

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 EzI2Cs_001-45841.pdf

		
				 EzI2C Slave Datasheet EzI2Cs V 1.50
001-45841 Rev. *I
EzI2C Slave
Copyright © 2008-2013 Cypress Semiconductor Corporation. All Rights Reserved.
API Memory
(Bytes)
PSoC® Blocks
Resources
CapSense®
I2C/SPI
Timer
Comparator
Flash
Pins per
senor
RAM
CY8C20x66, CY8C20x36, CY8C20336AN, CY8C20436AN, CY8C20636AN, CY8C20xx6AS, CY8C20XX6L,
CY8C20x46, CY8C20x96, CY8C20045, CY8C20055, CY7C643/4/5xx, CY7C60413, CY7C60424, CY7C6053x,
CYONS2010, CYONS2011, CYONSFN2051, CYONSFN2053, CYONSFN2061, CYONSFN2151, CYONSFN2161,
CYONSFN2162, CY8CTST200, CY8CTMG2xx, CY8CTMA30xx, CYONSFN2010-BFXC, CYONSCN2024-BFXC,
CYONSCN2028-BFXC, CYONSCN2020-BFXC, CYONSKN2033-BFXC, CYONSKN2035-BFXC, CYONSKN2030BFXC, CYONSTN2040, CY8CTMA140, CY8C20xx7/S, CYRF89x35, CY8C20065, CY8C24x93, CY7C69xxx
RAM Read/Write Buffers –
1
–
–
264
6
2
Additional for ROM
Buffer Support
1
–
–
379
6
2
–
Features and Overview
„
„
„
„
„
Industry standard Philips I2C bus compatible interface
Emulates common I2C EEPROM interface
Only two pins (SDA and SCL) required to interface to I2C bus
Standard data rate of 100/400 kbps
High level API requires minimal user programming
The EzI2Cs User Module implements an I2C register-based slave device. The I2C bus is an industry
standard, two-wire hardware interface developed by Philips® (now NXP).The master initiates all
communication on the I2C bus and supplies the clock for all slave devices. The EzI2Cs User Module
supports the standard mode with speeds up to 400 kbps. No digital or analog PSoC blocks are consumed
with this module. The EzI2Cs User Module is compatible with multiple devices on the same bus.
Cypress Semiconductor Corporation
Document Number: 001-45841 Rev. *I
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised May 14, 2013
EzI2C Slave
Figure 1.
I2C Block Diagram
Functional Description
The EzI2Cs User Module takes a different approach from the I2CHW User Module provided with PSoC
Designer. This user module supports only an I2C slave configuration with one or two I2C addresses. The
first I2C address accesses the RAM allocated area and the optional second I2C address accesses the
ROM area. The second I2C address is the RAM area I2C address OR’ed with 0x40. For example, if you
select an I2C address of 0x15, the RAM area I2C address is 0x15 and the optional ROM I2C address is
0x55.
This user module requires that you enable global interrupts since the I2C hardware is interrupt driven.
Even though this user module requires interrupts, the user’s code does not need to add any code to the
ISR (Interrupt Service Routine). The module services all interrupts (data transfers) independent of the
user’s code. Instead, the memory buffers allocated for this interface look like simple dual port memory
between the user’s application and the I2C Master.
If required, a user can create a higher-level interface between a master and this slave by defining
semaphores and command locations in the data structure.
Document Number: 001-45841 Rev. *I
Page 2 of 21
EzI2C Slave
RAM Area Interface
To an I2C master the interface looks very similar to a common 256 byte I2C EEPROM. The PSoC API is
treated as RAM that can be configured as simple variables, arrays, or structures. In a sense it acts as a
shared RAM interface between the user’s program and an I2C master on the I2C bus. The API allows the
user to expose any data structure to an I2C Master. The user module only allows the I2C master to access
the specified area of RAM and prevents any reads or writes outside that area. The data exposed to the I2C
interface can be a single variable, an array of values, or a structure. All that is required is a pointer to the
start of the variable or data structure when initialized. See the following figure:
Figure 2.
RAM Area Interface
For example, a user could create this structure:
struct I2C_Regs {
// Example I2C interface structure
BYTE bStat;
BYTE bCmd;
int iVolts;
char cStr[6]; // Read only string
} MyI2C_Regs;
This structure may contain any group of variables with any name as long as it is contiguous in memory
