

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 Component - Timer V1.50 Datasheet.pdf

		
				 PSoC® Creator™ Component Data Sheet
Timer
1.50
Features
•
Supports fixed-function and UDB-based
implementations
•
8-, 16-, 24-, or 32-Bit Resolution
•
Configurable Capture modes
•
4 deep capture FIFO
•
Optional capture edge counter
•
Configurable Trigger and Interrupts
•
Configurable Hardware/Software Enable
•
Continuous or 1 shot run modes
General Description
The Timer component provides a capture timer used to time the interval between hardware
events. The Timer is designed to provide an easy method of timing complex real time events
accurately with minimal CPU intervention. The Timer component features may be combined with
other analog and digital components to create complex peripherals.
Timers count only in the down direction starting from the period value and require a single clock
input. The input clock period is the minimum time interval able to be measured. The maximum
timer measurement interval is the input clock period multiplied by the resolution of the timer. The
signal to be captured may be routed from an IO pin or from other internal component outputs.
Once started, the Timer component operates continuously and reloads the timer period value on
reaching the terminal count.
The Timer component capture input is the most useful feature of the timer. On a capture event
the current timer count is copied into a storage location. Firmware may read out the capture
value at any time without timing restrictions as long as the capture FIFO has room. You should
take care to avoid writing to the FIFO if it is full. If the FIFO is full, the oldest value will be over
written and the newly captured value returned in its place the next time the FIFO is read. The
Capture FIFO allows storage of up to 4 capture values. The capture event may be generated by
software, rising edge, falling edge or all edges allowing great measurement flexibility. To further
assist in measurement accuracy of fast signals an optional 7-bit counter may be used to only
capture every n[2..127] of the configured edge type.
PRELIMINARY
Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-63040 Rev. *A
Revised December 4, 2010
Timer
PSoC® Creator™ Component Data Sheet
The trigger and reset inputs allow the Timer component to be synchronized with other internal or
external hardware. The optional trigger input is configurable so that a rising edge, falling edge or
any edge starts the timer counting. A rising edge on the reset input causes the counter to reset
its count as if the terminal count was reached.
An interrupt can be programmed to be generated under any combination of the following
conditions; when the Timer component reaches the terminal count, when a capture event occurs
or after n[1..4] capture events have occurred. The interrupt signal is a read to clear signal.
When to use a Timer
A typical use of the Timer is to record the number of clock cycles between events. A common
use is to measure the number of clocks between two rising edges as might be generated by a
tachometer sensor. A more complex use is to measure the period and duty cycle of a PWM
input. For PWM measurement the Timer component is configured to start on a rising edge,
capture the next falling edge and then capture and stop on the next rising edge. An interrupt on
the final capture signals the CPU that all the captured values are ready in the FIFO. The Timer
component can be used as a clock divider by driving a clock into the clock input and using the
terminal count output as the divided clock output.
Timers share many features with counters and PWMs. A Counter component is better used in
situations that require the counting of a number of events but also provides rising edge capture
input as well as compare output. A PWM component is better used in situations requiring
multiple compare outputs with control features like center alignment, output kill and deadband
outputs.
Input/Output Connections
This section describes the various input and output connections for the Counter. Some I/Os may
be hidden on the symbol under the conditions listed in the description of that I/O.
Note All signals are active high unless otherwise specified.
Input
May Be
Hidden
Description
clock
N
The clock input defines the operating frequency of the Timer component. That is, the timer
period counter value is decremented on the rising edge of this input while the Timer
component is enabled.
reset
N
This input is a synchronous reset requiring at least one rising edge of the clock to implement
the resets of the counter value and the capture counter. It resets the period counter to the
period value. It also resets the capture counter.
Note For PSoC 3 ES2 silicon, the Terminal Count pin for the fixed function Timer is held
HIGH in Reset. A schematic fix for this is provided under "Reset in Fixed Function Block" in
the Functional Description section of this data sheet.
For PSoC 3 ES3 or later silicon, the Terminal Count pin for the fixed function Timer is held
LOW in Reset
PRELIMINARY
Page 2 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Input
Timer
May Be
Hidden
Description
enable
Y
Hardware enable of the Timer component. This connection enables the period counter to
decrement on each rising edge of the clock. If this input is low the outputs are still active but
the Timer component does not change states.
capture
Y
Captures the period counter value to a 4-sample FIFO in the UDB, or to a single sample
register in the Fixed Function block. The input pin is visible if enabled by the Capture Mode
parameter as set in the Configure dialog. No values will be captured if the Timer is disabled.
trigger
Y
This input only displays when the Trigger Mode parameter is enabled in the Configure dialog.
If the Trigger Mode parameter is set to "None" it causes the Timer to operate by beginning to
down count from the period as soon as the block is started. If the parameter is set to one of
the edge types, it causes the Timer to delay the start of the Period down count until the
appropriate edge type is detected. The trigger edge is not captured nor does it generate an
interrupt. Typically the trigger and capture inputs are tied together but may be used separately
for design flexibility.
Output
May Be
Hidden
Description
tc
N
Terminal count output goes high if the Timer component has started and the count value
is equal to the terminal count (zero). The terminal count output is a zero compare of the
period counter value. As long as the period counter is zero and the Timer component is
enabled, the output will be high.
interrupt
N
The interrupt output is a copy of the interrupt source configured in the hardware. The
sources of the interrupt are configured through software as being any of the status bits:
• Terminal Count Event
• Capture Event
• Capture FIFO Full (UDB implementation only)
Once an interrupt has been triggered, the status register must be read in order to clear it.
This is easily done using either GetInterruptSource() or ReadStatusRegister().
capture_out Y
The capture_out output is an indicator of when a hardware capture has been triggered.
The output pin is available for the UDB implementation only.
Schematic Macro Information
The default Timer in the Component Catalog is a schematic macro using a Timer component
