

	
		
			
				
					
					
					
				
				
					DtSheet				

			

			
					
							
								
									
									
										
											
										
									
								

							

						

				

						
 Upload

				
			

		

	

		

 PS2D_001-13681.pdf

		
				 PS/2 Device Datasheet PS2D V 1.2
001-13681 Rev. *E
PS/2 Device
Copyright © 2004-2014 Cypress Semiconductor Corporation. All Rights Reserved.
API Memory (Bytes)
Resources
flash
RAM
Pins
CY7C639/638/633/602/601xx
Mouse Support
935
17 (including 4 byte transfer buffer)
2
Keyboard Support
810
17 (including 4 byte transfer buffer)
2
Features and Overview
„
„
„
„
PS/2 Device Interface
Selectable command sets for mouse or keyboard applications
Custom feature unlock mechanism
Integrated with the USB SIE for combo USB-PS/2 applications
Figure 1.
Block Diagrams
Cypress Semiconductor Corporation
Document Number: 001-13681 Rev. *E
•
198 Champion Court
•
San Jose, CA 95134-1709
•
408-943-2600
Revised December 5, 2014
PS/2 Device
Functional Description
The PS/2 Device User Module supports a standard PS/2 keyboard or a standard PS/2 mouse. A PS/2
connector is a 6-pin mini-DIN connector. It can be used for connecting either a keyboard or a mouse with
a compatible computer. You must choose to support either a keyboard or a mouse with the PS/2 Device
User Module. Choose to support either the keyboard command set or the mouse command set when you
select the user module. If you wish to change from one to the other after the user module is selected, right
click on the user module icon and select User Module Selection Options. By convention, connectors that
support keyboards are color coded purple, and ports that support mice are color coded green. With the
addition of the USB Device User Module, you can create a single device that supports a USB and PS/2
combination device.
Data Format
Host to Device Data Format (12 bits):
„
„
„
„
„
Request to Send. (0)
8 data bits.
Parity bit. (Odd Parity)
Stop bit. (1)
Acknowledge. (1)
Device to Host Data Format (11 bits):
„
„
„
„
Start bit. (0)
8 data bits.
Parity bit. (Odd Parity)
Stop bit. (1)
DC and AC Electrical Characteristics
See the device datasheet for your enCoRe device for electrical characteristics.
Timing
The following timing diagrams describe the PS/2 timing requirements for proper PS/2 data transmission
and reception. The PS/2 Device is responsible for generating all of the clock signals on SCLK for both
Host to Device and Device to Host transfers.
Figure 2.
PS/2 Device to Host Transfer Timing
Document Number: 001-13681 Rev. *E
Page 2 of 16
PS/2 Device
During Device to Host transfers, the Device controls both SCLK and SDATA. The Device maintains a
consistent SCLK cycle between 10 kHz and 14.6 kHz. The Device updates SDATA on while SCLK is high,
and the Host sample SDATA when SCLK is low.
Figure 3.
PS/2 Host to Device Transfer Timing
Four distinct phases occur during a Host to Device transfer. First, the Host pulls SCLK low, indicating an
Host Inhibit condition. During an Inhibit, the Device must stop any transfer in progress and release both
SCLK and SDATA. Next, the Host pulls SDATA low, and releases SCLK, signaling a Request to Send to
the Device. During the data transfer phase, the Device cycles SCLK. The Host updates SDATA when
SCLK is low. The Device samples SDATA when SCLK is high. The falling edge of the parity bit starts the
Acknowledgment Phase. The Host releases SDATA, forming the stop bit. After sampling SDATA, the
Device acknowledges receipt of the data, by driving SDATA low. The Host samples SDATA on the low
SCLK for the acknowledgment.
Placement
The PS2 Device User Module is software only and does not consume enCoRe blocks.
Parameters and Resources
PS2D Port
Choose the port for the PS2 data and clock pins. If you plan to create a dual PS2/USB device, choose
the port that the USB transceiver is attached to.
TxBufferSize
This parameter determines how many RAM locations are reserved for the transmit buffer. The transit
buffer must accommodate the largest data packet generated by the application.
Document Number: 001-13681 Rev. *E
Page 3 of 16
PS/2 Device
Application Programming Interface
The Application Programming Interface routines in this section allow programmatic control of the PS/2
