[6];
} MyI2C_Regs
Let’s take a look at how EzI2Cs can be implemented in a
project. Figure 16 shows the parameters for the project.
Figure 16. EzI2Cs UM Parameters
2.
Start the EzI2Cs by calling the EzI2Cs_Start function.
3.
Enable interrupt by calling the EzI2Cs_EnableInt
function.
4.
Expose the data structure to the master by using the
EzI2Cs_RamSetBuffer function.
EzI2Cs_SetRamBuffer(sizeof(MyI2C_Regs),
2, (char*)&MyI2C_Regs);
Slave_Addr: This parameter sets the address of the
EzI2Cs slave. If the ROM_Registers parameter is
disabled, the Slave_Addr is a 7-bit address in the range 0
to 127. If the ROM_Registers parameter is enabled, the
Slave_Addr is a 6-bit address in the range 0 to 63.
The first parameter sets the size of the buffer. The
second parameter sets the write boundary and the
third parameter initializes the pointer to the data
structure.
Address_Type: When the address type is set to static,
the address of the EzI2Cs slave is fixed to the value set in
the Slave_Addr parameter. If the address type is set to
dynamic, the address can be changed in firmware using
the EzI2Cs_SetAddr function. This is useful in applications
in which more than one PSoC 1 EzI2Cs slave is in a bus
and the address of the slaves can be set by configuring
GPIO pins.
ROM_Registers: By enabling the ROM_Registers
parameter, it is possible to expose data stored in a ROM
2
array to an I C master. When this parameter is enabled,
the EzI2Cs is exposed to a master with two addresses. If
the master wants to access the ROM memory space, it
uses a 7-bit address with the seventh bit set. To access
the RAM memory space, it uses a 7-bit address with the
seventh bit cleared. For example, if the Slave_Addr is set
to 0x04, the master addresses the slave with an address
of 0x44 to access the ROM registers and an address of
0x04 to access the RAM registers. This is why the
Slave_Addr should be a 6-bit address when the ROM
registers are enabled.
I2C_Clock: This parameter sets the maximum speed at
which the slave can operate. Remember that the
maximum speed is based on a SYSCLK of 24 MHz. If the
SYSCLK is set to 6 MHz or 12 MHz (SLIMO enabled) in
the Global Resources, the maximum clock speed will
reduce by the same factor. For example, if the I2C_Clock
parameter is set to 400 kHz and the SYSCLK is set to
www.cypress.com
Create a data structure to expose to the master. For
example:
The EzI2Cs allows defining read/write permissions on
the data structure through the SetRamBuffer function.
For example, in the code given in step 1, the
application sets read/write permission to bStat and
bCmd variables and makes all other variables readonly by setting the write boundary to ‘2.’ In this case, if
the master tries to write to these read-only variables,
the slave will generate a NAK and ignore the data
written by the master.
5.
In the main loop, keep updating the data structure
with process data for the master to read and keep
looking for fresh data from the master.
Data coherency is an important consideration when using
the EzI2Cs UM. In the example, iVolts is a two-byte
variable. It is possible that the CPU started to update this
variable but only had time to write to one byte before the
2
I C master read both bytes. As a result, the master read
incorrect data. For example, suppose that the variable
iVolts has a value of 0x01FF. The CPU would have to
update this with a new value of 0x0200. The CPU writes
0x02 to the MSB first and 0x00 to the least significant bit
2
(LSB). If the I C read occurs just after the CPU has written
to the MSB, but before writing to the LSB, the master will
read 0x2FF.
To combat this, it is best to use flags or semaphores
between the master and slave to indicate when data is
ready to be read or written. The EzI2Cs datasheet gives
Document No. 001-50987 Rev. *E
7
Getting Started with I2C in PSoC® 1
more details on other ways to ensure that the data is
coherent.
This application note includes a simple project that
demonstrates how to use the EzI2Cs UM. For details on
how to use the project, see Appendix B.
For a detailed description of how this UM works and how
to use it, see the EzI2Cs datasheet.
In the master operation, three parameters are available:
Read_Buffer_Type,
I2C_Clock,
and
I2C_Pin.
Configuration of these parameters is the same as that
described for the slave operation below.
Multimaster and Slave Operation: Select this option if
2
you need the I CHW as a master and slave in a
multimaster environment.
Depending on the option you select, the UM parameter
window will populate.
EzI2Cs Summary and Important Notes
EzI2Cs is an easy-to-implement slave-only UM.
EzI2Cs exposes a register structure to a master with
clearly defined read/write permissions.
When ROM registers are enabled, the slave will have
two addresses, one for RAM space (seventh bit cleared)
and one for ROM space (seventh bit set). For this
reason, the slave address is limited to a 6-bit value when
ROM registers are enabled.
When dealing with multiple byte values in EzI2Cs, take
care to ensure data coherency by using flags or
semaphores between the master and slave.
Slave_Addr: This is the 7-bit slave address. Unlike
2
EzI2Cs, I CHW does not offer dynamic addressing or
separate address for ROM buffers. In multimaster and
slave operation, Slave_Addr is the address of the device
when it is addressed as a slave by another master on the
bus.
Read_Buffer_Type: When you select “RAM only,” the
application will set up the read buffer only in RAM. When
you select ”RAM or flash,” the application exposes either a
RAM buffer or a flash buffer to the master.
2
Communication Service Type: When you select
2
“Interrupt,” all I C transactions are automatically handled
2
inside the interrupt. When you select “Polled,” I C
transactions are handled only when the foreground
application calls the I2CHW_Poll function. The hardware
2
keeps the I C clock stretched until the application calls
I2CHW_Poll. Cypress recommends the “Interrupt” option.
2
I2C_Clock: This parameter selects the speed of the slave.
As explained in the clock parameter of the EzI2Cs slave,
the speed is based on a SYSCLK of 24 MHz.
I CHW
2
This UM is a firmware layer on top of the I C hardware
block and implements all the firmware tasks described in
Appendix A. You can use this flexible UM as a slave, a
master, or a multimaster slave.
I CHW, unlike EzI2Cs, requires more code interaction.
2
Check status bits to see if an I C transaction occurred,
reinitialize buffers when a transaction is complete, and
clear status bits. Also, check the firmware for error
conditions on a transaction.
2
Here’s how to implement I CHW in a project. When you
2
double-click, the I CHW topology selection window opens.
See Figure 17.
2
Figure 17. I CHW Topology Window
2
I2C_Pin: This parameter selects the pins for the I C.
Options are P1[0]-P1[1] and P1[5]-P1[7] for all devices
except for CY8C28xxx. For CY8C28xxx, P1[2]-P1[6] and
P3[0]-P3[2] options are also available.
Firmware
After the topology and parameters are configured, follow
2
these steps to get the I CHW working in firmware.
Slave Operation
1.
Declare a read buffer in RAM (or flash) for the master
to read from. For example:
BYTE ReadBuffer[16];
The buffer can also be a structure such as:
struct ReadBuffer {
BYTE bStatus;
int iVolts;
}ReadBuffer;
Slave Operation: Select this option if you need slave
operation.
Single Master Operation: Select this option if you need a
simple operation in a single master environment.
2.
Declare a write buffer in RAM for the master to write
to. For example:
BYTE WriteBuffer[16];
The buffer can also be a structure such as:
www.cypress.com
Document No. 001-50987 Rev. *E
8
Getting Started with I2C in PSoC® 1
struct WriteBuffer {
BYTE bCmd;
int iDACCounts;
}WriteBuffer;
3.
Enable
global
interrupts
M8C_EnableGInt macro.
It is important to check for the RD_COMPLETE flag
and reinitialize the buffer. Otherwise, on further reads
from the master, the last byte from the buffer will be
transmitted repeatedly.
by
calling
the
8.
M8C_EnableGInt ;
It is important to enable global interrupts, because all
2
of the I C operations take place in the background
2
inside the I C ISR.
4.
// Check if a write operation is over
if (I2CHW_bReadI2CStatus() &
I2CHW_WR_COMPLETE)
{
// Process data from Master
Call the I2CHW_Start, I2CHW_EnableSlave, and
I2CHW_EnableInt functions to start the slave.
I2CHW_Start();
I2CHW_EnableSlave();
I2CHW_EnableInt();
5.
// Clear the flag
I2CHW_ClrWrStatus();
// Re-initialize the buffer
I2CHW_InitWrite(WriteBuffer,
sizeof(WriteBuffer));
}
Initialize the read buffer using I2CHW_InitRamRead.
I2CHW_InitRamRead(ReadBuffer,
sizeof(ReadBuffer));
6.
It is important to reinitialize the write buffer; otherwise,
the slave will not acknowledge any further data from
the master.
This function initializes a pointer to the read buffer
and sets the size of the buffer. Whenever the master
tries to read from the slave, data from the buffer is
transmitted to the master automatically. If the master
tries to read more bytes than the size of the buffer,
the last byte of the buffer is transmitted repeatedly.
A simple project in this application note demonstrates how
2
to use I CHW as a slave that echoes the data written by
2
an I C master. For details on the project, see Appendix B.
Initialize the write buffer using the I2CHW_InitWrite
function.
Master Operation
1.
I2CHW_InitWrite(WriteBuffer,
sizeof(WriteBuffer));
This initializes a pointer to the write buffer and the
buffer size. When the master writes data to the slave,
the data is automatically deposited in the buffer. If the
master tries to write a greater number of bytes than
the buffer size, the slave will not acknowledge the
extra bytes and those extra bytes will be discarded.
7.
Call the function I2CHW_bReadI2CStatus and check
for the I2CHW_WR_COMPLETE flag. If this flag is
set, it means that the master has completed a write
transaction. Process the data, clear the flag, and
reinitialize the write buffer.
Call the function I2CHW_bReadI2CStatus and check
for the I2CHW_RD_COMPLETE flag. If this flag is
set, it means that the master has completed a read
transaction. Clear the status flag and reinitialize the
read buffer.
// Check if a read operation is over
if (I2CHW_bReadI2CStatus()
I2CHW_RD_COMPLETE)
{
// Prepare fresh data for Master
BYTE ReadBuffer[16];
The buffer can also be a structure similar to the one
discussed in the slave operation section above.
2.
www.cypress.com
Declare a write buffer in RAM for data that will be
2
written to the I C slave. For example:
BYTE WriteBuffer[16];
3.
Enable
global
interrupts
M8C_EnableGInt macro.
by
calling
the
M8C_EnableGInt;
It is important to enable global interrupts, because all
2
of the I C operations take place in the background
2
inside the I C ISR.
4.
// Clear the flag
I2CHW_ClrRdStatus();
// Re-initialize the buffer
I2CHW_InitRamRead(ReadBuffer,
sizeof(ReadBuffer));
}
Declare a read buffer in RAM (or flash) where data
read from the slave will be stored. For example:
Call the I2CHW_Start, I2CHW_EnableMstr, and
I2CHW_EnableInt functions to start the master.
I2CHW_Start();
I2CHW_EnableMstr();
I2CHW_EnableInt();
5.
To write to a slave, use the I2CHW_bWriteBytes
function.
Document No. 001-50987 Rev. *E
9
Getting Started with I2C in PSoC® 1
I2CHW_bWriteBytes(0x50, WriteBuffer, 16,
I2CHW_CompleteXfer);
The first parameter is the slave address; use the 7-bit
slave address. The bWriteBytes function automatically
adds the read/write bit to the 7-bit address before
2
transmitting the address on the I C bus. The second
parameter is the pointer to the buffer that has the data
for the slave. The third parameter is the number of
bytes to be written to the slave. The fourth parameter
is the transaction type and can have three different
values: I2CHW_CompleteXfer, I2CHW_NoStop, and
I2CHW_RepStart.
I2CHW_Start();
I2CHW_EnableMstr();
I2CHW_EnableSlave();
I2CHW_EnableInt();
3.
The slave mode operation is similar to the single
slave operation, but the function names are different.