with default settings. It is connected to a 24 MHz bus clock and a Logic Low component.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 3 of 29
Timer
PSoC® Creator™ Component Data Sheet
Parameters and Setup
Drag a Timer component onto your design and double-click it to open the Configure dialog.
Hardware vs. Software Configuration Options
Hardware configuration options change the way the project is synthesized and placed in the
hardware. You must rebuild the hardware if you make changes to any of these options. Software
configuration options do not affect synthesis or placement. When setting these parameters
before build time you are setting their initial value which may be modified at any time with the
API provided. Most parameters described in the next sections are hardware options. The
software options will be noted as such.
Resolution
The Resolution parameter defines the bit-width resolution of the Timer. The default is 8-bit.
Implementation
The Implementation parameter allows you to choose either a fixed function block (default) or a
UDB implementation of the Timer.
PRELIMINARY
Page 4 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Period (Software)
The Period parameter defines the max counts value (or rollover point) for the period counter.
The default is 256. The limits of this value are defined by the Resolution parameter. The
maximum value of the Period value is defined as (2^8), (2^16), (2^24), and (2^32), as shown in
the following table. The Period value may be modified by the WritePeriod() API.
Resolution
Maximum period count values
8
256
16
65536
24
16777216
32
4294967296
Trigger Mode (Software)
The Trigger Mode parameter configures the implementation of the trigger input. This parameter
is only active when Implementation is set to "UDB." This parameter is not available when set to
"Fixed Function."
This value is an enumerated type and can be set to any of the following values:
•
“None” (default): No trigger implemented and the trigger input pin is hidden
•
“Rising Edge”: Trigger (enable) the period counter value on the first rising edge of the
trigger input
•
“Falling Edge”: Trigger (enable) the period counter value on the first falling edge of the
trigger input
•
“Either Edge”: Trigger (enable) the period counter value on the first edge of the trigger
input
•
“Software Controlled”: Control register bits define what edge of the trigger input to use to
trigger the timer. May be changed at any time by API by setting calling the
SetTriggerMode() function
Capture Mode (Software)
The Capture Mode section contains three parameters: Capture Mode Value, Enable Capture
Counter, and Capture Count.
Capture Mode Value
The Capture Mode Value Parameter configures the implementation of the capture input. This
parameter is available in the fixed function timer implementation but is not configurable to which
edge. All capture on the fixed function block is implemented on the rising edge of the capture
input.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 5 of 29
Timer
PSoC® Creator™ Component Data Sheet
This value is an enumerated type and can be set to any of the following:
•
“None”: No capture implemented and the capture input pin is hidden
•
“Rising Edge” (default): Capture the period counter value on any rising edge of the
capture input
•
“Falling Edge”: Capture the period counter value on any falling edge of the capture input
•
“Either Edge”: Capture the period counter value on any edge of the capture input
•
“Software Controlled”: Control register bits define what edge of the capture input to use to
capture data to the FIFO. May be changed at any time by API by setting calling the
SetCaptureMode() function
Enable Capture Counter (Software)
The Capture Counter Enabled parameter allows you to implement a 7-bit counter that is
accessible by software to define how many capture events happen before the period counter is
captured to the FIFO. It may be necessary to capture every 3rd event in which case the capture
counter should be set to a value of 3. If this parameter is set the 7-bit counter may be changed at
any time with the API SetCaptureCount().
Capture Count (Software)
The Capture Count parameter configures the initial value in the capture counter. The capture
counter allows for 2-127 capture events to happen before the period counter value is captured to
the data FIFO. If the capture count is set to 100 then every 100th capture event will capture the
period counter to the FIFO. The capture count value may be modified by the API
SetCaptureCount().
Enable Mode
This parameter specifies the mode of the component:
•
“Software Only”: The Timer is enabled only by setting the enable bit in the control register.
In this mode the enable input pin will be hidden from the symbol.
•
“Hardware Only”: The Timer is enabled only by setting the enable bit in the control
register. In this mode the control register may be removed from the implementation but
the control register enable bit has no affect on operation. This option is only available
when Implementation is set to "UDB."
•
“Hardware and Software”: The Timer is enabled only if both the control register bit and the
hardware input are active (high).
PRELIMINARY
Page 6 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Run Mode
The Run Mode parameter allows you to configure the Timer component to run continuously or in
one of two one shot modes:
•
“Continuous”: The Timer will run so long as the enable conditions are true
•
“One Shot”: The Timer will run through a single period and stops after terminal count. On
stop, it reloads period into period counter. It will begin another single cycle if the period
counter is reset or Timer component is hardware reset.
•
“One Shot halt on Interrupt”: The Timer will run through a single period. Timer stops on
occurrence of any interrupt or after terminal count. If the Timer reaches terminal count
after stop, it reloads period into period counter. It will begin another single cycle if the
period counter is reset or Timer component is hardware reset.
Note In order to be sure that One Shot mode does not start prematurely, you should use
a Trigger Mode to control the start time, or use some form of software enable mode
("Software Only" or "Hardware and Software").
Interrupt (Software)
The Interrupt section contains various "Interrupt On" parameters. These values are OR’d with
any of the other “Interrupt On” parameters to give a final group of events that can trigger an
interrupt. This configures the startup setting, it may be modified at any time with the API
SetInterruptMode().
•
On TC – Allows you to interrupt on a terminal count.
•
On Capture – Allows you to configure a valid capture as an interrupt source.
•
•
Number Of Captures – This field is used to specify the number of captures to count
before an interrupt on capture is triggered. This allows software to deal with capture
data only after the data expected is available and to not be overworked by calling the
ISR too often. This value can be set to a value from 1 to 4. It may also be set at any
time with the API SetInterruptCount().
On FIFO Full – The Interrupt on FIFO Full parameter allows you to interrupt when the
capture FIFO is full.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 7 of 29
Timer
PSoC® Creator™ Component Data Sheet
Clock Selection
For the Timer component, the clock input can be any signal for which you wish to count the rising
