ROHM BD6086GU

System LED Drivers for Mobile Phones
13LEDs
ALC* Flash and Illumination
(*ALC : Auto Luminous Control)
BD6086GU
No.11041EAT16
●Description
BD6086GU is a composite LED driver best-suited for mobile phone display.
With an analog illumination intensity sensor connected, this LED driver mounts an auto luminous control (ALC) function
capable of automatically adjusting the backlight current depending on an ambient illumination intensity to reduce the set
power consumption. With a key backlight driver mounted, this driver enables the ON/OFF setting to be made depending on
the ambient illumination intensity. In addition, this driver realizes an eye-catching display through the use of two RGB LED
drivers supporting a slope control function.
With two channels of variable output type regulators mounted, this driver can be used for LCD and camera. This driver
eliminates the need for additional wirings on a flexible substrate through the GPIO mounted.
2
The DC/DC module adopts a charge pump system and rarely uses a coil. Furthermore, it employs a VCSP85H4 (4.5mm
0.5mm pitch) chip size package for compaction and thinness.
●Futures
1) LED Driver (7ch) for LCD Backlight
・Incorporates 4 channels for main settings and 3 channels optionally selectable for either independent control or main
setting depending on register settings.
・Provides a driver assigned for main settings with various functions such as an automatic current value adjustment
function by an illumination intensity sensor, a slope control function against current value variation, an LED current
value adjustment function for reflecting a setting value in a register through external pin synchronization and an LED
current value adjustment function through external pin PWM input.
2) RGB LED driver (dual driver)
・Incorporates a slope control function (capable of controlling dual drivers independently)
・Capable of selecting (setting) a battery or DC/DC output module as a destination (register setting)
・Capable of using one driver for GOP output mode (register setting)
3) Illumination intensity sensor interface
・Incorporates various functions such as a sensor bias adjustment function, an ADC with an average filter, a gain/offset
adjustment function and an LOG conversion function so that options can be increased for illumination intensity
sensors (Photo Diode, Photo Transistor, Photo IC (Linear/LOG)).
・Incorporates an auto gain switching function for suppressing an illumination intensity sensor current at high
illumination intensity and improving sensitivity at low illumination intensity
・Capable of customizing an LED current value according to a table setting.
4) Built-in regulator (2 channels)
・REG1 2.8V Iomax=150mA
Low power consumption mode available
・REG2 1.5V/1.8V Iomax=150mA
Low power consumption mode available
・REG1, REG2
Both can be controlled independently via external pins.
5) Charge pump system DC/DC
・Supports an output voltage fixed mode function (3.9V/4.2V/4.5V/4.8V)
・Mounts a soft start function, an overvoltage protection function (auto recovery type) and an overcurrent protection (auto recovery)
6) Key backlight controller
・Capable of ON/OFF control depending on an ambient illumination intensity
・Capable of adjusting key backlight brightness via MAX DUTY setting
・Capable of making an fade-in/fade-out setting via PWM
7) Built-in general-purpose port (4 channels)
・GPIO4ch
・Permits the selection of a complementary or open drain for output.
8) Thermal shutdown
2
9) I C BUS Fast mode support (max. 400 kHz)
* Radiation-proof is not designed.
* This Description is subject to change without a prior notice.
* This Description is not a delivery specification.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
1/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Absolute Maximum Ratings (Ta=25 ℃)
Parameter
Maximum Applied voltage
Power Dissipation
Symbol
Limits
Unit
VMAX
7
V
Pd
1900 Note1)
mW
Operating Temperature Range
Topr
-25 ~ +85
℃
Storage Temperature Range
Tstg
-55 ~ +150
℃
Note1) Power dissipation deleting is 15.2mW/ ℃, when it’s used in over 25 ℃.
(It’s deleting is on the board that is ROHM’s standard)
●Operating conditions(VBAT≧VIO, VBAT≧VGPIO, Ta=-25~85℃)
Parameter
VBAT input voltage
VIO pin voltage
VGPIO pin voltage
Symbol
Limits
Unit
VBAT
2.7 ~ 5.5
V
VIO
1.65 ~ 3.3
V
VGPIO
1.65 ~ 3.3
V
●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V)
Parameter
Symbol
Limits
Min.
Typ.
Max.
Unit
Condition
【Circuit Current】
VBAT Circuit current 1
IBAT1
-
0.1
3.0
μA
RESETB=0V, VIO=VGPIO=0V
VBAT Circuit current 2
IBAT2
-
0.5
3.0
μA
RESETB=0V, VIO=1.8V, VGPIO=0V
VBAT Circuit current 3
IBAT3
-
7.5
11.3
μA
VBAT Circuit current 4
IBAT4
-
110
165
μA
VBAT Circuit current 5
IBAT5
-
61
65
mA
VBAT Circuit current 6
IBAT6
-
92
102
mA
VBAT Circuit current 7
IBAT7
-
123
140
mA
VBAT Circuit current 8
IBAT8
-
0.35
1.0
mA
REG1,REG2 Low consumption mode
Io=0mA,VIO=1.8V, VGPIO=0V
(control is rejistor setup)
REG1,REG2 Nomal mode Io=0mA
(control is rejistor setup)
DC/DC x1mode, Io=60mA
VBAT=4.0V
DC/DC x1.5mode, Io=60mA
VBAT=3.6V
DC/DC x2mode, Io=60mA
VBAT=2.7V
ALC operating ,
Setup of ALCEN=1, AD cycle =0.5s
Sensor current removes
【LED Driver】
LED current Step
(Current Setup)
ILEDSTPW1
128
ILEDSTPRGB1
128
LED current Step
(At slope)
ILEDSTPW2
256
ILEDSTPRGB2
128
step
step
LED Maximum setup current 1
IMAX1
-
-
25.6
mA
LED Maximum setup current 2
IMAX2
-
-
30.48
mA
LED current accurate 1
ILED1
18
20
22
mA
LED current accurate 2
ILED2
18
20
22
mA
LED current Matching
ILEDMT
-
5
10
%
L Level output voltage
VOL2
-
-
0.2
V
LED OFF Leak current
ILKL
-
-
1.0
μA
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2/80
WLED1~7
RGB1 group, RGB2 group
WLED1~7
RGB1 group, RGB2 group
WLED1~7, LED terminal voltage
=1V
RGB1 group, RGB2 group,
LED terminal voltage =1V
RGBISET=100kΩ
WLED1~7, ILED=20mA setup,
LED terminal voltage =1V
RGB1 group, RGB2 group
ILED=20mA, RGBISET =120kΩ
LED terminal voltage =1V
WLED1~7,
RGB1 group, RGB2 group
RGB2 group GPO setup,
IOL=1mA
2011.04 - Rev.A
BD6086GU
Technical Note
●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V)
Parameter
Symbol
Limits
Min.
Typ.
Max.
Unit
Condition
【DC/DC (Charge Pump)】
Output voltage 1
Output voltage 2
VOCP1
VOCP2
-
Vf+0.2 Vf+0.25
V
3.705
3.9
4.095
V
3.99
4.2
4.41
V
4.275
4.5
4.725
V
Vf is forward direction of LED
At fixed voltage output mode,
Io=60mA
VBAT≧3.2V
4.56
4.8
5.04
V
Load stability
Iout
-
-
255
mA
Oscillator frequency
fosc
0.8
1.0
1.2
MHz
OVP
-
6.0
6.5
V
OCP
-
250
375
mA
VOUT=0V
2.85
3.0
3.15
V
Io=200µA
2.47
2.6
2.73
V
Io=200µA
IomaxS
30
-
-
mA
ROFFS
-
1.0
1.5
kΩ
VISS
0
-
VoS×
255/256
V
Over voltage protection detect
voltage
Over current protection detect
current
【Sensor interface】
SBIAS Output voltage
SBIAS Maximum
OutputCurrent
SBIAS Discharge resister at
OFF
SSENSinput voltage range
ADC resolution
ADC integral calculus
non-linearity
ADC differential calculus
non-linearity
SSENS Input impedance
VoS
ADRES
8
VBAT≧3.2V, VOUT=4V
Vo=2.6Vsetup
bit
ADINL
-3
-
+3
LSB
ADDNL
-1
-
+1
LSB
RSSENS
1
-
-
MΩ
Output voltage 1
Vo11
2.716
2.80
2.884
V
Output voltage 2
Vo12
2.668
2.80
2.912
V
I/O voltage difference
Vsat1
-
0.2
0.3
V
Load stability
ΔVo1
-
10
60
mV
Input stability
ΔVi1
-
10
60
mV
Ripple Rejection Ratio
RR1
40
50
-
dB
Short circuit current limit
Ilim01
-
225
450
mA
Discharge resister at OFF
ROFF1
-
1.0
1.5
kΩ
【REG1】
Io=150mA, VBAT≧3.1V (Normal
mode)
Io=100µA, VBAT≧3.1V (At low
consumption mode)
VBAT=2.5V, Io=150mA (Normal
mode)
Io=1~150mA (Normal mode)
VBAT=3.2~5.5V, Io=150mA (Normal
mode)
f=100Hz, Vin=200mVp-p (Normal
mode)
Vo=0V (Normal mode)
【REG2】
Output voltage 1
Vo21
Output voltage 2
Vo22
Load stability
1.74
1.80
1.86
V
1.44
1.50
1.56
V
1.71
1.80
1.89
V
1.425
1.50
1.575
V
ΔVo2
-
10
60
mV
Input stability
ΔVi2
-
10
60
mV
Ripple Rejection Ratio
RR2
45
55
-
dB
Short circuit current limit
Ilim02
-
225
450
mA
Discharge resister at OFF
ROFF2
-
1.0
1.5
kΩ
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
3/80
Io=150mA (Normal mode)
Io=100µA (At low consumption mode)
Vo21=1.8V setup
Io=1~150mA (Normal mode)
Vo21=1.8V setup, VBAT=3.2~5.5V,
Io=150mA (Normal mode)
Vo21=1.8V setup f=100Hz
Vin=200mVp-p (Normal mode)
Vo=0V (Normal mode)
2011.04 - Rev.A
BD6086GU
Technical Note
●Electrical Characteristics(Unless otherwise specified, Ta=25℃, VBAT=3.6V, VIO=VGPIO=1.8V)
Parameter
Symbol
Limits
Min.
Typ.
-0.3
-
Max.
Unit
Condition
【SDA, SCL】(I2C Interface)
L level input voltage
VILI
H level input voltage
VIHI
0.25 ×
VIO
VBAT
+0.3
V
VOLI
0.75 ×
VIO
0.05 ×
VIO
0
-
0.3
V
SDA pin, IOL=3 mA
linI
-10
-
10
μA
Input voltage = 0.1×VIO~0.9×VIO
L level input voltage
VILV
-0.3
-
H level input voltage
VIHV
Hysteresis of Schmitt trigger
input
L level output voltage
Input current
VhysI
-
-
V
V
【REG2VSEL】(CMOS input pin)
Input current
IinV
0.75 ×
VBAT
-10
-
0.25 ×
VBAT
VBAT
+0.3
10
V
V
μA
【RGB1CNT, RGB2CNT】(CMOS input pin with the Pull-down resistance)
0.25 ×
L level input voltage
VILL
-0.3
V
VIO
0.75 ×
VBAT
H level input voltage
VIHL
V
VIO
+0.3
Input current
IinL
3.6
10
μA
Input voltag= 0.1×VBAT~0.9×VBAT
Input voltag = 1.8V
【OSYNC, WPWMIN】(NMOS input pin with the Pull-down resistance)
L level input voltage
VILA
-0.3
-
H level input voltage
VIHA
1.4
-
IinA
-
fwpwm
-
Input current
PWM Input frequency range
3.6
0.3
VBAT
+0.3
10
V
μA
Input voltage =1.8V
200
-
Hz
WPWMIN pin
V
【REG1EN, REG2EN, REG1MD, REG2MD】(NMOS input pin with the Pull-down resistance)
L level input voltage
VILC
-0.3
-
H level input voltage
VIHC
1.4
-
IinC
-
1
Input current
0.3
VBAT
+0.3
10
V
V
μA
Input voltage =1.8V
0.2
V
IOL=1mA
-
V
At complementary output, IOH=1mA
【GPIO1~4】(CMOS input and CMOS/ NMOS open drain output pin)
L level input voltage
VOLG
H level input voltage
VOHG
VGPIO
-0.2
-
0.25 ×
VGPIO
VGPIO
+0.3
L level input voltage
VILG
-0.3
-
V
H level input voltage
VIHG
0.75 ×
VGPIO
-
Input current
IinG
-10
-
10
μA
Output leak Current
ILKG
-
3.3
10
μA
Clock output frequency
fcko
25.00
31.25
37.50
kHz
V
At setup of input mode
Input voltage =0.1×VGPIO~0.9×VGPIO
At open drain output, Vout=3.3V
At GPIO1 terminal, illumination
standard clock on
【KBLT】(Key backlight control CMOS/ NMOS open drain output pin)
L level input voltage
VOLK
H level input voltage
VOHK
Output leak Current
ILKK
VGPIO
-0.2
-
-
0.2
V
IOL=1mA
-
-
V
At complementary output, IOH=1mA
3.3
10
μA
At complementary output, VGPIO =3.3V
-
0.2
V
IOL=1mA
-
-
V
IOH=1mA
【GC1, GC2】(Sensor gain control CMOS output pin)
L level input voltage
VOLS
H level input voltage
VOHS
VoS
-0.2
【INTB】(NMOS open drain output pin)
L level input voltage
VOLO
-
-
0.2
V
IOL=1mA
Output leak Current
ILKO
-
-
1.0
μA
Vout=3.3V
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
4/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Block Diagram / Application Circuit example
CPGND
C2P
C2N
1μF
C1P
C1N
1μF
VBAT
VOUT
Charge Pump
VBATCP
VBAT1
VBAT2
VOUTM
x1 / x1.5 / x2
Charge Pump
Mode Control
1μF
WLED1
VBAT3
OVP
WLED2
LED port voltage Feedback
VIO
WLED3
Main LCD
Back Light
Main Control
RESETB
WLED4
SCL
WLED5
SDA
MAIN
WLED6
RGB1CNT
W5-7LED
Individual Control
Main Control
RGB2CNT
WLED7
WGND
VBAT
REG1EN
GPO
G1LED
REG1MD
I/O
REG2EN
LEVEL
SHIFT
I2C
CONTROL
B1LED
RGB1 LED
Slope Control (RGB1)
RGB1
REG2MD
REG2VSEL
R1LED
G2LED
Slope Control (RGB2)
GPO(Open Drain)
RGB2
WPWMIN
B2LED
RGB2 LED
REG
OSYNC
R2LED
RG BGND
32KI N
VBAT
DGND
VBATREG
REG1
SBIAS
2.8V
REG1O
Io=150mA
1μF
1μF
REG2
BH1600FVC
Sensor
I/F
SSENS
GC1
REG2O
1.5V/1.8V Io =150mA
ALC
1μF
VGPIO
GC2
GPIO1
GPIO2
SGND
GPIO
GPIO3
GPIO4
WIREF
TSD
RGBIREF
VREF
INT B
VBAT
Key Pad
LED
・・
RGBISET
Key
Backlight
Controller
T4
T3
T2
T1
GND2
GND1
120kΩ
KBLT
Block Diagram / Application Circuit example
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
5/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Pin Arrangement [Bottom View]
H
T4
REG2O
VBATREG
G
VGPIO
INTB
F
GND1
KBLT
GPIO1
E
WLED7
WLED6
GPIO2
REG1O
VBAT2
VBAT3
SBIAS
T3
OSYNC
GND2
SGND
SSENS
REG1EN
GC1
GC2
RESETB
VIO
REG2VSEL
32KIN
SDA
SCL
DGND
REG2EN WPWMIN
(INDEX)
D
WLED5
WLED4
GPIO3
C
WGND
WLED3
GPIO4
B
WLED2
WLED1
R1LED
B1LED
R2LED
A
T1
VBAT1
G1LED
RGBGND
1
2
3
4
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
RGB1CNT RGB2CNT VOUTM
RGBISET REG1MD REG2MD
6/80
VOUT
C1P
C2P
B2LED
C1N
VBATCP
G2LED
CPGND
C2N
T2
5
6
7
8
2011.04 - Rev.A
BD6086GU
Technical Note
●Outside size figure
VCSP85H4 CSP small Package
SIZE : 4.5mm×4.5mm (Tolerance : ± 0.1mm each side) height 1.0mm max
Ball pitch : 0.5 mm
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
7/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Pin Functions
No
Pin No.