and referenced by a pointer. The interface (I2C Master) only sees it as an array of bytes, and cannot
access any memory outside the defined area. Using the example structure above, a supplied API is used
to expose the data structure to the I2C interface. The first parameter sets the size of the exposed RAM to
the I2C interface, in this case it is the entire structure. The second parameter sets the boundary between
Document Number: 001-45841 Rev. *I
Page 3 of 21
EzI2C Slave
the read/write and read only areas by setting the number of bytes in the read/write area. The read/write
area is first, followed by the read only area. In this case, only the first 4 bytes may be written to, but all
bytes may be read by the I2C master. The third parameter is a pointer to the data.
EzI2Cs_SetRamBuffer(sizeof(MyI2C_Regs), 4,(BYTE *) &MyI2C_Regs);
In the following example a 15-byte array is created and exposed to the I2C interface. The first 8 bytes of
the array are read/write, and the remaining 7 bytes are read only.
char theArray[15];
EzI2Cs_SetRamBuffer(15, 8, (BYTE *) theArray);
The following example is a very simple example where only a single integer (2 bytes) is exposed. Both
bytes are readable and writable by the I2C master.
int iRegister;
EzI2Cs_SetRamBuffer(2, 2, (BYTE *) (&iRegister);
ROM Area Interface (Optional)
The ROM interface is almost identical to the RAM interface, except that it is read only. As seen in the
following example, the SetRomBuffer function is similar to the SetRamBuffer function. In this example, the
data area is a simple constant string 13 bytes in length counting the terminating NULL (0x00) character.
const BYTE bROM_Regs[13] = "I2C ROM AREA";
EzI2Cs_SetRomBuffer(13, (const BYTE *)bROM_Regs);
Document Number: 001-45841 Rev. *I
Page 4 of 21
EzI2C Slave
As mentioned before, the ROM area has its own I2C address. This address is simply the RAM area
address OR’ed with 0x40. If the main RAM address is 0x15, the I2C address to access the ROM area
would be 0x55. The following diagram shows how this example may appear in memory:
Figure 3.
ROM Area Interface
Interface as Seen by External Master
The EzI2Cs User Module supports basic read and write operations for the RAM area and read only
operations for the ROM area. The RAM and ROM area interfaces contain separate data pointers that are
set with the first data byte of a write operation. Even the ROM area accepts a single byte write to set the
data pointer. When writing one or more RAM bytes, the first data byte is always the data pointer. The byte
after the data pointer is written into the location pointed to by the data pointer byte. The third byte (second
data byte) is written to the data pointer plus 1 and so on. This data pointer increments for each byte read
or written but is reset to the first value written at the beginning of each new read operation. A new read
operation begins to read data at the location pointed to by the data pointer.
For example, if the data pointer is set to four, each read operation resets the data pointer to four and reads
sequentially from that location until the end of the data or until the host completes the read operation. This
is true whether a single or multiple read operations are performed. The data pointer is not changed until a
new write operation is initiated.
If the I2C master attempts to write data past the area specified by the SetRamBuffer() function, the data is
discarded and does not affect any RAM inside or outside the designated RAM area. Data cannot be read
outside the allowed range. Any read requests by the master, outside the allowed range, results in the
return of invalid.
Document Number: 001-45841 Rev. *I
Page 5 of 21
EzI2C Slave
The following diagram illustrates the bus communication for a data write, data pointer write, and a data
read operation. Remember that a data write operation always rewrites the data pointer.
Figure 4.
Write and Read x Bytes to I2C Slave
At reset, or power on, the EzI2Cs User Module is configured and APIs are supplied, but the resource must