edges. It is expected that this input is periodic with its frequency, in combination with the period
counts definition of your timer, defining the output period of your timer.
WARNING When configured to utilize the fixed function block in the device, the Timer
component will have the following restrictions:
1. The clock input must be from a local clock that is synchronized to the bus clock or directly
sourced from the bus clock (configure the Clock Type as "Existing" and Source as
"BUS_CLK").
2. If the frequency of the clock matches the bus clock, then the clock must be a direct
connection to the bus clock (again configure the Clock Type as "Existing" and Source as
"BUS_CLK"). A local clock with a frequency that matches the bus clock will generate an error
during the build process.
For UDB-based Components
If the component allows asynchronous clocks, you may use any clock input frequency within the
device's frequency range.
If the component requires synchronization to the bus clock, then when using a routed clock* to
clock the component, the frequency of the routed clock cannot exceed 1/2 the routed clock's
source clock frequency.
•
If the routed clock is synchronous to the bus clock, then it is 1/2 the bus clock.
•
If the routed clock is synchronous to one of the clock dividers, its maximum is 1/2 of that
clock rate.
Placement
The Timer component is placed based on the FixedFunction parameter. Whether you set this
option or it is set by the auto placement operation, if the FixedFunction is set then this
component will be placed in an available fixed function Counter/Timer block; otherwise it will be
placed in the UDB array as determined for best placement for the whole design.
*
A routed clock is anything that is not a clock symbol directly attached to the clock input.
PRELIMINARY
Page 8 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Resources
API Memory
(Bytes)
Digital Blocks
Resolution
Datapaths
Macro
cells
Status
Registers
Control
Registers
Counter7
Flash
RAM
Pins (per
External I/O)
8-Bits
1
TBD
1
1
0
TBD
TBD
TBD
16-Bits
2
TBD
1
1
0
TBD
TBD
TBD
24-Bits
3
TBD
1
1
0
TBD
TBD
TBD
32-Bits
4
TBD
1
1
0
TBD
TBD
TBD
Other options
TBD
TBD
TBD
TBD
TBD
TBD
TBD
TBD
Application Programming Interface
Application Programming Interface (API) routines allow you to configure the component using
software. The following table lists and describes the interface to each function. The subsequent
sections cover each function in more detail.
By default, PSoC Creator assigns the instance name “Timer_1” to the first instance of a
component in a given design. You can rename it to any unique value that follows the syntactic
rules for identifiers. The instance name becomes the prefix of every global function name,
variable, and constant symbol. For readability, the instance name used in the following table is
“Timer”.
Function
Description
void Timer_Init(void)
Initializes or Restores default Timer configuration
void Timer_Enable(void)
Enables the Timer.
void Timer_Start(void)
Initialize the Timer with default customizer values. Enable the Timer
operation by setting the enable bit of the control register for either of the
software controlled enable modes.
void Timer_Stop (void)
Disable the Timer operation; Clears the enable bit of the control register
for either of the software controlled enable modes.
void Timer_SetInterruptMode
(uint8 interruptMode)
Enables or disables the sources of the interrupt output from the optional
interrupt sources defined by the bits in the status register.
uint8Timer_GetInterruptSource (void)
Provides an interface where the firmware can query for the source of the
a triggered interrupt placed on the interrupt output pin of the Timer
void Timer_SetCaptureMode
(uint8 captureMode)
Sets the capture mode of the Timer from one of the enumerated type
options available
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 9 of 29
Timer
PSoC® Creator™ Component Data Sheet
Function
Description
void Timer_SetTriggerMode
(uint8 triggerMode)
Sets the trigger mode of the timers trigger input from one of the
enumerated type options available
void Timer_EnableTrigger (void)
Enables the trigger mode of the timer by setting the correct bit in the
control register
void Timer_DisableTrigger (void)
Disables the trigger mode of the timer by clearing the correct bit in the
control register
void Timer_SetInterruptCount
(uint8 interruptCount)
Sets the number of captures to count before an interrupt is triggered for
the InterruptOnCapture source. Only available in a UDB implementation.
void Timer_SetCaptureCount
(uint8 captureCount)
Sets the number of captures events to count before actually capturing
the Timer value to the FIFO. Only applicable in the UDB implementation.
uint8 Timer_ReadCaptureCount (void)
Reads the current value of the NumberOfCaptures definition which
defines the number of captures counted before an interrupt is triggered
for the InterruptOnCapture source
void Timer_SoftwareCapture (void)
Forces a capture of the period counter to the capture FIFO
uint8 Timer_ReadStatusRegister (void)
Reads the status register and returns its state. This function should use
defined types for the bit-field information as the bits in this register may
be permutable.
uint8 Timer_ReadControlRegister (void)
Reads the control register and returns its state. This function should use
defined types for the bit-field information as the bits in this register may
be permutable.
void Timer_WriteControlRegister
(uint8 control)
Sets the bit-field of the control register. This function should use defined
types for the bit-field information as the bits in this register may be
permutable.
uint8/16/32 Timer_ReadPeriod (void)
Reads the Period register returning the last period value written to it
void Timer_WritePeriod
(uint8/16/32 period)
Writes the Period register with the new desired period or max counts
value
uint8/16/32 Timer_ReadCounter (void)
Forces a software capture of the period value into the capture FIFO and
oldest data from the capture FIFO
void Timer_WriteCounter
(uint8/16/32 counter)
Allows the user to overwrite the counter value as a new value to count
down from. Called during initialization to preload the period value.
uint8/16/32 Timer_ReadCapture (void)
Reads the latest captured period counter value. Firmware must check
the FIFO status for data before reading
void Timer_ClearFIFO (void)
Clears all previous capture data from the capture FIFO
void Timer_Sleep (void)
Stops the Timer operation and saves the user configuration
void Timer_Wakeup (void)
Restores and enables the user configuration
void Timer_SaveConfig(void)
Save the configuration of Timer.
PRELIMINARY
Page 10 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Function
void Timer_RestoreConfig(void)
Description
Restore the configuration of Timer.
Global Variables
Variable
Description
Timer_initVar Indicates whether the Timer has been initialized. The variable is initialized to 0 and set to 1 the first
time Timer_Start() is called. This allows the component to restart without reinitialization in after the
first call to the Timer_Start() routine.
If reinitialization of the component is required, then the Timer_Init() function can be called before
the Timer_Start() or Timer_Enable() function.
void Timer_Init(void)
Description:
Initialize/restore default Timer configuration. The Timer starts in "Continuous" run mode by