Pin Name
I/O
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
B8
A2
H5
H6
H3
A1
A8
H8
H1
F8
G1
F7
E6
E7
A6
F1
VBATCP
VBAT1
VBAT2
VBAT3
VBATREG
T1
T2
T3
T4
VIO
VGPIO
RESETB
SDA
SCL
CPGND
GND1
I
I/O
I
-
17
G6
GND2
-
Input Level
For Power For Ground
GND
GND
GND
GND
GND
VBAT
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
GND
VBAT
VBAT
VBAT
-
18
C1
WGND
VBAT
19
A4
RGBGND
VBAT
20
E8
DGND
VBAT
21
B7
C1N
I/O
VBAT
GND
22
C7
C1P
I/O
GND
23
A7
C2N
I/O
VBAT
GND
24
C8
C2P
I/O
GND
25
D8
VOUT
O
GND
26
D7
VOUTM
O
GND
27
C4
RGBISET
I
VBAT
GND
28
H4
REG1O
O
VBAT
GND
29
H2
REG2O
O
VBAT
GND
30
B2
WLED1
I
GND
31
B1
WLED2
I
GND
32
C2
WLED3
I
GND
33
D2
WLED4
I
GND
34
D1
WLED5
I
GND
35
E2
WLED6
I
GND
36
E1
WLED7
I
GND
37
B3
R1LED
I
GND
38
A3
G1LED
I
GND
39
B4
B1LED
I
GND
40
B5
R2LED
I
GND
41
A5
G2LED
I
GND
42
B6
B2LED
I
GND
43
D5
RGB1CNT
I
VBAT
GND
44
D6
RGB2CNT
I
VBAT
GND
45
F4
REG1EN
I
VBAT
GND
46
G3
REG2EN
I
VBAT
GND
47
H7
SBIAS
O
VBAT
GND
48
G8
SSENS
I
VBAT
GND
49
F5
GC1
O
VBAT
GND
50
F6
GC2
O
VBAT
GND
51
G5
OSYNC
I
VBAT
GND
52
G7
SGND
VBAT
53
F3
GPIO1
I/O
VBAT
GND
54
E3
GPIO2
I/O
VBAT
GND
55
D3
GPIO3
I/O
VBAT
GND
56
C3
GPIO4
I/O
VBAT
GND
57
F2
KBLT
O
VBAT
GND
58
G2
INTB
O
VBAT
GND
59
E5
32KIN
I
VBAT
GND
60
C5
REG1MD
I
VBAT
GND
61
C6
REG2MD
I
VBAT
GND
62
G4
WPWMIN
I
VBAT
GND
63
E4
REG2VSEL
I
VBAT
GND
*A setup of a register is separately necessary to validate it.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
ESD Diode
Functions
Battery is connected
Battery is connected
Battery is connected
Battery is connected
Battery is connected
Test Pin (short to GND)
Test Pin (short to GND)
Test Pin (short to GND)
Test Pin (OPEN)
I/O voltage source is connected
GPIO voltage source is connected
Reset input (L: RESET, H: RESET cancel)
I2C data input
I2C clock input
Ground
Ground
A
A
A
A
A
B
S
S
N
C
C
H
I
H
B
B
Ground
B
Ground
Ground
Ground
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump capacitor is connected
Charge Pump output pin
Charge Pump output pin
RGB LED standard current
REG1 output pin
REG2 output pin
LCD Back Light LED is connected 1
LCD Back Light LED is connected 2
LCD Back Light LED is connected 3
LCD Back Light LED is connected 4
LCD Back Light LED is connected 5
LCD Back Light LED is connected 6
LCD Back Light LED is connected 7
Red LED1 connected
Green LED1 connected
Blue LED1 connected
Red LED2 connected
Green LED2 connected
Blue LED2 connected
RGB1 LED external ON/OFF Synchronism(L:OFF, H:ON)*
RGB2 LED external ON/OFF Synchronism(L:OFF, H:ON)*
REG1 ON/OFF control Pin (L: OFF, H: ON)
REG2 ON/OFF control Pin (L: OFF, H: ON)
Bias output for the AmbientLight Sensor
AmbientLight Sensor input
AmbientLight Sensor gain control output 1
AmbientLight Sensor gain control output 2
Current offset external synchronization
Ground
General purpose output port 1
General purpose output port 2
General purpose output port 3
General purpose output port 4
Key back light control output
General-purpose port interrupts, output pin
General-purpose port clock input pin
REG1 mode changeover terminal (L : low consumption, H:Normal)
REG2 mode changeover terminal (L : low consumption, H:Normal)
Back light outside pulse width modulation output pin (L : OFF and H: on) *
REG2 output voltage switching (L : 1.8V and H:1.5V)
B
B
B
F
A
F
A
A
A
O
Q
Q
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
L
L
Q
N
X
X
L
B
V
V
V
V
W
U
H
L
L
L
R
8/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Equivalent circuit diagram
A
B
VBAT
G
C
VBAT
E
VIO
I
VBAT
VBAT
O
VBAT
U
F
VBAT
J
VBAT
VIO
L
VBAT
VBAT
N
Q
VBAT
VBAT
R
VBAT
VBAT
S
VBAT
VBAT
V
VBAT
W
VBAT
VGPIO
X
VoS
VBAT
VGPIO VGPIO
H
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
VBAT
9/80
VIO
VBAT
2011.04 - Rev.A
BD6086GU
Technical Note
●I2C BUS format
2
The writing/reading operation is based on the I C slave standard.
・Slave address
A7
A6
A5
A4
A3
A2
1
1
1
0
1
1
A1
0
R/W
1/0
・Bit Transfer
SCL transfers 1-bit data during H. SCL cannot change signal of SDA during H at the time of bit transfer. If SDA changes
while SCL is H, START conditions or STOP conditions will occur and it will be interpreted as a control signal.
SDA
SCL
SDA a state of stability:
SDA
It can change
Data are effective
・START and STOP condition
When SDA and SCL are H, data is not transferred on the I2C- bus. This condition indicates, if SDA changes from H to L
while SCL has been H, it will become START (S) conditions, and an access start, if SDA changes from L to H while SCL
has been H, it will become STOP (P) conditions and an access end.
SDA
SCL
S
P
STOP condition
START condition
・Acknowledge
It transfers data 8 bits each after the occurrence of START condition. A transmitter opens SDA after transfer 8bits data, and
a receiver returns the acknowledge signal by setting SDA to L.
DATA OUTPUT
BY TRANSMITTER
not acknowledge
DATA OUTPUT
BY RECEIVER
acknowledge
SCL
S
1
8
9
clock pulse for
acknowledgement
START condition
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
2
10/80
2011.04 - Rev.A
BD6086GU
Technical Note
・Writing protocol
A register address is transferred by the next 1 byte that transferred the slave address and the write-in command. The 3rd
byte writes data in the internal register written in by the 2nd byte, and after 4th byte or, the increment of register address is
carried out automatically. However, when a register address turns into the last address, it is set to 00h by the next
transmission. After the transmission end, the increment of the address is carried out.
*1
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
register address
*1
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
register address
increment
R/W=0(write)
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
*1: Write Timing
from master to slave
from slave to master
・Reading protocol
It reads from the next byte after writing a slave address and R/W bit. The register to read considers as the following address
accessed at the end, and the data of the address that carried out the increment is read after it. If an address turns into the
last address, the next byte will read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X
1 A D7 D6 D5 D4 D3 D2 D1 D0 A
slave address
D7 D6 D5 D4 D3 D2 D1 D0 A P
DATA
DATA
register address
increment
R/W=1(read)
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
from master to slave
from slave to master
・Multiple reading protocols
After specifying an internal address, it reads by repeated START condition and changing the data transfer direction. The
data of the address that carried out the increment is read after it. If an address turns into the last address, the next byte will
read out 00h. After the transmission end, the increment of the address is carried out.
S X X X X X X X 0 A A7 A6 A5 A4 A3 A2 A1 A0 A Sr X X X X X X X 1 A
slave address
register address
slave address
R/W=0(write)
R/W=1(read)
D7 D6 D5 D4 D3D2 D1D0 A
DATA
D7D6 D5D4D3D2D1D0 A P
DATA
register address
increment
register address
increment
A=acknowledge(SDA LOW)
A=not acknowledge(SDA HIGH)
S=START condition
P=STOP condition
Sr=repeated START condition
from master to slave
from slave to master
As for reading protocol and multiple reading protocols, please do A(not acknowledge) after doing the final reading
operation. It stops with read when ending by A(acknowledge), and SDA stops in the state of Low when the reading
data of that time is 0. However, this state returns usually when SCL is moved, data is read, and A(not acknowledge)
is done.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
11/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Timing diagram
SDA
t BUF
t SU;DAT
t LOW
t HD;STA
SCL
t HD;STA
S
t SU;STO
t SU;STA
t HD;DAT
Sr
t HIGH
P
●Electrical Characteristics(Unless otherwise specified, Ta=25 ℃, VBAT=3.6V, VIO=1.8V)
Standard-mode
Parameter
Symbol
Min.
Typ.
Max.
【I2C BUS format】
Min.
S
Fast-mode
Typ.
Max.
Unit
SCL clock frequency
fSCL
0
-
100
0
-
400
kHz
LOW period of the SCL clock
tLOW
4.7
-
-
1.3
-
-
μs
HIGH period of the SCL clock
tHIGH
4.0
-
-
0.6
-
-
μs
Hold time (repeated) START condition
After this period, the first clock is generated
tHD;STA
4.0
-
-
0.6
-
-
μs
Set-up time for a repeated START condition
tSU;STA
4.7
-
-
0.6
-
-
μs
Data hold time
tHD;DAT
0
-
3.45
0
-
0.9
μs
Data set-up time
tSU;DAT
250
-
-
100
-
-
ns
Set-up time for STOP condition
tSU;STO
4.0
-
-
0.6
-
-
μs
Bus free time between a STOP
and START condition
tBUF
4.7
-
-
1.3
-
-
μs
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
12/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Register List
Resister data
Address W/R
00h
W
Function
D7
D6
D5
D4
D3
D2
D1
D0
VOUT(1)
VOUT(0)
DCDCMD
DCDCFON
-
-
-
SFTRST
Soft Reset
DC/DC driver function
01h
W
W7MD
W6MD
W5MD
MLEDMD
LED driver function
02h
W
RGB2PW(1) RGB2PW(0) RGB1PW(1) RGB1PW(0)
W7EN
W6EN
W5EN
MLEDEN
REG2CNT
REG2ON
REG1CNT
REG1ON
Power control
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
04h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
WLED5 current
05h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
WLED6 current
06h
W
-
IW7(6)
IW7(5)
IW7(4)
IW7(3)
IW7(2)
IW7(1)
IW7(0)
WLED7 current
07h
W
THL (3)
THL (2)
THL (1)
THL (0)
TLH (3)
TLH (2)
TLH (1)
TLH (0)
Main current transition
08h
W
-
-
IOFS(5)
IOFS(4)
IOFS(3)
IOFS(2)
IOFS(1)
IOFS(0)
Main current offset
Main current
09h
W
WPWMEN
SBIASON
-
OSYNCEN
-
OSSLP(2)
OSSLP(1)
OSSLP(0)
OSYNC current transition
0Ah
R
-
IALED(6)
IALED(5)
IALED(4)
IALED(3)
IALED(2)
IALED(1)
IALED(0)
Main current data read
0Bh
W
0Ch
W
ADCYC (1) ADCYC (0)
SOFS (3)
SOFS (2)
GAIN (1)
GAIN(0)
STYPE
VSB
MDCIR
ALCEN
SOFS (1)
SOFS (0)
SGAIN (3)
SGAIN (2)
SGAIN (1)
SGAIN (0)
Measurement mode setup
Measurement data adjustment
0Dh
R
-
-
-
-
AMB (3)
AMB (2)
AMB (1)
AMB (0)
Brightness data output
0Eh
W
-
IU0 (6)
IU0 (5)
IU0 (4)
IU0 (3)
IU0 (2)
IU0 (1)
IU0 (0)
Brightness 0 : LED current setup
0Fh
W
-
IU1 (6)
IU1 (5)
IU1 (4)
IU1 (3)
IU1 (2)
IU1 (1)
IU1 (0)
Brightness 1 : LED current setup
10h
W
-
IU2 (6)
IU2 (5)
IU2 (4)
IU2 (3)
IU2 (2)
IU2 (1)
IU2 (0)
Brightness 2 : LED current setup
11h
W
-
IU3 (6)
IU3 (5)
IU3 (4)
IU3 (3)
IU3 (2)
IU3 (1)
IU3 (0)
Brightness 3 : LED current setup
12h
W
-
IU4 (6)
IU4 (5)
IU4 (4)
IU4 (3)
IU4 (2)
IU4 (1)
IU4 (0)
Brightness 4 : LED current setup
13h
W
-
IU5 (6)
IU5 (5)
IU5 (4)
IU5 (3)
IU5 (2)
IU5 (1)
IU5 (0)
Brightness 5 : LED current setup
14h
W
-
IU6 (6)
IU6 (5)
IU6 (4)
IU6 (3)
IU6 (2)
IU6 (1)
IU6 (0)
Brightness 6 : LED current setup
15h
W
-
IU7 (6)
IU7 (5)
IU7 (4)
IU7 (3)
IU7 (2)
IU7 (1)
IU7 (0)
Brightness 7 : LED current setup
16h
W
-
IU8 (6)
IU8 (5)
IU8 (4)
IU8 (3)
IU8 (2)
IU8 (1)
IU8 (0)
Brightness 8 : LED current setup
17h
W
-
IU9 (6)
IU9 (5)
IU9 (4)
IU9 (3)
IU9 (2)
IU9 (1)
IU9 (0)
Brightness 9 : LED current setup
18h
W
-
IUA (6)
IUA (5)
IUA (4)
IUA (3)
IUA (2)
IUA (1)
IUA (0)
Brightness A : LED current setup
19h
W
-
IUB (6)
IUB (5)
IUB (4)
IUB (3)
IUB (2)
IUB (1)
IUB (0)
Brightness B : LED current setup
1Ah
W
-
IUC (6)
IUC (5)
IUC (4)
IUC (3)
IUC (2)
IUC (1)
IUC (0)
Brightness C : LED current setup
1Bh
W
-
IUD (6)
IUD (5)
IUD (4)
IUD (3)
IUD (2)
IUD (1)
IUD (0)
Brightness D : LED current setup
1Ch
W
-
IUE (6)
IUE (5)
IUE (4)
IUE (3)
IUE (2)
IUE (1)
IUE (0)
Brightness E : LED current setup
Brightness F : LED current setup
1Dh
W
-
IUF (6)
IUF (5)
IUF (4)
IUF (3)
IUF (2)
IUF (1)
IUF (0)
1Eh
W
-
-
KBSLP(1)
KBSLP(0)
MDTY(3)
MDTY(2)
MDTY(1)
MDTY(0)
Key driver control
1Fh
W
-
-
CHYS (1)
CHYS (0)
CTH (3)
CTH (2)
CTH (1)
CTH (0)
Key driver 2
Value judging control setup
20h
W
B2GPO
G2GPO
R2GPO
KBFIX
GP4DIR
GP3DIR
GP2DIR
GP1DIR
GPIO Input/output setup
21h
W
GPO1OSC
-
-
KBOD
GPO4OD
GPO3OD
GPO2OD
GPO1OD
GPIO output mode setup
22h
W
B2LV
G2LV
R2LV
-
GPO4LV
GPO3LV
GPO2LV
GPO1LV
GPIO output data setup
23h
W
GPCLR
-
-
-
GP4MSK
GP3MSK
GP2MSK
GP1MSK
GPIO Interrupt mask setup
24h
R
GP4INT
GP3INT
GP2INT
GP1INT
GP4DAT
GP3DAT
GP2DAT
GP1DAT
GPIO Interruption factor read-out
GPIO data read-out
Input "0” for "-".
