

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 AN6062 enCoRe to enCoRe II Conversion.pdf

		
				 AN6062
Encore™ to Encore II Conversion
Author: Kevin Hung
Associated Project: No
Associated Part Family: enCoRe™, enCoRe II
Software Version: NA
Related Application Notes: None
To get the latest version of this application note, or the associated project file, please visit
http://www.cypress.com/go/AN6062.
Having sold hundreds of millions of units, the Cypress enCoRe™ low-speed USB microcontroller family is the most
successful USB device in the industry. However, it has not seen an update since its introduction in 2000. To keep up
with the demands for increasing product functionality and decreasing system cost, Cypress has released the enCoRe II.
AN6062 is targeted at developers who are familiar with the enCoRe devices, and who want to migrate to the next
generation enCoRe II. It highlights the differences between the products that require attention during the migration, and
also provides guidance on how to use some of the enCoRe II features. Although this application note discusses some
hardware issues, its emphasis is on firmware.
Contents
Overview ... 2
enCoRe II Core Components and Architecture 2
Memory .. 2
Interrupts .. 3
Clocking.. 4
Reset .. 4
USB Transceiver .. 4
Sleep Timer Interrupt / Wakeup Timer 5
GPIO .. 6
Serial Peripheral Interface .. 7
Timers .. 7
CPU Differences ... 7
Assembler Instruction Differences Between enCoRe
and enCoRe II .. 9
New Instructions in M8C... 12
Development Environment .. 14
Development Hardware .. 14
Development Software ... 14
Using enCoRe II Features and Functional Blocks 20
Using the 1-ms Timer Interrupt 20
Capture Timer .. 21
12-Bit Programmable Interval Timer 21
The Sleep Timer Interrupt... 22
Serial Peripheral Interface .. 23
GPIO Interrupts .. 23
www.cypress.com
E2PROM User Module ... 24
USB .. 25
USB and PS/2 Macros ... 27
EMC Suggestions ... 27
GND PAD Assignment ... 27
Avoiding Antenna Effects ... 27
WDT Timer Usage.. 27
Clock Control .. 28
Summary ... 28
Worldwide Sales and Design Support 30
Document No. 001-15343 Rev. *C
1
enCoRe™ to enCoRe II Conversion
Overview
enCoRe II is a new low-speed microcontroller family that is
an extension of the enCoRe/M8 families. Its technical
base comes from enCoRe and adds new and more
flexible functions. Cypress recommends that customers
move their designs from enCoRe to enCoRe II for the
following reasons:

enCoRe II is the newest family — legacy products will
eventually become obsolete

enCoRe II is a lower system cost solution than
enCoRe

enCoRe II has the following advantageous new
features:

Flash with EEPROM emulation. Eliminates
external EEPROM in some applications

SPI interface on all devices

Lower power consumption for battery-powered
applications

More efficient M8C instructions
16-bit capture timer for better resolution
Internal USB 1.5 kΩ pull-up
Internal PS2 pull-up
In-system reprogrammable
connector
through
the
USB
Tools for future expansion
Smaller packages for space-constrained designs
enCoRe II Core Components and
Architecture
enCoRe II is a next-generation low-speed USB controller;
it is the followup to the current enCoRe/M8 families.
However, some architectural changes from enCoRe are
required for increased capabilities, as summarized in the
following sections.
Programming
enCoRe devices could be factory programmed, or could
be programmed out of system by the developer. A
dedicated programming voltage pin was required on all
devices, eliminating space for one IO pin. On enCoRe II,
the programming pins are overlaid with USB D+ and D–
and, of course, power and ground. Therefore, enCoRe II
devices can be factory programmed, programmed out of
system by the user, or programmed in-system, without
infringing on the IO pins available for the application.
There are also options for in-system programming. The
parts can be programmed through a physical USB
connector, but not using the USB protocol. This is
extremely powerful for programming or reprogramming on
the manufacturing floor, because devices can be in their
enclosures in their final commercial form. enCoRe II can
also be reprogrammed through firmware. This allows bootloader’ code to be written that can take a data stream from
USB, SPI, or any other interface and reprogram the flash
real time. Subsets of the flash can also be reprogrammed
to provide EEPROM emulation.
D a t a M e m o r y : S i n g l e S t a c k vs . S e p a r a t e
DSP and PSP Stack
In enCoRe, the Program Stack Pointer (PSP) grows
upward from zero and the Data Stack Pointer (DSP) grows
downward from the top of the user variable space, as
shown in Figure 1. You must be careful to avoid memory
conflict issues during DSP and PSP use.
In enCoRe II, a single stack grows from zero. You can
determine the amount of memory needed for the stack.
(You must pay special attention when arranging the user
variable area and stack space to prevent an overflow
condition.)
Figure 1. Data Memory Comparison
enCoRe Memory
Address
0x00
Program Stack Growth
Memory
0x00
Stack begins here
and grows upward
User Variables
This section gives information on memory, memory usage,
and memory maps.
0xE8
P r o g r a m M e m o r y : R O M vs . F l a s h (O T P vs .
In-System Reprogrammable)
enCoRe is a one-time programmable (OTP) product.
Customers cannot reprogram it if they find something
wrong after programming. Customers never run into this
situation with enCoRe II, because it is reprogrammable.
New changes can easily be reloaded. Multiple flash
protection modes are included to ensure customer code
security.
0xF0
www.cypress.com
enCoRe II Memory
Address
USB FIFO Endpoint 2
USB FIFO Endpoint 1
0xF8
USB FIFO Endpoint 0
0xFF
Document No. 001-15343 Rev. *C
0xFF
2
enCoRe™ to enCoRe II Conversion
Endpoint FIFOs
In enCoRe, the data memory area is reserved for a FIFO
for USB endpoint (as shown in Figure 1). In enCoRe II,
endpoint FIFOs are located in the registers.
Location
Table 1. enCoRe II Endpoint FIFOs
0x000A
USB endpoint 1
0x0024
EP1
0x000C
USB endpoint 2
0x0028
EP2
0x000E
SPI
0x000C
SPI Transmitter
Empty
0x0010
SPI Receiver
Full
Location
Description
Contents
50–57
EP0DATA Endpoint 0
Data Buffer [7:0]
58–5F
EP0DATA Endpoint 1
Data Buffer [7:0]
60–67
EP0DATA Endpoint 2
Data Buffer [7:0]
Interrupts
This section
differences.
discusses
interrupt
similarities
and
enCoRe Interrupt
Description
0x003C
Timer Capture 0
0x0012
Capture timer B
0x0040
Timer Capture 1
0x0014
GPIO
1.
New enCoRe II Interrupts:
3.
4.
In enCoRe II, there are five GPIO interrupt vectors.
Each GPIO port (P0-P4) has its own interrupt
compared to a combined interrupt for all GPIO ports
(P0-P2) in enCoRe.
enCoRe II has a 12-bit Programmable Interval Timer
and a 16-bit free running counter. A 1-ms (nominal)
interrupt is configurable off the programmable interval
timer. enCoRe has a 1-ms interrupt and an available
128-µs timer interrupt.
enCoRe II has a PS2 Data Low interrupt vector that
can be used for PS/2 mode specific purposes.
Location
Description
Equivalent enCoRe II
Interrupt
Location
Description
0x0000
Start of program
execution
0x000
Start of program
execution
0x0002
USB Bus Reset
0x002C
USB Bus Reset
0x0004
128-µs timer
0x0038
Programmable
Interval Timer
0x0006
1.024-ms timer
0x0034
1-ms Interval
Timer
0x0008
USB endpoint 0
0x0020
EP0
www.cypress.com
Wake up
0x0014
GPIO Port 0
0x0018
GPIO Port 1
0x0050
GPIO Port 2
0x0054
GPIO Port 3
0x0058
GPIO Port 4
0x0064
Sleep Timer
0x0004
POR/LVD
0x0008
INT0
0x001C
INT1
0x0030
USB Active
0x0044
16-bit Free
Running Timer
Wrap
0x0048
INT2
0x004C
PS2 Data Low
0x005C
Reserved
0x0060
Reserved
Interrupt Latency
There are slight differences in calculating interrupt latency
between the two devices.
Table 2. Interrupts
enCoRe Interrupt
Description
Capture timer A
0x0016
2.
Location
0x0010
Interrupt Vectors
There are 12 vectors on enCoRe and 26 vectors in
enCoRe II. Table 2 shows some differences between
enCoRe and enCoRe II. In general enCoRe II has an
equivalent interrupt for every enCoRe interrupt.
There are 2 bytes for each interrupt vector in enCoRe
compared to 4 bytes in enCoRe II. This may provide
slightly more flexibility in cases where special handling
is required.
Equivalent enCoRe II
Interrupt
enCoRe:
Interrupt Latency = (Number of clock cycles remaining in
the current instruction) + (10 clock cycles for the CALL
instruction) + (5 clock cycles for the JMP instruction).
enCoRe II:
Latency = Time for current instruction to finish + Time for
internal interrupt routine to execute (13 cycles) + Time for
LJMP instruction in interrupt table to execute (7 cycles).
Document No. 001-15343 Rev. *C
3
enCoRe™ to enCoRe II Conversion
Clocking
The similarities and differences in the internal clock,
external clock, and clock output are described in this
section.
Internal Clock
The enCoRe clocks are fixed: 6 MHz for the USBCLK and
12 MHz for the CPUCLK. On the enCoRe II, the CPU,
USB Timer, and Capture Timer clocks are individually
configured and can be sourced from the internal 32 kHz or
24 MHz clocks. A divisor is used to divide the internal
24 MHz to support multiple CPU clock configurations.
enCoRe II supports the same and higher clocks.
External Clock
For some applications that require a higher clock
accuracy, both enCoRe and enCoRe II can select external
clocks to meet the higher accuracy requirements. In
enCoRe, an external 6 MHz ceramic resonator can be
used to provide a higher precision reference for USB
operation. An external 6 MHz clock can also be supplied if
the XTALOUT pin is left open.
The enCoRe II parts in the CY7C638xx and CY7C633xx
families (those most closely related to enCoRe) can
accept a clock source of up to 24 MHz on Pin 0.0, but
have no support for an external crystal. Devices in the
CY7C639xx family also can drive an external oscillator
from 1 to 24 MHz. When operating in USB mode, the
supplied clock or crystal oscillator must be either 12 MHz
or 24 MHz for the USB blocks to function properly.
Clock Output
In enCoRe, the 6 MHz clock is driven out on the
XTALOUT pin (by default) when the internal oscillator is in
use. By contrast, enCoRe II allows any of the internal
clock sources to be driven on the XOUT pin (P0.1) through
the CLKOUT select bits of the CLKIOCR register 0x31.
Reset
enCoRe has a Low Voltage Reset (LVR), Brown Out
Reset (BOR), and Watchdog Reset (WDR). enCoRe II has
a Power On Reset (POR) and Watchdog Reset.
L V R / B O R vs . P O R
The enCoRe II POR has equivalent functionality to the
enCoRe LVR and BOR. For enCoRe, the LVR holds the
part in reset until voltage rises above 3.5 V. BOR places
the part in reset when voltage drops below 2.5 V. The LVR
is then re-enabled to keep the part in reset until it is above
the LVR threshold again. For enCoRe II, the POR handles
both the rising and falling voltage conditions. It has a
hysteresis of approximately 50 mV and has four
configurable settings, with the default value set at 2.7 V.
Note that enCoRe II also has a Low Voltage Detection
circuit configurable between 2.7 V and 4.8 V.
www.cypress.com
After LVR, the enCoRe CPU is held off for 24 to 60 ms
and starts at 6 MHz. For enCoRe II, the CPU is held for
20 ms after POR and the CPU defaults back to 3 MHz.
Watchdog Reset
Watchdog Reset is always enabled on enCoRe, but it can
be enabled on enCoRe II by clearing the PORS bit in the
CPU_SCR register. After it is enabled, it cannot be
disabled. The Watchdog Reset duty cycles are also
different. The enCoRe duty cycle is 10.1~14 ms. The
enCoRe II duty cycle defaults to 3 counts of the 32 kHz
sleep timer interrupt. The number of cycles before a sleep
timer interrupt occurs can be selected by the user. Note
that enCoRe II provides an option to allow RAM contents
to be preserved through the reset event.
USB Transceiver
This section discusses the voltage regulator, pull up
resistor, bus reset, and the manual control of D+/D–.
3.3 V Regulator
Both devices provide a dedicated 3.3 V regulator to
support the USB PHY. In enCoRe II, this regulator is in
addition to the second 3.3 V regulator provided for the
3.3 V IO pins and the 125 mA output on P1.2. Both
devices disable the 3.3 V regulator when the part is placed
in sleep mode. However, enCoRe II provides a means to
override this with the No Buzz bit of the OSC_CR0
register.
D– Pull Up Resistor
enCoRe provides a dedicated pin for the 1.5K ohm D– pull
up resistor, but the resistor itself is external. Because the
IO pin accounts for 200 ohms, a 1.3K ohm resistor is
used. On enCoRe II, the pull up is integrated, thus saving
component cost and also freeing up an IO pin.
For both devices, when the part is in suspend and the
3.3 V regulator is disabled, a sleep pull up resistor is
enabled. For enCoRe, the 3.3 V IO pin is pulled up with an
additional 6.2 K ohm to VCC if the enable bit is set. In
enCoRe II, the sleep pull up of ~7K ohm to VCC replaces
the 1.5 K ohm pull up when the pull up enable bit is set.
Bus Reset
Before determining that a bus reset has occurred, enCoRe
looks for 100 µs of SE0. enCoRe II uses two cycles of the
32-kHz oscillator plus 2 µs of SE0. Therefore, in
enCoRe II, the actual time depends upon where in the
32-kHz clock cycle the bus reset event started. In either
case, this is well beyond the minimum 2.5 µs required by
the USB specification, but helps to protect against some
poorly behaved hosts that may drive an erroneously long
SE0 at the end of some packets.
Document No. 001-15343 Rev. *C
4
enCoRe™ to enCoRe II Conversion
Manual Control of D+/D–
There are different methods of forcing the D± pins on
enCoRe and enCoRe II. In enCoRe, the USB signal can
be controlled by the Reg 0x1F bit [0:2]. In enCoRe II, the
D+/D– (SCK/SDATA) pin can also be configured as a
normal GPIO pin when no USB function is needed.
Therefore, before controlling the USB signal, firmware
must enable the USB Force State bit in USB_XCR register
0x74. Bits [0:1] in the P1Data register 0x01 then control
the D+/D– value.
Table 3. enCoRe Manual Control of D+/DP State
D+/D– Forcing
Bit [2:0]
Control Action
Application
000
Not Forcing (SIE controls
driver)
Any Mode
001
Force K (D+ High, D– Low)
USB Mode
010
Force J (D+ Low, D– High)
011
Force SE0 (D– Low, D+
Low)
100
Force D– Low, D+ Low
101
Force D– Low, HiZ
110
Force D– HiZ, D+ Low
111
Force D– HiZ, D+ HiZ
PS/2 Mode
Table 4. enCoRe II Manual Control of D+/D– State
Bit #
7
6
5
4
3
2
1
0
USB_XCR 0x74
Field
USB pull up
Enable
USB Force
State
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
Reserved
P1DATA 0x01
Field
P1.7
P1.6 MISO
P1.5 MOSI
P1.4 SCLK
P1.3 SSEL
P1.2 VREG
P1.1 D–
P1.0 D+
Access
R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W
Default
0
0
0
0
0
0
0
0
Sleep Timer Interrupt / Wakeup Timer
When the microprocessor is put to sleep, enCoRe and
enCoRe II have similar timer interrupt control. In enCoRe,
the internal wakeup timer is normally used to wake the
part from sleep, but it can also provide an interrupt when
the part is awake. The wakeup timer is cleared whenever
the wakeup interrupt enable bit is written with a ‘0’; it runs
whenever that bit is written with a ‘1’. When the interrupt is
enabled, the wakeup timer provides periodic interrupts at
multiples of the period. The period of the wakeup timer
can be adjusted by setting the wakeup timer adjust bits in
the Clock Configuration register 0xF8.
www.cypress.com
In enCoRe II, the sleep timer is used to generate the sleep
time period and the watchdog time period. The sleep timer
uses the Internal 32 kHz low-power oscillator system clock
to produce the sleep time period. You can set the sleep
time period using the sleep timer bits of the OSC_CR0
register 0x1E0. When the sleep time elapses (sleep timer
overflows), an interrupt to the sleep timer interrupt vector
is generated.
External Clock During Sleep
enCoRe and enCoRe II have the same behavior when
using an external clock. The oscillator is stopped during
sleep mode. When the CPU comes out of sleep mode, it
initially runs on the internal oscillator. The system disables
the internal clock and switches back to external clock.
Document No. 001-15343 Rev. *C
5
enCoRe™ to enCoRe II Conversion
I n t e r n a l C l o c k R e c o ve r y T i m e
In enCoRe, the internal oscillator recovery time is 8 µs. In
enCoRe II the internal oscillator recovery time is three
clock cycles of the internal 32 kHz low-power oscillator.
GPIO
enCoRe and enCoRe II have similar conflagration
capabilities, with slightly more flexibility on enCoRe II. On
both devices, two complete ports are individually
configurable on a per-pin basis. For enCoRe II, the other
three ports are configured on a by-port basis.
Pin Flexibility
On enCoRe, certain pins have limited IO capability. These
include:

USB D+/D–
clock/data)

Vreg output pin (alternately usable as input in PS/2
mode)

XTALOUT pin (alternately usable as input with internal
oscillator)

pins
(alternately
usable
as
PS/2
XTALIN pin (alternately usable as input with internal
oscillator on CY7C632xx devices only)
enCoRe II has all of these functions, but the pins are fully
configurable as GPIOs when those functions are not in
use. For enCoRe, only the XTALOUT (and XTALIN for
CY7C632xx) are likely to be usable by the application. For
enCoRe II, Vreg (P1.2), CLKIN (P0.0), and CLKOUT
(P0.1) are all likely to be usable by the application.
Excluding the USB pins, that designates the IO
capabilities shown in Table 5.
Table 5. IO Capabilities by Package Pin Count
Package
enCoRe IOs
enCoRe II IOs
16 pin
10 (2 are input only)
12
18 pin
11 - CY7C637xx
(1 input only)
14
12 - CY7C632xx
(2 are input only)
24 pin
17 (1 input only)
18
enCoRe II supports only low sink of 8 mA and high sink of
50 mA. All pins can sink 8 mA, but only specific pins
support 50-mA sink capability. On the CY7C638xx and
CY7C633xx families, only pins P1.7 to P1.3 support 50
mA. The CY7C639xx devices use different pins for high
sink.
IO Configuration
For enCoRe, each GPIO pin is configured by a
combination of one bit in each of two registers (mode0 and
mode1). Interrupt enables and polarities are handled by
two additional registers. For enCoRe II, each
bit-configurable pin has its own configuration register.
Port-configurable registers have one configuration register
for the entire port. Other than the sink current differences
mentioned previously, the configuration options for the two
parts are similar:

High current drive capability (2 mA)
High sink capability
High-impedance input
Resistive pull up
Open drain output
CMOS/TTL input
CMOS output
C o d e E x a m p l e f o r G P I O Ac c e s s i n g
Accessing port0.0 of enCoRe using IORD/IOWR
instructions:
Port0_Data:equ 0h
IORD Port0_Data; Read Port0 data value
OR A, 01h; Set p0.0 to 1
IOWR Port0_Data; Write data back to Port0’s
data register
Accessing port0.0 of enCoRe II using MOV instruction:
P0DATA:equ 00h; Defined in m8c.inc
MOV A, REG[P0DATA]; Read P0DATA data value
OR A, 01h; Set p0.0 to 1
MOV REG[P0DATA], A; Write data back to
P0DATA register
enCoRe II has an added capability in that port pins P1.3 to
P1.6, which are also the SPI pins, can be referenced to
either Vcc (5V) or Vreg (3.3 V).
Sink Capability on GPIO Pins
Both the enCoRe and enCoRe II have good sink ability.
enCoRe users can choose low, medium, or high sink. Low
sink is 2 mA, medium sink is 8 mA, and high sink is
50 mA.
www.cypress.com
Document No. 001-15343 Rev. *C
6
enCoRe™ to enCoRe II Conversion
Serial Peripheral Interface
In enCoRe, only the CY7C637xx family has SPI, whereas
all enCoRe II devices have SPI. Both support master and
slave modes of operation.
SPI Master Clocking
enCoRe has four selectable SCLK frequencies based on
the SCK select bits of the SPI Control register
0x61: 2 Mbit/s, 1 Mbit/s, 0.5 Mbit/s, and 0.0625 Mbit/s.
For enCoRe II, the frequency is setup based on CPUCLK
and a divider. Table 6 shows SCLK values for 12 and
24 MHz CPU speeds.
Table 6. SCLK Frequency Selection for enCoRe II
SCLK
Select
CPUCLK
Divisor
SCLK Frequency when
CPUCLK =
12 MHz
24 MHz
00
6
2 MHz
4 MHz
01
12
1 MHz
2 MHz
10
48
250 kHz
500 kHz
11
96
125 kHz
250 kHz
Configuration
For enCoRe, the default is MSB sent first; for enCoRe II, a
configurable MSB or LSB is sent first.
enCoRe supports only the standard 4-wire configuration:
SS, SCLK, MOSI, and MISO. For enCoRe II, in addition to
the 4-wire support, you have the option to support a 3-wire
mode (SS, SCLK, SDATA) when a half-duplex single-data
line is required. MISO and MOSI pin direction can be
swapped by firmware with the swap bit of the SPICR
register 0x3D.
enCoRe SPI applications normally use the SPI flags for
managing the interface. enCoRe II uses interrupt status
flags instead.
As mentioned in the GPIO section, enCoRe II SPI pin
voltage reference is selectable between external Vcc or
the internal 3.3 V source.
Timers
enCoRe II has additional timer capabilities beyond what is
supported in enCoRe.
enCoRe has a single 12-bit free-running timer. It is fixed at
1 µs ticks. Reading the lower 8 bits also causes the upper
bits to be latched. This register is read-only.
www.cypress.com
enCoRe II has a 16-bit free running timer. Its source is
configurable. It can be referenced to the external clock,
internal 24 MHz oscillator, or internal 32 kHz oscillator with
a 2, 4, 6, or 8 divider. It can also be disabled. Reading the
lower 8 bits also causes the upper bits to be latched. This
register can be read or written.
Additionally, enCoRe II has a 12-bit Programmable
Interval Timer. This is a down counter with a userspecified reload value. It has a selectable source: external
clock, internal 24 MHz oscillator, internal 32 kHz oscillator,
or 16-bit free running timer (TACPCLK). There is also a
selectable clock divider of 1, 2, 3, or 4. Reading the loworder 8 bits latches the upper bits.
A simplified block diagram of the clocking options for the
timers is shown in Figure 2.
Capture Registers
Both enCoRe and enCoRe II have capture registers
associated with the free-running timers (12-bit timer on
enCoRe, 16-bit timer on enCoRe II). They both have two
8-bit capture registers for both rising and falling edges.
Both support interrupts on these events. enCoRe II has an
added capability; it is able to cascade the capture registers
into 16-bit rising and falling edge capture registers. Both
support a pre-scaler; however, there are five pre-scaler
choices for enCoRe and eight for enCoRe II.
Interrupts
In addition to the timer capture interrupts, both devices
provide additional timer interrupts. enCoRe has two fixed
interrupt sources, one at 1.024 ms and one at 128 µs.
With enCoRe II, the interrupt sources are somewhat more
flexible. An interrupt is provided for the 16-bit free-running
timer wraparound, the 12-bit programmable interval timer
reload, and a nominal 1.024-ms interrupt. The 1.024-ms
interrupt is based on the assumption that the 16-bit free
running timer (TCAPCLK) is running at 4 MHz. Changes in
TCAPCLK frequency cause a corresponding change in the
1024-ms interrupt frequency.
Output pulses from the 1.024-ms interrupt and
programmable interval timer interrupt can also be
generated on port pins P0.5 and P0.6, respectively. When
configured for outputs, these signals are not gated by the
actual interrupt enables.
CPU Differences
The M8B microprocessor is used in enCoRe, as well as in
the previous CY7C634/5/6xx and CY7C64/5/6xxx families.
It is a second generation to the M8A that is used in the
CY7C63xxx devices. Cypress Microsystems created an
additional evolution of the core for the PSoC product line,
and it has now been ported back to the USB
microcontroller line. The main features differences are
summarized in Table 7.
Document No. 001-15343 Rev. *C
7
enCoRe™ to enCoRe II Conversion
Figure 2. Timer Clocking Block Diagram
PITIMER Reload
PIRH / PIRL – R/W
(0x29 / 0x28)
Timer Clock Config
TMRCLKCR – R/W
(0x31)
TCAPCLK
Select
24 MHz
Internal Osc
TCAPCLK
Divider
Select
ITMRCLK
Select
ITMRCLK
Divider
Select
4:1
PITIMER
Divider
(1, 2, 3, 4)
External Osc
32 KHz Low
Power Osc
3:1
TACPCLK
Divider
(2, 4, 6, 8)
Count
12-bit
Reload
12-bit
ITMRCLK
16-bit Free Running
Timer
(up count timer)
TCAPCLK
Programmable Interval Timer
PITMRH / PITMRL – R/W
(0x27 / 0x26)
0
reached
12-bit Programmable
Interval Timer
(down count timer)
Wraparound
Interrupt
Logic
Interrupt
Logic
PI Timer
interrupt
Free running timer
wrap Interrupt
Count
16-bit
Free Running Timer
FRTMRH / FRTMRL – R/W
(0x21 / 0x20)
Table 7. General Comparison Between M8B and M8C
Item
M8B
M8C
Accessing across 4 K boundary of 8 K ROM
Limited; can only ‘call’ from lower to upper
4K
No limitations (LJMP, LCALL instructions)
Instruction Set
Irregular/non-orthogonal
Many more instructions, nearly orthogonal
access
Program/Data Stack
Two separate stacks, grow toward each
other
Single stack
Bit Test/Set/Clear
No direct support
Supported with expanded instruction set
The items below are also differences, although the current enCoRe II does not take advantage of them. Future enCoRe II devices are
expected to use these features.
ROM size access
Limited to 8 K
Access up to 64 K
RAM size access
Limited to 256 bytes
Access up to 4 K (extended address bits,
can be divided between RAM and IO
registers)
Crossing 256-byte page boundaries
Assembler inserts XPAGE automatically
No XPAGE; microprocessor adds one clock
cycle on page crossings
Other important M8C changes are:

The Carry and Zero flags have moved to a new FLAG
register.

Because of the separate flag register, interrupts (and
reti) store (re-store) are three bytes instead of two.
www.cypress.com

The Interrupt Enable signal, previously handled with
EI/DI instructions, is now a bit in the flag register.
Logical operations on the flag register perform the
equivalent EI/DI function.