User Module. The following tables list the basic and device specific API functions.
Note
When using this the PS2D User Module and GPIO pins from Port n (Pn.2-Pn.7), the application
should use the Port_n_Data_SHADE shadow register to ensure consistent data handling. From
assembly language, you can access the Port_n_Data_SHADE RAM location directly. From C language, you should include an extern reference:
extern BYTE Port_n_Data_SHADE;// Where n is the port number
Table 1.
Basic PS/2 Device API
Function
Description
void PS2D_Start(void)
Enable user module.
void PS2D_Stop(void)
Disable user module.
BYTE PS2D_DoCommand(void)
Receives and processes a PS/2 Host Command if the Host
requests to send one. This function should be called at least once
every 1-2 milliseconds.
void PS2D_SendNextByte(void)
Transmit the next byte in the transmit buffer.
BYTE PS2D_TranserInProgress(void)
Returns 1 if a transfer to the PS/2 Host is in progress, otherwise
returns 0
void PS2D_SendResponseResend(void)
Resend the contents of the PS/2 transmit buffer.
void PS2D_AbortTransfer(void)
Abort the current transfer.
Table 2.
Device Specific API (Mouse)
Function
BYTE PS2D_GetDeviceID(void);
Description
Returns the Device ID. The PS2D supports two mouse Device
IDs.
Device ID 0 is returned as the default Mouse Device Id. The host
expects a three byte mouse data packet for Device ID 0.
Device ID 3 is return for scroll wheel mice. This feature is
automatically activated by a series of Set Resolutions
Commands from the host. (200, 100, 80). The host expects a
four byte mouse data packet for Device ID 3.
BYTE PS2D_IsEnabled(void)
Returns 1 if the host has enabled Data Reporting with the
"Enable Data Reporting", otherwise returns 0.
BYTE PS2D_IsStreamMode(void);
Returns 1 if the interface is in streaming mode, otherwise 0.
BYTE PS2D_GetSampleInterval(void);
Returns the sample interval (milliseconds).
Document Number: 001-13681 Rev. *E
Page 4 of 16
PS/2 Device
Table 3.
Device Specific API (Keyboard)
Function
Description
WORD PS2D_GetDeviceID(void);
Returns the Device ID.
BYTE PS2D_IsEnabled(void)
Returns 1 if the host has enabled the keyboard, otherwise
returns 0.
BYTE PS2D_GetScanCodeSet(void);
Returns the current Scan Code Set selected by the PS/2 Host
BYTE PS2D_GetRepeatRate(void);
Returns the current Typematic Repeat Rate selected by the PS/2
Host
BYTE PS2D_GetDelay(void);
Returns the current Typematic Delay selected by the PS/2 Host
BYTE PS2D_GetLED(void);
Returns the current LED settings selected by the PS/2 Host
PS2D_Start
Description:
Performs all required initialization for PS/2 Device User Module.
C Prototype:
void
PS2D_Start(void)
Assembly:
lcall
PS2D_Start
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PS2D_Stop
Description:
Performs all necessary shutdown task required for the PS/2 User Module. This function should be
called in PS/2-USB combi applications when the actual interface is determined to be connected to a
USB host.
C Prototype:
void
PS2D_Stop(void)
Assembly:
lcall
PS2D_Stop
Parameters:
None
Document Number: 001-13681 Rev. *E
Page 5 of 16
PS/2 Device
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PS2D_DoCommand
Description:
Receive and process a command from the PS/2 Host
C Prototype:
BYTE
PS2D_DoCommand(void)
Assembly:
lcall
PS2D_DoCommand
Parameters:
None
Return Value:
Returns a non-zero value if a PS/2 command had been received and processed.
Side Effects:
The A and X registers may be altered by this function.
PS2D_SendNextByte
Description:
Sends the next byte in the transmit buffer to the PS/2 Host.
C Prototype:
void
PS2D_SendNextByte(void)
Assembly:
lcall
PS2D_SendNextByte
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13681 Rev. *E
Page 6 of 16
PS/2 Device
PS2D_TransferInProgress
Description:
Determines if a PS/2 transfer is in progress.
C Prototype:
BYTE
PS2D_TranserInProgress(void)
Assembly:
lcall
PS2D_TranserInProgress
Parameters:
None
Return Value:
Returns a non-zero value if a PS/2 transfer is in progress.
Side Effects:
The A and X registers may be altered by this function.
PS2D_SendResponseResend
Description:
Resend the contents of the PS/2 transmit buffer.
C Prototype:
void
PS2D_SendResponseResend(void)