Vacancy address may be use for test.
Prohibit to accessing the address that isn’t mentioned and the register for test.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
13/80
2011.04 - Rev.A
BD6086GU
Address W/R
25h
W
Technical Note
Resister data
D7
D6
D5
D4
-
RGB2MEL
RGB2OS
RGB2EN
SFRGB1(1) SFRGB1(0) SRRGB1(1) SRRGB1(0)
D1
D0
Function
D3
D2
-
RGB1MEL
RGB1OS
RGB1EN
-
TRGB1(2)
TRGB1(1)
TRGB1(0) RGB1-hour setup
RGB LED control
26h
W
27h
W
-
IR11(6)
IR11(5)
IR11(4)
IR11(3)
IR11(2)
IR11(1)
IR11(0)
R1 current 1 setup
28h
W
-
IR12(6)
IR12(5)
IR12(4)
IR12(3)
IR12(2)
IR12(1)
IR12(0)
R1 current 2 setup
29h
W
-
-
-
-
PR1(3)
PR1(2)
PR1(1)
PR1(0)
R1 Wave patturn setup
2Ah
W
-
IG11(6)
IG11(5)
IG11(4)
IG11(3)
IG11(2)
IG11(1)
IG11(0)
G1 current 1 setup
2Bh
W
-
IG12(6)
IG12(5)
IG12(4)
IG12(3)
IG12(2)
IG12(1)
IG12(0)
G1 current 2 setup
2Ch
W
-
-
-
-
PG1(3)
PG1(2)
PG1(1)
PG1(0)
G1 Wave patturn setup
2Dh
W
-
IB11(6)
IB11(5)
IB11(4)
IB11(3)
IB11(2)
IB11(1)
IB11(0)
B1 current 1 setup
2Eh
W
-
IB12(6)
IB12(5)
IB12(4)
IB12(3)
IB12(2)
IB12(1)
IB12(0)
B1 current 2 setup
2Fh
W
-
-
-
-
PB1(3)
PB1(2)
PB1(1)
PB1(0)
B1 Wave patturn setup
-
TRGB2(2)
TRGB2(1)
SFRGB2(1) SFRGB2(0) SRRGB2(1) SRRGB2(0)
TRGB2(0) RGB2-hour setup
30h
W
31h
W
-
IR21(6)
IR21(5)
IR21(4)
IR21(3)
IR21(2)
IR21(1)
IR21(0)
R2 current 1 setup
32h
W
-
IR22(6)
IR22(5)
IR22(4)
IR22(3)
IR22(2)
IR22(1)
IR22(0)
R2 current 2 setup
33h
W
-
-
-
-
PR2(3)
PR2(2)
PR2(1)
PR2(0)
R2 Wave patturn
34h
W
-
IG21(6)
IG21(5)
IG21(4)
IG21(3)
IG21(2)
IG21(1)
IG21(0)
G2 current 1 setup
35h
W
-
IG22(6)
IG22(5)
IG22(4)
IG22(3)
IG22(2)
IG22(1)
IG22(0)
G2 current 2 setup
36h
W
-
-
-
-
PG2(3)
PG2(2)
PG2(1)
PG2(0)
G2 Wave patturn setup
37h
W
-
IB21(6)
IB21(5)
IB21(4)
IB21(3)
IB21(2)
IB21(1)
IB21(0)
B2 current 1 setup
38h
W
-
IB22(6)
IB22(5)
IB22(4)
IB22(3)
IB22(2)
IB22(1)
IB22(0)
B2 current 2 setup
39h
W
-
-
-
-
PB2(3)
PB2(2)
PB2(1)
PB2(0)
B2 Wave patturn setup
Input "0” for "-".
Vacancy address may be use for test.
Prohibit to accessing the address that isn’t mentioned and the register for test.
The time indicated by register explanation is the TYP time made by dividing of the built-in OSC.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
14/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Register Map
Address 00h < Software Reset, DC/DC Function Setup >
Address
R/W
Bit7
Bit6
Bit5
00h
W
VOUT(1)
VOUT(0)
Initial
Value
00h
0
0
Bit4
Bit3
Bit2
Bit1
Bit0
-
-
-
SFTRST
-
-
-
0
DCDCMD DCDCFON
0
0
Bit [7:6] : VOUT (1:0) VOUT Output Voltage Setting
“00” : VOUT Output Voltage 3.9V
“01” : VOUT Output Voltage 4.2V
“10” : VOUT Output Voltage 4.5V
“11” : VOUT Output Voltage 4.8V
Refer to “●Description of DC/DC Operations” for detail.
Bit [5:4] : DCDCMD, DCDCFON
DC/DC Setting
<DC/DC Return Mode>
<DC/DC ON/OFF Control>
“00” :
LED Pin Return
Depend on LED ON/OFF
“01” :
LEDPin Return
Depend on LED ON/OFF
“10” :
Output Voltage Fixation
Depend on LED ON/OFF
“11” :
Output Voltage Fixation
Forced ON
Refer to “●Description of DC/DC Operations” for detail.
Bit [3:1] : (Not used)
Bit0 :
SFTRST Software Reset Command
“0” :
Reset cancel
“1” :
Reset (All register initializing)
Refer to “1.Reset “ of “●Description of other operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
15/80
2011.04 - Rev.A
BD6086GU
Address 01h
Technical Note
< LED Pin Function Setup >
Address
R/W
01h
W
Initial
Value
00h
Bit7
Bit6
Bit5
Bit4
RGB2PW(1) RGB2PW(0) RGB1PW(1)RGB1PW(0)
0
Bit [7:6] : RGB2PW(1:0)
0
0
0
Bit3
Bit2
Bit1
Bit0
W7MD
W6MD
W5MD
MLEDMD
0
0
0
0
RGB2 Connection Select (VBAT/VOUT)
R2LED connection
G2LED connection
B2LED connnection
“00” :
VBAT
VBAT
VBAT
“01” :
VBAT
VBAT
VOUT
“10” :
VBAT
VOUT
VOUT
“11” :
VOUT
VOUT
VOUT
Refer to “●RGB LED Driver Operation Description” for detail.
Bit [5:4] : RGB1PW(1:0)
RGB1 Connection Select (VBAT/VOUT)
R1LED connection
G1LED connection
B1LED connnection
“00” :
VBAT
VBAT
VBAT
“01” :
VBAT
VBAT
VOUT
“10” :
VBAT
VOUT
VOUT
“11” :
VOUT
VOUT
VOUT
Refer to “●RGB LED Driver Operation Description” for detail.
Bit3 :
W7MD
LED7 Control Setting (Individual / Main allocation)
“0” :
LED7 Individual Control
“1” :
LED7 Main group allocation
Refer to “●Description of white LED Driver Operations” for detail.
Bit2 :
W6MD
LED6 Control Setting (Individual / Main allocation)
“0” :
LED6 Individual Control
“1” :
LED6 Main group allocation
Refer to “●Description of white LED Driver Operations” for detail.
Bit1 :
W5MD
LED5 Control Setting (Individual / Main allocation)
“0” :
LED5 Individual Control
“1” :
LED5 Main group allocation
Refer to “●Description of white LED Driver Operations” for detail.
Bit0 :
MLEDMD
“Main Group” LED Mode Select (Non ALC / with ALC)
“0” :
Non ALC mode
“1” :
ALC mode
Refer to “●Description of white LED Driver Operations” for detail.
Refer to “●The explanation of Auto Lighting Control” for detail.
RGB*PW (1:0) does not assume to change dynamically. Please perform a fixed setup per design.
And, do the setup of RGB*PW (1:0) when each LED is Off.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
16/80
2011.04 - Rev.A
BD6086GU
Address 02h
Technical Note
< Power Control >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
02h
W
W7EN
W6EN
W5EN
MLEDEN
REG2CNT
REG2ON
REG1CNT
REG1ON
Initial
Value
00h
0
0
0
0
0
0
0
0
Bit7 :
W7EN
LED7 Control (ON/OFF)
“0” :
LED7 OFF
“1” :
LED7 ON (individual control)
Refer to “●Description of DC/DC Operations” for detail.
Bit6 :
W6EN
LED6 Control (ON/OFF)
“0” :
LED6 OFF
“1” :
LED6 ON (individual control)
Refer to “●Description of DC/DC Operations” for detail.
Bit5 :
W5EN
LED5 Control (ON/OFF)
“0” :
LED5 OFF
“1” :
LED5 ON (individual control)
Refer to “●Description of DC/DC Operations” for detail.
Bit4 :
MLEDEN Main Group LED Control (ON/OFF)
“0” :
Main group OFF
“1” :
Main group ON
Refer to “●Description of DC/DC Operations” for detail.
Bit3 :
REG2CNT REG2 Mode Setting (Normal/Low Consumption)
“0” :
REG2 Low Consumption Mode
“1” :
REG2 Normal Mode
Refer to ●Description of REG Operations” for detail.
Bit2 :
REG2ON
REG2 Control (ON/OFF)
“0” :
REG2 OFF
“1” :
REG2 ON
Refer to ●Description of REG Operations” for detail.
Bit1 :
REG1CNT REG1 Mode Setting (Normal/Low Consumption)
“0” :
REG1 Low Consumption Mode
“1” :
REG1 Normal Mode
Refer to ●Description of REG Operations” for detail.
Bit0 :
REG1ON
REG1 Control (ON/OFF)
“0” :
REG1 OFF
“1” :
REG1 ON
Refer to ●Description of REG Operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
17/80
2011.04 - Rev.A
BD6086GU
Address 03h
Technical Note
< “Main Group” LED Current Setting at non-ALC mode >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
03h
W
-
IMLED(6)
IMLED(5)
IMLED(4)
IMLED(3)
IMLED(2)
IMLED(1)
IMLED(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Bit7 :
(Not used)
Bit [6:0] : IMLED(6:0)
Main Group LED Current Setting at non-ALC mode
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
Refer to “●Description of white LED Driver Operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
18/80
2011.04 - Rev.A
BD6086GU
Address 04h
Technical Note
< LED5 Current setting (Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
04h
W
-
IW5(6)
IW5(5)
IW5(4)
IW5(3)
IW5(2)
IW5(1)
IW5(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Bit7 :
(Not used)
Bit [6:0] : IW5(6:0)
LED5 Current Setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
Refer to “●Description of white LED Driver Operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
19/80
2011.04 - Rev.A
BD6086GU
Address 05h
Technical Note
< LED6 Current setting (Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
05h
W
-
IW6(6)
IW6(5)
IW6(4)
IW6(3)
IW6(2)
IW6(1)
IW6(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Bit7 :
(Not used)
Bit [6:0] : IW6(6:0)
LED6 Current Setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
Refer to “●Description of white LED Driver Operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
20/80
2011.04 - Rev.A
BD6086GU
Address 06h
Technical Note
< LED7 Current setting (Independence control) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
06h
W
-
IW7(6)
IW7(5)
IW7(4)
IW7(3)
IW7(2)
IW7(1)
IW7(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Bit7 :
(Not used)
Bit [6:0] : IW7(6:0)
LED7 Current Setting
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
Refer to “●Description of white LED Driver Operations” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
21/80
2011.04 - Rev.A
BD6086GU
Address 07h
Technical Note
< Main Current transition >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
07h
W
THL(3)
THL(2)
THL(1)
THL(0)
TLH(3)
TLH(2)
TLH(1)
TLH(0)
Initial
Value
C7h
1
1
0
0
0
1
1
1
Bit [7:4] : THL(3:0)
Main LED current Down transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
(Initial value)
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail.
Bit [3:0] : TLH(3:0)
Main LED current Up transition per 0.2mA step
“0000” :
0.256 ms
“0001” :
0.512 ms
“0010” :
1.024 ms
“0011” :
2.048 ms
“0100” :
4.096 ms
“0101” :
8.192 ms
“0110” :
16.38 ms
“0111” :
32.77 ms
(Initial value)
“1000” :
65.54 ms
“1001” :
131.1 ms
“1010” :
196.6 ms
“1011” :
262.1 ms
“1100” :
327.7 ms
“1101” :
393.2 ms
“1110” :
458.8 ms
“1111” :
524.3 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
22/80
2011.04 - Rev.A
BD6086GU
Address 08h
Technical Note
< Main Current Offset >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
08h
W
-
-
IOFS(5)
IOFS(4)
IOFS(3)
IOFS(2)
IOFS(1)
IOFS(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
Bit [7:6] : (Not used)
Bit [5:0] : IOFS(5:0)
Main Current Offset
“000000” :
“000001” :
“000010” :
“000011” :
“000100” :
“000101” :
“000110” :
“000111” :
“001000” :
“001001” :
“001010” :
“001011” :
“001100” :
“001101” :
“001110” :
“001111” :
“010000” :
“010001” :
“010010” :
“010011” :
“010100” :
“010101” :
“010110” :
“010111” :
“011000” :
“011001” :
“011010” :
“011011” :
“011100” :
“011101” :
“011110” :
“011111” :
0.0 mA
-0.2 mA
-0.3 mA
-0.4 mA
-0.8 mA
-1.0 mA
-1.2 mA
-1.4 mA
-1.6 mA
-1.8 mA
-2.0 mA
-2.2 mA
-2.4 mA
-2.6 mA
-2.8 mA
-3.0 mA
-3.2 mA
-3.4 mA
-3.6 mA
-3.8 mA
-4.0 mA
-4.2 mA
-4.4 mA
-4.6 mA
-4.8 mA
-5.0 mA
-5.2 mA
-5.4 mA
-5.6 mA
-5.8 mA
-6.0 mA
-6.2 mA
“100000” :
“100001” :
“100010” :
“100011” :
“100100” :
“100101” :
“100110” :
“100111” :
“101000” :
“101001” :
“101010” :
“101011” :
“101100” :
“101101” :
“101110” :
“101111” :
“110000” :
“110001” :
“110010” :
“110011” :
“110100” :
“110101” :
“110110” :
“110111” :
“111000” :
“111001” :
“111010” :
“111011” :
“111100” :
“111101” :
“111110” :
“111111” :
-6.4 mA
-6.6 mA
-6.8 mA
-7.0 mA
-7.2 mA
-7.4 mA
-7.6 mA
-7.8 mA
-8.0 mA
-8.2 mA
-8.4 mA
-8.6 mA
-8.8 mA
-9.0 mA
-9.2 mA
-9.4 mA
-9.6 mA
-9.8 mA
-10.0 mA
-10.2 mA
-10.4 mA
-10.6 mA
-10.8 mA
-11.0 mA
-11.2 mA
-11.4 mA
-11.6 mA
-11.8 mA
-12.0 mA
-12.2 mA
-12.4 mA
-12.6 mA
fer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
23/80
2011.04 - Rev.A
BD6086GU
Address 09h
Technical Note
< OSYNC Main Current transition >
Address
R/W
09h
W
Initial
Value
40h
Bit7
Bit6
WPWMEN SBIASON
0
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
-
OSYNCEN
-
OSSLP(2)
OSSLP(1)
OSSLP(0)
-
0
-
0
0
0
Bit7 :
WPWMEN External PWM Input “WPWMIN” terminal Enable Control (Valid/Invalid)
“0” :
WPWMIN input invalid
“1” :
WPWMIN input valid
Refer to “11. Back light current value External adjustmen 2” of “●The explanation of Auto Lighting Control”
for detail.
Bit6 :
SBIASON
SBIAS Control (ON/OFF)
“0” :
Measurement cycle synchronous
“1” :
Usually ON (at ALCEN=1) (Initial value)
Refer to “4. AD conversion” of “●The explanation of Auto Lighting Control” for detail.