Generally, most instructions have four new addressing
modes for a total of seven for each function.
Document No. 001-15343 Rev. *C
8
enCoRe™ to enCoRe II Conversion
Assembler Instruction Differences Between enCoRe and enCoRe II
There are differences in compatibility and instruction timing between the M8B and M8C instruction set. Table 8 summarizes
these differences.
Table 8. M8B and M8C Instruction Comparison
M8B
Opcode
Instruction
M8C
Cycles
Equivalent
Instruction
Cycles
Opcode
Δ Cycles
Notes
1
00
HAL
7
HALT
9
30
2
01
ADD A, expr
4
ADD A, k
4
01
0
02
ADD A,[expr]
6
ADD A, M[k]
6
02
0
03
ADD A,[X+expr]
7
ADD A, M[X+k]
7
03
0
04
ADC A, expr
4
ADC A, k
4
09
0
05
ADC A,[expr]
6
ADC A, M[k]
6
0A
0
06
ADC A,[X+expr]
7
ADC A, M[X+k]
7
0B
0
07
SUB A, expr
4
SUB A, k
4
11
0
08
SUB A,[expr]
6
SUB A, M[k]
6
12
0
09
SUB A,[X+expr]
7
SUB A, M[X+k]
7
13
0
0A
SBB A, expr
4
SBB A, k
4
19
0
0B
SBB A,[expr]
6
SBB A, M[k]
6
1A
0
0C
SBB A,[X+expr]
7
SBB A, M[X+k]
7
1B
0
0D
OR A, expr
4
OR A, k
4
29
0
0E
OR A,[expr]
6
OR A, M[k]
6
2A
0
0F
OR A,[X+expr]
7
OR A, M[X+k]
7
2B
0
10
AND A, expr
4
AND A, k
4
21
0
11
AND A,[expr]
6
AND A, M[k]
6
22
0
12
AND A,[X+expr]
7
AND A, M[X+k]
7
23
0
13
XOR A, expr
4
XOR A, k
4
31
0
14
XOR A,[expr]
6
XOR A, M[k]
6
32
0
15
XOR A,[X+expr]
7
XOR A, M[X+k]
7
33
0
16
CMP A, expr
5
CMP A, k
5
39
0
17
CMP A,[expr]
7
CMP A, M[k]
7
3A
0
18
CMP A,[X+expr]
8
CMP A, M[X+k]
8
3B
0
19
MOV A,expr
4
MOV A, k
4
50
0
2
1A
MOV A,[expr]
5
MOV A, M[k]
5
51
0
3
1
The M8B Halt instruction operates by clearing the FFh register; M8C’s halt adds one to this register.
2
In M8B, moves (or IORD) to the accumulator do not affect the zero flag; in M8C, they do.
3
In M8B, moves (or IORD) to the accumulator do not affect the zero flag; in M8C, they do.
www.cypress.com
Document No. 001-15343 Rev. *C
9
enCoRe™ to enCoRe II Conversion
M8B
Opcode
4
Instruction
M8C
Cycles
Equivalent
Instruction
Cycles
Opcode
Δ Cycles
Notes
4
1B
MOV A,[X+expr]
6
MOV A, M[X+k]
6
52
0
1C
MOV X,expr
4
MOV X, k
4
57
0
1D
MOV X,[expr]
5
MOV X, M[k]
6
58
1
1E
reserved
4
1F
XPAGE
4
20
NOP
4
NOP
4
40
0
21
INC A
4
INC A
4
74
0
22
INC X
4
INC X
4
75
0
23
INC [expr]
7
INC M[k]
7
76
0
24
INC [X+expr]
8
INC M[X+k]
8
77
0
25
DEC A
4
DEC A
4
78
0
26
DEC X
4
DEC X
4
79
0
27
DEC [expr]
7
DEC M[k]
7
7A
0
28
DEC [X+expr]
8
DEC M[X+k]
8
7B
0
29
IORD expr
5
MOV A, IO[k]
6
5D
1
2A
IOWR expr
5
MOV IO[k], A
5
60
0
2B
POP A
4
POP A
5
18
1
2C
POP X
4
POP X
5
20
1
2D
PUSH A
5
PUSH A
4
08
-1
2E
PUSH X
5
PUSH X
4
10
-1
2F
SWAP A,X
5
SWAP A, X
5
4B
0
30
SWAP A,DSP
5
31
MOV [expr],A
5
MOV M[k], A
5
53
0
32
MOV [X+expr],A
6
MOV M[X+k], A
6
54
0
33
OR [expr],A
7
OR M[k], A
7
2C
0
34
OR [X+expr],A
8
OR M[X+k], A
8
2D
0
35
AND [expr],A
7
AND M[k], A
7
24
0
36
AND [X+expr],A
8
AND M[X+k], A
8
25
0
37
XOR [expr],A
7
XOR M[k], A
7
34
0
38
XOR [X+expr],A
8
XOR M[X+k], A
8
35
0
39
IOWX [X+expr]
6
MOV IO[X+k], A
6
61
0
5
6
In M8B, moves (or IORD) to the accumulator do not affect the zero flag; in M8C, they do.
5
XPAGE is replaced by automatic increment of the high program-counter byte during 256-byte page crossings, and this adds a single cycle to
the instruction crossing the page.
6
In M8B, moves (or IORD) to the accumulator do not affect the zero flag; in M8C, they do.
www.cypress.com
Document No. 001-15343 Rev. *C
10
enCoRe™ to enCoRe II Conversion
M8B
Opcode
7
Instruction
M8C
Cycles
Equivalent
Instruction
Δ Cycles
Cycles
Opcode
Notes
3A
CPL
4
CPL A
4
73
0
3B
ASL
4
ASL A
4
64
0
3C
ASR
4
ASR A
4
67
0
3D
RLC
4
RLC A
4
6A
0
3E
RRC
4
RRC A
4
6D
0
3F
RET
8
RET
8
7F
0
40
MOV A,X
4
MOV A, X
4
5B
0
41
MOV X,A
4
MOV X, A
4
5C
0
50
CALL
10
LCALL k, i
13
7C
3
7
60
MOV PSP,A
4
SWAP A, SP
5
4E
1
8
70
DI
4
AND F, k
4
70
0
9
72
EI
4
OR F, k
4
71
0
10
73
RETI
8
RETI
10
7E
2
80
JMP
5
JMP k
5
80
0
11
90
CALL
10
CALL k
11
90
1
12
A0
JZ (false)
4
JZ k
4
A0
0
13
A1
JZ (true)
5
JZ k
5
A1
0
14
B0
JNZ (true)
5
JNZ k
5
B0
0
15
B1
JNZ (false)
4
JNZ k
4
B1
0
16
C0
JC (false)
4
JC k
4
C0
0
17
C1
JC (true)
5
JC k
5
C1
0
18
D0
JNC (true)
5
JNC k
5
D0
0
19
The long call instruction, LCALL, is a 3-byte instruction (compared to 2 bytes for M8B calls).
8
There is no direct equivalent for this seldom used instruction; if the accumulator must be preserved in M8C, this sequence could be used:
push a; swap a,sp; pop a.
9
For DI, the equivalent is AND F,FEh (takes 2 bytes vs. 1 byte for DI).
10
For EI, the equivalent is OR F, 1 (takes 2 byes vs 1 byte for EI).
11
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
12
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
13
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
14
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
15
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
16
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
17
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
18
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
19
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
www.cypress.com
Document No. 001-15343 Rev. *C
11
enCoRe™ to enCoRe II Conversion
M8B
Opcode
Instruction
M8C
Cycles
Equivalent
Instruction
Cycles
Opcode
Δ Cycles
Notes
D1
JNC (false)
4
JNC k
4
D1
0
20
E0
JACC
7
JACC k
7
E0
0
21
F0
INDEX
14
INDEX k
13
F0
-1
22, 23
New Instructions in M8C
The larger ROM size in M8C allows for many more instructions. The additional instructions (new ones not covered in the
above M8B-equivalent set) are listed in Table 9. These can be categorized as offering the following capabilities, listed roughly
in descending order of typical usefulness:
1.
Bit test/set/clear/toggle operations on IO registers.
2.
New addressing modes, mainly for direct memory operations (for example, AND M[k],a) — including operating with
immediate values (3-byte instructions).
3.
Expanded set of move/swap choices.
4.
The LJMP, with the LCALL shown previously, are 3-byte automatically assembled jump/call instructions that allow
movement around the full program memory (up to 64 k) without restrictions.
5.
Indirect addressing into RAM with an auto-incrementing pointer (MVI instructions).
6.
Logical operations on the new flag register (including the AND F,k and OR F,k shown above as EI/DI substitutes).
7.
SSC, supervisory system call. This allows access to a supervisory ROM for user functions, such as programming the flash
memory.
8.
ROMX, which indexes a byte of program memory by concatenating the A and X registers.
9.
Ability to directly add an immediate value to the (single) stack pointer.
20
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
21
For DI, the equivalent is AND F,FEh (takes 2 bytes vs. 1 byte for DI).
22
In M8C, jumps, calls, and index instructions are +2k from the preset location, while in M8B these cover the current 4k page.
23
In M8B, INDEX temporarily uses one byte of stack space; the M8C INDEX does not use the stack.
www.cypress.com
Document No. 001-15343 Rev. *C
12
enCoRe™ to enCoRe II Conversion
Table 9. New M8C Instructions
Opcode
Name
Cycles
Opcode
Name
Cycles
00
SWI
15
43
OR IO[k],i
9
04
ADD M[k],A
7
44
OR IO[X+k],i
10
05
ADD M[x+k],A
8
45
TST M[k],i
9
06
ADD M[k],i
9
46
XOR IO[X+k],i
10
07
ADD M[X+k],i
10
47
TST M[k],i
8
0C
ADC M[k],A
7
48
TST M[X+k],i
9
0D
ADC M[X+k],A
8
49
TST IO[k]
8
0E
SUB M[k],A
9
4A
TST IO[X+k],i
9
0F
SUB M[X+k],A
10
4C
SWAP A,M[k]
7
14
SUB M[k],i
7
4D
SWAP X,M[k]
7
15
SUB M[X+k],i
8
4E
SWAP A,SP
5
16
SUB M[k],i
9
4F
MOV X,SP
4
17
SUB M[X+k],i
10
55
MOV M[k],i
8
1C
SBB M[k],A
7
56
MOV M[X+k],i
9
1D
SBB M[X+k],A
8
59
MOV X,M[X+k]
7
1E
SBB M[k],i
9
5A
MOV M[k],X
5
1F
SBB M[X+k],i
10
5E
MOV A,IO[X+k]
7
26
AND M[k],i
9
5F
MOV M[i],M[k]
10
27
AND M[X+k],i
10
62
MOV IO[k],i
8
28
ROMX
11
63
MOV IO[X+k],i
9
2E
OR M[k],i
9
65
ASL M[k]
7
2F
OR M[X+k],i
10
66
ASL M[X+k]
8
36
XOR M[k],i
9
68
ASR M[k]
7
37
XOR M[X+k],i
10
69
ASR M[X+k]
8
38
ADD SP,i
5
6B
RLC M[k]
7
3C
CMP M[k],i
8
6C
RLC M[X+k]
8
3D
CMP M[X+k],i
9
6E
RRC M[k]
7
3E
MVI A[M[k]++]
10
6F
RRC M[X+k]
8
3F
MVI M[M[k]++],A
10
72
XOR F,K
4
41
AND IO[k],i
9
7D
LIMP k,i
7
42
AND IO[X+k],i
10
www.cypress.com
Document No. 001-15343 Rev. *C
13
enCoRe™ to enCoRe II Conversion
Development Environment
enCoRe and enCoRe II use completely different
development environments. The new environment, built
around the PSoC Designer software, is now being used
for many Cypress product families including PSoC
(Programmable System on Chip), PRoC (Programmable
Radio on Chip), enCoRe II, enCoRe III, and Wireless
enCoRe II. This provides a substantial advantage to
customers who are designing a range of products using
different Cypress chips by reducing the cost of tools as
well as minimizing the learning curve for future products.
One thing to note about this architecture is that the pod
uses actual silicon from the target device family that
contains the addition of an On-chip Debugger (OCD)
interface. The use of real silicon greatly increases the
reliability of development and debug compared to an
FPGA-based system. The separate device with the OCD
interface means that production devices are spared from
having to pay the added cost burden of incorporating this
interface.
Figure 4. ICE-Cube In-Circuit Emulator
Development Hardware
The development kit for enCoRe is an FPGA-based
emulation system. The base platform for the emulator is
the CY3654 Platform Board. This base board supports
three different personality boards for various Cypress USB
families. In particular, the CY3654-P05 is the personality
board for the enCoRe family (shown in Figure 3). There
are certain features of the part that cannot be reliably
emulated using this environment.
Figure 3. CY3554 Platform Board
Development Software
With the enCoRe devices, two separate environments
were provided for firmware development. Assembly
developers (by far the most common) used the Cypress
CYASM assembler. The ByteCraft C compiler was sold
separately for C developers. Both were command-line
based tools.
For enCoRe II, the PSoC Designer Integrated
Development Environment provides a complete solution. It
incorporates a graphical device configuration interface,
code editor, assembler, C compiler, linker and debugger
— and is available free for download from
http://www.cypress.com.
enCoRe II uses the ICE-Cube In Circuit Emulator. The
ICE-Cube has a USB interface to the PC and is tightly
integrated with the PSoC Designer software tool. The
ICE-Cube connects to the target hardware using a pod or
flex-pod (different architectures have been used for
different device families, but all have the same essential
function).
www.cypress.com
It is not the intent of this application note to give detailed
guidance on the use of this tool; however, a brief overview
is worthwhile. Cypress provides ample information to
assist customers with the details. User Guides are
provided as part of the download, and Cypress also offers
multiple Tele-Training courses to provide further
assistance. These courses are offered periodically in a live
web-based forum, but the presentation materials are also
available for download from the Cypress website at any
time. Tele-Training Module 1 provides a basic overview on
the use of the PSoc Designer software.
Document No. 001-15343 Rev. *C
14
enCoRe™ to enCoRe II Conversion
Getting Started on a PSoC Designer Project
When you start PSoC Designer by double-clicking on a project file, the tool opens and loads that project. When PSoC
Designer is launched independently, you must take a few steps to create a new project:
1.
Choose Start New Project. In the Start Page, you can start new project by click File > New Project. Note that you also
have option to open an existing project under File menu.
www.cypress.com
Document No. 001-15343 Rev. *C
15
enCoRe™ to enCoRe II Conversion
2.
Create the new project by doing the following:

3.
Choose Chip-level as project type
Type the name of your project (there are
restrictions on the file names allowed: only letters,
numbers, and underscore “_”).
Perform the final steps to create the project:
a. You can clone the Device type by specifying the
existing project path

Browse to the appropriate location for your project.

Select OK. You are prompted to create the new
directory.
Check “Create directory for workspace” if you
wish to.
b. You can also manually select the part number. Click
the View Catalog button for a complete list, filterable by
features.
c. Choose C or Assembly for you ‘Main’ file.
d. Click OK.
www.cypress.com
Document No. 001-15343 Rev. *C
16
enCoRe™ to enCoRe II Conversion
U s i n g t h e D e vi c e E d i t o r
Refer to Figure 5 to clarify the following information:

GPIO Configuration (4): Here you can setup the initial
IO configuration.

Global Resource (1): Here you can setup some basic
design parameters, such as CPU clock, LVD, WDT,
and so on.

Floorplan Window(5): Here you can see the status of
all user modules and port connections.

User Module Tray(2): Allows placement of User
Modules. If you need to reference information for a
user module(such as APIs), right click on the user
module and choose Datasheet.

Pin Out Window (6): After you finish all
interconnection, the pin assignment chart is displayed.
All pin names are printed on the IC pin package.

Workspace Explorer (7): All source files are displayed
in this window. Separate folders are provided for
application and library files, source and headers.

User Module Parameter Selection (3): Here you can
setup User Module parameters.
Figure 5. Device Editor Floorplan View
www.cypress.com
Document No. 001-15343 Rev. *C
17
enCoRe™ to enCoRe II Conversion
U s i n g t h e Ap p l i c a t i o n E d i t o r
Refer to Figure 6 to clarify the following information:

Firmware Code Window (1): You can modify or write
code in this window.

Build Status (2): This information is displayed when
you presse the Build button. The complier status is
also displayed.

Files List Window (3): All source files are displayed in
this window. Separate folders are provided for
application and library files, source and headers.
Figure 6. Application Editor
www.cypress.com
Document No. 001-15343 Rev. *C
18
enCoRe™ to enCoRe II Conversion
Using the Debugger
Refer to Figure 7 to clarify the following information:

You can see the register status from this window (1); it is a very useful window for step-by-step debugging.
The global variable window (2) displays the value of the global variables.
If you need to check the status of a local variable, insert breakpoints and bookmarks in the routine. After running the
program, the value of the local variables is displayed.
Figure 7. Using the Debugger
www.cypress.com
Document No. 001-15343 Rev. *C
19
enCoRe™ to enCoRe II Conversion
When the User Module is selected, various firmware files
are added to the project to provide the APIs, as shown in
Figure 9.
Using enCoRe II Features and
Functional Blocks
This section gives additional guidance on how to use of
some of the enCoRe II functions. Because of the new
PSoC Designer environment, this approach may be very
different from what traditional enCoRe customers would
expect.
Figure 9. Library Code Files for MSTIMER User Module
Using the 1-ms Timer Interrupt
Although the 1-ms timer interrupt is actually configurable
to intervals other than 1 ms, most customers will probably
want to specify a 1-ms periodicity. To set this up, make
sure that the ‘MSTIMER’ User Module is selected and
placed. To achieve a 1-ms interval, the most common
selections would be to use the 24 MHz internal oscillator
as a reference with a divider of 6, as shown in Figure 8.
Recall that the 1-ms interrupt is based on a 4 MHz
TCAPCLK. If the clock source, clock source frequency, or
capture divider change, the period of the interrupt
changes.
Figure 8. 1 ms Timer Resource Configuration
www.cypress.com
Document No. 001-15343 Rev. *C
20
enCoRe™ to enCoRe II Conversion
You can build firmware code based on the sample code
included. Note the specific location in the code segment
below for the insertion of custom application code.
Code 1. Adding Custom Code to the 1-ms ISR Routine
The capture timers interrupt whenever a new timer value
is saved due to a selected GPIO edge event. A common
use for the capture timers is on wireless receivers where it
is necessary to decode an incoming RF signal. The
capture timer capability is used to measure the received
pulse widths.
To use the capture timer, you must configure the 16-bit
free-running timer (TCAPCLK) as discussed in the
previous section. To use the interrupts, you must enable
the TCAP0 and/or TACP1 interrupts (Interrupt Mask 1
register 0xE1 and Interrupt Mask 2 register 0xDF
respectively) as well as the applicable rising and/or falling
edge interrupts in the Capture Interrupt Enable register
0x2B. Timing a pulse width involves enabling both rising
and falling edge interrupts and then calculating the
difference between the two captured values.
Figure 10. Capture Timer Usage
The following is an example:
Code 2. Subroutine for 1-ms Timer Interrupt
12-Bit Programmable Interval Timer
Two parameters affect the programmable timer period:
one is the PI-Timer Source and the other is the PI-Timer
Divider. These can be configured within the User Module
resources sections of PSoC Designer, as shown in Figure
11).
In the new subroutine you can, for example, manage
various flags to handle timed based events.
Figure 11. 12-Bit PIT Configuration Options
Capture Timer
There is no User Module for the capture timers. The two
8-bit capture timers save a programmable 8-bit range of
the free-running timer when a GPIO edge occurs on the
two capture pins (P0.5, P0.6). The two 8-bit captures can
be ganged into a single 16-bit capture. Detailed
information can be found in the enCoRe II Data Sheet,
registers 0x40 - 0x45).
www.cypress.com
Document No. 001-15343 Rev. *C
21
enCoRe™ to enCoRe II Conversion
The User Module also adds additional library source files
to the application. Figure 9 shows the ‘pitimer12...’ files.
Within an application, firmware can adjust the PI-Timer
Source and PI-Timer Divider dynamically to change the
resolution if needed.
At startup, the timer begins to count down and the
interrupt occurs on the count of ‘0’. At that moment, you
can reset the period of the next timer interrupt. Custom
code can be added to the default interrupt handler as
follows.
3.
Setup the Sleep Timer period using the Sleep Timer
bits in the OSC_CR0 register 0x1E0:
Sleep
Timer
[1:0]
Sleep Timer
Clock
Frequency
(Nominal)
Sleep Period
(Nominal)
Watchdog
Period
(Nominal)
00
512 Hz
1.95 ms
6 ms
01
64 Hz
15.6 ms
47 ms
10
8 Hz
125 ms
375 ms
11
1 Hz
1s
3s
Code 3. Add Custom Code to the12-bit PIT ISR
4.
Enable the Sleep Timer interrupt
Firmware handles any housekeeping events, such as
placing USB into suspend, placing IOs into low-power
modes, and so on. An example follows.
Code 4. Sleep Example
The Sleep Timer Interrupt
The sleep timer is a very important function that can be
used in low-power mode (microcontroller sleep) to trigger
a periodic wakeup event. The following four steps must be
followed to setup the sleep timer interrupt:
1.
Make sure the Sleep Timer Interrupt is included on the
interrupt vector table.
2.
Edit the content for the SleepTimer_ISR.
www.cypress.com
Document No. 001-15343 Rev. *C
22
enCoRe™ to enCoRe II Conversion

Serial Peripheral Interface
Assert the overall Global Interrupt Enable.
The multiple GPIO interrupt vectors can be seen in the
boot.asm code generated by PSoC Designer.
Code 5. Subset of Interrupt Vectors in boot.asm
There are multiple configuration options provided within
PSoC Designer to select all of the SPI options that were
discussed earlier in this application note. These are shown
in Figure 12 and include:

IntDispatchMode: ActiveStatus or OffsetPreCalc
SPI pin voltage potential (3.3 V versus 5 V)

MSB first versus LSB first
SPI clock idle polarity (high or low)
Clock phase for sampling data
Clock divider for SPI clock
Figure 12. SPI
When the interrupt occurs, the firmware will jump to the
routine below. Custom code can be added in the
appropriate section to handle the event.
Code 6. GPIO Interrupt Handler
The option to support a 3-wire (SS, SCLK, SDATA) must
be managed in firmware due to the need to toggle the
Swap bit to change direction.
APIs for the SPI User Module can be found by referring to
the User Module Data Sheet in PSoC Designer.
Sample firmware source code could also be found in the
SPIM module datasheet.
GPIO Interrupts
Multiple GPIO interrupts support both TTL or CMOS
thresholds. For additional flexibility, the interrupt polarity is
programmable to be either the rising or falling edge. Using
a GPIO interrupt requires the following steps:

Set the Interrupt mode in the GPIO pin block.
Enable the bit interrupt in the GPIO block.
Set the mask bit for the (global) GPIO interrupt.
www.cypress.com
Document No. 001-15343 Rev. *C
23
enCoRe™ to enCoRe II Conversion
When using the user module, library files are added as
shown in Figure 14.
E2PROM User Module
Figure 14. Library Code Files for E2PROM User Module
The E2PROM User Module is a software algorithm that
uses no enCoRe II hardware resources. One or more
instances of these E2PROM virtual devices can be
created.
The flash is organized in 64 byte blocks in all enCoRe II
devices. The architecture allows the flash data to be read
on a byte-by-byte basis, but requires the data to be written
on a block-by-block basis — 64 bytes at a time. The intent
of this user module is to emulate an EEPROM device (a
byte-read, byte-write oriented device) on a Flash-based
memory device (a byte-read, block-write oriented device).
To use the E2PROM User Module, you must still configure
it on block boundaries, as shown in Figure 13.
Figure 13. E2PROM Configuration Options
Sample firmware source code could also be found in the
E2PROM module datasheet.
Note that the E2PROM user module has a fairly large
code footprint (approximately 800 bytes) to provide its
flexibility. Cypress also has reference code for simplified,
smaller flash read/write routines for cases where 64 bytes
or less of EEPROM is needed (for example, a single flash
block). These are currently included in our WirelessUSB
keyboard/mouse reference designs, which can be
downloaded from the Cypress website. Refer to the
flash.asm routines in the CY4636.
www.cypress.com
Document No. 001-15343 Rev. *C
24
enCoRe™ to enCoRe II Conversion
USB
1.
Click the right mouse button on USB module in the
floor plan view of the Device Editor, and then select
USB Wizard.
2.
The USB Setup Wizard is displayed. Customers can
edit this table according to their design’s requirement.
To help you design quickly, Cypress also provides two
reference templates of the HID report. For customer
who just want to design a keyboard or mouse, select
Import HID Report Template or load the ‘RDK FW’
then modify the template. This is a good way to start a
design.
This section presents information on the USB Wizard and
its uses.
USB Wizard
PSOC Designer includes a wizard to help you configure
the USB descriptors. It cannot handle all of the options
allowed within the USB or HID specifications, but it should
be suitable for most HID customers. Users who cannot fit
their definitions within the capabilities of the wizard (or
users who prefers to manage the process themselves) can
create descriptors in a more traditional way by adding their
own descriptor file to the project.
Figure 15. USB Setup Wizard
www.cypress.com
Document No. 001-15343 Rev. *C
25
enCoRe™ to enCoRe II Conversion
Get/Set Report Commands
PSOC Designer and the USB User Module handle most of
the USB functions. You need only to be aware of some
key buffers. Three buffers are important for Get/Set
Report:

2.
Add custom code to the routines below. These are
Vendor Specific Request Dispatch Routine templates.
Code 8: Handlers for Vendor Commands
USB_Interface_0_Feature for Get/Set report feature
USB_Interface_0_Input for Get/Set report input
USB_Interface_0_Output for Get/Set report output
Note: For EP1 data, USB_LoadEP can be a buffer for the
user to send data to the PC side.
Using Vendor Commands
Many customers need to build their own vendor
commands to receive some special instructions from the
host driver. Cypress provides a framework for adding
vendor support. To enable this, use this procedure:
1.
Set ‘1’ in the custom code block in USB.inc to enable
vendor functions (one or more can be set to ‘1’ as
required by the application).
Code 7: Enabling Vendor Commands
www.cypress.com
Document No. 001-15343 Rev. *C
26
enCoRe™ to enCoRe II Conversion
USB and PS/2 Macros
enCoRe II has many internal APIs that can help you build
much of the firmware code automatically. These APIs are
especially helpful for managing the protocol-related
portions of the code. Both USB and PS/2 support has
been provided, so you need only to be aware of the
appropriate functions and use them at the proper time.
U S B AP I s
USB_start()
This function enables the USB user module to support
USB functions. A call to it should generally be inserted in
an appropriate portion of the application initialization
routine.
USB_bGetConfiguration
This function can get the configuration status of device.
Normally, this is used to check whether it is time to send
the report to the host.
USB_LoadEP
This can be used to load data in preparation for sending
an IN transfer.
USB_Force
This is a very useful function that can be used to manually
control the state of the D–/D+ lines. Four options are
provided.
Force State
D+ Status
D- Status
USB_FORCE_J
0
1
USB_FORCE_K
1
0
USB_FORCE_SE0
0
0
USB_FORCE_NONE
USB_Resume
This function puts the USB Transceiver into normal
operation following a call to USB_Suspend. It retains the
USB address that had been assigned by the USB host.
P S / 2 AP I s
PS2D_Start
This function enables the user module to support PS/2.
PS2D_DoCommand
This function receives and processes a PS/2 Host
command. It must be called at least once every 1-2
milliseconds.
PS2D_TransferInProgress
This function returns ‘1’ if a transfer to the PS/2 Host is in
progress, otherwise returns ‘0’.
EMC Suggestions
Many customer designs will be required to pass certain
standards for EMI, ESD and/or EFTB. Although it is not
the purpose of this application note to provide exhaustive
guidance on this subject, the low-cost, minimalist design
approaches that are typical of low-speed USB products
tend to make this a significant issue. Therefore, some brief
design guidance may be beneficial for minimizing the
chance of encountering problems
GND PAD Assignment
GND PAD assignment is very important on the PCB
design. Proper GND PAD assignment can reduce ESD or
EMI issues. Generally speaking, the more GND the better
the design. But in some special cases, noise may be
coupled to signal IO pins through GND.
If there is any analog signalling in the design, digital and
analog GND must be separated into two distinct zones,
and then connected on the signal-out interface of the PCB.
Control of D+/D– is released
Avoiding Antenna Effects
USB_bCheckActivity
This function can be used to check for USB activity. It is
normally used for suspend mode detection. The developer
can place it in a timer interrupt routine and make a
determination of when the system is required to enter
suspend mode.
USB_Suspend
This function puts the USB Transceiver into power-down
mode, while maintaining the USB address assigned by the
USB host. To restore the USB transceiver to normal
operation, the USB_Resume function must be called.
www.cypress.com
When laying out the PCB, it is important to be conscious
of trace lengths. Long traces have a tendency to produce
antenna effects, causing undesired radiation of noise. This
kind of phenomenon is common on keyboards and similar
types of products where traces are used to produce some
type of input-scanning matrix. Additional noise
suppression may be required on these IOs if trace lengths
cannot be reduced.
WDT Timer Usage
When doing EFTB testing, the electrostatic burst may
impact the microcontroller firmware execution. All designs
must make use of the watchdog timer. Watchdog resets
are generally an effective means to manage these types of
events.
Document No. 001-15343 Rev. *C
27
enCoRe™ to enCoRe II Conversion
Clock Control
If EMI issues are encountered, remember that enCoRe II
has a great deal of control over its clocks. Make sure that
clocks are run at the lowest frequency required by the
design. Unused clocks must be disabled or selected to the
lowest frequency source. Although the low-power 32-kHz
oscillator is provided as a sleep timer, it can also make a
useful clock source for system timing functions in some
applications. This can be extremely helpful not only
because it is a much lower frequency, but also because it
is not derived from the single 24-MHz source that is
typically used for all other clocks.
www.cypress.com
Summary
This Application note documents the architectural
enhancements made in enCoRe II in comparison with
enCoRe series MCU.
It also serves guide for customers to migrate from enCoRe
to enCoRe II.
Document No. 001-15343 Rev. *C
28
enCoRe™ to enCoRe II Conversion
Document History
Document Title: enCoRe™ to enCoRe II Conversion - AN6062
Document Number: 001-15343
Revision
ECN
Orig. of
Change
Submission
Date
Description of Change
**
1778266
KUH
11/27/2007
Recatalogued application note.
*A
3206553
NXZ
03/26/2011
Added assembly code example to demonstrate how to migrate GPIO accessing
from enCoRe to enCoRe II.
Changed title to include application note number as per guidelines.
*B
3276299
WQWU
08/15/2011
Update figures and module description in accordance with PSoC Designer 5.1
*C
4492975
ANKC
09/05/2014
Updated in new template.
Completing Sunset Review.
www.cypress.com
Document No. 001-15343 Rev. *C
29
enCoRe™ to enCoRe II Conversion
Worldwide Sales and Design Support
Cypress maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find
the office closest to you, visit us at Cypress Locations.
PSoC® Solutions
Products
Automotive
cypress.com/go/automotive
psoc.cypress.com/solutions
Clocks & Buffers
cypress.com/go/clocks
PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP
Interface
cypress.com/go/interface
Lighting & Power Control
cypress.com/go/powerpsoc
cypress.com/go/plc
Memory
cypress.com/go/memory
PSoC
cypress.com/go/psoc
Touch Sensing
cypress.com/go/touch
USB Controllers
cypress.com/go/usb
Wireless/RF
cypress.com/go/wireless
Cypress Developer Community
Community | Forums | Blogs | Video | Training
Technical Support
cypress.com/go/support
enCoRe is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks referenced herein are the property of
their respective owners.
Cypress Semiconductor
198 Champion Court
San Jose, CA 95134-1709
Phone
Fax
Website
: 408-943-2600
: 408-943-4730
: www.cypress.com
© Cypress Semiconductor Corporation, 2007-2014. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.
This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
www.cypress.com
Document No. 001-15343 Rev. *C
30

				

 Open as PDF

 	Similar pages
	

										CY7C63310, CY7C638xx enCoRe II Low Speed USB Peripheral Controller Datasheet.pdf

	

										CYPRESS CY7C60123-PVXC

	

										CYPRESS CY7C63310

	

										CYRF69303 Programmable Radio-on-Chip LPstar Datasheet.pdf

	

										CYPRESS CYRF69103

	

										CYPRESS CY7C60223-PXC

	

										CYPRESS CYRF69313

	

										CYPRESS CYRF69213_13

	

										AN15482 Using Capture Timers in enCoRe™ II and enCoRe II LV Devices.pdf

	

										CYPRESS CY7C63101

	

										Download AN2094 -001-40480_0E_V[1].pdf

	

										Download KBA96321.pdf

	

										CYPRESS CY7C63923-PVXC

	

										CY4623 - Kit User Guide.pdf

	

										SPIM_001-13683.pdf

	

										PS2D_001-13681.pdf

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