default. The interrupts are chosen as the output from the status register. If UDB mode is set,
then the default Compare mode and Capture mode values are set as defined per the user
configuration. The FIFO is cleared in case of UDB mode.
Parameters:
None
Return Value:
None
Side Effects:
All registers will be set to their initial values and FIFO is cleared. This will reinitialize the
component.
void Timer_Enable(void)
Description:
Enables the Timer by setting 7th bit of the control register for either of the software controlled
enable modes. In case of Fixed function mode of the Timer, the chosen fixed function block is
enabled.
Parameters:
None
Return Value:
None
Side Effects:
If the Enable mode is set to Hardware only then this function has no effect on the operation of
the Timer.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 11 of 29
Timer
PSoC® Creator™ Component Data Sheet
void Timer_Start(void)
Description:
Initialize the Timer with default customizer values. Enable the Timer operation by setting the
enable bit of the control register for either of the software controlled enable modes.
Parameters:
None
Return Value:
None
Side Effects:
Sets the enable bit in the control registers of the Timer. If the Enable Mode is set to hardware
only this has no affect on the Timer. If the enable mode is set to Hardware and Software then
this will only enable the software portion of this mode and the hardware input must also be
enabled to finally enable the Timer.
void Timer_Stop (void)
Description:
Disable the Timer operation by resetting the 7th bit of the control register for either of the
software controlled enable modes. Disables the Fixed function block which had been chosen.
Parameters:
None
Return Value:
None
Side Effects:
Clears the enable bit in the control register of the counter.
void Timer_SetInterruptMode (uint8 interruptMode)
Description:
Enables or disables the sources of the interrupt output from the optional interrupt sources
defined by the bits in the status register.
Parameters:
uint8: interruptMode – Bit-Field containing the status bits you want enabled as interrupt
sources. This parameter should be an OR’ing of the desired status bit masks defined in the
Timer.h header file.
Return Value:
None
Side Effects:
All interrupt sources are OR’d together to provide a single interrupt output. You must call
GetInterruptSource to review which enabled status bit caused the interrupt and to clear the
interrupt as they are sticky bits in the status register.
uint8 Timer_GetInterruptSource (void)
Description:
Returns the mode register defining which events are enabled as interrupt sources.
Parameters:
None
Return Value:
uint8: Bit-Field containing the enabled interrupt sources as defined by the status register bitfield constants defined in the Timer.h header file
Side Effects:
Clears any active interrupts.
PRELIMINARY
Page 12 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
void Timer_SetCaptureMode (uint8 captureMode)
Description:
Sets the capture mode of the Timer component from one of the enumerated type options
available. The 5th and 6th bits of the control register are cleared and rewritten with the new
user configuration.
Parameters:
enum: captureMode – This parameter should be defined using one of the capture mode
constants defined in the Timer.h header file. Available enum values are:
Timer__B_TIMER__CM_NONE
Timer__B_TIMER__CM_RISINGEDGE
Timer__B_TIMER__CM_FALLINGEDGE
Timer__B_TIMER__CM_EITHEREDGE
Timer__B_TIMER__CM_SOFTWARE
Return Value:
None
Side Effects:
Only available if the Capture Mode parameter is set to Software Controlled on the Configure
dialog. Resource usage may be minimized by not allowing software control of the capture
mode and the API resource is minimized by optimizing out.
void Timer_SetTriggerMode (uint8 triggerMode)
Description:
Sets the trigger mode of the timer from one of the enumerated type options available.
Parameters:
enum: triggerMode – This parameter should be defined using one of the trigger mode
constants defined in the Timer.h header file.
Available enum values are:
Timer__B_TIMER__TM_NONE
Timer__B_TIMER__TM_RISINGEDGE
Timer__B_TIMER__TM_FALLINGEDGE
Timer__B_TIMER__TM_EITHEREDGE
Timer__B_TIMER__TM_SOFTWARE
Return Value:
None
Side Effects:
Only available if the trigger mode is set to Software Controlled. Resource usage may be
minimized by not allowing software control of the trigger mode and the API resource is
minimized by optimizing out.
void Timer_EnableTrigger (void)
Description:
Enables the trigger mode of the timer by setting the 4th bit in the control register.
Parameters:
None
Return Value:
None
Side Effects:
None
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 13 of 29
Timer
PSoC® Creator™ Component Data Sheet
void Timer_DisableTrigger (void)
Description:
Disables the trigger mode of the timer by resetting the 4th bit in the control register.
Parameters:
None
Return Value:
None
Side Effects:
None
void Timer_SetInterruptCount (uint8 interruptCount)
Description:
Sets the number of captures to count before an interrupt is triggered for the
InterruptOnCapture source. This function is available only when InterruptOnCaptureCount is
enabled and the control register is not removed.
Parameters:
uint8: interruptCount – The desired number of capture events to count before the interrupt is
on capture event is triggered to the interrupt output. A value between 0-3 is valid.
Return Value:
None
Side Effects:
None
void Timer_SetCaptureCount (uint8 captureCount)
Description:
Sets the number of capture events to count before a capture is actually performed. This
function is only available if the Enable Capture Counter parameter is selected on the
Configure dialog.
Parameters:
uint8: captureCount – The desired number of capture events to count before capturing the
counter value to the capture FIFO
Return Value:
None
Side Effects:
None
uint8 Timer_ReadCaptureCount (void)
Description:
Reads the current value set for the captureCount parameter as set in the SetCaptureCount
function. This function is only available if the Enable Capture Counter parameter is selected
on the Configure dialog.
Parameters:
None
Return Value:
uint8: current capture count
Side Effects:
None
void Timer_SoftwareCapture (void)
Description:
Forces a software capture of the period counter value to the FIFO
Parameters:
None
Return Value:
none:
Side Effects:
Pushes another value onto the capture FIFO
PRELIMINARY
Page 14 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
uint8 Timer_ReadStatusRegister (void)
Description:
Returns the current state of the status register
Parameters:
None
Return Value:
uint8: Current status register value. The Status register bits are:
[7:4] : Unused (0)
[3] : FIFO not empty status
[2] : FIFO full status
[1] : Registered Capture value
[0] : Terminal count
Side Effects:
Interrupt bits in the status register are clear on read.
uint8 Timer_ReadControlRegister (void)
Description:
Returns the current state of the control register. This API is available only if control register is
not removed.
Parameters:
None
Return Value:
uint8: Current control register value.
Side Effects:
None
void Timer_WriteControlRegister (uint8 control)
Description:
Sets the bit-field of the control register. This API is available only if control register is not
removed.
Parameters:
uint8: Control – Control register Bit-Field. This parameter should be an OR’d grouping of the
control register constants. The control register bits are:
[7] : Timer Enable
[6:5] : Capture Mode select
[4] : Trigger Enable
[3:2] : Trigger Mode select
[1:0] : Interrupt count
Return Value:
None
Side Effects:
None
uint8/16/32 Timer_ReadPeriod (void)
Description:
Reads the Period register returning the last period value written to it.
Parameters:
None
Return Value:
uint8/16/32: Period Value
Side Effects:
None
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 15 of 29
Timer
PSoC® Creator™ Component Data Sheet
void Timer_WritePeriod (uint8/16/32 period)
Description:
Writes the Period register with the new desired period or max counts value.
Parameters:
uint8/16/32: Period – New Period Value
Return Value:
None
Side Effects:
This period value will not be implemented until the current Timer period is complete (that is, at
TC). When TC is reached the new period value will be loaded into the counter and the new
period time will take affect until the period value is written over.
Note If the desired period from the Timer is 'n' times units period, the value passed to this API
must be 'n-1'.
uint8/16/32 Timer_ReadCounter (void)
Description:
Forces a software capture of the period value into the capture FIFO and oldest data from the
capture FIFO
Parameters:
None
Return Value:
uint8/16/32: Counter Value
Side Effects:
If there was already capture data in the FIFO before this function is called then the existing
data will be returned and the forced software capture value will be added to the FIFO and
may be read later with a ReadCapture() call. The user should check the status of the FIFO
before calling the ReadCounter() API to avoid reading unexpected data from the FIFO.
void Timer_WriteCounter (uint8/16/32 counter)
Description:
Writes a value to the counter enabling the user to restart the counter from any value they
deem necessary.
Parameters:
uint8/16/32: Counter – New Counter Value
Return Value:
None
Side Effects:
None
PRELIMINARY
Page 16 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
uint8/16/32 Timer_ReadCapture (void)
Description:
Reads the latest captured period counter value. If no value has been captured to the FIFO
then this value will be the current period counter value.
Parameters:
None
Return Value:
uint8/16/32: Counter or Capture Value
Side Effects:
Once the FIFO is fully read/emptied or it is cleared using ClearFIFO() and no more captures
are taking place, then you can still read the capture FIFO content using the ReadCapture
API. ReadCapture always returns a value from top of the FIFO because it returns
TIMER_LSB_PTR. If you use this API, check for capture FIFO empty status before calling
this API.
void Timer_ClearFIFO (void)
Description:
Clears the capture FIFO of any previously captured data. Here Read capture is called until
FIFO becomes empty.
Parameters:
None
Return Value:
None
Side Effects:
None
void Timer_Sleep (void)
Description:
Stops the Timer operation and saves the user configuration. If Control Register is being used
the enable state of the Timer is saved.
Parameters:
None
Return Value:
None
Side Effects:
None
void Timer_Wakeup (void)
Description:
Restores and enables the user configuration.
Parameters:
None
Return Value:
None
Side Effects:
None
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 17 of 29
Timer
PSoC® Creator™ Component Data Sheet
void Timer_SaveConfig(void)
Description:
Saves the configuration of Timer. Counter and capture values are saved. In UDB mode the
control register value is saved if its not removed.
Parameters:
None
Return Value:
None
Side Effects:
None
void Timer_RestoreConfig(void)
Description:
Restores the configuration of Timer.
Parameters:
None
Return Value:
None
Side Effects:
Calling this function without calling Timer_SaveConfig() may produce unexpected behavior.
Sample Firmware Source Code
The following is a C language example demonstrating the basic functionality of the Timer
component. This example assumes the component has been placed in a design with the default
name "Timer_1."
Note If you rename your component you must also edit the example code as appropriate to
match the component name you specify.
#include <device.h>
void main()
{
Timer_1_Start();
}
PRELIMINARY
Page 18 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Functional Description
As described previously the Timer component can be configured for multiple uses. This section
will describe those configurations in more detail. Before digging into the possible configurations it
is important to know the limitations of using the fixed function timer versus the UDB
implementation.
Fixed Function Block Limitations
The Counter, Timer, and PWM components have very similar internal requirements that are
implemented as fixed function blocks in the chip. There are a few configuration options for one of
these blocks, and the limitations of this block as a timer versus the UDB implementation are
listed below. The fixed function timer:
•
Is 8 or 16-bits only
•
Interrupts on Terminal Count and/or Capture only.
•
Captures on Rising Edge only.
•
Must be run in continuous mode; As a corollary, no trigger mode is available.
•
Disables the 7-bit Capture Counter.
•
Has a single sample register instead of a 4 sample FIFO for captured values.
Default Configuration
The default configuration of the Timer component provides the most basic timer which simply
decrements a period count value on every rising edge of the clock input. With this configuration
the component symbol will look like this:
Figure 1: Default Timer Configuration
Terminal count indicates in real time whether the counter value is at the terminal count (zero).
The period is programmable to be any value from 1 to (2 ^ Resolution) -1.
By default the capture functionality is configured to capture on every rising edge of the capture
input. Since the default configuration is using the fixed function block the only option for capture
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 19 of 29
Timer
PSoC® Creator™ Component Data Sheet
mode is rising edge. Other modes are available when the implementation is changed to the UDB
selection.
The following is a waveform showing the expected results.
Figure 2: Default Timer Implementation Example Waveform
Fixed Function Configuration
When configured to use the Fixed Function block for the Timer implementation, the Timer
component is limited in placement options to one of the Fixed Function blocks on the chip. You
should consider your resource needs when choosing to implement the Timer component in the
fixed function block as an 8-bit timer placed in the Fixed Function block wastes half of the fixed
function block.
High/Low Time Measure Mode
It is often important to measure the high and low times of a signal. The Timer can be configured
to make this implementation much simpler. By configuring the Trigger Mode as “Rising Edge"
and the Capture Mode as "Either Edge," the Timer will start on the first rising edge at the Period
value and count down capturing each edge of the input signal after that.
As long as data is read in a timely manner from the capture FIFO, the calculations for High and
Low time will be as follows:
Figure 3 High/Low Time Calculations
1. High Time #1 = (Period – Capture #1) * Clock Frequency
2. Low Time #1 = (Capture #1 – Capture #2) * Clock Frequency