Bit5 :
(Not used)
Bit4 :
OSYNCEN
“0” :
“1” :
Refer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control”
for detail.
Bit3 :
(Not used)
Bit [2:0] : OSSLP(2:0)
Current Offset Slope Control transition per 0.2mA step
“000” :
0.000 ms
(Initial value)
“001” :
0.064 ms
“010” :
0.128 ms
“011” :
0.256 ms
“100” :
0.512 ms
“101” :
1.024 ms
“110” :
2.048 ms
“111” :
4.096 ms
Setting time is counted based on the switching frequency of Charge Pump.
The above value becomes the value of the Typ (1MHz) time.
Refer to “10. Back light current value External adjustmen1” of “●The explanation of Auto Lighting Control”
for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
24/80
2011.04 - Rev.A
BD6086GU
Address 0Ah
Technical Note
< Main Current Data Output >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Ah
R
-
IALED(6)
IALED(5)
IALED(4)
IALED(3)
IALED(2)
IALED(1)
IALED(0)
Initial
Value
-
-
-
-
-
-
-
-
-
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Bit7 :
(Not used)
Bit [6:0] : IALED(6:0)
Main Current Data Output
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
The data can be read through I2C.
Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
25/80
2011.04 - Rev.A
BD6086GU
Address 0Bh
Technical Note
< Measurement Mode Setting >
Address
R/W
0Bh
W
Initial
Value
80h
Bit7
Bit6
ADCYC(1) ADCYC(0)
1
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
GAIN(1)
GAIN(0)
STYPE
VSB
MDCIR
ALCEN
0
0
0
0
0
0
0
Bit [7:6] : ADCYC(1:0)
ADC Measurement Cycle
“00” :
0.52 s
“01” :
1.05 s
“10” :
1.57 s (Initial value)
“11” :
2.10 s
Setup time is counted based on the switching frequency of DC/DC. The above value becomes
the value of the Typ (1MHz) time.
Refer to "●Automatic brightness control operation explanation" for the detailed function of
each register of this page.
Refer to “4. AD conversion” of “●The explanation of Auto Lighting Control” for detail.
Bit [5:4] : GAIN(1:0)
Sensor Gain Switching Function Control (This is effective only at STYPE=“0”.)
“00” :
Auto Change (Initial value)
“01” :
High
“10” :
Low
“11” :
Fixed
Refer to “3. I/V conversion” of “●The explanation of Auto Lighting Control” for detail.
Bit3 :
STYPE
Ambient Light Sensor Type Select (Linear/Logarithm)
“0” :
For Linear sensor (Initial value)
“1” :
For Log sensor
Refer to “3. I/V conversion” of “●The explanation of Auto Lighting Control” for detail.
Bit2 :
VSB
SBIAS Output Voltage Control
“0” :
SBIAS output voltage 3.0V
(Initial value)
“1” :
SBIAS output voltage 2.6V
Refer to “2. Sensor I/F” of “●The explanation of Auto Lighting Control” for detail.
Bit1 :
MDCIR
LED Current Reset Select by Mode Change
“0” :
LED current non-reset when mode change
(Initial value)
“1” :
LED current reset when mode change
Refer to “9. Slope process” of “●The explanation of Auto Lighting Control” for detail.
Bit0 :
ALCEN
ALC Function Control (ON/OFF)
“0” :
ALC function OFF
“1” :
ALC function ON
Refer to “1. Auto Lighting Control ON/OFF” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
26/80
2011.04 - Rev.A
BD6086GU
Address 0Ch
Technical Note
< ADC Data adjustment >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Ch
W
SOFS(3)
SOFS(2)
SOFS(1)
SOFS(0)
SGAIN(3)
SGAIN(2)
SGAIN(1)
SGAIN(0)
Initial
Value
00h
0
0
0
0
0
0
0
0
Bit [7:4] : SOFS(3:0)
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
AD Data Offset Adjustment
-8 LSB
-7 LSB
-6 LSB
-5 LSB
-4 LSB
-3 LSB
-2 LSB
-1 LSB
non-adjust
+1 LSB
+2 LSB
+3 LSB
+4 LSB
+5 LSB
+6 LSB
+7 LSB
Offset adjust is performed to ADC data.
Refer to “5. ADC data gain offset adjust” of “●The explanation of Auto Lighting Control” for detail.
Bit [3:0] : SGAIN(3:0)
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
AD Data Gain Adjustment
reserved
reserved
-37.50%
-31.25%
-25.00%
-18.75%
-12.50%
-6.25%
non-adjust
+6.25%
+12.50%
+18.75%
+25.00%
+31.25%
+37.50%
reserved
Gain adjust is performed to ADC data.
The data after adjustment are round off by 8-bit data.
Refer to “5. ADC data gain offset adjust” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
27/80
2011.04 - Rev.A
BD6086GU
Address 0Dh
Technical Note
< Ambient level (Read Only) >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Dh
R
-
-
-
-
AMB(3)
AMB(2)
AMB(1)
AMB(0)
Initial
Value
-
-
-
-
-
-
-
-
-
Bit [7:4] : (Not used)
Bit [3:0] : AMB(3:0)
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
Ambient Level
0h
1h
2h
3h
4h
5h
6h
7h
8h
9h
Ah
Bh
Ch
Dh
Eh
Fh
The data can be read through I2C.
Refer to “7. Brightness data conversion” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
28/80
2011.04 - Rev.A
BD6086GU
Technical Note
Address 0Eh~1Dh < Main Current at Ambient level 0h~Fh >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
0Eh~1Dh
W
-
IU*(6)
IU*(5)
IU*(4)
IU*(3)
IU*(2)
IU*(1)
IU*(0)
Initial
Value
-
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
25.6mA
Refer to after page for initial table.
“*” means 0~F.
Bit7 :
(Not used)
Bit [6:0] : IU*(6:0)
Main Current at Ambient Level for 0h~Fh
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
10.0 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
14.0mA
13.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
20.0mA
Refer to “8. LED current conversion” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
29/80
2011.04 - Rev.A
BD6086GU
Address 1Eh
Technical Note
< Key Driver Control >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
1Eh
W
-
-
KBSLP(1)
KBSLP(0)
MDTY(3)
MDTY(2)
MDTY(1)
MDTY(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
Bit [7:6] : (Not used)
Bit [5:4] : KBSLP(1:0) PWM Slope time
“00” :
0.00ms
“01” :
32.77ms
“10” :
65.54ms
“11” :
131.00ms
"PWM Slope time" is the time for transiting one step of each value prepared as MAX DUTY.
Refer to “13. Key Backlight PWM Control” of “●The explanation of Auto Lighting Control” for detail.
Bit [3:0] : MDTY(3:0)
MAX DUTY
“0000” :
0% (OFF)
“0001” :
1.7%
“0010” :
3.1%
“0011” :
4.7%
“0100” :
6.3%
“0101” :
9.4%
“0110” :
12.5%
“0111” :
15.6%
“1000” :
18.8%
“1001” :
25.0%
“1010” :
31.3%
“1011” :
39.1%
“1100” :
48.4%
“1101” :
62.5%
“1110” :
78.1%
“1111” :
100%
MAX DUTY shows H level section
Refer to “13. Key Backlight PWM Control” of “●The explanation of Auto Lighting Control” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
30/80
2011.04 - Rev.A
BD6086GU
Address 1Fh
Technical Note
< Key Driver ON/OFF control >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
1Fh
W
-
-
CHYS(1)
CHYS(0)
CTH(3)
CTH(2)
CTH(1)
CTH(0)
Initial
Value
2Ah
-
-
1
0
1
0
1
0
Bit [7:6] : (Not used)
Bit [5:4] : CHYS(1:0)
Key Driver Hysteresis Setting
<Hysteresis (to ON)>
“00” :
Detect threshold level -1h
“01” :
Detect threshold level -2h
“10” :
Detect threshold level -3h
“11” :
Detect threshold level -4h
Detect threshold level-1h is the hysterics width to the brightness set up by CTH (3:0)
Refer to “12. Key Backlight Binary Judgment” of “●The explanation of Auto Lighting Control”
for detail.
Bit [3:0] : CTH(3:0)
Key Driver Detect Threshold Level Setting
<Detect threshold level (to OFF)>
“0000” :
Brightness 0h : OFF
“0001” :
Brightness 1h : OFF
“0010” :
Brightness 2h : OFF
“0011” :
Brightness 3h : OFF
“0100” :
Brightness 4h : OFF
“0101” :
Brightness 5h : OFF
“0110” :
Brightness 6h : OFF
“0111” :
Brightness 7h : OFF
“1000” :
Brightness 8h : OFF
“1001” :
Brightness 9h : OFF
“1010” :
Brightness Ah : OFF
“1011” :
Brightness Bh : OFF
“1100” :
Brightness Ch : OFF
“1101” :
Brightness Dh : OFF
“1110” :
Brightness Eh : OFF
“1111” :
Brightness Fh : OFF
Refer to “12. Key Backlight Binary Judgment” of “●The explanation of Auto Lighting Control” or detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
31/80
2011.04 - Rev.A
BD6086GU
Address 20h
Technical Note
< GPIO Input/Output setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
20h
W
B2GPO
G2GPO
R2GPO
KBFIX
GP4DIR
GP3DIR
GP2DIR
GP1DIR
Initial
Value
00h
0
0
0
0
0
0
0
0
Bit7 :
B2GPO
B2LED Mode Setting (LED Driver / GPO)
“0” :
B2LED LED Driver mode (Initial value)
“1” :
B2LED GPO mode
B2GPO does not assume to change dynamically. Please perform a fixed setup per design.
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit6 :
G2GPO
G2LED Mode Setting (LED Driver / GPO)
“0” :
G2LED LED Driver mode (Initial value)
“1” :
G2LED GPO mode
G2GPO does not assume to change dynamically. Please perform a fixed setup per design.
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit5 :
R2GPO
R2LED Mode Setting (LED Driver / GPO)
“0” :
R2LED LED Driver mode (Initial value)
“1” :
R2LED GPO mode
R2GPO does not assume to change dynamically. Please perform a fixed setup per design.
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit4 :
KBFIX KBLT Mode Setting (ALC / Fix)
“0” :
KBLT ALC mode (Initial value)
“1” :
KBLT Fix mode
Refer to “●Key Backlight Controller” for detail.
Bit3 :
GP4DIR
GPIO4 Mode Setting (Input / Output)
“0” :
GPIO4 Input mode (Initial value)
“1” :
GPIO4 Output mode
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit2 :
GP3DIR
GPIO3 Mode Setting (Input / Output)
“0” :
GPIO3 Input mode (Initial value)
“1” :
GPIO3 Output mode
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit1 :
GP2DIR
GPIO2 Mode Setting (Input / Output)
“0” :
GPIO2 Input mode (Initial value)
“1” :
GPIO2 Output mode
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit0 :
GP1DIR
GPIO1 Mode Setting (Input / Output)
“0” :
GPIO1 Input mode (Initial value)
“1” :
GPIO1 Output mode
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
32/80
2011.04 - Rev.A
BD6086GU
Address 21h
Technical Note
< GPIO output mode >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
21h
W
GPO1OSC
-
-
KBOD
GPO4OD
GPO3OD
GPO2OD
GPO1OD
Initial
Value
00h
0
-
-
0
0
0
0
0
Bit7 :
GPO1OSC GPIO1 Mode Setting (Input / Output)
“0” :
Illumination Reference Clock OFF
(Initial value)
“1” :
Illumination Reference Clock ON
Refer to “6. Clock external output” of “●RGB Waveform Setting” for detail.
Bit [6:5] : (Not used)
Bit4 :
KBOD
KBLT Output Mode Setting (Open Drain / Complementary)
“0” :
KBLT GPO Output Open Drain
(Initial value)
“1” :
KBLT GPO Output Complementary
Refer to “●Key Backlight Controller” for detail.
Bit3 :
GPO4OD
GPIO4 Output Mode Setting (Open Drain / Complementary)
“0” :
GPIO4 GPO Output Open Drain
(Initial value)
“1” :
GPIO4 GPO Output Complementary
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit2 :
GPO3OD
GPIO3 Output Mode Setting (Open Drain / Complementary)
“0” :
GPIO3 GPO Output Open Drain
(Initial value)
“1” :
GPIO3 GPO Output Complementary
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit1 :
GPO2OD
GPIO2 Output Mode Setting (Open Drain / Complementary)
“0” :
GPIO2 GPO Output Open Drain
(Initial value)
“1” :
GPIO2 GPO Output Complementary
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit0 :
GPO1OD
GPIO1 Output Mode Setting (Open Drain / Complementary)
“0” :
GPIO1 GPO Output Open Drain
(Initial value)
“1” :
GPIO1 GPO Output Complementary
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
33/80
2011.04 - Rev.A
BD6086GU
Address 22h
Technical Note
< GPIO output data >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
22h
W
B2LV
G2LV
R2LV
-
GPO4LV
GPO3LV
GPO2LV
GPO1LV
Initial
Value
00h
0
0
0
-
0
0
0
0
Bit7 :
B2LV
B2LED Output Setting at GPO mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit6 :
G2LV G2LED Output Setting at GPO mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit5 :
R2LV
R2LED Output Setting at GPO mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit4 :
(Not used)
Bit3 :
GPO4LV GPIO4 Output Setting at Output mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit2 :
GPO3LV GPIO3 Output Setting at Output mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit1 :
GPO2LV GPIO2 Output Setting at Output mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit0 :
GPO1LV GPIO1 Output Setting at Output mode (Low / High)
“0” :
Output Low (Initial value)
“1” :
Output High
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
34/80
2011.04 - Rev.A
BD6086GU
Address 23h
Technical Note
< GPIO Interrupt mask setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
23h
W
GPCLR
-
-
-
GP4MSK
GP3MSK
GP2MSK
GP1MSK
Initial
Value
00h
0
-
-
-
0
0
0
0
Bit7 :
GPCLR
GPIO Clear Setting
“0” :
No operate
“1” :
GPIO Interrupt Factor Clear
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit [6:4] : (Not used)
Bit3 :
GP4MSK GPIO4 Interrupt Mask Setting
“0” :
GPIO4 Interrupt Mask
(Initial value)
“1” :
GPIO4 Interrupt Non-mask
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit2 :
GP3MSK GPIO3 Interrupt Mask Setting
“0” :
GPIO3 Interrupt Mask
(Initial value)
“1” :
GPIO3 Interrupt Non-mask
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit1:
GP2MSK GPIO2 Interrupt Mask Setting
“0” :
GPIO2 Interrupt Mask
(Initial value)
“1” :
GPIO2 Interrupt Non-mask
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit0 :
GP1MSK GPIO1 Interrupt Mask Setting
“0” :
GPIO1 Interrupt Mask
(Initial value)
“1” :
GPIO1 Interrupt Non-mask
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
35/80
2011.04 - Rev.A
BD6086GU
Address 24h
Technical Note
< GPIO Interput factor read out, Data read out >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
24h
R
GP4INT
GP3INT
GP2INT
GP1INT
GP4DAT
GP3DAT
GP2DAT
GP1DAT
Initial
Value
00h
0
0
0
0
-
-
-
-
Bit7 :
GP4INT GPIO4 Interrupt factor read out
“0” :
No Input by GPIO4
“1” :
Input by GPIO4
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit6 :
GP3INT GPIO3 Interrupt factor read out
“0” :
No Input by GPIO3
“1” :
Input by GPIO3
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit5 :
GP2INT GPIO2 Interrupt factor read out
“0” :
No Input by GPIO2
“1” :
Input by GPIO2
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit4 :
GP1INT GPIO1 Interrupt factor read out
“0” :
No Input by GPIO1
“1” :
Input by GPIO1
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit3 :
GP4DAT GPIO4 Data read out
“0” :
GPIO4 is Low
“1” :
GPIO4 is Hight
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit2 :
GP3DAT GPIO3 Data read out
“0” :
GPIO3 is Low
“1” :
GPIO3 is Hight
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit1 :
GP2DAT GPIO2 Data read out
“0” :
GPIO2 is Low
“1” :
GPIO2 is Hight
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
Bit0 :
GP1DAT GPIO1 Data read out
“0” :
GPIO1 is Low
“1” :
GPIO1 is Hight
Refer to “●General-purpose I/O Ports (GPIO1-GPIO4)” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
36/80
2011.04 - Rev.A
BD6086GU
Address 25h
Technical Note
< RGB LED control >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
25h
W
-
RGB2MEL
RGB2OS
RGB2EN
-
RGB1MEL
RGB1OS
RGB1EN
Initial
Value
00h
-
0
0
0
-
0
0
0
Bit7 :
(Not used)
Bit6 :
RGB2MEL RGB2 External Control Setting
“0” :
RGB2 External Control Invalid
(Initial value)
“1” :
RGB2 External Control Valid
Refer to “5. External terminal synchronization control” of “●RGB Waveform Setting” for detail.