Allocate read and write buffers; call these
functions to initialize: I2CHW_InitSlaveRamRead
and I2CHW_InitSlaveWrite.

Call I2CHW_bReadSlaveStatus.

Check
for
I2CHW_RD_COMPLETE
and
I2CHW_WR_COMPLETE flags. If these flags are
set, reinitialize the buffers.
2
When you use I2CHW_CompleteXfer, one full I C
transaction is completed, which includes the start bit,
the address byte, the data bytes, and the stop bit.
When you use I2CHW_NoStop, the stop is not
generated after writing the data. A transaction with a
NoStop can be followed by a transaction with the
I2CHW_RepStart. Usually, Cypress recommends
I2CHW_CompleteXfer for most I2C transactions.
4.
The I2CHW_bWriteByte function initializes a pointer to
the buffer, sets a count value, and initiates the start bit
2
in the I C hardware. After this, all the operations take
2
place inside the ISR. The I C hardware generates an
interrupt on every byte complete; the ISR takes care
of incrementing the pointer to the buffer, transmitting
the next byte to the slave. When all the bytes are
transferred, the ISR generates a stop.
6.
Use the I2CHW_bReadI2CStatus function to check
that the write operation is complete, and then clear
the flag. For example:
The firmware for the master side of the operations
has to deal with some special cases. In a multimaster
environment, when a master (let’s call this Master 1)
tries to initiate a transaction to a slave, there are three
different scenarios depending on the activities of other
master(s). (Assuming that there is another master in
the bus, let’s call it Master 2.)
a.
The bus is free and Master 1 initiates and
completes a read or write transaction.
b.
Master 2 had already initiated a transaction with
another slave on the bus; because of this, the
bus is busy. Master 1 must wait until the bus
becomes free and then initiate the transaction.
c.
Master 1 initiates a read or write transaction at
the same time Master 2 initiates a transaction. In
this situation, arbitration occurs. If Master 1 wins
the arbitration, it completes the transaction. If
Master 1 loses arbitration, it must retry the
transaction after Master 2 completes its
transaction. Appendix A gives details about
arbitration.
while(!(I2CHW_bReadI2CStatus() &
I2CHW_WR_COMPLETE));
I2CHW_ClrWrStatus();
The above code waits until the WR_COMPLETE flag
is set. You can use an “if” condition instead of a
“while”; the processor can do other things when the
2
I C transaction takes place in the background.
7.
2
I CHW provides separate functions for the master for
handling the multimaster environment.
5.
Use the I2CHW_fReadBytes function to initiate a read
from the slave. Use the I2CHW_bReadI2CStatus
function and check for the I2CHW_RD_COMPLETE
flag; then clear the read status.
I2CHW_fReadBytes(0x50, ReadBuffer,
I2CHW_CompleteXfer);
while(!(I2CHW_bReadI2CStatus() &
I2CHW_RD_COMPLETE));
I2CHW_ClrRdStatus();
16,
while(I2CHW_bWriteBytesNoStall(0x50,
WriteBuffer, 16, I2CHW_CompleteXfer) ==
0xFF);
Multimaster Slave Operation
You can use an “if” condition to check the return value
instead of using a “while” loop, which is blocking. If the
return value is 0xFF, you can retry the transaction
after a fixed time interval.
2
In the multimaster slave mode, the I CHW can act as both
master and slave in a multimaster environment.
1.
Call the I2CHW_Start function.
2.
Call I2CHW_EnableMstr and I2CHW_EnableSlave
functions to enable both master and slave modes and
the I2CHW_EnableInt function to enable interrupt.
www.cypress.com
To write to a slave, call I2CHW_bWriteBytesNoStall.
To read from a slave, call I2CHW_fReadBytesNoStall.
These functions check if the bus is busy before
initiating the transaction. If the bus is busy, these
functions return 0xFF. The firmware should check the
return value and retry the transaction if the return
value is 0xFF. For example, the following code loops
until the I2CHW_bWriteBytesNoStall returns a value
other than 0xFF.
6.
When a read or write operation is started without a
bus busy error, the firmware should next check if the
Document No. 001-50987 Rev. *E
10
Getting Started with I2C in PSoC® 1
operation is completed or if the master lost arbitration.
Following is an example code that does this.
while((!(I2CHW_bReadMasterStatus() &
I2CHW_WR_COMPLETE)) &&
(!(I2CHW_bReadBusStatus() &
I2CHW_LOST_ARB)));
if (I2CHW_bReadMasterStatus() &
I2CHW_WR_COMPLETE)
{
// Write is completed successfully.
// Clear flag
I2CHW_ClrMasterWrStatus();
}
if (I2CHW_bReadBusStatus() &
I2CHW_LOST_ARB)
{
// Master lost arbitration. Retry
later
}
The first line loops until either the write is completed
or the LOST_ARB error flag is set. If the “while” loop
terminates, the code checks to determine which
condition caused the loop to terminate. If the
WR_COMPLETE flag is set, then clear the flag. If the
LOST_ARB flag is set, then retry the transaction later.
This application note includes a simple project that
2
demonstrates how to use the I CHW UM to read a
standard EEPROM. For details, see Appendix B.
2
For more information, see the I CHW UM datasheet and
2
the I C section of the Technical Reference Manual.
2
I CHW Summary and Important Notes
2
I CHW can operate in single master, single slave, or
multimaster slave modes.
In slave mode, when a master completes a read or write,
the buffers must be reinitialized for the next transaction
to take place.
In the master mode in a multimaster environment, the
firmware must check the return value of the
bWriteBytesNoStall and fReadBytesNoStall functions to
know if the bus is busy, and must retry the transaction.
In the master mode in a multimaster environment: When
a read or write transaction is initiated, the firmware
checks if the transaction has completed successfully or
the master has lost arbitration to another master. If the
master lost arbitration, the transaction must be retried.
I2Cm
2
2
I Cm, another UM in PSoC 1, implements an I C master
through software manipulation of GPIO port pins. This UM
2
2
does not use the I C hardware block. There is no I C
software slave user module.
2
The advantage of this UM over I CHW is that it can be
used on any pair of pins instead of just P1.5, P1.7 or P1.0,
P1.1. One drawback is that it requires more CPU
www.cypress.com
overhead and does not support multimaster operation. It
2
requires 100 percent of CPU during I C transactions. A
second disadvantage is that it is limited to bus frequencies
of 100kHz.
2
I Cm is best for applications in which multiple masters are
needed in a single chip or when the pins that connect to
2
the I C hardware are not available. Cypress recommends
2
using I CHW for master operations if only one master is
needed and if P1.5, P1.7 or P1.0, P1.1 are available.
Following are the steps to get this UM running in a project.
2
1.
Start the UM using the I Cm_Start function.
2.
To write data from a RAM buffer (or a ROM buffer) to
a slave, use the I2Cm_bWriteBytes function. This
function accepts the slave address, pointer to the
source data in RAM (or ROM), and the number of
bytes to be transferred.
3.
To read data from a slave, use the I2Cm_fReadBytes
function. This function accepts the address of the
slave, pointer to destination buffer where the read
data must be saved, and the number of bytes to be
read.