3. High Time #2 = (Capture #2 – Capture #3) * Clock Frequency
4. Etc.
PRELIMINARY
Page 20 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
With the following Schematic implementation, setting the Trigger Mode to "Falling Edge" will first
measure the low time and continue with alternating edge types until the timer is enabled or reset:
Figure 4 Timer Schematic
Reset in Fixed Function Block
On PSoC3 ES2 silicon, the fixed function implementation of the Timer differs from the UDB
implementation in that the TC during reset goes high, whereas in the UDB implementation the
TC goes low. The schematic below shows a Fixed Function Timer implementation which drives
the TC low while the reset input is active, thus giving the same functionality as the UDB
implementation of the same component.
Block Diagram and Configuration
The Timer component may be implemented using a fixed function block or using UDB
components. An advance parameter “Implementation” (FixedFunction) allows you to specify the
block that you expect this component to be placed in or you may choose the Auto
implementation, which will select either of these implementations at build time based on the
components and parameters of your entire design.
The Fixed function implementation will consume one of the Timer/Counter/PWM blocks defined
in the TRM. In either the fixed function or UDB configuration all of the registers and API are
consolidated to give a single entity look and feel. The API is described in the previous section
and the registers are described here to define the overall implementation of the Timer.
The two hardware implementations you chose are selected from a top level schematic as shown
in the following diagram:
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 21 of 29
Timer
PSoC® Creator™ Component Data Sheet
Figure 5 Timer Implementations Schematic
This configuration allows for either the Fixed Function block or the UDB implementation to be
selected and the extra pieces such as the internal interrupt and the routing of the I/O are handled
in the background to give this single component look and feel.
Registers
Timer_Status
The status register is a read only register which contains the various status bits defined for the
Timer component. The value of this register is available with the Timer_ReadStatusRegister()
function call. The interrupt output signal (interrupt) is generated from an OR’ing of the masked
bit-fields within this register. You can set the mask using the Timer_SetInterruptMode() function
call and upon receiving an interrupt you can retrieve the interrupt source by reading the Status
register with the Timer_GetInterruptSource() function call. The Status register is a clear on read
register so the interrupt source is held until the Timer_GetInterruptSource() or the
Timer_ReadStatusRegister() function is called. The Timer_GetInterruptSource() API will handle
which interrupts are enabled to provide an accurate report of what the actual source of the
interrupt was. All operations on the status register must use the following defines for the bit-fields
as these bit-fields may be moved around within the status register during place and route.
The status data is registered at the input clock edge of the counter giving all bits configured as
Mode=1 the timing resolution of the counter, these bits are sticky and are cleared on a read of
the status register. All other bits configured as mode=0 are transparent and read directly from the
inputs to the status register, they are not sticky and therefore not clear on read. All bits
configured as Mode=1 are indicated with an asterisk (*) in the defines listed below.
PRELIMINARY
Page 22 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
There are several bit-fields masks defined in the status register. Any of these bit-fields may be
included as an interrupt source. The #defines are available in the generated header file (.h) as
follows:
•
Timer_STATUS_TC * – Indicates a terminal count has been reached. This bit may be
used as an interrupt source.
•
Timer_STATUS_CAPTURE * – Indicates a Capture event has been triggered. This bit
may be used as an interrupt source.
•
Timer_STATUS_FIFO_FULL – Indicates that the capture FIFO is full. This bit may be
used as an interrupt source.
•
Timer_STATUS_FIFO_NEMPTY – Indicates that the capture FIFO is not empty.
Note The Timer_STATUS_FIFO_FULL and Timer_STATUS_FIFO_NEMPTY bits are not
available for the Fixed-Function implementation of the Timer component since there is no FIFO
available.
Timer_Control
The Control register allows you to control the general operation of the counter. This register is
written with the Timer_WriteControl() function call and read with the Timer_ReadControl(). When
reading or writing the control register you must use the bit-field definitions as defined in the
header (.h) file. The #defines for the control register are as follows:
•
Timer_CTRL_INTCNT – The interrupt count control is a 3-bit field that allows you to
configure the number of captures to count before an interrupt is triggered. The value of
this bit-field defines a value of 1-4 (as 0-3 + 1) for the number of capture events to count.
Set this value by calling the Timer_SetInterruptCount() function with a value of 0-3.
•
Timer_CTRL_TRIGPOL – The trigger polarity mode control is a 2-bit field used to define
the expected trigger input operation. This bit-field will be 2 consecutive bits in the control
register and all operations on this bit-field must use the #defines associated with the
capture types available. These are:
•
Timer__B_TIMER__TM_NONE
•
Timer__B_TIMER__TM_RISINGEDGE
•
Timer__B_TIMER__TM_FALLINGEDGE
•
Timer__B_TIMER__TM_EITHEREDGE
This bit-field is configured at initialization with the trigger type defined in the TriggerMode
parameter. Or this functionality can be set with the Timer_SetTriggerMode() function
passing one of the enumerated values listed above. There is no trigger function in the
Fixed Function block.
•
Timer_CTRL_TRIG_EN – The trigger enable control allows you to disable the trigger
functionality through software for any period of time when that functionality is not required.
While this bit is zero the Timer component will function normally. If this bit set to zero
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 23 of 29
Timer
PSoC® Creator™ Component Data Sheet
while the timer is waiting for a trigger event the Timer component will resume operation as
if a trigger has happened.
•
Timer_CTRL_CPOL – The capture polarity mode control is a 2-bit field used to define the
expected capture input operation. This bit-field is 2 consecutive bits in the control register
and all operations on this bit-field must use the #defines associated with the capture types
available. These are:
•
Timer__B_TIMER__CM_NONE
•
Timer__B_TIMER__CM_RISING
•
Timer__B_TIMER__CM_FALLING
•
Timer__B_TIMER__CM_EITHER
•
Timer__B_TIMER__CM_ALT_RISING
•
Timer__B_TIMER__CM_ALT_FALLING
This bit-field is configured at initialization with the capture type defined in the
CaptureMode parameter.
•
Timer_CTRL_ENABLE – The enable bit controls software enabling of the Timer
component operation. The Timer component has a configurable enable mode defined at
build time. If the Enable mode parameter is set to “Input Only” then the functionality of this
bit is none. However in either of the other modes the Timer component does not