Bit5 :
RGB2OS
RGB2 One shot enable
“0” :
RGB2 Stop
(Initial value)
“1” :
RGB2 1periodic Operation
Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail.
Refer to “●Description of DC/DC Operations” for detail.
Bit4 :
RGB2EN
RGB2 Enable
“0” :
RGB2 Stop
(Initial value)
“1” :
RGB2 Continuous Operation
Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail.
Refer to “●Description of DC/DC Operations” for detail.
Bit3 :
(Not used)
Bit2 :
RGB1MEL RGB1 External Control Setting
“0” :
RGB1 External Control Invalid
(Initial value)
“1” :
RGB1 External Control Valid
Refer to “5. External terminal synchronization control” of “●RGB Waveform Setting” for detail.
Bit1 :
RGB1OS
RGB1 One shot enable
“0” :
RGB1 Stop
(Initial value)
“1” :
RGB1 1periodic Operation
Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail.
Refer to “●Description of DC/DC Operations” for detail.
Bit0 :
RGB1EN
RGB1 Enable
“0” :
RGB1 Stop
(Initial value)
“1” :
RGB1 Continuous Operation
Refer to “8. RGB slope waveforms” of “●RGB Waveform Setting” for detail.
Refer to “●Description of DC/DC Operations” for detail.
RGB*OS returns to 0 automatically after 1 cycle operation.
RGB*EN precedes to RGB*OS. In use in 1 cycle operation, there is the necessity for RGB*EN=0.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
37/80
2011.04 - Rev.A
BD6086GU
Address 26h
Technical Note
< RGB1 time >
Address
R/W
26h
W
Initial
Value
00h
Bit7
Bit6
Bit5
Bit4
SFRGB1(1) SFRGB1(0) SRRGB1(1) SRRGB1(0)
0
0
0
0
Bit3
Bit2
Bit1
Bit0
-
TRGB1(2)
TRGB1(1)
TRGB1(0)
-
0
0
0
Bit [7:6] : SFRGB1(1:0)
Slope Down Transition Setting
“00” :
0
“01” :
Wave form cycle / 16
“10” :
Wave form cycle / 8
“11” :
Wave form cycle / 4
It is a theoretical value on logic control, and the reaction time of the analog section is not included.
"Slope time" is the time from a slope start to a slope end.
Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail.
Bit [5:4] : SRRGB1(1:0) Slope Up Transition Setting
“00” :
0
“01” :
Wave form cycle / 16
“10” :
Wave form cycle / 8
“11” :
Wave form cycle / 4
It is a theoretical value on logic control, and the reaction time of the analog section is not included.
"Slope time" is the time from a slope start to a slope end.
Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail.
Bit3 :
(Not used)
Bit [2:0] : TRGB1(2:0)
Wave Form Cycle Setting
“000” :
0.131 s
“001” :
0.52 s
“010” :
1.05 s
“011” :
2.10 s
“100” :
4.19 s
“101” :
8.39 s
“110” :
12.6 s
“111” :
16.8 s
Refer to “1. Waveform cycle” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
38/80
2011.04 - Rev.A
BD6086GU
Address 27h
Technical Note
< R1 current1 setup>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
27h
W
-
IR11(6)
IR11(5)
IR11(4)
IR11(3)
IR11(2)
IR11(1)
IR11(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IR11(6:0)
R1LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
39/80
2011.04 - Rev.A
BD6086GU
Address 28h
Technical Note
< R1 current2 setup>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
28h
W
-
IR12(6)
IR12(5)
IR12(4)
IR12(3)
IR12(2)
IR12(1)
IR12(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IR12(6:0)
R1LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
40/80
2011.04 - Rev.A
BD6086GU
Address 29h
Technical Note
< R1 Wave Pattern>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
29h
W
-
-
-
-
PR1(3)
PR1(2)
PR1(1)
PR1(0)
Initial
Value
07h
-
-
-
-
0
1
1
1
Bit [7:4] : (Not used)
Bit [3:0] : PR1(3:0)
R1LED Wave Pattern
“0000” :
Pattern 1
“0001” :
Pattern 2
“0010” :
Pattern 3
“0011” :
Pattern 4
“0100” :
Pattern 5
“0101” :
Pattern 6
“0110” :
Pattern 7
“0111” :
Pattern 8
“1000” :
Pattern 9
“1001” :
Pattern 10
“1010” :
Pattern 11
“1011” :
Pattern 12
“1100” :
Pattern 13
“1101” :
Pattern 14
“1110” :
Pattern 15
“1111” :
Pattern 16
Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
41/80
2011.04 - Rev.A
BD6086GU
Address 2Ah
Technical Note
< G1 current1 setup>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Ah
W
-
IG11(6)
IG11(5)
IG11(4)
IG11(3)
IG11(2)
IG11(1)
IG11(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IG11(6:0)
G1LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
42/80
2011.04 - Rev.A
BD6086GU
Address 2Bh
Technical Note
< G1 current2 setup>
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Bh
W
-
IG12(6)
IG12(5)
IG12(4)
IG12(3)
IG12(2)
IG12(1)
IG12(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IG12(6:0)
G1LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
43/80
2011.04 - Rev.A
BD6086GU
Address 2Ch
Technical Note
< G1 Wave pattern >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Ch
W
-
-
-
-
PG1(3)
PG1(2)
PG1(1)
PG1(0)
Initial
Value
07h
-
-
-
-
0
1
1
1
Bit [7:4] : (Not used)
Bit [3:0] : PG1(3:0)
G1LED Wave Pattern
“0000” :
Pattern 1
“0001” :
Pattern 2
“0010” :
Pattern 3
“0011” :
Pattern 4
“0100” :
Pattern 5
“0101” :
Pattern 6
“0110” :
Pattern 7
“0111” :
Pattern 8
“1000” :
Pattern 9
“1001” :
Pattern 10
“1010” :
Pattern 11
“1011” :
Pattern 12
“1100” :
Pattern 13
“1101” :
Pattern 14
“1110” :
Pattern 15
“1111” :
Pattern 16
Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
44/80
2011.04 - Rev.A
BD6086GU
Address 2Dh
Technical Note
< B1 current1 setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Dh
W
-
IB11(6)
IB11(5)
IB11(4)
IB11(3)
IB11(2)
IB11(1)
IB11(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IB11(6:0)
B1LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
45/80
2011.04 - Rev.A
BD6086GU
Address 2Eh
Technical Note
< B1 current2 setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Eh
W
-
IB12(6)
IB12(5)
IB12(4)
IB12(3)
IB12(2)
IB12(1)
IB12(0)
Initial
Value
00h
-
0
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IB12(6:0)
B1LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
46/80
2011.04 - Rev.A
BD6086GU
Address 2Fh
Technical Note
< B1 Wave pattern >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
2Fh
W
-
-
-
-
PB1(3)
PB1(2)
PB1(1)
PB1(0)
Initial
Value
07h
-
-
-
-
0
1
1
1
Bit [7:4] : (Not used)
Bit [3:0] : PB1(3:0)
B1LED Wave Pattern
“0000” :
Pattern 1
“0001” :
Pattern 2
“0010” :
Pattern 3
“0011” :
Pattern 4
“0100” :
Pattern 5
“0101” :
Pattern 6
“0110” :
Pattern 7
“0111” :
Pattern 8
“1000” :
Pattern 9
“1001” :
Pattern 10
“1010” :
Pattern 11
“1011” :
Pattern 12
“1100” :
Pattern 13
“1101” :
Pattern 14
“1110” :
Pattern 15
“1111” :
Pattern 16
Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
47/80
2011.04 - Rev.A
BD6086GU
Address 30h
Technical Note
< RGB2 time >
Address
R/W
30h
W
Initial
Value
00h
Bit7
Bit6
Bit5
Bit4
SFRGB2(1) SFRGB2(0) SRRGB2(1) SRRGB2(0)
-
-
0
0
Bit3
Bit2
Bit1
Bit0
-
TRGB2(2)
TRGB2(1)
TRGB2(0)
0
0
0
0
Bit [7:6] : SFRGB2(1:0)
Slope Down Transition Setting
“00” :
0
“01” :
Wave form cycle / 16
“10” :
Wave form cycle / 8
“11” :
Wave form cycle / 4
It is a theoretical value on logic control, and the reaction time of the analog section is not included.
"Slope time" is the time from a slope start to a slope end.
Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail.
Bit [5:4] : SRRGB2(1:0) Slope Up Transition Setting
“00” :
0
“01” :
Wave form cycle / 16
“10” :
Wave form cycle / 8
“11” :
Wave form cycle / 4
It is a theoretical value on logic control, and the reaction time of the analog section is not included.
"Slope time" is the time from a slope start to a slope end.
Refer to “4. Rising/falling slope time” of “●RGB Waveform Setting” for detail.
Bit3 :
(Not used)
Bit [2:0] : TRGB2(2:0)
Wave Form Cycle Setting
“000” :
0.131 s
“001” :
0.52 s
“010” :
1.05 s
“011” :
2.10 s
“100” :
4.19 s
“101” :
8.39 s
“110” :
12.6 s
“111” :
16.8 s
Refer to “1. Waveform cycle” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
48/80
2011.04 - Rev.A
BD6086GU
Address 31h
Technical Note
< R2 current 1setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
31h
W
-
IR21(6)
IR21(5)
IR21(4)
IR21(3)
IR21(2)
IR21(1)
IR21(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IR21(6:0)
R2LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
49/80
2011.04 - Rev.A
BD6086GU
Address 32h
Technical Note
< R2 current 2setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
32h
W
-
IR22(6)
IR22(5)
IR22(4)
IR22(3)
IR22(2)
IR22(1)
IR22(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IR22(6:0)
R2LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
50/80
2011.04 - Rev.A
BD6086GU
Address 33h
Technical Note
< R2 Wave Pattern setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
33h
W
-
-
-
-
PR2(3)
PR2(2)
PR2(1)
PR2(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
Bit [7:4] : (Not used)
Bit [3:0] : PR2(3:0)
R2LED Wave Pattern
“0000” :
Pattern 1
“0001” :
Pattern 2
“0010” :
Pattern 3
“0011” :
Pattern 4
“0100” :
Pattern 5
“0101” :
Pattern 6
“0110” :
Pattern 7
“0111” :
Pattern 8
“1000” :
Pattern 9
“1001” :
Pattern 10
“1010” :
Pattern 11
“1011” :
Pattern 12
“1100” :
Pattern 13
“1101” :
Pattern 14
“1110” :
Pattern 15
“1111” :
Pattern 16
Refer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
51/80
2011.04 - Rev.A
BD6086GU
Address 34h
Technical Note
< G2 current 1setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
34h
W
-
IG21(6)
IG21(5)
IG21(4)
IG21(3)
IG21(2)
IG21(1)
IG21(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IG21(6:0)
G2LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
52/80
2011.04 - Rev.A
BD6086GU
Address 35h
Add
ress
Technical Note
< G2 current 2setup >
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
35h
W
-
IG22(6)
IG22(5)
IG22(4)
IG22(3)
IG22(2)
IG22(1)
IG22(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IG22(6:0)
G2LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
53/80
2011.04 - Rev.A
BD6086GU
Address 36h
Technical Note
< G2 Wave Pattern setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
36h
W
-
-
-
-
PG2(3)
PG2(2)
PG2(1)
PG2(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
Bit [7:4] : (Not used)
Bit [3:0] : PG2(3:0)
G2LED Wave Pattern
“0000” :
Pattern 1
“0001” :
Pattern 2
“0010” :
Pattern 3
“0011” :
Pattern 4
“0100” :
Pattern 5
“0101” :
Pattern 6
“0110” :
Pattern 7
“0111” :
Pattern 8
“1000” :
Pattern 9
“1001” :
Pattern 10
“1010” :
Pattern 11
“1011” :
Pattern 12
“1100” :
Pattern 13
“1101” :
Pattern 14
“1110” :
Pattern 15
“1111” :
Pattern 16
fer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
54/80
2011.04 - Rev.A
BD6086GU
Address 37h
Technical Note
< B2 current 1setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
37h
W
-
IB21(6)
IB21(5)
IB21(4)
IB21(3)
IB21(2)
IB21(1)
IB21(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IB21(6:0)
B2LED Current1 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
55/80
2011.04 - Rev.A
BD6086GU
Address 38h
Technical Note
< B2 current 2setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
38h
W
-
IB22(6)
IB22 (5)
IB22(4)
IB22(3)
IB22(2)
IB22(1)
IB22(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
“1100100” :
“1100101” :
“1100110” :
“1100111” :
“1101000” :
“1101001” :
“1101010” :
“1101011” :
“1101100” :
“1101101” :
“1101110” :
“1101111” :
“1110000” :
“1110001” :
“1110010” :
“1110011” :
“1110100” :
“1110101” :
“1110110” :
“1110111” :
“1111000” :
“1111001” :
“1111010” :
“1111011” :
“1111100” :
“1111101” :
“1111110” :
“1111111” :
20.0mA
20.2mA
20.4mA
20.6mA
20.8mA
21.0mA
21.2mA
21.4mA
21.6mA
21.8mA
22.0mA
22.2mA
22.4mA
22.6mA
22.8mA
23.0mA
23.2mA
23.4mA
23.6mA
23.8mA
24.0mA
24.2mA
24.4mA
24.6mA
24.8mA
25.0mA
25.2mA
25.4mA
Bit7 :
(Not used)
Bit [6:0] : IB22(6:0)
B2LED Current2 Setting (At RGBISETpin 120kΩ connection)
“0000000” :
“0000001” :
“0000010” :
“0000011” :
“0000100” :
“0000101” :
“0000110” :
“0000111” :
“0001000” :
“0001001” :
“0001010” :
“0001011” :
“0001100” :
“0001101” :
“0001110” :
“0001111” :
“0010000” :
“0010001” :
“0010010” :
“0010011” :
“0010100” :
“0010101” :
“0010110” :
“0010111” :
“0011000” :
“0011001” :
“0011010” :
“0011011” :
“0011100” :
“0011101” :
“0011110” :
“0011111” :
“0100000” :
“0100001” :
“0100010” :
“0100011” :
“0100100” :
“0100101” :
“0100110” :
“0100111” :
“0101000” :
“0101001” :
“0101010” :
“0101011” :
“0101100” :
“0101101” :
“0101110” :
“0101111” :
“0110000” :
“0110001” :
0.0 mA
0.2 mA
0.4 mA
0.6 mA
0.8 mA
1.0 mA
1.2 mA
1.4 mA
1.6 mA
1.8 mA
2.0 mA
2.2 mA
2.4 mA
2.6 mA
2.8 mA
3.0 mA
3.2 mA
3.4 mA
3.6 mA
3.8 mA
4.0 mA
4.2 mA
4.4 mA
4.6 mA
4.8 mA
5.0 mA
5.2 mA
5.4 mA
5.6 mA
5.8 mA
6.0 mA
6.2 mA
6.4 mA
6.6 mA
6.8 mA
7.0 mA
7.2 mA
7.4 mA
7.6 mA
7.8 mA
8.0 mA
8.2 mA
8.4 mA
8.6 mA
8.8 mA
9.0 mA
9.2 mA
9.4 mA
9.6 mA
9.8 mA
“0110010” :
“0110011” :
“0110100” :
“0110101” :
“0110110” :
“0110111” :
“0111000” :
“0111001” :
“0111010” :
“0111011” :
“0111100” :
“0111101” :
“0111110” :
“0111111” :
“1000000” :
“1000001” :
“1000010” :
“1000011” :
“1000100” :
“1000101” :
“1000110” :
“1000111” :
“1001000” :
“1001001” :
“1001010” :
“1001011” :
“1001100” :
“1001101” :
“1001110” :
“1001111” :
“1010000” :
“1010001” :
“1010010” :
“1010011” :
“1010100” :
“1010101” :
“1010110” :
“1010111” :
“1011000” :
“1011001” :
“1011010” :
“1011011” :
“1011100” :
“1011101” :
“1011110” :
“1011111” :
“1100000” :
“1100001” :
“1100010” :
“1100011” :
10.0mA
10.2mA
10.4mA
10.6mA
10.8mA
11.0mA
11.2mA
11.4mA
11.6mA
11.8mA
12.0mA
12.2mA
12.4mA
12.6mA
12.8mA
13.0mA
13.2mA
13.4mA
13.6mA
13.8mA
13.0mA
14.2mA
14.4mA
14.6mA
14.8mA
15.0mA
15.2mA
15.4mA
15.6mA
15.8mA
16.0mA
16.2mA
16.4mA
16.6mA
16.8mA
17.0mA
17.2mA
17.4mA
17.6mA
17.8mA
18.0mA
18.2mA
18.4mA
18.6mA
18.8mA
19.0mA
19.2mA
19.4mA
19.6mA
19.8mA
Refer to “3. Current settings 1 and 2 (I1, I2)” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
56/80
2011.04 - Rev.A
BD6086GU
Address 39h
Technical Note
< B2 Wave Pattern setup >
Address
R/W
Bit7
Bit6
Bit5
Bit4
Bit3
Bit2
Bit1
Bit0
39h
W
-
-
-
-
PB(3)
PB(2)
PB(1)
PB(0)
Initial
Value
00h
-
-
0
0
0
0
0
0
Bit [7:4] : (Not used)
Bit [3:0] : PB(3:0)
“0000” :
“0001” :
“0010” :
“0011” :
“0100” :
“0101” :
“0110” :
“0111” :
“1000” :
“1001” :
“1010” :
“1011” :
“1100” :
“1101” :
“1110” :
“1111” :
B2LED Wave Pattern
Pattern 1
Pattern 2
Pattern 3
Pattern 4
Pattern 5
Pattern 6
Pattern 7
Pattern 8
Pattern 9
Pattern 10
Pattern 11
Pattern 12
Pattern 13
Pattern 14
Pattern 15
Pattern 16
fer to “2. Waveform pattern” of “●RGB Waveform Setting” for detail.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
57/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Description of white LED Driver Operations
・ Comprises four lights (WLEDs1-4) for the main driver and three lights (WLEDs5-7) for general-purpose drivers.