be explicitly turned on using the EzI2Cs_Start() function.
The I2C resource supports data transfer at a byte-by-byte level. At the end of each address or data
transmission/reception, status is reported or a dedicated interrupt may be triggered. Status reporting and
interrupt generation depend upon the direction of data transfer and the condition of the I2C bus as
detected by the hardware. Interrupts may be configured to occur on byte-complete, or bus-error detection.
Every I2C transaction consists of a Start, Address, R/W Direction, Data, and a Termination. For an I2C
slave, an interrupt occurs after the 8th bit of incoming data. At this point a receiving device must decide to
acknowledge (ACK) or not-acknowledge (NAK) the incoming byte whether it is an address or data. The
receiving device then writes appropriate control bits to the I2C_SCR register, informing the I2C resource of
the ack/nak status. The write to the I2C_SCR register paces data flow on the bus by installing the bus,
placing the ack/nak status on the bus and shifting the next data byte in. For the second case of a
transmitter, an interrupt occurs after an external receiving device provided an ack or nak. The I2C_SCR
may be read to determine the status of this bit. For a transmitter, data is loaded into the I2C_DR register
and the I2C_SCR register is again written to trigger the next portion of the transmission.
Detailed descriptions of the I2C bus and the implementation here are available in the complete I2C
specification available on the NXP web site, and by referring to the device datasheet supplied with PSoC
Designer.
Design Considerations
Set the main oscillator to any clock speed. Data throughput may be affected by processor speed but byteby-byte data transfer operates at the specified I2C speed.
Document Number: 001-45841 Rev. *I
Page 6 of 21
EzI2C Slave
Dynamic Reconfiguration
Do not incorporate the EzI2Cs resource into dynamically loaded or unloaded overlays. Place the EzI2Cs
resource as part of the base configuration only. Operation of the EzI2Cs block may be modified as
operational requirements dictate, but attempting to remove the resource as part of dynamic
reconfiguration may result in adverse effects on external I2C devices. It is also possible to accidentally
reconfigure pins assigned for I2C; doing this disables the I2C functions. Take care to avoid this possibility
when switching between configurations.
Sleep and I2C Operation
CY8C20xx7/S family of device supports wake up on I2C slave address match event. This feature helps to
wake the device up sleep when host is tried to access CY8C20xx7/S device. To make this feature work,
power to I2C block should be turned on by setting I2C_ON bit in SLP_CFG2 register and auto NACK
feature should be set before entering into sleep. When device is in sleep, upon the address match event,
device will NACK address and also wakeup from sleep (only if received address is matched). Once device
woken up from sleep, auto NACK will be automatically disabled.
Example code is provided in section “Example C Code: To enable wakeup sleep using I2C address match
event”.Not setting Auto NACK for I2C block before entering sleep will corrupt traffic on I2C bus.
DC and AC Electrical Characteristics
Refer to the device datasheet for your PSoC Device for the electrical characteristics of the I2C interface.
As the block diagram illustrates, the I2C bus requires external pull-up resistors. The pull-up resistor values
(RP) are determined by the supply voltage, clock speed, and bus capacitance. Make the minimum sink
current for any device (master or slave) no less 3 mA at VOLmax = 0.4V for the output stage. This limits the
minimum pull-up resistor value for a 5V system to about 1.5 kΩ. The maximum value for RP depends upon
the bus capacitance and clock speed. For a 5V system with a bus capacitance of 150 pF, the pull-up
resistors are no larger than 6 kΩ. For more information on "The I2C-Bus Specification", see the NXP web
site at www.nxp.com.
Note
Purchase of I2C components from Cypress or one of its sublicensed Associated Companies, conveys a license under the Philips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by NXP.
