VISHAY SIHF830A

IRF830A, SiHF830A
Vishay Siliconix
Power MOSFET
FEATURES
PRODUCT SUMMARY
VDS (V)
• Low Gate Charge Qg Results in Simple Drive
Available
Requirement
• Improved Gate, Avalanche and Dynamic dV/dt RoHS*
COMPLIANT
Ruggedness
• Fully Characterized Capacitance and Avalanche Voltage
and Current
• Effective Coss Specified
• Lead (Pb)-free Available
500
RDS(on) (Ω)
VGS = 10 V
1.4
Qg (Max.) (nC)
24
Qgs (nC)
6.3
Qgd (nC)
11
Configuration
Single
D
TO-220
APPLICATIONS
• Switch Mode Power Supply (SMPS)
• Uninterruptable Power Supply
• High Speed power Switching
G
S
G
TYPICAL SMPS TOPOLOGIES
D
S
• Two Transistor Forward
• Half Bridge
• Full Bridge
N-Channel MOSFET
ORDERING INFORMATION
Package
TO-220
IRF830APbF
SiHF830A-E3
IRF830A
SiHF830A
Lead (Pb)-free
SnPb
ABSOLUTE MAXIMUM RATINGS TC = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
LIMIT
Drain-Source Voltage
VDS
500
Gate-Source Voltage
VGS
± 30
Continuous Drain Current
VGS at 10 V
TC = 25 °C
TC = 100 °C
Pulsed Drain Currenta
ID
IDM
Linear Derating Factor
UNIT
V
5.0
3.2
A
20
0.59
W/°C
Single Pulse Avalanche Energyb
EAS
230
mJ
Repetitive Avalanche Currenta
IAR
5.0
A
Repetitive Avalanche Energya
EAR
7.4
mJ
Maximum Power Dissipation
TC = 25 °C
Peak Diode Recovery dV/dtc
Operating Junction and Storage Temperature Range
Soldering Recommendations (Peak Temperature)
Mounting Torque
for 10 s
6-32 or M3 screw
PD
74
W
dV/dt
5.3
V/ns
TJ, Tstg
- 55 to + 150
300d
°C
10
lbf · in
1.1
N·m
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Starting TJ = 25 °C, L = 18 mH, RG = 25 Ω, IAS = 5.0 A (see fig. 12).
c. ISD ≤ 5.0 A, dI/dt ≤ 370 A/µs, VDD ≤ VDS, TJ ≤ 150 °C.
d. 1.6 mm from case.
* Pb containing terminations are not RoHS compliant, exemptions may apply
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
www.vishay.com
1
IRF830A, SiHF830A
Vishay Siliconix
THERMAL RESISTANCE RATINGS
PARAMETER
SYMBOL
TYP.
MAX.
Maximum Junction-to-Ambient
RthJA
-
62
Case-to-Sink, Flat, Greased Surface
RthCS
0.50
-
Maximum Junction-to-Case (Drain)
RthJC
-
1.7
UNIT
°C/W
SPECIFICATIONS TJ = 25 °C, unless otherwise noted
PARAMETER
SYMBOL
TEST CONDITIONS
MIN.
TYP.
MAX.
UNIT
Static
Drain-Source Breakdown Voltage
VDS Temperature Coefficient
VDS
VGS = 0 V, ID = 250 µA
500
-
-
V
ΔVDS/TJ
Reference to 25 °C, ID = 1 mA
-
0.60
-
V/°C
VGS(th)
VDS = VGS, ID = 250 µA
2.0
-
4.5
V
Gate-Source Leakage
IGSS
VGS = ± 30 V
-
-
± 100
nA
Zero Gate Voltage Drain Current
IDSS
Gate-Source Threshold Voltage
VDS = 500 V, VGS = 0 V
-
-
25
VDS = 400 V, VGS = 0 V, TJ = 125 °C
-
-
250
µA
-
-
1.4
Ω
gfs
VDS = 50 V, ID = 3.0 Ab
2.8
-
-
S
Input Capacitance
Ciss
VGS = 0 V,
-
620
-
93
-
4.3
-
Drain-Source On-State Resistance
Forward Transconductance
RDS(on)
ID = 3.0 Ab
VGS = 10 V
Dynamic
Output Capacitance
Coss
VDS = 25 V,
-
Reverse Transfer Capacitance
Crss
f = 1.0 MHz, see fig. 5
-
Output Capacitance
Coss
VGS = 0 V; VDS = 1.0 V, f = 1.0 MHz
886
Coss
VGS = 0 V; VDS = 400 V, f = 1.0 MHz
27
Coss eff.
VGS = 0 V; VDS = 0 V to 400 Vc
39
Output Capacitance
Effective Output Capacitance
Total Gate Charge
Qg
VGS = 10 V
ID = 5.0 A, VDS = 400 V,
-
-
24
-
-
6.3
Gate-Source Charge
Qgs
Gate-Drain Charge
Qgd
-
-
11
Turn-On Delay Time
td(on)
-
10
-
Rise Time
Turn-Off Delay Time
Fall Time
tr
td(off)
see fig. 6 and 13b
VDD = 250 V, ID = 5.0 A,
RG = 14 Ω, RD = 49 Ω, see fig.