・ Permits the main driver to select either a fixed current mode based on a register or an auto light control mode by the
auto light control module.
・ Enables a general-purpose driver to designate an independent control mode based on a register and its attribution to
the main group in units of terminals. This function makes it possible to assign the drivers easily depending on set
designs such as main 4 LEDs/sub 2 LEDs/indicator 1ch and main 6 LEDs/sub 1 LED.
・ Implements control as shown below when main group setting is designated via the W*MD bit.
Current setting:
Operates in conjunction with IMLED(6:0) (IW*(6:0) is discarded.)
ON/OFF control:
Operates in conjunction with MLEDEN. (W*EN is discarded.)
・ Enables the main group to control PWM via the external terminal so that brightness control can be accomplished from
the outside.
PWM control:
Inputs PWM via the external terminal “WPWMIN.”
External synchronization:
Corrects a current value set by IOFS (5:0) in synchronization with the
external terminal “OSYNC.”
・ Determines the LED current via a built-in resistance.
Permits the main group to perform slope processing so that the leading/trailing edge time can be set individually. The
settings made in the registers THL (3:0) and TLH (3:0) are effective regardless of their light control mode (ON/OFF). To
enable instant activation, the minimum value must be set for time.
●RGB LED Driver Operation Description
・ Two drivers “RGB1 (R1LED, G1LED, B1LED)” and “RGB2 (R2LED, G2LED, B2LED)” are mounted.
・ A slope function is incorporated to control drivers independently.
・ Refer to  RGB Waveform Setting for more information about output waveform setting.
・ RGB2 can be used for GPO (Open drain output) It can be set up in every terminal with the register R2GPO, G2GPO
and B2GPO.
・ The LED current can be set via a resistance value (RISET) to be connected to the RGBISET terminal.
The maximum current value can be derived from the following expression:
ILEDmax [A] = 3.048 / RISET [kΩ] (Typ)
However, this setting must be made so that the maximum current value can be less than or equal to 30.48mA. In
addition, the RGBISET terminal has an overcurrent protection circuit to prevent the excessive LED current from flowing
for low impedance to the ground.
・ Connection of each LED of RGB can be set up in VBAT or VOUT by the register RGB1PW (1:0) and RGB2PW (1:0).
When Vf is low, it is connected to VBAT, and it is possible that efficiency is raised. When a VBAT connection is chosen,
a return route to the DC/DC circuit is interrupted, and it works as a simple constant current driver. In this case, set it up
to be less low than the saturation voltage (0.2V) of the fixed electric current circuit.
LED electric current When DC/DC isn't used.
RGB*EN
または
RGB*OS
Ton
(Max:20ms)
LED 電流
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
58/80
2011.04 - Rev.A
BD6086GU
Technical Note
●General-purpose I/O Ports (GPIO1-GPIO4)
Capable of selecting GPI and GPO independently according to the register setting.
Capable of selecting a complementary or open drain output method so long as GPO is selected.
Uses a VGPIO applied voltage as a logic level (during CMOS output setting and input setting).
When open drain output is selected, a pull-up resistance may be connected to a desirable location (VPUP) but the
condition of VGPIO≧VPUP must be satisfied.
・ Capable of outputting an interrupt signal via the INTB terminal (NMOS open drain) depending on an input logic change
2
in each terminal and reading an input logic and an interrupt factor via I C so long as GPI is selected.
Reflecting interrupts can be selected individually.
When input mask is set:
An input logic is sampled at the leading edge of a clock (having a frequency obtained by dividing 32KIN by 256).
When a sampling value differs from the contents of the existing output register consecutively three times, it is
reflected on the output register (input logic and interrupt factor).
No input logic change is reflected on the INTB output.
When input mask is reset:
An input logic is sampled at the leading edge of a clock (having a frequency obtained by dividing 32KIN by 256).
When a sampling value differs from the contents of the existing output register consecutively three times, it is
reflected on the output register (input logic and interrupt factor).
In addition, an interrupt pulse (one cycle of 32KIN with negative logic) is output simultaneously via INTB. The
interrupt factor can be cleared by setting GPCLR (Address=23h, Bit=7) to H.
・ Provide an idle GPIO terminal with a resistance of about 100kΩ for pull-down. (When GPIO1 to GPIO4 and KBLT are
not used at all, short-circuiting of VGPIO and GND eliminates the need for using this pull-down resistance.)
・ Each terminal of the GPIO block is initially set as follows:
GPIOs1-4:
I/O mode
When using the output mode: The breakthrough current flows on an input buffer circuit until the
output mode is set. When there is a problem, be sure to connect a pull-down resistance.
Once the output mode is set, the input buffer circuit must be set to OFF so that the breakthrough
current cannot flow.
When using the input mode: The breakthrough current flows on an input buffer circuit unless an
input voltage is fixed. When there is a problem, be sure to connect a pull-down resistance to fix
the input voltage.
KBLT:
L (A pull-down resistance is incorporated to prevent unstable output at voltage supply.)
INTB:
Employs an external pull-down to set “H” for open drain output.
・
・
・
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
59/80
2011.04 - Rev.A
BD6086GU
Technical Note
・
Apply voltage to VGPIO as follows to prevent a malfunction which causes an unexpected operation on a GPIO circuit
at activation time. VIO and VGIO may be short-circuited. Even when only GPIO is used, voltage should apply to VIO
too. To avoid erroneous output to the INTB terminal at activation time, don’t reset the input mask of GPIO* prior to an
elapse of 30ms after 32KN input. Because internal IO is activated at clock input, current dissipation arises even in the
standby state. When there is a problem, stop 32KIN input.
・
Input a clock of 50kHz or below to 32KIN.
VBAT
T VBATON
T VBATOFF
VIO
Tr VIO -VGPIO =m in 0m s
Tr VIO -VG PIO =m in 0m s
VG PIO
T RSTB=m in 0.1m s
T R ST=m in 0.1m s
RESETB
T GPIO O N=m in 0.1m s
32KIN
T M SKC LEAR=m in 30m s
G P*M SK
Register control
Im proper
Possible
Im proper
It is an example of a wave at the time of use as GPI.
1
2
1
2
3
G P IO *
32K IN x2 5 6
G P *IN T
G P *D AT
IN TB
32K IN 1C lock
I2C C lock width
G P C LR
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
60/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Key Backlight Controller
・ Capable of turning ON or OFF the key backlight according to the register setting or via the automatic light control
module.
・ Capable of adjusting illumination (ON time) according to the Duty setting via the built-in PWM (PWM frequency:
488Hz) and fade-in/fade-out via the slope function which steps PWM Duty at time intervals set in the KBSLP register.
・ Determines a key backlight PWM frequency based on an internal clock rate of 1MHz. This value is identical to that at
Typ (1MHx).
・ Enables the selection of complementary or open drain for output and allows diversion to GPO.
・ Uses a VGPIO applied voltage as a logic level (during CMOS output setting and input setting).
When open drain output is selected, a pull-up resistance may be a desirable location (VPUP) but the condition of
VGPIO≧VPUP must be satisfied.
・ Mandatory to supply voltage to VGPIO for key backlight controller operations.
For a key backlight controller operating in conjunction with an auto luminous control (ALC) module
The register “KBFIX” must be set to 0 to enter the auto luminous control mode.
The ON/OFF condition to illumination intensity is set in the registers CTH (3:0) and CHYS (1:0).
The ON/OFF patterns of the key backlight are set in the registers MDTY (3:0) and KBSLP (1:0).
(For details of auto luminous control module setting, refer to ●Description of Auto Luminous Control Module
Operations.)
For a key backlight controller capable of ON/OFF control according to register settings
The register “KBFIX” must be set to 1 to enter the register setting mode.
The slope time is set in the register “KBSLP (1:0).”
When the key backlight is turned ON, data equivalent to illumination intensity must be set in MDTY (3.0). When
it is turned OFF, “0h" must be set instead.
For a key backlight controller to be used as GPO
The register “KBFIX” must be set to 1 to enter the register setting mode.
The register "KBSLP (1:0)” is set to 00 (without slope).
When “H” level output takes place as a GPO, the register “MDTY (3:0)”must be set to Fh. In contrast, when "L"
level output takes place, the MDTY (3.0) must be set to 0h instead.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
61/80
2011.04 - Rev.A
BD6086GU
Technical Note
●RGB Waveform Setting
Various kinds of RGB control can be implemented by designating waveform cycles, waveform patterns, current settings 1, 2
and rising/falling slope times.
To activate a RGB waveform, a continuous operation via RGB*EN or a single-shot operation via RGB*OS can be selected.
In addition, when control via the external terminal RGB*CNT is enabled via RGB*MEL, the corresponding LED can be lit in
synchronization with the external signal.
1. Waveform cycle
・ingle cycle time is set for a waveform pattern.
・This setting can be made independently for RGB1 and RGB2.
2. Waveform pattern
・A pattern in a waveform cycle is set.
・Sixteen types of waveform patterns can be set in units of waveform patterns.
・For concrete waveform patterns, refer to the timing diagram shown on the next page.
3. Current settings 1 and 2 (I1, I2)
・Two currents in a waveform pattern are set.
・When the maximum current value is 25.4mA, it is possible to set the current ranging from 0 to 25.4mA with an increment
of 0.2mA (128 steps).
・The polarity of a waveform is determined by the greater-than/ less-than relationship in the current setting.
・This setting can be made in units of terminals.
4. Rising/falling slope time
・A current change time during switching between current settings 1 and 2 is set.
A time per step (0.2mA) is calculated based on a difference between the currents selected in current settings 1, 2 and a
setting slope time.
For this reason, a time per step (0.2mA) is short when a difference between setting currents I1 and I2 is large. In
contrast, it is long when a difference between setting currents I1 and I2 is small.
・Regardless of current settings 1 and 2, a rising slope time applies at current increase and a falling slope time applies at
current decrease. For concrete waveform images, refer to the timing diagram shown on the next page.
5. External terminal synchronization control
When control via the external terminal RGB*CNT is enabled via RGB*MEL, lighting is enabled if the input external signal
goes “H.” In contrast, it is disabled if the external input signal goes “L.” In this way, synchronization with the external
signal is enabled so that LED can be blinked in conjunction with a ringing tone (a melody signaling a ringtone).
Waveform cycle
A RGB thin line indicates an image where
external terminal control does not take place.
R*LED
G*LED
B*LED
RGB*CNT
RGB*MEL
External terminal control is
enabled.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Remains “Enabled” with
RGB*MEL=1 and
RGB*CNT=H
62/80
External terminal control is
disabled.
2011.04 - Rev.A
BD6086GU
Technical Note
Wave cycle
Register data
Wave pattern 1
(00h)
Wave pattern2
(01h)
Wave pattern 3
(02h)
Wave pattern 4
(03h)
Wave pattern 5
(04h)
Wave pattern 6
(05h)
Wave pattern 7
(06h)
Wave pattern 8
(07h)
Wave pattern 9
(08h)
Wave pattern 10
(09h)
Wave pattern 11
(0Ah)
Wave pattern 12
(0Bh)
Wave pattern 13
(0Ch)
Wave pattern 14
(0Dh)
Wave pattern 15
(0Eh)
Wave pattern 16
(0Fh)
I1
I2
I1
I2
I1
I2
I1
I2
I1
I2
I1
I2
I1
I2
I1
I1
I2
I1
I1
I1
I2
I2
I1
I1
I2
I2
I1
I1
I1
I2
I2
I1
I1
I2
I1
I1
I1
I1
I2
I2
I1
I2
I1
I1
I2
I1
I2
(ex)The image of current change of Wave pattern 11
Slope Down transition
Current 2(I2)
Slope uptransition
Current 1(I1)
RGB wave setting timing diagram
6. Clock external output
The clock (31.25kHz (TYP)) of this LSI is output by making the setup of the register GPO1OSC "1" from the GPIO1
terminal. (Internal OSC is turned on separately, and you must make GPIO1 a setup of output.)
As extension of illuminations, a clock can be supplied to other RGB LED drivers, and it can be made to synchronize with
this LSI. It is applicable to a clock supply means in case there is no clock for GPIO (32KIN).
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
63/80
2011.04 - Rev.A
BD6086GU
Technical Note
7. RGB waveform setting examples
[Example 1] Normal operation
Waveform cycle
[Example 4] 16Hz operation
R*LED
R*LED
G*LED
G*LED
B*LED
B*LED
RGB*EN=1
RGB*EN=0
RGB*EN=1
Waveform cycle
RGB*EN=0
Selecting a waveform pattern 8 causes a continuous normal
Combining the settings of a waveform pattern 11 and a
operation to take place through the setting current 1.
waveform cycle 131ms causes blinking at a rate of 15.3Hz
(approx. 16Hz).
