APT35GP120B(G)_E.pdf

APT35GP120B
APT35GP120BG
*G Denotes RoHS Compliant, Pb Free Terminal Finish.
POWER MOS 7 IGBT
®
TO-247
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 800V, 14A
• Low Gate Charge
• 50 kHz operation @ 800V, 25A
• Ultrafast Tail Current shutoff
• RBSOA rated
MAXIMUM RATINGS
Symbol
G
C
E
G
E
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT35GP120B(G)
VCES
Collector-Emitter Voltage
1200
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
96
I C2
Continuous Collector Current @ TC = 110°C
46
I CM
Pulsed Collector Current
RBSOA
PD
TJ,TSTG
TL
C
1
UNIT
Volts
Amps
140
@ TC = 25°C
Reverse Bias Safe Operating Area @ TJ = 150°C
140A @ 960V
Watts
543
Total Power Dissipation
-55 to 150
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
°C
300
STATIC ELECTRICAL CHARACTERISTICS
Characteristic / Test Conditions
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
4.5
6
3.3
3.9
UNIT
1200
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, I C = 35A, Tj = 125°C)
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 25°C)
MAX
3
2
Collector Cut-off Current (VCE = 1200V, VGE = 0V, Tj = 125°C)
Volts
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
µA
2500
nA
12-2006
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
TYP
Rev E
BVCES
MIN
050-7406
Symbol
APT35GP120B(G)
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
3240
VGE = 0V, VCE = 25V
248
Reverse Transfer Capacitance
f = 1 MHz
31
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
150
VCE = 600V
21
I C = 35A
62
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
Qgc
RBSOA
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Gate-Collector ("Miller ") Charge
Reverse Bias Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
nC
140
A
15V, L = 100µH,VCE = 960V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
4
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon2
Eoff
1305
16
VGE = 15V
147
20
I C = 35A
Current Fall Time
5
ns
75
R G = 5Ω
4
Turn-on Switching Energy (Diode)
µJ
680
Inductive Switching (125°C)
VCC = 600V
Turn-off Delay Time
Turn-off Switching Energy
750
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
ns
40
R G = 5Ω
Turn-on Switching Energy (Diode) 5
Eon1
94
20
I C = 35A
Eon2
tf
VGE = 15V
Current Fall Time
Turn-on Switching Energy
td(off)
16
Turn-off Delay Time
Eon1
tr
Inductive Switching (25°C)
VCC = 600V
750
TJ = +125°C
2132
6
µJ
1744
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.23
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and FRED leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7406
Rev E
12-2006
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
70
IC, COLLECTOR CURRENT (A)
50
40
TC=25°C
30
TC=125°C
20
10
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
TJ = 125°C
20
TJ = -55°C
0
2 3
4 5 6
7 8 9 10
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
6
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
5
IC= 70A
4
IC= 35A
3
IC=17.5A
2
1
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
10
0.90
0.85
0.8
-50
-25
0
25 50
75 100 125 150
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE= 600V
10
8
VCE= 960V
6
4
2
5
4.5
0
20
40 60 80 100 120 140 160
GATE CHARGE (nC)
FIGURE 4, Gate Charge
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
IC=70A
4
3.5
IC= 35A
3
2.5
IC= 17.5A
2
1.5
1
0.5
0
25
50
75
100
125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
120
0.95
VCE= 240V
12
1.15
1.0
IC = 35A
TJ = 25°C
14
140
1.05
TC=125°C
20
1.2
1.1
TC=25°C
30
0
1
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = 25°C
40
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
40
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
50
0
1
2
3
4
5
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
FIGURE 1, Output Characteristics(VGE = 15V)
120
100
60