This UM works by manipulating the drive mode
(PRTxDMx) and data registers (PRTxDR) of the port on
which it is operating. For this reason, take care when
2
manipulating data registers in user code; otherwise, I C
traffic is affected adversely. The best way to avoid issues
is to use shadow registers when writing to the drive mode
2
and data registers associated with the I Cm pins.
2
When I Cm is placed in the project, PSoC Designer
automatically creates shadow registers for the data
register and the two drive mode registers PRTxDM0 and
PRTxDM1. Because the UM does not affect PRTxDM2, a
shadow register is not created for this register.
These shadow registers are defined in psocconfig.asm
2
and psocgpioint.h files. For example, if I Cm is placed in
Port0, the following variables are defined in the
psocconfig.asm file.
; write only register shadows
_Port_0_Data_SHADE:
Port_0_Data_SHADE:
BLK
_Port_0_DriveMode_0_SHADE:
Port_0_DriveMode_0_SHADE:
1
BLK
1
BLK
1
_Port_0_DriveMode_1_SHADE:
Port_0_DriveMode_1_SHADE:
The following definitions are placed in psocgpioint.h.
extern BYTE Port_0_Data_SHADE;
extern BYTE Port_0_DriveMode_0_SHADE;
extern BYTE Port_0_DriveMode_1_SHADE;
The application code uses these shadow registers to write
to the data and drive mode registers. For example, if the
application wants to set P0[0], use the following code:
// Write to PRT0DR through shadow register
Port_0_Data_SHADE |= 0x01;
Document No. 001-50987 Rev. *E
11
Getting Started with I2C in PSoC® 1
PRT0DR = Port_0_Data_SHADE;
I2C Addressing
2
To set P0[0] to strong mode using the PRT0DMx registers:
// Write to PRT0DM0 through shadow register
Port_0_DriveMode_0_SHADE |= 0x01;
PRT0DM0 = Port_0_DriveMode_0_SHADE;
// Write to PRT0DM1 through shadow register
Port_0_DriveMode_1_SHADE &= ~0x01;
PRT0DM1 = Port_0_DriveMode_1_SHADE;
There are two common ways used to describe the I C
slave address. One uses the seven bits of address and
not the read/write bit (for example, 0x42). This is how
2
Cypress’s UMs treat the I C slave address.
The other way is to include the read/write bit as part of the
address (for example, 0x84/0x85).
Make sure that you know which addressing method the
devices you are working with use.
// Write to PRT0DM2 directly
PRT0DM2 &= ~0x01;
At this time, Cypress does not support 10-bit slave
addresses.
For more information on the need to use shadow registers,
refer to the Shadow Registers Database. For more
2
information on this user module, see the I Cm datasheet.
Pull-up Resistors
2
I Cm Summary and Important Notes
2
2
I Cm is a software implementation of I C master and
2
does not occupy the I C hardware resource.
2
Another common design consideration with I C is the
value of the pull-up resistors. The selected value of the
resistors depends on the communication frequency and
the bus capacitance. A larger bus capacitance and pull-up
resistor size causes longer rise time on the clock and data
2
lines. The I C specification provides a maximum rise time.
2
2
I Cm uses all the CPU resources while reading or writing
to a slave.
If the application code has to write to the data or drive
2
mode registers of the port in which I Cm is placed, take
care to use the shadow registers to avoid problems with
2
the I C interface.
If the rise time on the bus exceeds the maximum, I C
2
communication does not occur properly. The I C
specification offers the graph shown in Figure 18 to
determine the value of the pull-up resistors. RS is a series
2
resistor; the I C specification defines the maximum RS.
Pull-up resistors between 2.2 k and 4 k work for most
systems.
Figure 18. Pull-up Resistor Value
Special I2C Considerations
2
I C offers an easy way for devices to communicate with
one another. As with any design, problems may occur
during the design process. This section seeks to answer
common questions and prevent problems that may occur
2
when designing with I C. It includes the following topics:

7-bit and 10-bit addressing
Pull-up resistor consideration
2
Sharing I C and ISSP pins
Glitches during power-up
2
SYSCLK versus I C clock speeds
Clock stretching and interrupt latency
I2C and ISSP Programming Conflicts
Hot swapping
One common consideration when using I C with PSoC is
the choice of which pins to use. When using the hardware
2
block, there are two pairs of fixed pins available for I C:
P1.5, P1.7 and P1.0, P1.1. (In the 28xxx family, you can
also use P1.2 and P1.6 or P3.0 and P3.2.) You can also
use pins P1.0, P1.1 to program PSoC. Pull-up resistors on
these lines can cause in-system programming failures.
2
Glitch filtering
2
I C and sleep
2
I C and dynamic reconfiguration
Dynamic addressing in I2CHW
www.cypress.com
During programming, P1.0 uses the resistive pull-down
drive mode to force a logic level LOW on the line. The pulldown resistor is approximately 5.6k. This internal pull2
down resistor and the external I C pull-up resistor create a
Document No. 001-50987 Rev. *E
12
Getting Started with I2C in PSoC® 1
voltage divider. The voltage divider applies an
indeterminate or HIGH logic level on the line, which the
programmer does not recognize as the desired LOW logic
level. This causes programming to fail. See the DC
programming specifications and GPIO logic levels in the
device specific datasheets to determine which voltage
levels are appropriate.
The best solution is to use P1.5, P1.7. Only use P1.0,
P1.1 when it is necessary. Another option is to change the
drive mode in PSoC to pull up for P1.0, P1.1, instead of
using external pull-up resistors. The internal pull-up
resistors are approximately 5.6 k.
Pin Glitches at Power-up
After the part is released from reset, P1.0 drives out a
2
strong HIGH. This will cause issues if one of the other I C
devices on the bus is driving the line LOW. P1.1 drives out
a resistive LOW. As stated earlier, this will create a
voltage divider and an intermediate voltage on the bus,
which other devices may not recognize. After a set amount
of time, P1.0 transitions to a resistive LOW, causing an
intermediate voltage on that line.
2
Be aware of this behavior and how it will affect I C devices
2
on the bus, if other I C devices are powered and
connected to P1.0 and P1.1 when you start PSoC.
2
To avoid this issue, use P1.5 and P1.7 for I C
communications. Or take steps to minimize the impact of
the pin behavior on P1.0 and P1.1 during reset. This can
be as simple as keeping all other devices in reset until
PSoC has started up. Or implement a more complicated
solution such as gating the output of PSoC with a
transistor or logic gates. See Figure 19.
Figure 19. Isolating PSoC
S
D
Set pin X to strong and write a ‘1’ to it to connect to
2
the I C bus.
Clock Speeds
2
As stated earlier, the I C hardware is responsible for
generating the clock on SCL when it is in master mode.
2
The available I C clock frequencies in PSoC 1 are 50 kHz,
100 kHz, and 400 kHz. These frequencies are based on
hardwired clock dividers of the system clock (SYSCLK).
These clock dividers produce sampling clocks that
2
oversample the I C lines 16 or 32 times. Table 4 lists the
internal sample rate.
Table 4. Internal Sampling Rates
As already stated, P1.0 and P1.1 are used for
programming, which means that these pins behave
differently at power-up than other pins.
I2C SDA