[Example 2] Blinking
Waveform cycle
[Example 5] Continuous lighting of four LEDs
R*LED
R*LED
G*LED
G*LED
B*LED
B*LED
RGB*EN=1
RGB*EN=0
Waveform cycle
RGB*OS=1
Setting a rising/falling slope time to “0” causes
This example shows that lighting occurs continuously in
blinking to take place.
the order of white, red, red and red.
Phase switching takes place
via the setting currents of R and G.
[Example 3] Slope operation
Waveform cycle
[Example 6] 7-color change slope operation
R*LED
R*LED
G*LED
G*LED
B*LED
B*LED
RGB*EN=1
RGB*EN=0
RGB*EN=1
RGB*EN=0
R, G and B waveform patterns are set in a way that
When a rising/falling slope time is longer than the
any of R, G and B changes constantly.
setting made in example 2, a continuous color
change is made by slope operation.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Waveform cycle
64/80
2011.04 - Rev.A
BD6086GU
Technical Note
8. RGB slope waveforms
・xample of waveform at activation
Current setting: I1 < I2
(R G B*EN = 1)
I2
I1
(O FF)
(R G B*O S = 1)
R G B*EN or R G B*O S = 1
R G B*EN = 0
Current setting: I1 > I2
I1
(RG B*EN = 1)
I2
(O FF)
(R G B*O S = 1)
R G B*EN or R G B*O S = 1
R G B*EN = 0
・urrent difference in each channel (example)
I2 (A )
I2 (B )
T r a n s itio n ta k e s p la c e in u n its o f
s t e p s b u t th e t im e p e r s t e p is s e t
b a s e d o n in t e r n a l c a lc u la t io n s o
t h a t t h e s lo p e a r r iv a l t im e is
q u a s i- e q u a l.
I1 (B )
I1 (A )
S lo p e 区 間
9. Setting change in slope duration
A slope operation is performed by an internal sequencer.
When an attempt is made to change the setting in a slope duration, the active slope operation is reset and a newly set
slope operation is restarted.
In this case, however, LED lighting stops for a maximum of 16.4ms (OSC frequency=typ) for synchronization with the
internal clock until the operation is restarted.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
65/80
2011.04 - Rev.A
BD6086GU
Technical Note
●The explanation of Auto Lighting Control
Dimming of LCD backlight and ON/OFF control of key backlight, are possible in the basis of the data detected by external
ambient light a sensor.
・ince it has the bias adjustment function for sensors, ADC with an average filter, a gain offset adjustment function, and a
LOG conversion function, an Ambient light can be broadly chosen from Photo Diode, Photo Transistor, Photo IC (a
linear output / LOG output), etc.
・mbient light is changed into brightness data by digital processing. The external output of data is possible at I2C.
・onversion on LED current can choose a built-in initial table and a built-in user setting table.
・n LED driver is with a current value change slope function, and Auto Luminous control without sense of incongruity is
possible for it.
・N/ off of the key back light can be controlled automatically by the brightness.
Current control data
Output voltage control
PWM Permission
Sensor offset adjust
SBIAS
SBIAS
Sensor Gain adjust
LIN/LOG
Change time setup
Conversion table
Mode change
SSENS
ADC
WPWMIN
Periodic setup
Current value
Slope time
sensor
LCD
Back light
OSYNC
WLED
Equalization
Measured
-value adjust
processing LOG
Current value
conversion
Current value
adjustment
Slope
processing
conversion
GC1
Gain control
PWM
ON/OFF control
KBLT
processing
GC2
key
Back light
Gain control ON/OFF
Brightness data
Detect threshold
Slope time
Detect Hysteresis
MAX DUTY
:Effective also in ALC functional the case of not using it
2. Sensor I/F
・It is possible to supply bias voltage to a sensor using SBIAS.
Output voltage (VoS) can be adjusted by register setup.
Bit:VSB
・The external resistance for I/V conversion is adjusted
according to the property of a sensor.
sensor current
1. Auto Lighting Control ON/OFF
・It is independent of a back light / key back light section, and effective / non-effect can be set up and use only by reading
of illuminance information is possible.
Bit:ALCEN
Ambient light
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
66/80
2011.04 - Rev.A
BD6086GU
Technical Note
SSENS pin input voltage
3. I/V conversion
Gain switching function is built in to extend the dynamic range.
Effective / non-effect of automatic gain control are register setup.
GC1 and the output logic of GC2 can be set up by the manual
at the time of automatic gain control invalid.
Bit :GAIN (1:0)
No Gain
control
Gain control
Ambient light
ex1(BH1600FVC and connection)
ex3
SBIAS
SBIAS
SSENS
SSENS
9.5 (*1)
Application
circuit
BH1600
GND
GC1
GC1
GC2
GC2
SBIAS
SSENS
1
VCC IOUT
ex3
GC1
GC1
GC2
GC2
SGND
SGND
SGND
Resistance is a relative valu
Operation mode
GAIN(1:0)
GC1 output
GC2 output
Sensor
Application
Gain state
Automatic
00
H
L
L
H
01
H
L
Manual
10
L
H
Automatic
High
Automatic
00
H
L
L
H
Low
Automatic
Manual
01
00
H
L
L
H
High
Fixation
01
L
L
Low
-
Auto Luminous control operates as Low Gain as High Gain at the time of "10" when GAIN (1:0) is "01."
(*1) Please set the relative ratio of resistance. In this case, be careful of the difference in brightness conversion in High Gain mode and Low Gain mode.
4. AD conversion
・Detection of Ambient light information is periodically performed for low-power realization.
Bit : ADCYC(1:0)
・The current which turns off SBIAS and ADC and is generated by the sensor is controlled except the time of Ambient light
measurement.
・SBIAS output equips with intermittent operation mode and always ON-mode. Pull-down [ SBIAS and a SSENS terminal ]
inside at the time of OFF.
Bit : SBIASON
A LC E N
A D C YC (1:0)
A D C C ycle
A D start signal
S B IA S
O utput
T A D one= 1.024m s(typ)
T w ait= 64m s(typ)
W hen S B IA S O N =1
16 tim es m easurem ent
A D C M ovem ent
T A D = 16.4m s(typ)
G C 1, G C 2
G C 1, G C 2=00
A M B (3:0)
A M B (3:0)
T A M B = 80.4m s(typ)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
67/80
2011.04 - Rev.A
BD6086GU
Technical Note
5. ADC data gain offset adjust
・Gain adjust and offset adjust to ADC output data are possible.
・adjust of gain and offset is a register setup.
Bit:SGAIN (3:0)
Bit:SOFS (3:0)
ADC Internal data
dj
6. Average filter
・Average filter for cancel a noise (16 times Fixation)
Gain
Offset
adjustment
Ambient light
Brightness data
7. Brightness data conversion
・From Ambient light data, the rank judging of 16 steps suitable
for brightness is carried out.
・Selection of the existence of LOG conversion with the type of
Ambient light sensor is possible.
Linear type Sensor:LOG Conversion
LOG type Sensor:Data through
Bit:STYPE
・Brightness data can be read through I2C.
Ambient light
SSENS voltage
LOG Those with conversion
Brightness
GAIN no control
(GAIN=11 STYPE=0)
GAIN control
Low mode
(exclude GAIN=11)
High mode
0
VoS×0/256
-
VoS×0/256
1
VoS×1/256
-
VoS×1/256
2
VoS×2/256
-
VoS×2/256
3
4
5
6
7
8
9
A
B
C
D
E
F
VoS×3/256
VoS×4/256
VoS×5/256
VoS×6/256
VoS×7/256
VoS×9/256
VoS×10/256
VoS×13/256
VoS×14/256
VoS×19/256
VoS×20/256
VoS×27/256
VoS×28/256
VoS×38/256
VoS×39/256
VoS×53/256
VoS×54/256
VoS×74/256
VoS×2/256
VoS×3/256
VoS×4/256
VoS×6/256
VoS×7/256
VoS×11/256
VoS×12/256
VoS×20/256
VoS×21/256
VoS×36/256
VoS×75/256
VoS×104/256
VoS×105/256
VoS×144/256
VoS×145/256
VoS×199/256
VoS×200/256
VoS×255/256
VoS×37/256
VoS×64/256
VoS×65/256
VoS×114/256
VoS×115/256
VoS×199/256
VoS×200/256
VoS×255/256
VoS×0/256
VoS×1/256
VoS×3/256
VoS×4/256
VoS×5/256
VoS×7/256
VoS×8/256
VoS×12/256
VoS×13/256
VoS×21/256
VoS×22/256
VoS×37/256
VoS×38/256
VoS×65/256
VoS×66/256
VoS×113/256
VoS×114/256
VoS×199/256
VoS×200/256
VoS×255/256
-
With no LOG
conversion
GAIN no control
(GAIN=11 STYPE=1)
VoS×0/256
VoS×17/256
VoS×18/256
VoS×26/256
VoS×27/256
VoS×36/256
VoS×37/256
VoS×47/256
VoS×48/256
VoS×59/256
VoS×60/256
VoS×71/256
VoS×72/256
VoS×83/256
VoS×84/256
VoS×95/256
VoS×96/256
VoS×107/256
VoS×108/256
VoS×119/256
VoS×120/256
VoS×131/256
VoS×132/256
VoS×143/256
VoS×144/256
VoS×155/256
VoS×156/256
VoS×168/256
VoS×169/256
VoS×181/256
VoS×182/256
VoS×255/256
Low mode / High mode changes with a color coating value (brightness) at the time of automatic control.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
68/80
2011.04 - Rev.A
BD6086GU
Table setup (Initial value)
Brightness
setup
Current
value
Brightness
setup
Current
value
0
1
2
3
4
5
6
7
11h
13h
15h
18h
1Eh
25h
2Fh
3Bh
3.6mA
4.0mA
4.4mA
5.0mA
6.2mA
7.6mA
9.6mA
12.0mA
8
9
A
B
C
D
E
F
48h
56h
5Fh
63h
63h
63h
63h
63h
14.6mA
17.4mA
19.2mA
20.0mA
20.0mA
20.0mA
20.0mA
20.0mA
9. Slope process
・Slope process is given to LED current to dim naturally.
・The slope function is carried also in the driver for keys.
・LED current changes in the 256Step gradation in slopeing.
・UP(dark→bright ),Down(bright→dark) LED current transition
speed are set individually.
Bit:THL(3:0), TLH(3:0)
・Back light current changes as follows at the time of a slope.
TLH (THL) is a time setup of the current steps 2/256.
TLH
A conversion
rule can be
changed.
Brightness
変換テーブルのデータ
Data
of a conversion table
LCD
light LED
current
LCDBack
バックライト
LED
電流
8. LED current conversion
・The current of the LED driver to each Brightness is set up.
・Although a table setup (initial value) is prepared
beforehand, it can change into a user setup by overwriting.
Bit:IU*(6:0) (Back light)
LCD Back light LED current
Technical Note
LED
current
LEDdrive
ドライブ電流
slope time
light→Dark, light→Dark
A setup to each is possible.
Brightness
t
25.6mA
256
THL
LCD Back light LED current
・The slope method at the time of the change in Auto Luminous control mode and register setting mode.
It can choose.
Once LED current is set to 0mA at Auto Luminous control mode at the
registor
Auto Luminous
time of a change at the time of
mode
mode
MDCIR=1, it transits according to the slope time set up by TLH.
MDCIR=’0’
Bit:MDCIR
・LED current data can be read through I2C.
0mA
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
69/80
registor
mode
Mode change
on MDCIR=’1’,
It resets to a
current value.
t
2011.04 - Rev.A
BD6086GU
Technical Note
10. Back light current value External adjustmen1
・Adjustment of the back light current which synchronized
with the terminal input instead of timing of register writing
is possible.
・By OSYNCEN=0, the amount of offset beforehand set as
the register is reflected in LED driver current synchronizing
(*) with an external terminal (OSYNC).
(*) The time of the maximum OSSLP / 2 is taken for LCD back
light LED current to start change, since it re-timing by the internal
clock in any case.
Bit:IOFS(5:0)
IOFS
The present setup
次の設定
register
OSYNC
LCD Back light
LED current
OSSLP
When OSYNCEN=0
The present setup
IOFS
register
・The slope function is carried in the offset current.
A slope sets up the change time per 2/256 step.
Switching time is common with standup/falling.
Bit:OSSLP(2:0)
The next setup
The next setup
次の設定
OSYNC
LCD Back light
LED current
OSSLP
OSSLP
WHEN OSYNCEN=1
25.6mA
256
11. Back light current value External adjustmen 2
・If a permission is granted by register setup, the PWM drive by the external
terminal (WPWMIN) is possible.
Bit:WPWMEN
・It becomes PWM operation which used the back light current by a register
setup or automatic Luminous control as the base, and is the the best for the
brightness compensation by external control.
WPWMEN WPWMIN
Back light
current
0
L
Normal operation
0
1
H
L
Normal operation
1
H
Normal operation
Compulsion OFF
E N (*)
I n te r n a l S o f t- S ta r t T im e
D C /D C
W P W M IN
O u tp u t
in p u t
W PW M EN
L E D C u rre n t
E N (*) :
it m e a n s “ M L E D E N ” o r “ W * E N ” o r “ R G B * E N ” o r “ R G B * O S ” .
( c a s e o f s e t tin g f o r R G B L E D c o n n e c t to V O U T )
I t is p o s s ib le t o m a k e it a W P W M IN in p u t a n d W P W M E N = 1 in f r o n t o f E N ( * ) .
A P W M d r iv e b e c o m e s e ff e c t iv e a fte r t h e tim e o f a n L E D c u r r e n t s ta n d u p .
W h e n r is in g d u r in g P W M o p e r a tio n , a s f o r th e s ta n d u p t im e o f a D C /D C o u t p u t , o n ly th e r a te o f
P W M D u t y b e c o m e s la t e . A p p e a r a n c e m a y b e in f lu e n c e d w h e n e x t r e m e ly la te f r e q u e n c y a n d
e x t r e m e ly lo w D u t y a r e in p u tt e d .
P le a s e s e c u r e 5 0 μ s o r m o r e o f H s e c tio n s a t th e tim e o f P W M p u ls e F o r c e .
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
70/80
2011.04 - Rev.A
BD6086GU
Technical Note
13. Key Backlight PWM Control
・Outputs ON or OFF for binary judgment via the KBLT terminal after
PWM processing.
・Allows up to 16 levels of MAX Duty to be set in the register via PWM.
Bit name: MDTY (3:0)
Allows a slope time to be set in the register via PWM.
16 levels of duties prepared as MAX Duty are sequentially stepped at
KBSLP time intervals.
Bit name: KBSLP (1:0)
(This function is effective when KBLT serves for GPO as well as binary judgment.)
*
waveform in this description represents an operation image and does not indicate an
bsolute value accurately.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
71/80
Key back light ON/OFF control
Example: The backlight turns on with an illumination intensity of 7
and turns off with an illumination intensity of 5.
CTH[3:0]=7h CHYS[1:0]=1h
Detect threshold level,
Hysteresis
setup is possible
OFF
Brightness
MDTY set point
PWM Duty
The threshold value and hystresis must meet the following condition:
CTH setting  CHYS setting
ON
DUTY Control
KBSLP
KBLT output
12. Key Backlight Binary Judgment
Capable of comparing luminosity factor data with judgment threshold value
with a hysteresis to determine binary judgment for illumination intensity.
・Available for key backlight ON/OFF control based on illumination intensity.
・Sets a threshold value and a hystresis via the registers.
Bit name: CTH(3:0)
Bit name: CHYS(1:0)
t
2011.04 - Rev.A
BD6086GU
Technical Note
●Description of REG Operations
REG control method
ON/OFF control and normal mode/low power consumption mode control available for both register settings and terminal input
REG*
REG*ON
REG*EN
registor
(Register)
(Terminal)
ON/OFF control
ON/OFF
REG*ON
0
0
1
1
L
H
L
H
OFF
ON
ON
ON
REG*CNT
REG*MD
REG*
0
L
Low consumption
0
H
Normal
1
L
Normal
1
H
Normal
REG2VSEL
REG2
L
1.8V
H
1.5V
Normal/
Low consumption
REG*CNT
REG*
REG*MD
REG*EN
REG control Equivalent circuit diagram
*1 or 2 are shown.