10b
tf
pF
nC
-
21
-
-
21
-
-
15
-
-
-
5.0
-
-
20
-
-
1.5
V
-
430
650
ns
-
1.62
2.4
µC
ns
Drain-Source Body Diode Characteristics
Continuous Source-Drain Diode Current
IS
Pulsed Diode Forward Currenta
ISM
Body Diode Voltage
VSD
Body Diode Reverse Recovery Time
trr
Body Diode Reverse Recovery Charge
Qrr
Forward Turn-On Time
ton
MOSFET symbol
showing the
integral reverse
p - n junction diode
D
A
G
S
TJ = 25 °C, IS = 5.0 A, VGS = 0 Vb
TJ = 25 °C, IF = 5.0 A, dI/dt = 100 A/µsb
Intrinsic turn-on time is negligible (turn-on is dominated by LS and LD)
Notes
a. Repetitive rating; pulse width limited by maximum junction temperature (see fig. 11).
b. Pulse width ≤ 300 µs; duty cycle ≤ 2 %.
c. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80 % VDS.
www.vishay.com
2
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
IRF830A, SiHF830A
Vishay Siliconix
TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted
Fig. 1 - Typical Output Characteristics
Fig. 3 - Typical Transfer Characteristics
Fig. 2 - Typical Output Characteristics
Fig. 4 - Normalized On-Resistance vs. Temperature
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
www.vishay.com
3
IRF830A, SiHF830A
Vishay Siliconix
Fig. 5 - Typical Capacitance vs. Drain-to-Source Voltage
Fig. 7 - Typical Source-Drain Diode Forward Voltage
Fig. 6 - Typical Gate Charge vs. Gate-to-Source Voltage
Fig. 8 - Maximum Safe Operating Area
www.vishay.com
4
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
IRF830A, SiHF830A
Vishay Siliconix
RD
VDS
VGS
D.U.T.
RG
+
- VDD
10 V
Pulse width ≤ 1 µs
Duty factor ≤ 0.1 %
Fig. 10a - Switching Time Test Circuit
VDS
90 %
10 %
VGS
td(on)
Fig. 9 - Maximum Drain Current vs. Case Temperature
td(off) tf
tr
Fig. 10b - Switching Time Waveforms
Thermal Response (Z thJC )
10
1 D = 0.50
0.20
0.10
PDM
0.05
0.1
t1
0.02
0.01
t2
SINGLE PULSE
(THERMAL RESPONSE)
0.01
0.00001
0.0001
Notes:
1. Duty factor D = t 1 / t 2
2. Peak TJ = P DM x Z thJC + TC
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 11 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
VDS
15 V
tp
L
VDS
D.U.T.
RG
IAS
20 V
tp
Driver
+
A
- VDD
IAS
0.01 Ω
Fig. 12a - Unclamped Inductive Test Circuit
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
Fig. 12b - Unclamped Inductive Waveforms
www.vishay.com
5
IRF830A, SiHF830A
Vishay Siliconix
Fig. 12c - Maximum Avalanche Energy vs. Drain Current
Fig. 12d - Typical Drain-to-Source Voltage vs.
Avalanche Current
Current regulator
Same type as D.U.T.
50 kΩ
QG
10 V
12 V
0.2 µF
0.3 µF
QGS
QGD
+
D.U.T.
VG
-
VDS
VGS
3 mA
Charge
IG
ID
Current sampling resistors
Fig. 13a - Basic Gate Charge Waveform
www.vishay.com
6
Fig. 13b - Gate Charge Test Circuit
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
IRF830A, SiHF830A
Vishay Siliconix
Peak Diode Recovery dV/dt Test Circuit
+
D.U.T.
Circuit layout considerations
• Low stray inductance
• Ground plane
• Low leakage inductance
current transformer
+
-
-
RG
•
•
•
•
dV/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by duty factor "D"
D.U.T. - device under test
Driver gate drive
P.W.
+
Period
D=
+
-
VDD
P.W.
Period
VGS = 10 V*
D.U.T. ISD waveform
Reverse
recovery
current
Body diode forward
current
dI/dt
D.U.T. VDS waveform
Diode recovery
dV/dt
Re-applied
voltage
VDD
Body diode forward drop
Inductor current
Ripple ≤ 5 %
ISD
* VGS = 5 V for logic level devices
Fig. 14 - For N-Channel
Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon
Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and
reliability data, see http://www.vishay.com/ppg?91061.
Document Number: 91061
S-81145-Rev. B, 02-Jun-08
www.vishay.com
7
Legal Disclaimer Notice
Vishay
Disclaimer
All product specifications and data are subject to change without notice.
Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf
(collectively, “Vishay”), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein
or in any other disclosure relating to any product.
Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any
information provided herein to the maximum extent permitted by law. The product specifications do not expand or
otherwise modify Vishay’s terms and conditions of purchase, including but not limited to the warranty expressed
therein, which apply to these products.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this
document or by any conduct of Vishay.
The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless
otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such
applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting
from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding
products designed for such applications.
Product names and markings noted herein may be trademarks of their respective owners.
Document Number: 91000
Revision: 18-Jul-08
www.vishay.com
1