Placement
The EzI2Cs User Module does not require any digital or analog PSoC blocks. There are no placement
restrictions. Multiple placements of I2C modules are not possible since the I2C module uses a dedicated
PSoC resource block and interrupt.
Parameters and Resources
Slave_Addr
Selects the 7-bit slave address that is used by the I2C master to address the slave. Valid selections
are from 0 to 127 (in decimal format) if only the RAM registers are used. If the ROM registers are
enabled, only addresses between 0 and 63 are valid because the ROM register space is the RAM
address plus 64 (64 to 127 in decimal format).
Document Number: 001-45841 Rev. *I
Page 7 of 21
EzI2C Slave
Address_Type
Selects whether the address is static or dynamic. If set to static, the I2C address cannot be changed,
but one byte of RAM is saved. Setting this option to dynamic enables the firmware to change the
address at any time. This option is generally for applications where external resistors or dip switches
are used to set the LSBs of the I2C address.
ROM_Registers
The RAM area is always enabled, but you may enable a second address that allows you to access
constants in the ROM area. Choose the enable option for this parameter if the ROM address is
desired. If not choose disable.This second address is the base address OR’ed with 0x40. Access to
ROM area is not operable if the HW address recognition feature is used. Therefore, the
ROM_Registers parameter is disabled if the HW Addr Rec parameter is enabled.
HW Addr Rec
This parameter enables or disables the hardware I2C slave address recognition feature. It also allows
decreasing the ROM/RAM usage and decreasing the time of I2C ISR executing. This parameter is
disabled if the ROM_Registers parameter is enabled.
I2C_Clock
This parameter selects the clock speed used with this slave. Options are 50 KHz, 100 KHz, or
400 KHz. The 400-KHz speed can only be used when IMO (SysClk) is 12 MHz.
I2C_Pin
Selects the pins from Port 1 for use with I2C signals. There is no need to select the proper drive mode
for the pins. PSoC Designer does this automatically. This allows you to place the I2C clock and data
signals on P1[5] - P1[7] or P1[1] - P1[0].
Application Programming Interface
To guarantee the data integrity of variables with length of 2 or more bytes, check the EzI2Cs_bBusy_Flag
variable before changing values of such variables in code, for example:
EzI2Cs_DisableInt();
if(!(EzI2Cs_bBusy_Flag == EzI2Cs_I2C_BUSY_RAM_READ))
{
data.wData1++; //safely increment some 2 byte variable
}
EzI2Cs_ResumeInt();
Note that interrupts must be disabled to prevent an I2C read transaction from starting after the flags are
checked, but before the data is modified. With interrupts disabled, if an I2C transaction does start during
this time, clock stretching will be used on the I2C bus until after the interrupt is resumed.
The EzI2Cs_bBusy_Flag variable is updated automatically in the ISR and has the following predefined
values:
Document Number: 001-45841 Rev. *I
Page 8 of 21
EzI2C Slave
Table 1.
Predefined values of EzI2Cs_bBusy_Flag variable
Symbol Name
Value
Description
I2C_FREE
0x00
No transaction at the current moment
I2C_BUSY_RAM_READ
0x01
RAM read transaction in progress
I2C_BUSY_RAM_WRITE
0x02
RAM write transaction in progress
I2C_BUSY_ROM_READ
0x04
ROM read transaction in progress
I2C_BUSY_ROM_WRITE
0x08
ROM write transaction in progress
EzI2Cs_Start
Description:
Enables the I2C slave and enable interrupts. Call the required EzI2Cs_SetRamBuffer() function
before this function call.
C Prototype:
void
EzI2Cs_Start(void);
Assembler:
lcall EzI2Cs_Start
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_Stop
Description:
Disables the EzI2Cs by disabling the I2C interrupt and disabling the slave functionality of the I2C
block, to re-enable the slave, call EzI2Cs_Start().
C Prototype:
void
EzI2Cs_Stop(void);
Assembler:
lcall
EzI2Cs_Stop
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-45841 Rev. *I
Page 9 of 21
EzI2C Slave
EzI2Cs_DisableSlave
Description:
Disables the EzI2Cs without disabling the I2C interrupt.
C Prototype:
void
EzI2Cs_DisableSlave(void);
Assembler:
lcall
EzI2Cs_DisableSlave
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_SetAddr
Description:
This function sets the address that is recognized by the EzI2Cs User Module. This command is only
valid if the Address_Type is set to Dynamic in the parameters. Call this function only after the
EzI2Cs_Start() function. This is because the start function sets the default address and this function
overwrites that address. This function is optional and only needed if you change the address from the
default.
C Prototype:
void
EzI2Cs_SetAddr(BYTE bAddr);
Assembler:
mov
lcall
A,0x05
EzI2Cs_SetAddr
; Set I2C slave address to 0x05
Parameters:
BYTE char: Slave address between 1 and 127.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_GetActivity
Description:
This function returns a nonzero value if an I2C read or write cycle occurred since last time this function
was called. The activity flag resets to zero at the end of this function call.Symbolic constants are
provided in C and assembly. Their values are defined as:
Document Number: 001-45841 Rev. *I
Page 10 of 21
EzI2C Slave
Symbol
Value
Meaning
EzI2Cs_ANY_ACTIVITY
0x80
Either a write cycle or a read cycle occurred
EzI2Cs_READ_ACTIVITY
0x20
A read cycle occurred
EzI2Cs_WRITE_ACTIVITY
0x10
A write cycle occurred
C Prototype:
BYTE EzI2Cs_GetActivity(void);
Assembler:
lcall
EzI2Cs_GetActivity
; Return value in A
Parameters:
None.
Return Value:
Returns a nonzero value if an I2C read or write has occurred. Returns zero if no activity has occurred
since the last time the function was called.
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_GetAddr
Description:
This function returns the current address of this I2C slave. This function is optional and is usually only
required if the application must determine the current or default address.
C Prototype:
BYTE EzI2Cs_GetAddr(void);
Assembler:
lcall
EzI2Cs_GetAddr
; Return value in A
Parameters:
None.
Return Value:
The current I2C address of this I2C slave
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_EnableInt
Description:
Enables I2C interrupt allowing start condition detection. Remember to call the global interrupt enable
function by using the macro: M8C_EnableGInt. This function is not required if the EzI2Cs_Start func-
Document Number: 001-45841 Rev. *I
Page 11 of 21
EzI2C Slave
tion is called. By default this function clears pending interrupts. To avoid clearing pending interrupts
see the ResumeInt function.
C Prototype:
void
EzI2Cs_EnableInt(void);
Assembler:
lcall
EzI2Cs_EnableInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_ResumeInt
Description:
Enables I2C interrupt allowing start condition detection. This function does not clear pending interrupts
before enabling interrupts. Remember to call the global interrupt enable function by using the macro:
M8C_EnableGInt. This function is not required if the EzI2Cs_Start function is called.
C Prototype:
void
EzI2Cs_ResumeInt(void);
Assembler:
lcall
EzI2Cs_ResumeInt
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_DisableInt
Description:
Disables I2C's slave by disabling the I2C interrupt.
C Prototype:
void
EzI2Cs_DisableInt(void);
Assembler:
lcall EzI2Cs_DisableInt
Parameters:
None
Document Number: 001-45841 Rev. *I
Page 12 of 21
EzI2C Slave
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_SetRamBuffer
Description:
This function sets the location and size of the RAM buffer (up to 255 bytes) that is exposed to an I2C
master. This function is required and called before calling EzI2Cs_Start().
C Prototype:
void EzI2Cs_SetRamBuffer(BYTE bSize, BYTE bRWboundary, (BYTE *)pAddr);
Assembler:
lcall
EzI2Cs_SetRamBuffer
Parameters:
BYTE bSize: Size of the data structure exposed to an I2C master. The minimum value for bSize is 1
and the maximum is 255.
BYTE bRWboundary: The size of the writable area which starts from the location pointed by *pAddr".
This value should always be less than or equal to bSize for proper operation.