About REG* (I/O voltage) activation
When REG* is output as a VIO voltage, activation must take place as shown below.
VBAT(force)
RESETB
(External terminal control)
REG*EN(External terminal control)
Min:7.5ms (*2)
REG2EN
Min:0ms (*4)
REG*MD
(External terminal control)
REG*O(output)
(=VIO voltage)
Standby
Low consumption
Standby
Normal mode
mode
Register access is possible.
Min:2ms(*2)
(*1) This sequence is the case where REG*O is used as I/O voltage.
When you carry out external force of the I/O voltage, please start as follows in consideration of
the specification of an external power supply.
(*2) When low consumption mode is unnecessary, REG2 EN=REG2MD (simultaneous control) is possible.
However, please take into consideration the REG2 standup time (Min:2ms) at the time of the normal mode in that case.
(*3) REG* should perform release of RESETB at the time of the normal mode.
(*4) The simultaneous timing of REG*EN="L" and RESETB= “L” is also OK.
However, it is prohibition to carry out REG*EN= “L” before RESETB= “L” .
When using an external power supply as VIO voltage, it is necessary to start as follows.
VBAT (force)
VIO (force)
RESETB
(External terminal control)
Register access
impossible
possible
impossible
Please perform release of RESETB after the standup of VIO and VGPIO.
It is prohibition to bring down VIO and VGPIO before RESETB="L."
Moreover, when VIO and VGPIO are another power supplies, please start VIO voltage first.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
72/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Description of DC/DC Operations
Activation
The DC/DC circuit is activated when any LED is subject to lighting control (DCDCFON=0).
(However, this is true only when the output (VOUT) of the DC/DC circuit is set as a LED connection destination.) A soft
start function is available to prevent the rush current at DC/DC circuit activation.
Note that voltage should apply to both VBAT and VIO as follows:
DCDCMD=1 must be set in the fixed voltage mode and DCDCMD=DCDCFON
=1 must be set when DCDC output takes place regardless of LEDs.
VBAT
VIO
T VIOON=min 0.1ms
T VIOOFF=min 0.1ms
RESETB
T RSTB=min 0.1ms
T RST=min 0ms
EN (*)
T SOFT
VOUT
LED 電 流
(*) An EN signal means the following in the upper figure.
EN = “MLEDEN” or “W*EN” or “RGB*EN” or “RGB*OS”
(= LED The LED lighting control of a setup of connection VOUT)
But, as for Ta > TTSD (typ : 195° C), a protection function functions, and an EN signal doesn't become effective.
TSOFT changes by the capacitor connected to VOUT and inside OSC.
TSOFT is Typ 200μs (when the output capacitor of VOUT =1.0μF).
Overvoltage protection/Overcurrent protection
The DC/DC circuit output (VOUT) is provided with an overvoltage protection function and an overcurrent protection function.
VOUT overvoltage detection voltage: approx. 6.0V (during a VOUT voltage rise)
A detection voltage has a hysteresis and its detection cancel voltage is approx. 5.75V (reference design value). In addition,
when the VOUT output is short-circuited to GND, the leak current is suppressed via the overcurrent protection function.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
73/80
2011.04 - Rev.A
BD6086GU
Technical Note
Mode transition
A step-up (pressure rising) multiple switches automatically depending on the VBAT voltage and VOUT terminal voltage.
STANDBY
Condition (1)
ALL off
MLEDEN=”1” or W*EN=”1” or RGB*EN or RGB*OS=”1”
(1)
and
Ta<TTSD
SOFT
(However, an LED must be used for LED
light control defined in the VOUT setting.)
CP x1.0 mode
After detecting VOUT>1.5V(typ), 128us(typ) wait
X1.0
CP x1.0 mode
mode up=”H”
mode down=”H”
X1.5
CP x1.5 mode
mode up=”H”
mode down=”H”
X2.0
CP x2.0 mode
The charge pump mode transits as follows.
<Mode transition: x1.0 → x1.5 → x2.0>
VBAT and VOUT are compared and mode transition is allowed only when the following conditions are satisfied.
Mode transition from x1.0 to x1.5
VBAT ≤ VOUT + (Ron10×Iout)
(LED terminal feedback: VOUT = Vf+0.2(Typ))
Mode transition from x1.5 to x2.0
VBAT×1.5 ≤ VOUT + (Ron15×Iout)
(LED terminal feedback: VOUT = Vf+0.2(Typ))
Where, Ron10 and Ron15 represent a 0n resistance at a charge pump.
Ron10=1Ω (Typ), Ron15=5Ω (Typ) (design value)
<Mode transition: x2.0 → x1.5 → x1.0>
VOUT and VBAT rates are detected and mode transition is performed only when a prescribed rate is exceeded.
The rates are as follows:
Mode transition from x1.5 to x1.0
VBAT/VOUT=1.07 (design value)
Mode transition from x2.0 to x1.5
VBAT/VOUT=0.96 (design value)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
74/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Description of other operations
1.Reset
There are two types of reset: software reset and hardware reset.
(1) Software reset
・Setting the register (SFTRST) to “1” causes all the registers to be initialized.
・The registers subject to software reset automatically return to zero (Auto Return 0).
(2) Hardware reset
・Changing the RESETB terminal setting from “H” to “L” causes a state subject to hardware reset.
・Attempting hardware reset causes the states of all registers and output terminals to be initialized to their initial values,
so that address reception is entirely stopped.
・Attempting reset in the hardware reset state causes the RESETB terminal state to change from “L” to “H” and vice
versa.
・The RESETB terminal is provided with a filter circuit and a duration of 5µs or less with the terminal set to “L” is not
recognized as hardware reset.
(3) Reset sequence
・When hardware reset is attempted during software reset, software reset is already cleared when hardware reset is
cleared (because the software reset initial value is 0).
2.Thermal shutdown
A thermal shutdown function is effective in the following block.
DC/DC (Charge pump)
LED driver
REG1,2 (Normal mode)
SBIAS
The thermal shutdown function is activated when the detected temperature is approx. 195C.
The detected temperature has a hysteresis and the detection cancel temperature is approx. 175C (reference value in
design).
3. I/O portion
While the RESETB terminal is in “L” state, no input signal is propagated to the IC logic portion because SDA and SCL
input buffer operations are all stopped.
When RESETB=L, output is fixed at “H.”
SCL
(SDA)
Level shifter
Logic
EN
RESETB
Special care should be taken because a current path may be formed via a terminal protection diode, depending on an
I/O power-on sequence or an input level.
4.
About the pin management of the function that isn't used and test pins
Setting it as follows is recommended with the test pin and the pin which isn't used.
Set up pin referring to the “Equivalent circuit diagram” so that there may not be a problem under the actual use.
T1, T2, T3
T4
Non-used LED Pin
Digital input terminal
VGPIO
32KIN
GPIO1~4
KBLT
INTB ,REG1O, REG2O
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
Short to GND because pin for test
OPEN because pin for test
Short to GND (Must)
But, the setup of a register concerned with LED that isn’t used is prohibited.
Short to GND
(A terminal with built-in Pull-Down resistance is also included.)
When you do not use all GPIO channels and a KBLT output, please
short-circuit to a ground in VGPIO, GPIO 1-4, and all the 32KIN.
When you do not use GPI, please short-circuit to a ground.
PulDowm with resistance of about 100kΩ
(When not using all of GPIO 1-4 and KBLT, it is short-circuiting VGPIO to a
ground, and Pull-Down resistance can be omitted)
Although Pull-Down is built in, it opens for an output.
It opens for an output.
75/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Operation Settings (Flow Example)
1. Backlight: Auto luminous Mode
2. Key Backlight Control at Opening/Closing
Apply supply voltage.
Apply supply voltage.
Cancel reset.
Cancel reset.
Luminous control: Various
settings
Backlight: Various settings
ALCEN=1
The backlight settings can be made at any timing
so long as it precedes MLEDEN=1.
MULEDMD=1 is mandatory.
Luminous control: Various
settings
KBLT: Various settings
ALC block operation takes place for
Illumination Intensity measurement.
ALCEN=1
ALC block operation takes place for
illumination Intensity measurement.
Wait for 80.4 ms or more.
Time required for Initial value date acquisition.
Wait for 80.4 ms or more
Time required for initial Illumination
Intensity acquisition.
MLEDEN=1
Key backlight settings can be made at any
timings so long as it precedes MDTY(3:0) setting.
KBFIX=0 (Initial) is mandatory.
Set MDTY(3:0)
The backlight turns on.
MLEDEN=0 must be set first when the backlight is off.
The key backlight turns on. This lighting
occurs for other than the MDTY(3:0) setting.
MDTY(3:0) must be set first when the backlight is off.
3. Backlight: Fade-in/Fade-out
Apply supply voltage.
Cancel reset.
Backlight: Various settings
Backlight setting.
Slow time setting.
MLEDEN=1
The backlight turns on.
(Rise at designated slope time)
Set the minimum current.
(Rise at designated slope time)
MLEDEN=0
The backlight turns off.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
76/80
2011.04 - Rev.A
BD6086GU
Technical Note
●PCB pattern of the Power dissipation measuring board
1st layer(component)
2nd layer
3rd layer
4th layer
5th layer
6th layer
7th layer
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
8th layer (solder)
77/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Notes for use
(1) Absolute Maximum Ratings
An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc.,
can break down devices, thus making impossible to identify breaking mode such as a short circuit or an open circuit. If
any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical
safety measures including the use of fuses, etc.
(2) Power supply and ground line
Design PCB pattern to provide low impedance for the wiring between the power supply and the ground lines. Pay
attention to the interference by common impedance of layout pattern when there are plural power supplies and ground
lines. Especially, when there are ground pattern for small signal and ground pattern for large current included the
external circuits, please separate each ground pattern. Furthermore, for all power supply pins to ICs, mount a capacitor
between the power supply and the ground pin. At the same time, in order to use a capacitor, thoroughly check to be sure
the characteristics of the capacitor to be used present no problem including the occurrence of capacity dropout at a low
temperature, thus determining the constant.
(3) Ground voltage
Make setting of the potential of the ground pin so that it will be maintained at the minimum in any operating state.
Furthermore, check to be sure no pins are at a potential lower than the ground voltage including an actual electric
transient.
(4) Short circuit between pins and erroneous mounting
In order to mount ICs on a set PCB, pay thorough attention to the direction and offset of the ICs. Erroneous mounting
can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between
the pin and the power supply or the ground pin, the ICs can break down.
(5) Operation in strong electromagnetic field
Be noted that using ICs in the strong electromagnetic field can malfunction them.
(6) Input pins
In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the
parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of
the input pin. Therefore, pay thorough attention not to handle the input pins, such as to apply to the input pins a voltage
lower than the ground respectively, so that any parasitic element will operate. Furthermore, do not apply a voltage to the
input pins when no power supply voltage is applied to the IC. In addition, even if the power supply voltage is applied,
apply to the input pins a voltage lower than the power supply voltage or within the guaranteed value of electrical
characteristics.
(7) External capacitor
In order to use a ceramic capacitor as the external capacitor, determine the constant with consideration given to a
degradation in the nominal capacitance due to DC bias and changes in the capacitance due to temperature, etc.
(8) Thermal shutdown circuit (TSD)
This LSI builds in a thermal shutdown (TSD) circuit. When junction temperatures become detection temperature or
higher, the thermal shutdown circuit operates and turns a switch OFF. The thermal shutdown circuit, which is aimed at
isolating the LSI from thermal runaway as much as possible, is not aimed at the protection or guarantee of the LSI.
Therefore, do not continuously use the LSI with this circuit operating or use the LSI assuming its operation.
(9) Thermal design
Perform thermal design in which there are adequate margins by taking into account the permissible dissipation (Pd) in
actual states of use.
(10) LDO
Use each output of LDO by the independence. Don’t use under the condition that each output is short-circuited because
it has the possibility that an operation becomes unstable.
(11) About the pin for the test, the un-use pin
Prevent a problem from being in the pin for the test and the un-use pin under the state of actual use. Please refer to a
function manual and an application notebook. And, as for the pin that doesn't specially have an explanation, ask our
company person in charge.
(12) Rush Current
Rush current may flow in instant in the internal logic unfixed state by the power supply injection order and delay.
Therefore, be careful of power supply coupling capacity, a power supply and the width of grand pattern wiring, and
leading about.
(13) About the function description or application note or more.
The function manual and the application notebook are the design materials to design a set. So, the contents of the
materials aren't always guaranteed. Please design application by having fully examination and evaluation include the
external elements.
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
78/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Power Dissipation (On the ROHM’s standard board)
2.0
1900mW
1.8
Power dissipation(W)
1.6
Information of the ROHM’s standard board
Material : glass-epoxy
Size : 50mm×58mm×1.75mm (8Layer)
Pattern of the board: Refer to it that goes later.
1.4
1.2
1.0
0.8
0.6
0.4
0.2
0.0
0
25
50
75
100
125
150
Peripheral temperature(℃)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
79/80
2011.04 - Rev.A
BD6086GU
Technical Note
●Ordering part number
B
D
6
Part No.
0
8
6
G
Part No.
6086
U
-
Package
GU : VCSP85H4
E
2
Packaging and forming specification
E2: Embossed tape and reel
VCSP85H4(BD6086GU)
<Tape and Reel information>
0.25±0.1
1.0MAX
4.50±0.1
1PIN MARK
(φ0.15)INDEX POST
A
H
G
F
E
D
C
B
A
2500pcs
Direction
of feed
S
E2
The direction is the 1pin of product is at the upper left when you hold
( reel on the left hand and you pull out the tape on the right hand
B
12 3 4 5 6 78
0.50±0.1
)
P=0.5×7
0.08 S
63-φ0.30±0.05
0.05 A B
Embossed carrier tape
Quantity
0.50±0.1
4.50±0.1
Tape
1pin
P=0.5×7
Reel
(Unit : mm)
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
80/80
Direction of feed
∗ Order quantity needs to be multiple of the minimum quantity.
2011.04 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the
consent of ROHM Co.,Ltd.
The content specified herein is subject to change for improvement without notice.
The content specified herein is for the purpose of introducing ROHM's products (hereinafter
"Products"). If you wish to use any such Product, please be sure to refer to the specifications,
which can be obtained from ROHM upon request.
Examples of application circuits, circuit constants and any other information contained herein
illustrate the standard usage and operations of the Products. The peripheral conditions must
be taken into account when designing circuits for mass production.
Great care was taken in ensuring the accuracy of the information specified in this document.
However, should you incur any damage arising from any inaccuracy or misprint of such
information, ROHM shall bear no responsibility for such damage.
The technical information specified herein is intended only to show the typical functions of and
examples of application circuits for the Products. ROHM does not grant you, explicitly or
implicitly, any license to use or exercise intellectual property or other rights held by ROHM and
other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of such technical information.
The Products specified in this document are intended to be used with general-use electronic
equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).
The Products specified in this document are not designed to be radiation tolerant.
While ROHM always makes efforts to enhance the quality and reliability of its Products, a
Product may fail or malfunction for a variety of reasons.
Please be sure to implement in your equipment using the Products safety measures to guard
against the possibility of physical injury, fire or any other damage caused in the event of the
failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall bear no responsibility whatsoever for your use of any Product outside of the prescribed
scope or not in accordance with the instruction manual.
The Products are not designed or manufactured to be used with any equipment, device or
system which requires an extremely high level of reliability the failure or malfunction of which
may result in a direct threat to human life or create a risk of human injury (such as a medical
instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuelcontroller or other safety device). ROHM shall bear no responsibility in any way for use of any
of the Products for the above special purposes. If a Product is intended to be used for any
such special purpose, please contact a ROHM sales representative before purchasing.
If you intend to export or ship overseas any Product or technology specified herein that may
be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to
obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations.
More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com
© 2011 ROHM Co., Ltd. All rights reserved.
R1120A