Assembly:
lcall
PS2D_SendResponseResend
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PS2D_AbortTransfer
Description:
Abort the current transfer.
C Prototype:
void
PS2D_AbortTransfer(void)
Assembly:
lcall
PS2D_AbortTransfer
Parameters:
None
Document Number: 001-13681 Rev. *E
Page 7 of 16
PS/2 Device
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Device Specific API (Mouse)
PS2D_GetDeviceID
Description:
Returns the Device ID.
C Prototype:
BYTE
PS2D_GetDeviceID(void)
Assembly:
lcall
PS2D_GetDeviceID
Parameters:
None
Return Value:
Device ID
Side Effects:
The A and X registers may be altered by this function.
PS2D_IsEnabled
Description:
Returns 1 if the interface is enabled, otherwise returns 0.
C Prototype:
BYTE
PS2D_IsEnabled(void)
Assembly:
lcall
PS2D_IsEnabled
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13681 Rev. *E
Page 8 of 16
PS/2 Device
PS2D_IsStreamMode
Description:
Returns 1 if the interface is in streaming mode, otherwise 0.
C Prototype:
BYTE
PS2D_IsStreamMode(void)
Assembly:
lcall
PS2D_IsStreamMode
Parameters:
None
Return Value:
Stream Mode
Side Effects:
The A and X registers may be altered by this function.
PS2D_GetSampleInterval
Description:
Returns the sample interval (milliseconds) set by the PS/2 Host
C Prototype:
BYTE
PS2D_GetSampleInterval(void)
Assembly:
lcall
PS2D_GetSampleInterval
Parameters:
None
Return Value:
Sample Interval
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13681 Rev. *E
Page 9 of 16
PS/2 Device
Device Specific API (Keyboard)
PS2D_GetDeviceID
Description:
Returns the PS/2 ID for keyboards
C Prototype:
WORD
PS2D_GetDeviceID(void)
Assembly:
lcall
PS2D_GetDeviceID
Parameters:
None
Return Value:
PS/2 ID for keyboards (0xAB83)
Side Effects:
The A and X registers may be altered by this function.
PS2D_IsEnabled
Description:
Returns 1 if the interface is enabled, otherwise returns 0.
C Prototype:
BYTE
PS2D_IsEnabled(void)
Assembly:
lcall
PS2D_IsEnabled
Parameters:
None
Return Value:
None
Side Effects:
The A and X registers may be altered by this function.
PS2D_GetScanCodeSet
Description:
Returns the Scan Code Set selected by the PS/2 Host
C Prototype:
BYTE
PS2D_GetScanCodeSet(void)
Assembly:
lcall
PS2D_GetScanCodeSet
Document Number: 001-13681 Rev. *E
Page 10 of 16
PS/2 Device
Parameters:
None
Return Value:
Scan Code Set
Side Effects:
The A and X registers may be altered by this function.
PS2D_GetRepeatRate
Description:
Returns the Typematic Rate selected by the PS/2 Host
C Prototype:
BYTE
PS2D_GetRepeatRate(void)
Assembly:
lcall
PS2D_GetRepeatRate
Parameters:
None
Return Value:
Repeat Rate
Side Effects:
The A and X registers may be altered by this function.
PS2D_GetDelay
Description:
Returns the Typematic Delay selected by the PS/2 Host
C Prototype:
BYTE
PS2D_GetDelay(void)
Assembly:
lcall
PS2D_GetDelay
Parameters:
None
Return Value:
Typematic Delay
Side Effects:
The A and X registers may be altered by this function.
Document Number: 001-13681 Rev. *E
Page 11 of 16
PS/2 Device
PS2D_GetLED
Description:
Returns the current LED setting set by the PS/2 Host
C Prototype:
BYTE
PS2D_GetLED(void)
Assembly:
lcall
PS2D_GetLED
Parameters:
None
Return Value:
LED
Bit
Bit
Bit
Setting Bitmap.
0 Scroll Lock (0=Off, 1=On)
1 Num Lock (0=Off, 1=On)
2 Caps Lock (0=Off, 1=On)
Side Effects:
The A and X registers may be altered by this function.
Application Data Transfer API
For efficiency considerations, the PS2D User Module does not provide a function interface for loading the
transfer buffer. Instead, the application loads the transfer buffer directly. The application is responsible for
making sure no transfer is underway before loading the transfer buffer by calling
PS2D_TranserInProgress. The application must guard against a buffer overrun using the
PS2D_TX_BUFFER_SIZE. After the buffer is loaded, a transfer is started by invoking the
PS2D_StartTransfer macro, specifying the transfer size as the only parameter.
PS/2 Low Level Driver
The PS2D User Module low level driver handles all data transfer between the application and the PS/2
Host. The driver is invoked by periodic calls to PS2D_DoCommand and PS2D_SendNextByte.
PS2D_DoCommand must be call at least every 5 milliseconds. When PS2D_TransferInProgress indicates