BYTE * pAddr: A pointer to the data structure.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function. If RWboundary is set to a value larger than
bSize, the entire RWboundary size is writable. Setting bSize to the invalid value of 0 may allow the
I2C host to write to undefined memory locations.
EzI2Cs_SetRomBuffer
Description:
This function sets the location and size of the ROM buffer (up to 255 bytes) that is exposed to an I2C
master. This function is required before enabling the EzI2Cs_Start function if ROM use is desired.
C Prototype:
void EzI2Cs_SetRomBuffer(BYTE bSize,(const BYTE *)pAddr);
Assembler:
lcall
EzI2Cs_SetRomBuffer
Parameters:
BYTE bSize: Size of the data structure exposed to an I2C master. const BYTE * pAddr: A pointer to
the data structure in flash ROM.
Document Number: 001-45841 Rev. *I
Page 13 of 21
EzI2C Slave
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_SetAutoNACK (only for CY8C20xx7/S device families)
Description:
This function sets the respective bit to engage the auto NACK (also referred as force NACK) feature
in I2C slave block. Auto NACK may not be activated immediately and will be active only upon the next
byte boundary.
C Prototype:
void EzI2Cs_SetAutoNACK(void)
Assembler:
lcall EzI2Cs_SetAutoNACK
Parameters:
None.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_ClearAutoNACK (only for CY8C20xx7/S device families)
Description:
This function clears the respective bit to disable auto NACK feature in I2C slave block.
C Prototype:
void EzI2Cs_ClearAutoNACK(void)
Assembler:
lcall EzI2Cs_ClearAutoNACK
Parameters:
None.
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
EzI2Cs_bCheckStatus (only for CY8C20xx7/S device families)
Description:
This function returns a value that indicates status of I2C data transaction.
Document Number: 001-45841 Rev. *I
Page 14 of 21
EzI2C Slave
C Prototype:
BYTE
EzI2Cs_bCheckStatus(void)
Assembler:
lcall
EzI2Cs_bCheckStatus
Parameters:
None.
Return Value:
The status of I2C data transaction: four bits in one byte return value indicates the below information
as using I2C_XSTAT register. Symbolic names used for the bits are mentioned below.
Symbol
Value
Description
EzI2Cs_BUS_BUSY
0x80
This bit is set only if there is an ongoing I2C traffic on
bus
EzI2Cs_AUTO_NACK_ON
0x04
This bit is set only if auto NACK feature is activated
by I2C block
EzI2Cs_LAST_TX_RD
0x20
This bit is set if last I2C transaction by host is a read
operation
EzI2Cs_LAST_TX_WR
0x40
This bit is set if last I2C transaction by host is a write
operation
Note: If the EzI2Cs_AUTO_NACK_ON bit is set then all other status bits are cleared automatically.
Side Effects:
The A and X registers may be altered by this function.
Sample Firmware Source Code
Example C Code:
//**
// Example code to demonstrate the use of the EzI2Cs UM
//
// This code sets up the EzI2Cs slave to expose both
// a RAM and a ROM data structure. The RAM structure is
// addressed at I2C address 0x05, and the ROM structure
// is at I2C address 0x45.
//
// * The instance name of the EzI2Cs User Module is "EzI2Cs".
// * The "Address_Type" parameter is set to "Dynamic"
// * The "ROM_Registers" parameter is set to "Enable"
//
// NOTE: to guarantee data integrity of variables with length 2 or more
// bytes check the EzI2Cs_bBusy_Flag variable before changing values of such
// variables.//**
#include <m8c.h>
// Part specific constants and macros
Document Number: 001-45841 Rev. *I
Page 15 of 21
EzI2C Slave
#include "PSoCAPI.h"
struct I2C_Regs {
BYTE bStat;
BYTE bCmd;
int iVolts;
char cStr[6];
} MyI2C_Regs;
// PSoC API definitions for all User Modules
// Example I2C interface structure
// Read only string
const BYTE DESC[] = "Hello I2C Master";
void main(void)
{
// Set up RAM buffer
EzI2Cs_SetRamBuffer(sizeof(MyI2C_Regs), 4, (BYTE *) &MyI2C_Regs);
EzI2Cs_SetRomBuffer(sizeof(DESC), DESC);
// Set up ROM buffer
M8C_EnableGInt ;
// Turn on interrupts
EzI2Cs_Start();
EzI2Cs_SetAddr(5);
// Turn on I2C
// Change address to 5
while(1) {
// Place user code here to update and read structure data.
}
}
Example C Code: wakeup sleep using I2C address match event (only for CY8C20xx7/S device families)