PSoC
Pin 1_0
Clock
Rate
SYSCLK
Pre-Scaler
Internal Sampling
Clock Frequency
(SYSCLK=24 MHz)
Samples
Per Bit
50 kHz
/16
1.5 MHz
32
100 kHz
/4
1.5 MHz
16
400 kHz
/16
6 MHz
16
The internal sampling clocks assume that SYSCLK is at
2
24 MHz. If SYSCLK is slower than 24 MHz, the I C clocks
are slower. For example, if SYSCLK is 12 MHz, then the
available speeds are 25 kHz, 50 kHz, and 200 kHz. If
2
SYSCLK is 6 MHz, the available I C speeds are 12.5 kHz,
25 kHz, and 100 kHz. (See Table 5.)
Table 5. Actual Frequency versus IMO and UM Setting
IMO (SYSCLK) Setting
UM Setting
24 MHz
12 MHz
6 MHz
400 kHz
400 kHz
200 kHz
100 kHz
100 kHz
100 kHz
50 kHz
25 kHz
50 kHz
50 kHz
25 kHz
12.5 kHz
BSS145
G
D
I2C SCL
S
Note SYSCLK is separate from CPU_Clock.
Pin 1_1
When operating in slave mode, the same rules apply for
2
the highest clock speed that the I C block can read. The
2
oversample clock is used to monitor the I C lines. Setting
the speed in slave mode indicates how often the clock and
data lines are oversampled by the hardware.
BSS145
G
Pin X (to enable
I2C)
100k
Notes
2

It is important to place the N channel FETs used in
this block so that the source of the FET is attached to
the PSoC GPIO pin.

The FETs must be N channel and must have a VGSTH
rating of ≤ PSoC Vdd. For example, if the PSoC Vdd =
3.3 V, choose an N channel FET with a rating of
VGSTH ≤ 3.3 V.
www.cypress.com
If the I C clock frequency is 400 kHz and the hardware is
configured for 100 kHz, the hardware will not receive data
2
properly. One common mistake is to set the I C slave
clock frequency in PSoC Designer to 100 kHz and
SYSCLK to 6 MHz. The assumption that the slave will
operate on the 100 kHz bus is incorrect. Because
SYSCLK is at 6 MHz, the slave can only operate on a 25kHz bus. Therefore, to operate on a 100-kHz bus with a
2
SYSCLK of 6 MHz, choose 400 kHz as the I C speed in
the user module properties.
Document No. 001-50987 Rev. *E
13
Getting Started with I2C in PSoC® 1
The frequency of SYSCLK depends on the supply voltage
for PSoC. If the supply voltage is above 3 V, then most
devices have a 24-MHz SYSCLK. If the supply voltage is
below 3 V, then many devices have a 6-MHz SYSCLK.
Several devices have a 12-MHz SYSCLK option. Further,
the value of SYSCLK can be changed within PSoC
2
Designer. When using I C, do not change the frequency of
SYSCLK or the CPU_CLK; this can cause glitches on the
2
I C lines. For more information on clocks, see the clock
section of the Technical Reference Manual.
Figure 21. Byte Complete Interrupt Timing
Max
4 Cycles
Internal
Sampling
Clock
SCL
Interrupt
Transmit: Ninth positive edge SCL
Receive: Eighth positive edge SCL
When using an external clock, be sure to use the correct
2
I C clock speed.
Clock Stretching and Interrupt Latency
Clock stretching is the process in which a slave device
holds the clock line LOW, thus stalling further
communication on the bus by the master. The slave
device typically stretches the clock so it can process
information it is receiving from the master or prepare more
data to send to the master. This stretching can be done at
any point of the transaction. PSoC stretches the clock
after the byte complete interrupt. See Figure 20.
2
The I C specification indicates that this is an optional
2
feature; not all I C devices need to support clock
2
stretching. However, all Cypress PSoC 1 I C slave UMs
stretch the clock. If you use a master that does not support
clock stretching, the bus can lock up and fail to reset.
Figure 20. Clock Stretching Example
START
7-Bit Address
R/W
ACK
1
7
8
Using this information, you can determine if the clock will
be stretched and for how long. However, if there are other
interrupts in the system, the time spent in those interrupts
must be considered.
To minimize clock stretching in PSoC, the first step is to
2
run the CPU at 24 MHz. Next, the I C clock speed must be
100 kHz or lower. Last, having minimal interrupts reduces
clock stretching.
Hot Swapping
Hot swapping is the process of attaching powered devices
2
to an unpowered PSoC. I C in PSoC is not designed to be
hot swappable. There are several factors to consider when
hot swapping PSoC. The first issue is back powering. If
PSoC is not powered but one of the external pins is at a
high voltage level, then there is a possibility of back
powering the PSoC device. This is not a desirable
situation, because PSoC may execute in unexpected ways
2
and the I C lines may be adversely affected.
Glitch Filtering
9
The input of the SCL has a glitch filter, which Figure 22
shows.
Clock Stretching
The time the PSoC slave spends stretching the clock
depends on whether the master is reading or writing to the
slave and whether other interrupts occur in the system. It
also depends on the CPU speed.
Figure 22. SCL Glitch Filter
SCL Pin
INPUT
0
PSoC 1 devices will stretch the clock a majority of the time
2
for I C bus speeds of 100 kHz or greater. The ISR code in
the EzI2Cs and I2CHW UMs contain 150 to 300 CPU
instruction cycles. With a 24-MHz CPU clock, the ISR
takes approximately 6 to 13 µs to execute. The SCL line is
released at the end of the ISR code.
The ISR is triggered three or four internal sample clock
periods after the rising edge of SCL; see Figure 21. This is
due to an internal glitch filter on SCL; see Figure 22. Refer
to Table 4 for the frequency of the sampling clock. For
100 kHz, the sample clock is 1.6 MHz, which means that
the ISR will fire ~2.5 µs after the rising edge of SCL. The
nominal period of a 100-kHz clock is 10 µs. If it takes 2.5
µs for the ISR to be triggered and the ISR takes 6 to
13 µs, the clock will be stretched in most cases.
1
SAMPLE
CLK
The input is double-synchronized to the sample clock, and
then it is glitch-filtered. The raw input and the delayed
input must match for a signal to pass through. Because
the sample clock is either 1.5 MHz or 6 MHz, glitches less
than 666 ns and 166 ns are suppressed.
I2C and Sleep
2
When using I C in designs that enter and exit sleep mode,
you need to take special design considerations into
account.
2
First, it is important that all I C transactions are complete
2
before the I C enters sleep mode. Otherwise, when the
2
part wakes up, the I C block can erroneously interpret data
www.cypress.com
Document No. 001-50987 Rev. *E
14
Getting Started with I2C in PSoC® 1
2
as an address or vice-versa. After confirming that all I C
traffic has stopped, follow these steps:

Configure the I C pins in a HIGHZ drive mode.