that a transfer is active, PS2D_SendNextByte should be called at intervals of not greater than 2 ms.
In order to guarantee proper responses to host commands, the application must not start a data transfer
unless the preceding call to PS2D_DoCommand indicates that no command was not processed. Certain
commands require additional data exchange for specific command parameters. Of course, the application
must not start a new data transfer while an existing transfer is in progress.
Document Number: 001-13681 Rev. *E
Page 12 of 16
PS/2 Device
Mouse Application Support
The following table displays a list of the commands that may be sent to the mouse. Before sending any
other commands, check the status of the mouse - if the mouse is in stream mode, the host should disable
the reporting of data. Command 0xF5 may be used to disable data reporting.
Table 4.
Mouse Command Set
Command
Description
S=Supported
U=Unsupported
0xFF (Reset)
The mouse responds to this command with "acknowledge" (0xFA)
then enters Reset Mode.
0xFE (Resend)
The host sends this command whenever it receives invalid data
S
from the mouse. The mouse responds by resending the last packet
it sent to the host. If the mouse responds to the "Resend" command
with another invalid packet, the host may either issue another
"Resend" command, issue an "Error" command, cycle the mouse's
power supply to reset the mouse, or it may inhibit communication
(by bringing the Clock line low). The action taken depends on the
host.
0xF6 (Set Defaults)
The mouse responds with "acknowledge" (0xFA) then loads the
following values: Sampling rate = 100, Resolution = 4 counts/mm,
Scaling = 1:1, Disable Data Reporting. The mouse then resets its
movement counters and enters stream mode.
S
0xF5 (Disable Data
Reporting)
The mouse responds with "acknowledge" (0xFA) then disables
data reporting and resets its movement counters. This only effects
data reporting in Stream mode and does not disable sampling.
Disabled stream mode functions the same as remote mode.
S
0xF4 (Enable Data
Reporting)
The mouse responds with "acknowledge" (0xFA) then enables data S
reporting and resets its movement counters. This command may be
issued while the mouse is in Remote Mode (or Stream mode), but it
only effects data reporting in Stream mode.
0xF3 (Set Sample Rate)
The mouse responds with "acknowledge" (0xFA) then reads one
more byte from the host. The mouse saves this byte as the new
sample rate. After receiving the sample rate, the mouse again
responds with "acknowledge" (0xFA) and resets its movement
counters. Valid sample rates are 10, 20, 40, 60, 80, 100, and 200
samples/sec.
S
0xF2 (Get Device ID)
The mouse responds with "acknowledge" (0xFA) followed by its
device ID (0x00 for the standard PS/2 mouse.) The mouse should
also reset its movement counters.
S
0xF0 (Set Remote Mode)
The mouse responds with "acknowledge" (0xFA) then resets its
movement counters and enters remote mode.
S
0xEE (Set Wrap Mode)
The mouse responds with "acknowledge" (0xFA) then resets its
movement counters and enters wrap mode.
S
Document Number: 001-13681 Rev. *E
S
Page 13 of 16
PS/2 Device
Command
S=Supported
U=Unsupported
Description
0xEC (Reset Wrap Mode) The mouse responds with "acknowledge" (0xFA) then resets its
movement counters and enters the mode it was in before wrap
mode (Stream Mode or Remote Mode.)
S
0xEB (Read Data)
The mouse responds with acknowledge (0xFA) then sends a
S
movement data packet. This is the only way to read data in Remote
Mode. After the data packets has been successfully sent, it resets
its movement counters.
0xEA (Set Stream Mode)
The mouse responds with "acknowledge" then resets its movement S
counters and enters stream mode.
0xE9 (Status Request)
The mouse responds with "acknowledge" then sends the following S
3-byte status packet (then resets its movement counters.):
0xE8 (Set Resolution)
The mouse responds with acknowledge (0xFA) then reads one
byte from the host and again responds with acknowledge (0xFA)
then resets its movement counters. The byte read from the host
determines the resolution.
S
0xE7 (Set Scaling 2:1)
The mouse responds with acknowledge (0xFA) then enables 2:1
scaling.
S
0xE6 (Set Scaling 1:1)