//**
// Example code to demonstrate wakeup sleep using I2C address match event
//
// This code sets up the EzI2Cs slave to expose
// a RAM data structure. The RAM structure is
// addressed at I2C address 0x05.
//
// * The instance name of the EzI2Cs User Module is "EzI2Cs".
// * The "Slave_Addr" parameter is set to "5"
// * The "Address_Type" parameter is set to "Static"
// * The "ROM_Registers" parameter is set to "Disable"
// * The "HW Addr Rec" parameter is set to "Enable"
// NOTE: To guarantee data integrity of variables with length 2 or more
// bytes check the EzI2Cs_bBusy_Flag variable before changing values of such
// variables.
//**
#include <m8c.h>
#include "PSoCAPI.h"
struct I2C_Regs {
BYTE bCmd;
BYTE bStat;
} MyI2C_Regs;
// Part specific constants and macros
// PSoC API definitions for all User Modules
// Example I2C interface structure
Document Number: 001-45841 Rev. *I
Page 16 of 21
EzI2C Slave
void main(void)
{
EzI2Cs_SetRamBuffer(sizeof(MyI2C_Regs), 4, (BYTE *) &MyI2C_Regs); // Set up RAM buffer
M8C_EnableGInt ;
// Turn on interrupts
EzI2Cs_Start();
// Turn on I2C
SLP_CFG2 |= SLP_CFG2_I2C_ON;
// Set bit to power I2C block during M8C sleep.
// infinite loop
while(1)
{
// Device will fall asleep once non-zero MyI2C_Regs.bCmd is received.
if(MyI2C_Regs.bCmd)
{
MyI2C_Regs.bCmd = 0;
// Set auto NACK and check if auto NACK is engaged
EzI2Cs_SetAutoNACK();
while (! (EzI2Cs_AUTO_NACK_ON & EzI2Cs_bCheckStatus()));
// enter device into sleep
M8C_Sleep;
}
// Device will be woken up with I2C address match event and auto
// NACK will be automatically disabled upon wakeup
// Place user code here to update and read structure data.
MyI2C_Regs.bStat++;
}
}
Example ASM Code:
;---; Example code to demonstrate the use of the ExI2Cs UM
;
; This code sets up the EzI2Cs slave to expose both
; a RAM and a ROM data structure. The RAM structure is
; addressed at I2C address 0x05, and the ROM structure
; is at I2C address 0x45.
;
; * The instance name of the EzI2Cs User Module is "EzI2Cs".
; * The "Address_Type" parameter is set to "Dynamic".
; * The "ROM_Registers" parameter is set to "Enable".
;
; NOTE: to guarantee data integrity of variables with length 2 or more
; bytes check the EzI2Cs_bBusy_Flag variable before changing values of such
; variables.
;---include "m8c.inc"
include "memory.inc"
include "PSoCAPI.inc"
; part specific constants and macros
; Constants & macros for SMM/LMM and Compiler
; PSoC API definitions for all User Modules
area bss (RAM, REL, CON)
RAM_BUF_SIZE:
equ 10
Document Number: 001-45841 Rev. *I
; Allocate Variables & define constants
; Top of ramp value
Page 17 of 21
EzI2C Slave
BUF_RW_SIZE:
I2C_RAM_Buf:
equ
blk
5
; Only first five bytes writable from I2C Master
RAM_BUF_SIZE ; Reserve RAM for I2C buffer
area text (ROM, REL, CON)
.LITERAL
I2C_ROM_BUF:
; I2C ROM Buffer
DB 11h, 22h, 33h, 44h, 55h, 66h, 77h, 88h
.ENDLITERAL
ROM_BUF_SIZE:
equ
8
export _main
_main:
; Set RAM Buffer
mov
A,>I2C_RAM_Buf
; Save MSB of RAM buffer address
push
A
mov
A,<I2C_RAM_Buf
; Save LSB of RAM buffer address
push
A
mov
A,BUF_RW_SIZE
; Save RW size param
push
A
mov
A,RAM_BUF_SIZE
; Save I2C buffer size
push
A
call
EzI2Cs_SetRamBuffer
ADD
SP,-4
; Reset Stack
; Set ROM Buffer
mov
A,>I2C_ROM_BUF
push A
mov
A,<I2C_ROM_BUF
push
A
mov
A,ROM_BUF_SIZE
push
A
call
EzI2Cs_SetRomBuffer
add
SP,-3
; Save MSB of ROM buffer address
; Save LSB of ROM buffer address
; Save ROM buffer size
; Reset Stack
M8C_EnableGInt
; Enable Global Interrupts
call
; Start and enable IRQ
; Set address to 5
EzI2Cs_Start
mov
A,5
call
EzI2Cs_SetAddr
.Loop:
;; User Code goes here
jmp
.Loop
Configuration Registers
This section describes the PSoC Resource Registers used or modified by the EzI2Cs User Module. The
use of these registers is not required when using the EzI2Cs User Module but is provided as a reference.
Document Number: 001-45841 Rev. *I
Page 18 of 21
EzI2C Slave
Table 2.
Resource I2C_CFG: Bank 0 reg[D6] Configuration Register
Bit
Value
7
Reserved
6
PinSelect
5
Bus Error
IE
4
Stop IE
3
Clock
Rate[1]
2
Clock
Rate[0]
1
0
0
Enable
Slave