Clear any pending I C interrupts.
2
Figure 23. I CHW UM Slave Address
2
2
Disable the I C block. This is generally done by calling
the stop() API of the UM.
2
After these conditions are met, PSoC can be put to sleep.
When the part wakes from sleep, follow these steps to
2
ensure proper I C operation after sleep:

2
Ensure that no I C activity is occurring on the bus.
Call the appropriate start API.
Follow these steps to replace the constant with a RAM
variable:
1.
2
Configure I C pins for open-drain drives LOW.
Enable interrupts.
Create a RAM variable to hold the dynamic slave
address. In the I2CHW_1int.asm file, just below the
variable allocations, is a custom user code area.
Under the custom declaration area, add this code:
If you follow these steps, you can avoid most errors when
2
using I C in conjunction with sleep.
export _I2CSlaveAddress
export I2CSlaveAddress
I2C and Dynamic Reconfiguration
Under the variable allocation area, add the following:
2
I C UMs should never be loaded or unloaded through
dynamic reconfiguration. They should always be present.
2
If they are loaded and unloaded, I C errors will occur.
Area InterruptRAM(ram)
_I2CSlaveAddress:
I2CSlaveAddress:
BLK
2
The I C UMs should be located either in the base
configuration or in a separate overlay that is always
loaded.
Dynamic Slave Addressing in I2CHW UM
The variable with the ‘_’ allows you to modify this in C
code.
2.
2
In the I CHW UM, the address from the master is
processed inside the I2CHW_1int.asm file. The following
code does the address matching.
A, reg[I2CHW_1_DR]
F, 0xF9
A
A, I2CHW_1_SLAVE_ADDR
www.cypress.com
A, reg[I2CHW_1_DR]
F, 0xF9
A
A, [I2CSlaveAddress]
Because this code is inside a custom user code area,
changes to the UM library file are preserved during
application generation. Note that if you rename the
UM, changes will be lost and must be made again.
3.
When the address is received from the master, it has a
7-bit address and the read/write bit. The ‘rrc A’ drops the
read/write bit and compares the 7-bit address with the
constant I2CHW_1_SLAVE_ADDR, which the device
editor creates according to the Slave_Addr set in the UM
2
parameters for the I CHW. This constant is located in the
I2CHW_1.inc file.
Modify the code that does the address comparison.
mov
and
rrc
xor
The EzI2Cs UM allows you to programmatically change
2
the I C slave address on the fly. However, this functionality
2
is not available in the I CHW UM; to achieve the same
functionality, do the following:
mov
and
rrc
xor
1
2
Add a reference to the I C slave address variable that
is defined in the I2CHW_1int.asm file by adding the
following code in main.c (or any other C file).
extern BYTE I2CSlaveAddress;
The SCL Line Gets Stuck LOW
2
A common issue with I C is the SCL getting stuck LOW.
Follow these guidelines for debugging and fixing this issue
with PSoC 1 devices:
1.
Are you using EzI2Cs with PSoC Designer 5.0 SP5?
If yes, there is a known bug with this version of the
UM that causes the SCL to be stuck LOW. Update to
the latest version of PSoC Designer to fix this issue.
2
See the article I C Clock Permanently Stuck to
Logical LOW.
2.
Are you using PSoC Designer version prior to PD5.0?
If yes, then there are glitches on P1.5, P1.7 at startup.
Document No. 001-50987 Rev. *E
15
Getting Started with I2C in PSoC® 1
This issue has been resolved in the latest version of
PSoC Designer. For more information, see the article
2
Glitch on the I C Lines During Power-Up.
3.
Does the master device support clock stretching?
If no, then the communication between the slave and
master will become unsynchronized and undesirable
behavior may occur, including the SCL being stuck
LOW. If the master does not support clock stretching,
there is no guarantee of PSoC functioning properly on
the bus.
4.
Does the CPU clock or SYSCLK change dynamically
during code execution? If yes, this can cause glitches
on the SCL and SDA. To avoid this problem, do not
change clock speeds in code.
5.
Are you enabling and disabling I C interrupts in your
code? If yes, make sure you are using the ResumeInt
API and not the EnableInt API, which clears the
2
interrupt. If there is a pending I C interrupt and you
clear it, SCL will be stuck LOW forever.
6.
7.
2
2
Can there be other I C traffic on the bus when PSoC
starts up? If yes, then there is a known bug that has
been fixed in the latest version of PSoC Designer. If
you do not have the latest version and cannot update,
use the following workaround: In the chip editor, set
2
the drive mode of the I C pins to analog High-Z. In the
2
main code, enable the I C UM. Then set the drive
2
mode of the I C pins to open-drain drive LOW.
Summary
2
I C is a simple two-wire chip-to-chip digital communication
protocol. The protocol is master oriented but allows
bidirectional communication on just two communication
lines.
The Cypress PSoC offers several user modules for
2
the implementation of I C in a design that includes
2
slave, master, and multimaster configurations. I C
communication in PSoC is easy and reliable if you follow
the considerations that Cypress recommends.
About the Authors
Name:
Todd Dust
Title:
Application Engineer
Background:
BSEE Seattle Pacific University
Name:
M. Ganesh Raaja
Title:
Application Engineer Principal
Background:
Ganesh earned his Diploma in
Electronics
and
Communications
Engineering at Motilal Nehru Govt.
Polytechnic in Pondicherry, India.
He has about 20 years of experience
in
analog
circuit
design
and
microcontrollers. He also writes the
blog PSoC Hacker on the Cypress
website.
Is sleep being used in the project? If yes, follow the
steps in the sleep section to avoid any issues.
The latest version of PSoC Designer has fixes and
workarounds for a majority of the issues discussed above.
Cypress always recommends using the latest version of
PSoC Designer.
www.cypress.com
Document No. 001-50987 Rev. *E
16
Getting Started with I2C in PSoC® 1
Appendix A
This appendix is for users who are curious about the
2
detailed operation of the I C hardware block in PSoC.
Hardware Registers
2
Several registers control the I C hardware block and report
its status.
2
I2C_CFG Register: Controls the configuration of the I C
hardware block. It controls the clock speed and the pins
being used, and it indicates if the slave or master
functionality is enabled. It also enables support for
interrupts on stop conditions and bus errors.
2
I2C_SCR Register: Returns status flags from the I C
hardware block. It reports if a full byte (byte complete) is
sent or received. This register indicates if a bus error has
occurred or if arbitration is lost. It also determines if the
last transaction was an address.
I2C_DR Register: This register holds the value of data
sent or received. It shifts data in only if the data is an
address, if the hardware block is configured as a slave
and is addressed, or if the master has initiated a read.
I2C_MSCR Register: This register controls the master
2
portion of the I C transaction. It holds the bit that allows
generating a start. The enable master bit in the I2C_CFG
register must be set for this register to be available;
otherwise, this register is held in reset.
Firmware Requirements
This section describes the operation of the hardware block
for different configurations. Note that wherever the text
2
mentions a requirement of firmware, all PSoC I C user
modules run this code.
Start Generation
If the start gen bit is set in the master status and control
register, the hardware block generates a start condition
and sends out the address in the data register. However,
the hardware recognizes if another device has taken
control of the bus. If an external start condition is detected,
the hardware queues the current start until the bus is free.
The start bit is not cleared until the hardware has
successfully sent out a start condition or the firmware has
cleared it.
Only one start can be queued at a time. If the master
attempts to send two starts while the bus is busy, the
hardware sends only the last address. As stated earlier,
the user code must ensure that this situation does not
occur.
Master Operation
In master mode, after the start and address are sent, the
hardware waits until the ACK/NAK bit from the slave is
received. On receiving the ACK/NAK bit, the hardware
interrupts the CPU. Firmware then determines if the slave
acknowledged or did not acknowledge the address. It
does so by reading the last received bit (LRB) in the
www.cypress.com
I2C_SCR register. If the bit is a zero, then the slave has
acknowledged; if the bit is a one, then the slave has not
acknowledged. Take appropriate action depending on this
condition.
Firmware is also responsible for setting the direction of
communication. This is done by setting the transmit bit in
the SCR register. If a zero is written to the bit, the block is
placed in receive mode. In this mode, the hardware
interrupts the CPU when it receives eight data bits. After
this interrupt, the firmware must determine if an ACK/NAK
needs to be sent.
If a ‘1’ is written to the transmit bit, the block is placed in
transmit mode. In this mode, the hardware interrupts after
the ACK/NAK is received from the slave device. The
firmware again handles these cases.
When the SCR register is written, the master will start to
generate clocks to either send or receive more data.
S l a ve O p e r a t i o n
When the hardware detects a start condition in slave
mode, it shifts the next eight bits of data into the I2C_DR
register. On receipt of the eighth bit, the hardware block
interrupts the CPU and causes the address bit in the
I2C_SCR register to go HIGH.
When the interrupt is posted, the hardware holds the clock
line LOW. It is then the firmware’s responsibility to read
the incoming address and acknowledge whether the
address is its own. The firmware must set the ACK bit in
the SCR register appropriately. The firmware should also
read the read/write bit of the address. If the bit is a ‘1,’
then the transmit bit in the SCR register is changed to a
‘1.’ After the CPU writes to the SCR register, the hardware
releases the clock line, which allows the transaction to
continue.
If the slave is configured as a transmitter, firmware must
load valid data into the DR register before writing to the
SCR register and releasing the bus. After the bus is
released, the hardware shifts data out to the SDA line on
the clock edges provided by the master. The hardware
waits until it receives an ACK/NAK from the master and
then interrupts the CPU. The firmware then must load new
data or do nothing.
If the slave is configured as a receiver, the hardware
interrupts after the eighth bit of data is received. The
firmware then decides if it can receive more data. It must
then set the ACK bit appropriately.
Stop Condition
When a transaction is completed in master mode, the
hardware block generates a stop condition to indicate that
the bus is free.
In slave mode, the reception of a stop puts the hardware
block into an idle mode until it receives a new start
condition.
Document No. 001-50987 Rev. *E
17
Getting Started with I2C in PSoC® 1
Interrupt Sources
In the earlier examples, the hardware block interrupts on a
byte-complete condition. The occurrence of this interrupt
depends on the direction of communication.