decrement if this bit is not set to one. Normal operation requires that this bit is set and
held at one during all operation of the Timer component.
Capture (8, 16, 24 or 32-bit based on Resolution)
The capture register contains the FIFO’s capture counter value. Any hardware capture event will
push the current counter value onto this FIFO. The FIFO is read one entry at a time using the
Timer _ReadCapture() function call. It may be useful to read the status register for the level
indication of the FIFO before trying to read from the FIFO.
Additionally the Timer_1_ReadCounter() function call forces a capture of data to the FIFO and
returns the oldest data from the FIFO, thus adding one capture to the FIFO and removing one
capture. This information is indicated in the STATUS_FIFOFULL and STATUS_FIFONEMPTY
status bits. Hardware captures are blocked while the FIFO is full preventing overwriting of data in
the FIFO. The user must handle data in the FIFO in a timely manner to avoid missing capture
data.
Period (8, 16, 24 or 32-bit based on Resolution)
The period register contains the period value set by the user through the Timer_WritePeriod()
function call and defined by the Period parameter at initialization. The Period register has no
affect on the Timer component until a terminal count is reached at which time the period counter
register is reloaded.
PRELIMINARY
Page 24 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
Counter (8, 16, 24 or 32-bit based on Resolution)
The counter register contains the period counter value throughout the operation of the Timer
component. Any hardware capture event will push the current counter value onto the FIFO. This
counter is decremented on each rising edge of the clock input so long as the Timer component is
in an enabled state. The counter register should not be written to from the CPU.
Component Debug Window
The Timer component supports the PSoC Creator component debug window. Refer to the
appropriate device data sheet for a detailed description of each register. The following registers
are displayed in the Timer component debug window. Some registers are available in the UDB
implementation (indicated by *) and some registers are only available in the Fixed Function
Implementation (indicated by **). All other registers are available for either configuration.
Register:
Timer_1_CONTROL
Name:
Control Register
Description:
Refer to Timer_Control register description above for bit-field definitions.
Register:
Timer_1_CONTROL2 **
Name:
Fixed Function Control Register #2
Description:
The Fixed Function Timer block has a second configuration register. Refer to the Technical
Reference Manual for bit-field definitions.
Register:
Timer_1_STATUS_MASK *
Name:
Status Register Interrupt Mask Configuration
Description:
Allows the user to enable any status bit as an interrupt source at the interrupt output pin of the
component. Refer to Timer_Status register description above for 1-to-1 correlation of bit-field
definitions.
Register:
Timer_1_STATUS_AUX_CTRL *
Name:
Auxilliary Control Register for the Status Register
Description:
Allows the user to enable the interrupt output of the internal status register through the bit-field
“INT_EN”. Refer to the Technical Reference Manual for bit-field definitions.
Register:
Timer_1_STATUS_MASK *
Name:
Status Register Interrupt Mask Configuration
Description:
Enables interrupt mask bits with a 1-to-1 correspondence to the status register (Timer_Status)
bit-field descriptions above.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 25 of 29
Timer
PSoC® Creator™ Component Data Sheet
Register:
Timer_1_PERIOD
Name:
Timer Period Register
Description:
Defines the period value reloaded into the period counter at the beginning of each cycle of the
Timer.
Register:
Timer_1_COUNTER
Name:
Timer Counter Register
Description:
Indicates the current counter value (in clock cycles from Period down to zero) of the current
timer period cycle.
Register:
Timer_1_GLOBAL_ENABLE **
Name:
Fixed Function Timer Global Enable Register
Description:
Enables the Fixed Function Timer for operation. Refer to the Technical Reference Manual for
bit-field definitions.
Conditional Compilation Information
The counter API requires two conditional compile definitions to handle the multiple configurations
it must support. It is required that the API conditionally compile on the Resolution chosen and the
Implementation chosen from either the fixed function block or the UDB blocks. The two
conditions defined are based on the parameters FixedFunction and Resolution. The API should
never use these parameters directly but should use the two defines listed below.
Timer_DataWidth
The datawidth define is assigned to the Resolution value at build time. It is used throughout the
API to compile in the correct data width types for the API functions relying on this information.
Timer_UsingFixedFunction
The Using Fixed Function define is used mostly in the header file to make the correct register
assignments as the registers provided in the fixed function block are different than those used
when the Timer component is implemented in UDB’s. In some cases this define is also used with
the DataWidth define because the Fixed Function block is limited to 16 bits maximum data width.
Constants
There are several constants defined for the status and control registers as well as some of the
enumerated types. Most of these are described above for the Control and Status Register.
However there are more constants needed in the header file to make all of this happen. Each of
the register definitions requires either a pointer into the register data or a register address.
Because of multiple Endianness` of the compilers, it is required that the CY_GET_REGX and
PRELIMINARY
Page 26 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Timer
CY_SET_REGX macros are used for register accesses greater than 8-bits. These macros
require the use of the _PTR definition for each of the registers.
It is also required that the control and status register bits be allowed to be placed and routed by
the fitter engine in that we must have constants that define the placement of the bits. For each of
the status and control register bits there is an associated _SHIFT value which defines the bit’s
offset within the register. These are used in the header file to define the final bit mask as an
_MASK definition (The _MASK extension is only added to bit-fields greater than a single bit, all
single bit values drop the _MASK extension).
The fixed function block has some limitations compared to the UDB implementations because it
is designed with limited configurability. The UDB implementation is implemented according to the
following block diagram.
Figure 6 UDB Implementation
The block diagram above shows the Timer component period counter implemented as a
datapath and some control logic. There is a status register and a control register that feed into
and come out of the logic cloud as well. All of the logic for the Timer component is the same
whether the datapath is 8, 16, 24, or 32 bits wide.
References
Not applicable
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 27 of 29
Timer
PSoC® Creator™ Component Data Sheet
DC and AC Electrical Characteristics
5.0V/3.3V DC and AC Electrical Characteristics
Parameter
Typical
Min
Max
Units
Conditions and Notes
Input
Input Voltage Range