Pin Select: selects either SCL and SDA as P1[5] - P1[7] or P1[1] - P1[0].
Bus Error Interrupt Enable: enable I2C interrupt generation on a Bus Error.
Stop Error Interrupt Enable: enable an I2C interrupt on an I2C Stop condition.
Clock Rate[1,0]: select among three valid Clock rates 50, 100, 400 kbps.
Enable Slave: enable the I2C HW block as a bus Slave.
Table 3.
Resource I2C_SCR: Bank 0 reg[D7] Status Control Register
Bit
Value
7
Bus Error
6
NA
5
4
Stop Status ACK out
3
Address
2
Transmit
1
Last Recd
Bit (LRB)
0
Byte
Complete
Bus Error: indicates the detection of a Bus Error condition.
Stop Status: indicates the detection of an I2C stop condition.
ACK out: direct the I2C block to Acknowledge (1) or Not Acknowledge (0) a received byte.
Address: received or transmitted byte is an address.
Last Received Bit (LRB): the value of last received bit (bit 9) in a transmit sequence, status of Ack/Nak
from destination device.
Byte Complete: 8 data bits were received. For Receive Mode, the bus is stalled waiting for an Ack/Nak.
For Transmit Mode Ack Nak was also received (see LRB) and the bus is stalled for the next action.
Table 4.
Resource I2C_DR: Bank 0 reg[D8] Data Register
Bit
Value
7
6
5
4
3
2
1
0
Data
Received or Transmitted data. To transmit data, you must load this register before a write to the I2C_SCR
register. Received data is read from this register and may contain an address or data.
Document Number: 001-45841 Rev. *I
Page 19 of 21
EzI2C Slave
Version History
Version
1.2
Originator
DHA
Description
1. The default pin value of the "I2C Pin" parameter was removed, because it can destroy
drive mode of corresponding pins initially set by other user modules.
2. Updated to prevent SCL getting stuck to low.
3. The following changes were done to the Start function:
a. Changed Initial Open-Drain Low drive mode of user module pins to HI-Z analog.
b. Enabled the I2C block.
c. Gave delay 5 nop instructions.
d. Restored the Initial I2C pin.
4. Added "Export EzI2C_StopSlave API" to *.h and *.inc file.
5. Added ability to update Output Pin through shadow register.
6. Updated RAM paging management.
7. Added RAM and ROM Offset Pointers initialization to Start API.
8. Added hardware address recognition feature.
1.30
DHA
Added User code sections to the EzI2Cs UM ISR file.
1.30.b
DHA
1. Updated EzI2Cs_Stop() and EzI2Cs_DisableInt() API function descriptions.
2. Updated predefined values of EzI2Cs_bBusy_Flag variable.
3. Corrected the example code of the EzI2Cs_bBusy_Flag usage.
4. Updated comments for the EzI2Cs_I2C_BUSY_ROM_READ and
EzI2Cs_I2C_BUSY_ROM_WRITE constants definitions.
1.40
DHA
1. Added support for CY8C20xx7/7S devices.
2. The CY8C20xx7/7S devices contain a hardware fix for the interrupt collisionissue. The
user module was updated to support this change.
3. Added new _SetAutoNACK(), _ClearAutoNACK(), and _bCheckStatus () API
functions for the CY8C20xx7/7S device.
4. Added design rule check for allowed combinations of "HW Addr Rec" and "ROMregisters" parameter.
1.50
HPHA
1. Fixed User Module operation for CY8C20055 family.
2. Added CY8C24093 support.
Note
PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.
Document Number: 001-45841 Rev. *I
Page 20 of 21
EzI2C Slave
Document Number: 001-45841 Rev. *I
Revised May 14, 2013
Page 21 of 21
Copyright © 2008-2013 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										SPIM_001-13683.pdf

	

										PSOC Creator Component Datasheet - I2c Master/slave 1.20.pdf

	

										CMPLP_001-13528.pdf

	

										PS2D_001-13681.pdf

	

										ADCINC_001-13251.pdf

	

										Download F-RAM I2C PSoC4 Creator Component User Guide.pdf

	

										Download CyUSB.NET1.pdf

	

										001-45841_EzI2Cs.pdf

	

										001-13561_EzI2Cs.pdf

	

										ShadowRegs_001-16962.pdf

	

										TX8SW_001-16838.pdf

	

										CY8C24x93_TRM.pdf

	

										Download ReleaseNotes1.pdf

	

										AN50987 Getting Started with I2C in PSoC® 1.pdf

	

										AN50987 Getting Started with I2C in PSoC® 1 (Chinese).pdf

	

										001-45841_EzI2Cs.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