Arbitration
The hardware block can also indicate if the master loses
arbitration. This is necessary when operating in
multimaster mode. Arbitration occurs when two masters
start writing at the same time. The hardware monitors the
SDA line. If the master attempts to leave the bus HIGH but
another master pulls it LOW, the master signals that it has
lost arbitration. After the arbitration condition, the
hardware does not control the SDA line but continues to
clock the SCL line. On a subsequent byte-complete
interrupt, it is the firmware’s responsibility to view the lost
arbitration bit to see if arbitration was lost during the
previous transfer.
Transmit: Byte Complete Interrupt = Ninth bit
Receive: Byte Complete Interrupt = Eighth bit
The hardware block allows two additional interrupt
sources. Setting the appropriate bit in the I2C_CFG
register enables these interrupts. The hardware is capable
of interrupting on a stop condition. This is useful when
operating in slave mode; the interrupt alerts the firmware
that the current transaction is complete. The next available
interrupt is on a bus error, which is a misplaced start or
stop on the bus. If the hardware detects the interrupt, it
stops its current activities and posts the interrupt; the
firmware then decides what to do with this situation.
2
Basic I C Flow
2
Figure 24 and Figure 25 show the basic flow for I C
transactions. This is the basic flow needed to implement
2
I C in PSoC 1 successfully. The provided UMs follow this
flow with added overhead.
Figure 24. Flow Diagram for a Successful Slave Transmitter/Receiver
Master transmits
another byte
CPU writes
(ACK) to
I2C_SCR
register.
An interrupt is
generated on byte
complete.
START
7-Bit Address
7
8
ACK = Slave OK to
receive more.
Master may send
more or issue stop.
STOP
Write (RX)
ACK/
NAK
1
7
8
CPU reads the
received byte from the
I2C_D register and
checks for “Own
Address” and R/W.
9
NAK = Slave says
no more.
CPU reads the
received byte from
the I2C_D register.
Read (TX)
1
R/W
SCL line is
held LOW.
CPU issues ACK/
NAK command
with a write to the
I2C_CSR register.
8-Bit Data
ACK
A byte interrupt is
generated.
SCL line is
held LOW.
CPU writes the
byte to transmit
to the I2C_D
register.
CPU writes
(ACK | TRANSMIT) to
I2C_CSR register.
An interrupt is generated
on a complete byte +
ACK/NAK.
SCL line is
held LOW.
8-Bit Data
ACK
ACK/
NAK
9
1
7
8
NAK = Master
says end of data.
STOP
9
ACK = Master
wants to read
another byte.
CPU writes a new byte to the
I2C_D register and then writes a
TRANSMIT command to
I2C_SCR to release SCL.
www.cypress.com
Document No. 001-50987 Rev. *E
18
Getting Started with I2C in PSoC® 1
Figure 25. Flow Diagram for a Successful Master Transmitter/Receiver
CPU issues ACK/
NAK command to
the I2C_SCR
register.
An interrupt is
generated on byte
complete.
An interrupt is generated
after the ACK is received.
7-Bit Address
R/W
ACK
STOP
ACK/
NAK
1
7
8
9
Read (RX)
START
8-Bit Data
CPU issues a
command to the
I2C_CSR.
CPU issues
GENERATE
START
command to
I2C_MCR.
ACK = Master
wants more.
CPU reads the
received byte from
I2C_D register.
NAK = Master
indicates end of
data.
1
CPU writes address
byte to the I2C_D
register.
7
8
9
Write (TX)
CPU checks Read/
Write Bit
CPU issues TRANSMIT
command to the
I2C_SCR register,
starting the transfer.
CPU writes a byte to
transmit I2C_D
register.
An interrupt is generated
on completion of the byte
+ ACK/NAK.
8-Bit Data
ACK/
NAK
1
7
Master wants to
send more bytes.
www.cypress.com
Document No. 001-50987 Rev. *E
8
CPU issues STOP
command
NAK = Slave
says no
more.
STOP
9
ACK = Slave
says OK to
receive more.
Master can
send more or
Stop.
19
Getting Started with I2C in PSoC® 1
Appendix B
This appendix describes various example projects that
2
demonstrate the use of the I C UMs.
written to the variable ADCValue. A master device can
read this variable.
EzI2Cs_ADC_LED_DAC Example Project
In firmware, a local copy for LEDValue and DACValue are
created. The values of LEDVAlue and DACValue in the
2
I C register structure are continuously compared with the
local copies of these parameters. When the master writes
a different DAC value or LED value, then the LED ports
(P0[0] to P0[3]) and DAC are updated with the new values.
The DAC output is available on P0[5].
This project demonstrates how to configure the EzI2Cs
2
UM. The project configures PSoC as an I C slave and may
2
be considered as an implementation of an I C-controlled
analog peripheral device and port expander.
This project creates the following data structure:
Testing the Project
Figure 27 shows the setup for project testing. Use a
CY3210 PSoC 1 evaluation board to wire the setup.
struct I2CRegs
{
BYTE LEDValue;/* Updates LEDs */
BYTE DACValue;/* Updates DAC */
BYTE ADCValue;/* Reads ADC value */
}I2CRegs;
Figure 27. Schematic for EzI2Cs_ADC_LED_DAC_Project
2
The structure is exposed to the I C master through the
following API call:
EzI2Cs_1_SetRamBuffer(sizeof(I2CRegs),
(BYTE *) &I2CRegs);
2,
The first parameter sets the size of the structure. The
second parameter sets the number of parameters that
have read-write permission. Parameters beyond this
boundary are read-only. In this structure, LEDValue and
DACValue are read-write and ADCValue is read-only. The
final parameter is the pointer to the structure itself.
Configure the EzI2Cs UM in the chip view as shown in
Figure 26.
Figure 26. EzI2Cs UM Configuration
P0[0] to P0[3] are connected to the LED1 to LED4 signals
on J5. P0[7] is connected to the variable resistor VR. A
digital multimeter is connected to P0[5] to monitor the DAC
output. The LCD is connected to the LCD connector J9.
A CY3217 MiniProg1 or CY8CKIT-002 MiniProg3 can be
used to program the device using the ISSP header on the
CY3210 board. See Table 6.
2
A CY3240 USB-I C Bridge PSoC Development Kit or
2
MiniProg3 may be used as I C master. Figure 28 shows
the CY3210 board with the project in action. The CY3240
2
I C-USB bridge is used here.
Table 6. Setup on the CY3210 Evaluation Board
Set the slave address to 0x04; set the address type to
static; disable the ROM registers; set the clock speed to
2
400 kHz, fast mode; and use P1[0] and P1[1] as I C pins.
P1[0] and P1[1] are used in such a way that the ISSP port
on the CY3210 PSoC 1 evaluation board can also be used
2
to connect the I C master.
PSoC 1
Pins
CY3210
Connections
P0[0] to
P0[3]
LED1 to LED4
Connect P0[3:0] to the 4 LEDs
P0[7]
VR
Potentiometer input
P0[5]
-
Connect multimeter
-
ISSP header
(J11)
Connect MiniProg1 or MiniProg3
for programming
-
ISSP header
(J11)
Connect Cy3240/MiniProg3 for I2C
communication to PC
Description
In firmware, an ADC is used to read the voltage on P0.7.
You can simulate different voltages by connecting a
potentiometer to this pin. The value read by the ADC is
www.cypress.com
Document No. 001-50987 Rev. *E
20
Getting Started with I2C in PSoC® 1
Figure 28. Test Setup for EzI2Cs Example Project
Figure 29. Bridge Control Panel
Command Window
Status/Response
Window
There are two methods for testing the project. You can
use Bridge Control Panel software or an external MCU.
Using Bridge Control Panel Software to Test
The Cypress Bridge Control Panel software acts as a
2
graphical front end to communicate with PSoC I C slave