0
0
250µs PULSE TEST
<0.5 % DUTY CYCLE
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
100
80
60
40
20
0
-50
-25
0
25 50 75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
12-2006
60
APT35GP120B(G)
Rev E
70
IC, COLLECTOR CURRENT (A)
80
050-7406
80
APT35GP120B(G)
180
30
VGE= 10V
25
VGE= 15V
20
15
10
VCE = 600V
TJ = 25°C, TJ =125°C
RG = 5Ω
L = 100 µH
5
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
35
160
VGE =15V,TJ=125°C
140
VGE =10V,TJ=125°C
120
VGE =15V,TJ=25°C
100
80
VGE =10V,TJ=25°C
60
40
VCE = 600V
RG = 5Ω
L = 100 µH
20
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
140
100
RG = 5Ω, L = 100µH, VCE = 600V
TJ = 125°C, VGE = 10V or 15V
90
120
tf, FALL TIME (ns)
tr, RISE TIME (ns)
80
TJ = 25 or125°C,VGE = 10V
100
80
60
40
70
60
50
40
TJ = 25°C, VGE = 10V or 15V
30
20
20
10
TJ = 25 or 125°C,VGE =10V
0
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
050-7406
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
TJ=125°C,VGE=15V
4000
TJ=125°C,VGE=10V
3000
2000
TJ= 25°C,VGE=15V
1000
TJ= 25°C,VGE=10V
EOFF, TURN OFF ENERGY LOSS (µJ)
4000
VCE = 600V
RG = 5 Ω
VCE = 600V
RG = 5 Ω
TJ = 125°C, VGE = 10V or 15V
3000
2000
1000
TJ = 25°C, VGE = 10V or 15V
0
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
10
20
30
40
50
60
70
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
8000
5000
VCE = 600V
VGE = +15V
7000
TJ = 125°C
Eon2 70A
6000
5000
Eoff 70A
4000
3000
Eon2 35A
2000
Eon2 17.5A
1000
0
Eoff 35A
Eoff 17.5A
0
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
0
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
Rev E
12-2006
EON2, TURN ON ENERGY LOSS (µJ)
5000
RG = 5Ω, L = 100µH, VCE = 600V
VCE = 600V
VGE = +15V
RG = 5 Ω
Eon2 70A
4000
3000
Eoff70A
Eon2 35A
2000
1000
0
Eon2 17.5A
Eoff 35A
Eoff 17.5A
0
25
50
75
100
125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
APT35GP120B(G)
160
10,000
140
Cies
120
IC, COLLECTOR CURRENT (A)
P
C, CAPACITANCE ( F)
5,000
1,000
500
Coes
100
50
Cres
10
100
80
60
40
20
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
0 100 200 300 400 500 600 700 800 900 1000
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Reverse Bias Safe Operating Area
0.9
0.20
0.7
0.15
0.5
Note:
PDM
0.10
0.3
t1
0.05
t2
Duty Factor D = t1/t2
0.1
SINGLE PULSE
0.05
Peak TJ = PDM x ZθJC + TC
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
TJ ( C)
1.0
TC ( C)
0.0896
0.140
Dissipated Power
(Watts)
0.0108
0.228
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
180
100
50
7
10
20
30
40
50
60
70
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector
Current
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
12-2006
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 800V
RG = 5 Ω
f max1 =
Rev E
10
Fmax = min(f max1 , f max 2 )
050-7406
10-5
ZEXT
0
FMAX, OPERATING FREQUENCY (kHz)
ZθJC, THERMAL IMPEDANCE (°C/W)
0.25
APT35GP120B(G)
Gate Voltage
APT30DF120
10%
TJ = 125 C
t d(on)
tr
V CE
IC
V CC
90%
Collector Current
5%
10%
5%
A
Collector Voltage
D.U.T.
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
90%
VTEST
t d(off)
Gate Voltage
*DRIVER SAME TYPE AS D.U.T.
T J = 125 C
90%
A
tf
V CE
Collector Voltage
10%
IC
100uH
0
V CLAMP
B
Collector Current
Switching
Energy
A
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
Figure 24, EON1 Test Circuit
T0-247 Package Outline
e1 SAC: Tin, Silver, Copper
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
Collector
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
Rev E
12-2006
0.40 (.016)
0.79 (.031)
050-7406
5.38 (.212)
6.20 (.244)
2.21 (.087)
2.59 (.102)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
Gate
Collector
Emitter
5.45 (.215) BSC
2-Plcs.
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,5225,262,336 6,503,786
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
D.U.T.