The mouse responds with acknowledge (0xFA) then enables 1:1
scaling.
S
Keyboard Application Support
The following table displays a list of all the commands the host may send to the keyboard:
Table 5.
Keyboard Command Set
Command
Description
S=Supported
U=Unsupported
0xFF
(Reset)
Keyboard responds with "ack" (0xFA), then enters "Reset" mode.
0xFE
(Resend)
Keyboard responds by resending the last-sent byte. The
S
exception to this is if the last-sent byte was "resend" (0xFE). If this
is the case, the keyboard resends the last non-0xFE byte. This
command is used by the host to indicate an error in reception.
0xFD (Set Key Type
Make)
Disable break codes and typematic repeat for specified keys.
Keyboard responds with "ack" (0xFA), then disables scanning (if
enabled) and reads a list of keys from the host. These keys are
specified by their set 3 make codes. Keyboard responds to each
make code with "ack". Host terminates this list by sending an
invalid set 3 make code (for example, a valid command.) The
keyboard then re-enables scanning (if previously disabled).
0xFC
(Set Key Type
Make/Break)
Similar to the Set Key Type Make command, except this one only U
disables typematic repeat.
Document Number: 001-13681 Rev. *E
S
U
Page 14 of 16
PS/2 Device
Command
Description
S=Supported
U=Unsupported
0xFB
Similar to the Set Key Type Make command and the Set Key Type U
(Set Key Type Typematic) Make/Break command, except this command only disables break
codes.
0xFA
(Set All Keys
Typematic/Make/Break)
Keyboard responds with "ack" (0xFA). Sets all keys to their normal U
setting (generate scan codes on make, break, and typematic
repeat)
0xF9
(Set All Keys Make)
Keyboard responds with "ack" (0xFA). Similar to 0xFD, except
applies to all keys.
U
0xF8
Keyboard responds with "ack" (0xFA). Similar to 0xFC, except
(Set All Keys Make/Break) applies to all keys.
U
0xF7
(Set All Keys Typematic)
Keyboard responds with "ack" (0xFA). Similar to 0xFB, except
applies to all keys.
U
0xF6
(Set Default)
Load default typematic rate/delay (10.9cps / 500ms), key types
(all keys typematic/make/break), and scan code set.
S
0xF5
(Disable)
Keyboard stops scanning, loads default values, and waits further
instructions.
S
0xF4
(Enable)
Re-enables keyboard after disabled using previous command.
S
0xF3
(Set Typematic
Rate/Delay)
Host follows this command with a one-argument byte that defines S
the typematic rate and delay.
0xF2
(Read ID)
The keyboard responds by sending a two-byte device ID of 0xAB, S
0x83. (0xAB is sent first, followed by 0x83.)
0xF0
(Set Scan Code Set)
Keyboard responds with "ack", then reads argument byte from
S
the host. This argument byte may be 0x01, 0x02, or 0x03 to select
scan code set 1, 2, or 3, respectively. The keyboard responds to
this argument byte with "ack". If the argument byte is 0x00, the
keyboard responds with "ack" followed by the current scan code
set.
0xEE
(Echo)
The keyboard responds with "Echo" (0xEE).
S
0xED
(Set/Reset LEDs)
The host follows this command with a one-argument byte that
specifies the state of the keyboard's Num Lock, Caps Lock, and
Scroll Lock LEDs.
S
Document Number: 001-13681 Rev. *E
Page 15 of 16
PS/2 Device
Sample Firmware Source Code
For examples of this user module usage, please refer to the CY4623 Kit projects available at
www.cypress.com/go/cy4623.
Version History
Version Originator
1.2
Note
DHA
Description
Added Version History.
PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section documents high level descriptions of the differences between the current and previous user module versions.
Document Number: 001-13681 Rev. *E
Revised December 5, 2014
Page 16 of 16
Copyright © 2004-2014 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.

				

 Open as PDF

 	Similar pages
	

										EzI2Cs_001-45841.pdf

	

										LED V2.00_001-13570.pdf

	

										CMPLP_001-13528.pdf

	

										AMUX8_001-13257.pdf

	

										DigBuf_001-13557.pdf

	

										SPIM_001-13683.pdf

	

										AN27079 - Developing PC Applications for USB-I2C Bridge

	

										PDF:

	

										AN6062 enCoRe to enCoRe II Conversion.pdf

	

										Application Notes

		

	

					dtsheet					© 2024

					

 About us
 DMCA / GDPR
 Abuse here

		

	

[image:]