devices. It is useful for testing, tuning, and debugging
2
programs that have an I C slave interface. You can install
the Bridge Control Panel with PSoC Designer and PSoC
Programmer™.
After programming the device, connect the CY3240 or
MiniProg3 to the ISSP connector. The CY3240 and the
MiniProg3 have the pull-up resistors required for the SDA
2
and SCL lines of the I C.
The following steps show how to use the Bridge Control
Panel to read the value of ADC and to control the LED and
DAC outputs of the EzI2Cs_ADC_LED_DAC project.
1.
Open Bridge Control Panel from the Windows start
menu. It is located in the Cypress folder.
2.
Select the MiniProg3 or the CY3240 from the device
list and click the Connect button.
3.
Next, click the Power button to supply power to the
CY3210 test setup. (See Figure 29.)
Power Button
4.
Connect Button
To write to the LED and DAC parameters, type the
following command in the command window of the
Bridge Control Panel:
w 04 00 03 80 p
‘w’ is the write command. ‘04’ is the slave address.
‘00’ is the subaddress where the values have to be
written. ‘03’ is the value for LED. For a value of 03,
LED1 and LED2 will be turned on. ‘80’ is the DAC
output. The output of the DAC is about 2.09 V for this
value.
When you enter this command in the command
2
window and press Enter, the I C master transmits the
command to the EzI2Cs slave. Observe the state of
LED and the output on P0[5] in the results window.
(See Figure 30.)
w 04+ 00+ 03+ 80+ p
A ‘+’ sign after each byte indicates that the EzI2Cs
slave acknowledged the byte. A ‘−’ sign indicates that
the byte was not acknowledged.
For example, try the following command:
w 04 00 03 80 55 p
The response would be:
w 04+ 00+ 03+ 80+ 55- p
Because we have set the third byte in the EzI2Cs
register structure as read-only, the slave will not
acknowledge (NAK) the write to this register.
www.cypress.com
Document No. 001-50987 Rev. *E
21
Getting Started with I2C in PSoC® 1
Figure 30. Write LED and DAC Values
This write command sets the subaddress in the
EzI2Cs. Any further read operation will take place on
subaddress 0x0, which is the ADC value.
Next, type the following command and select the
Repeat button. Observe only the ADC value being
read.
r 04 x p
Figure 32. Read Only the ADC Register
5.
To read the ADC result, type the following command
in the command window:
r 04 x x x p
‘r’ is the read command. ‘04’ is the slave address. The
three ‘x’s indicate how many bytes to read from the
slave.
Now click the Repeat button in the Bridge Control
Panel and observe the result in the results window.
(See Figure 31.)
2
Figure 31. Read All of the I C Registers
Using an External MCU to Test
You can also test the project with another microcontroller
2
2
acting as an I C master. This section demonstrates the I C
interface with an Arduino Duemilanove board configured
2
as an I C master and assumes that you are familiar with
the Arduino prototyping platform. For more information on
this board and the Arduino platform, visit www.arduino.cc.
Refer to Getting Started with Arduino for instructions on
connecting the Arduino board to the PC and uploading the
program.
2
The Arduino device is configured to have an I C master
interface on the dedicated pins (AIN4, AIN5) and one
PWM output on pin 11.
2
The CY3210 is configured as an I C slave having a 4-bit
digital display (four LEDs), one analog output (DAC), one
analog input (potentiometer connected to analog input
pin), and an LCD display.
The last byte in the response is the ADC result. The
second and third bytes show the values of the LED
and DAC parameters respectively.
6.
If you want to read only the ADC value and not the
LED and DAC values (see Figure 32), first execute
the following command:
w 04 02 p
www.cypress.com
1.
Program the CY3210 board with the example project.
2.
Open
the
included
Arduino
project
“Arduino_I2C_Master_PSoC1_Slave.ino” using
Arduino software.
3.
From Tools, select Board and then the Arduino
Duemilanove option.
4.
From Tools, select Serial Port and then the port on
which the board is connected.
5.
Download the program to the board using a USB A-B
cable. Detach the USB cable after programming is
complete.
6.
Make hardware connections according to Table 7.
Document No. 001-50987 Rev. *E
file
the
22
Getting Started with I2C in PSoC® 1
Table 7. Hardware Connections
Figure 33. Arduino-to-PSoC Interface
Connections on Arduino Duemilanove
Pin
Connection
Pin 11 (PWM)
Connect an LED
Description
PWM output on Arduino
Connections on CY3210-PSoC Evaluation Board
Pin
Connection
Description
P00
LED1 on J5
Digital output Bit 0
P01
LED2 on J5
Digital output Bit 1
P02
LED3 on J5
Digital output Bit 2
P03
LED4 on J5
Digital output Bit 3
P05
Multimeter/Scope
Analog output (DAC)
P07
VR on J5
Analog Input (ADC)
CY3210 to Arduino Connections
Arduino Pins
PSoC 1 Pins
Description
Analog in 4
(A4)
P10 on J7
SDA for I2C
Analog in 5
(A5)
P11 on J7
SCL for I2C
5V
VCC on J5
Power PSoC 1 board
using Arduino 5 V
GND
GND on J5
Ground
7.
Connect a CY3217 MiniProg1 or CY8CKIT-002
MiniProg3 to the ISSP header on the CY3210 board.
After programming, remove the programmer from the
ISSP header.
8.
Reattach the USB cable to the Arduino board. This
will power both the Arduino board and the CY3210
board. Figure 33 gives a snapshot of the setup.
PSoC reads the voltage on P07 (connected to
potentiometer) and stores the value in ADCValue. Arduino
2
reads this value using the I C and controls the PWM
output on pin 11. Turning the potentiometer on the
CY3210 varies the brightness of the LED on the Arduino
board.
2
Arduino continuously sends a 4-bit pattern over the I C
interface. PSoC reads this value and writes to Port0 pins,
which are connected to the four LEDs. Arduino also
continuously sends an 8-bit digital value, which is
converted to an analog voltage by the PSoC DAC. The
DAC code sent is an incremental value from 0 to 255.
Figure 34 shows the DAC output waveform on the PSoC
pin (P05) when viewed on an oscilloscope.
This example thus shows how an external MCU can
2
interface with a PSoC device using I C.
www.cypress.com
Document No. 001-50987 Rev. *E
23
Getting Started with I2C in PSoC® 1
Testing the Project
Figure 36 shows the setup for project testing.
Figure 34. DAC Output Waveform on P05
2
Figure 36. Schematic for I CHW_Slave Project
The only connections required to test the project are the
ISSP connections. The same ISSP connector is also used
2
to connect the I C master. (See Table 8.)
I2CHW Slave Example Project
Table 8. Connections for Project Testing
2
This project demonstrates how to configure I CHW as a
slave.
2
In this project, the data that is written to the I CHW slave is
echoed back to the master. This is done by configuring the
read and write buffers as the same buffer. To do so, use
the following API:
/*When master writes data it will write to
rxtxBuffer*/ I2CHW_1_InitWrite(rxtxBuffer,
10);
/*When master reads data it will read from
rxtxBuffer*/
I2CHW_1_InitRamRead(rxtxBuffer, 10);
The main code checks to see if a master device has read
2
or written to the I CHW slave. If it has, then the code will
reset the buffers and clear the appropriate status flags.
2
Figure 35 shows the configuration of the I CHW UM. The
slave address for the device is 0x04.
2