Vss to Vdd
V
Input Capacitance

pF
Input Impedance

Maximum Clock Rate

67
MHz
Component Changes
This section lists the major changes in the component from the previous version.
Version
Description of Changes
Reason for Changes / Impact
1.50.a
Added information to the component that
advertizes its compatibility with silicon
revisions.
The tool reports an error/warning if the component is used
on incompatible silicon. If this happens, update to a
revision that supports your target device.
1.50
Added Sleep/Wakeup and Init/Enable APIs.
To support low power modes, as well as to provide
common interfaces to separate control of initialization and
enabling of most components.
Updated the Verilog file to implement
address an issue where Capture logic does
not check for FIFO status.
Capture implementation does not check for FIFO status. If
captures are done even after FIFO is full, the oldest value
gets overwritten, and so on. So, FIFO has to be read
before the values get overwritten.
Updated the Verilog file so that the Trigger
mode implementation starts the Timer only
after triggering the Timer.
This change addresses a noted issue with a previous
version of the Timer. The Timer should start only after
triggering it if Trigger Mode is used.
Updated the Configure dialog to display a
warning if an incorrect configuration
combination of parameters is used.
In certain combinations of parameters, One Shot mode
does not work. So a warning was added to indicate when
those certain parameters are used.
Updated the Configure dialog to show
capture out terminal when Fixed Function
Timer is chosen.
When using a Fixed Function Timer, the capture_out
terminal was getting incorrectly hidden giving an
impression that capture is not supported in Fixed Function
mode.
Updated the Configure dialog to hide the
capture count value field when a Fixed
Function Timer is used.
The Capture Count feature should not be available for the
Fixed Function Timer but this was visible.
Updated how the Period count value is
calculated.
In earlier versions of the Timer, the Period displayed in
Configure dialog was incorrect. This is fixed by making the
count value loaded to the count register off by one. Timers
PRELIMINARY
Page 28 of 29
Document Number: 001-63040 Rev. *A
PSoC® Creator™ Component Data Sheet
Version
Timer
Description of Changes
Reason for Changes / Impact
that are updated from earlier versions will behave
identically but the Period displayed in the Configure dialog
will be one higher than before.
Updated how reset works to be synchronous Reset is synchronous with the clock. It requires at least
one clock cycle to reset the Timer. Clarified this in the data
with the clock.
sheet.
Fixed a warning related to the 'Counter'
parameter in the WriteCounter() API.
The 'Counter' parameter was undefined in the FF block of
the WriteCounter() API. Therefore, a warning was getting
generated. Now the 'Counter' parameter is included.
Changed the ReadCounter() API to be a
single cycle operation for all Timer
resolutions.
When using the software capture option of the UDB
FIFOs, it is critically important that we don't do a
CY_GET_REG16/24/32 to force the capture. This
implements 2/3/4 reads, 1/2/3 shifts and a large OR of the
results which takes a lot of cycles and isn't interrupt
protected.
Update the Verilog code to fix an issue with
the Timer 7-bit counter.
The 7-bit counter for capture count was being clocked by
a combinatorial signal. The counter has an enable signal
which should be used to cause the counter to count or not
count rather than gating the clock. So now the Timer 7-bit
counter for capture count is being clocked by a DP clock.
Added Keil function reentrancy support to
the relevant APIs.
Add the capability for customers to specify individual
generated functions as reentrant.
Updated the API files to add support for
PSoC 3 ES3 and PSoC 5 ES2 silicon.
In PSoC 3 ES2 / PSoC 5 ES1, [3:1] bits of the CFG1
register must be used to set the run mode.
In PSoC 3 ES3 / PSoC 5 ES2, [1:0] bits of CFG2 register
must be used to set the run mode.
Added sync mode support for the Control
Register.
To fix the critical timing violation and to reduce the timing
constraints.
© Cypress Semiconductor Corporation, 2008-2010. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the
use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to
be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress
products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC® is a registered trademark, and PSoC Creator™ and Programmable System-on-Chip™ are trademarks of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and
foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create
derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in
conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as
specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in lifesupport systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application
implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
PRELIMINARY
Document Number: 001-63040 Rev. *A
Page 29 of 29

				

 Open as PDF

 	Similar pages
	

										Component - Timer V2.0 Datasheet.pdf

	

										Component - Timer V2.50 Datasheet.pdf

	

										Component - Timer V2.40 Datasheet.pdf

	

										Component - Timer V2.20 Datasheet.pdf

	

										FAIRCHILD FIN324C

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