Figure 35. I CHW UM Slave Configuration
PSoC 1
Pins
CY3210
Connections
Description
-
ISSP header
(J11)
Connect MiniProg1 or MiniProg3
for programming
-
ISSP header
(J11)
Connect Cy3240 or MiniProg3 for
I2C communication to PC
2
You can test the I CHW slave project using the CY3210
PSoC 1 evaluation board.
Use a CY3217 MiniProg1 or CY8CKIT-002 PSoC
MiniProg3 to program the device, using the ISSP header
on the CY3210 board.
2
2
Use a CY3240 USB-I C Bridge or MiniProg3 as the I C
master.
Figure 37 shows how to use the Bridge Control Panel to
2
write and read values from the I CHW slave. Refer to the
EzI2Cs_ADC_LED_DAC example project for a brief
description of how to set up the Bridge Control Panel.
1.
Type the following commands in the command
window of the Bridge Control Panel:
w 04 00 01 02 03 04 05 06 07 08 09 p
r 04 x x x x x x x x x x p
w 04 0a 0b 0c 0d 0e 0f 10 11 12 13
r 04 x x x x x x x x x x p
2.
Select the “Send all strings” option and click the Send
button to execute all of the commands in sequence.
Observe in the results window that the same values
written using the write command are being read back
while executing the read command.
www.cypress.com
Document No. 001-50987 Rev. *E
24
Getting Started with I2C in PSoC® 1
2
Figure 37. Writing and Reading the I CHW Slave
When the slave generates an ACK, the master exits the
while loop.
Next, the master reads the data that it just wrote to the
EEPROM. This is done by first writing the two subaddress
bytes and then reading out 64 bytes of data from the
EEPROM. The master then compares the read data with
the written data. When all 64 bytes match, an LED is
turned on.
To test this project, connect P1.5 and P1.7 to the SDA and
2
SCL of an external I C EEPROM. Make sure that you
have external pull-up resistors on those lines. Connect an
LED with a series resistor to P0_7. You can test the
project using a CY3210 PSoC evaluation board. (See
Table 9.)
Table 9. Connections for Project Testing
PSoC 1
Pins
I2CHW Master Example Project
P1[5]
2
This project demonstrates how to use the I CHW UM in
master mode. Specifically, it demonstrates how to use the
2
2
I CHW UM to read and write to an external I C EEPROM.
2
P1[7]
P0[7]
CY3210
Connections
2.2-kΩ pull-up
to VDD
2.2-kΩ pull-up
to VDD
LED1
Description
Connect to SDA of 24C256 IC
Connect to SCL of 24C256 IC
LED indicator
Figure 38 shows how to configure the I CHW UM.
2
Figure 38. I CHW Master Configuration
Figure 39 shows the setup for project testing.
Figure 39. I2CHW_Master Test Schematic
2
In the main code, the I CHW UM is initialized. After that, it
writes out 66 bytes to the EEPROM from the RAMBuffer
array. The first two bytes are the subaddress where the
data is written in the EEPROM. This project is tested with
a 32Kb EEPROM, which has a page size of 64 bytes.
When writing to smaller EEPROMs, limit the write to the
page size of the particular EEPROM.
When data is written to the EEPROM, the EEPROM
enters a write cycle. During this time, the slave does not
2
generate an ACK to any I C transaction. Any further
operation can be done only when the EEPROM completes
the write cycle. To detect this, the master enters a “while”
loop in which it continuously sends a start and checks the
ACK status.
while(!(I2CHW_fSendStart(0x50,
I2CHW_READ)))
{
I2CHW_SendStop();
}
www.cypress.com
Document No. 001-50987 Rev. *E
25
Getting Started with I2C in PSoC® 1
Figure 40. Migrate Project
Migrating Example Project
The projects can easily be migrated to other devices using
the built-in cloning feature of PSoC Designer. For
example, to migrate the EzI2Cs_ADC_LED_DAC project:
1.
Open PSoC Designer and create a new project.
2.
Select the Clone option in the Project Creation
parameter.
3.
In the “Clone from Project” parameter, browse and
select the EzI2Cs_ADC_LED_DAC.cmx file in the
project folder of the EzI2Cs_ADC_LED_DAC project.
Then choose the device that you want to run this
project on by clicking the Device Catalog button.
4.
After selecting the Device, click OK; PSoC Designer
will migrate the project to the new device. (Refer to
Figure 40.)
www.cypress.com
Document No. 001-50987 Rev. *E
26
Getting Started with I2C in PSoC® 1
Document History
2
®
Document Title: Getting Started with I C in PSoC 1 – AN50987
Document Number: 001-50987
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
2641969
TDU
01/21/08
New Application Note
*A
3147658
TDU
01/19/2011
Updated Title to read “PSoC® 1 I2C Overview.”
Updated Abstract section.
Updated I2C and Sleep section.
Minor edits.
Specified PSoC 1 parts this Application Note is applicable too.
*B
3427861
TDU
11/11/2011
Updated to New Template
Modified Title
Added 3 example projects
Added Hardware Blocks in CY8C28xxx
Updated sections I2CHW, Clock Speeds, and Clock Stretching and Interrupt
Latency
Added sections Glitch Filtering, I2C and Dynamic Reconfiguration, The SCL Line
Gets Stuck , and Basic I2C Flow
*C
3672732
GRAA
07/11/2012
Improved the flow in EzI2Cs section
Added a section explaining the EzI2Cs parameters and steps to get it working in a
project
Added summary and important notes section for EzI2Cs
Added sections explaining in detail the hardware and firmware configuration for
the I2CHW in slave, master, and multimaster modes.
Added summary and important notes section for I2CHW
Added section explaining how I2Cm may be incorporated in a design.
Added more details about using the shadow registers when using I 2Cm
Added summary and important notes section for I2Cm
Modified the I2CHW example project to interface to 24C256 EEPROM and
updated Appendix D with the operation of the project.
*D
4078726
GRAA
07/26/2013
Minor modifications throughout document. Updated the example projects.
*E
4682397
GRAA
03/10/2015
Updated the example projects to PSoC Designer 5.4
Updated template
Sunset review
www.cypress.com
Document No. 001-50987 Rev. *E
27
Getting Started with I2C in PSoC® 1
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
PSoC and CapSense are registered trademarks and PSoC Designer is a trademark of Cypress Semiconductor Corp. All trademarks or registered
trademarks referenced herein are the property of their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2009-2015. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted or intended to be used for medical, life support, life-saving, critical control, or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, nonexclusive, nontransferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and/or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’s product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-50987 Rev. *E
28

				

 Open as PDF

 	Similar pages
	

										AN50987 Getting Started with I2C in PSoC® 1 (Chinese).pdf

	

										INTEL UPI-452

	

										AN2397 PSoC® 1 and CapSense® Controllers CapSense Data Monitoring Tools.pdf

	

										AN2120 PSoC 1 - Sensing - RTD Temperature Measurement.pdf

	

										I2CM_001-84320.pdf

	

										AN2094 PSoC® 1 Getting Started with GPIO (Chinese).pdf

	

										AN2094 PSoC® 1 Getting Started with GPIO.pdf

	

										EzI2Cs_001-45841.pdf

	

										I2Cm_001-13564.pdf

	

										AN2034 PSoC 1 - Reading Matrix and Common Bus Keypads.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

