MITSUBISHI M61323FP

MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION
The M61323SP/FP is a semiconductor integrated circuit for
the RGBHV interface. The device features switching signals
input from two types of image sources and outputting the
signals to the CRT display,etc. Synchronous signals,
meeting a frequency band of 10KHz to 200KHz, are output
at TTL. The frequency band of video signals is 250MHz,
acquiring high-resolution images, and are optimum as an
interface IC with high-resolution CRT display and various
new media.
The M61323SP/FP keeps the power saving mode, and
it can reduce ICC about 10mA under the condition that
all Vcc are supplied.
FEATURES
Frequency band : RGB........................................250MHz
: H,V...........................10KHz to 200KHz
Input level:RGB............................................0.7Vp-p(Typ.)
H,V TTL input ....................3 to 5Vo-p (bipolar)
Only the G channel is provided with Sync-on video output.
The TTL format is adopted for HV output.
PIN CONFIGURATION(TOP VIEW)
Vcc1 (R)
Input1 (R)
Vcc1 (G)
Input1 (G)
Vcc1 (B)
Input1 (B)
Input1 (H)
Input1 (V)
GND1
Input2 (R)
PowerSave SW
Input2(G)
Input SW
Input2 (B)
Input2 (H)
Input2 (V)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
32
31
30
29
28
27
26
25
24
23
22
VCC2 (R)
OUTPUT (R)
GND2(R)
Vcc2(G)
OUTPUT(G)
GND2 (G)
Vcc2 (B)
OUTPUT(B)
GND2(B)
G Buffer out
Sync SEP in
21
20
19
18
17
Sync SEP out
Vcc3
OUTPUT(H)
OUTPUT(V)
GND3
APPLICATION
Display monitor
OUTLINE:32P4B
RECOMMENDED OPERATING CONDITION
Supply voltage range...................................4.75 to 5.25V
Rated voltage range..................................................5.0V
PIN CONFIGURATION(TOP VIEW)
Vcc1 (R)
Input1 (R)
Vcc1 (G)
Input1 (G)
Vcc1 (B)
Input1 (B)
Input1 (H)
Input1 (V)
GND1
GND1
Input2 (R)
PowerSave SW
Input2(G)
Input SW
Input2 (B)
Input2 (H)
Input2 (V)
NC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
NC
VCC2 (R)
OUTPUT (R)
GND2(R)
Vcc2(G)
OUTPUT(G)
GND2 (G)
Vcc2 (B)
OUTPUT(B)
GND2(B)
G Buffer out
Sync SEP in
Sync SEP out
Vcc3
Vcc3
OUTPUT(H)
OUTPUT(V)
GND3
OUTLINE:36P2R
M I T S U B I S H I
1
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
BLOCK DIAGRAM ( M61323SP )
VCC(R)
OUTPUT(G)
GND
OUTPUT(R)
32
VCC(G)
31
30
Vcc(R)
28
Vcc(G)
R
26
27
Vcc(G)
2
1
INPUT1(R)
Vcc(R)
B
4
22
21
20
INPUT1(G)
Sync-Sep.
G
6
7
INPUT1(B)
Vcc(B)
18
19
17
8
9
10
INPUT1(V)
GND
VCC(B)
GND
12
11
INPUT2(R)
INPUT1(H)
V
H
POWER
SAVE SW
GND
5
Vcc(G)
23
GND
Vcc
Vcc(B)
3
24
OUTPUT(V)
OUTPUT(H)
Sync-Sep.OUT
Vcc(B)
G
Vcc(R)
25
VCC
Sync-Sep.INPUT
OUTPUT
(G-Buffer)
OUTPUT(B)
GND
29
GND
VCC(B)
13
INPUT2(G)
POWER SAVE SW
15
14
INPUT2(B)
INPUT SW
16
INPUT2(V)
INPUT2(H)
BLOCK DIAGRAM ( M61323FP )
VCC(R)
OUTPUT(R)
36
35
NC
Vcc(R)
OUTPUT(G)
GND
VCC(G)
33
34
1
Vcc(G)
2
3
5
INPUT1(G)
6
7
INPUT1(B)
Vcc(B)
27
B
Vcc(B)
4
Vcc(G)
28
26
24
25
8
GND
GND
9
10
GND
GND
INPUT1(V)
INPUT1(H)
OUTPUT(V)
OUTPUT(H)
23
22
Vcc
Vcc
Sync-Sep.
G
VCC
Sync-Sep.OUT
Vcc(B)
G
INPUT1(R)
Vcc(R)
29
30
Vcc(G)
R
Vcc(R)
31
32
OUTPUT(B)
GND
VCC
Sync-Sep.INPUT
OUTPUT
(G-Buffer)
20
21
H
GND
19
V
POWER
SAVE SW
11
INPUT2(R)
12
NC
13
14
INPUT2(G)
POWER SAVE SW
M I T S U B I S H I
16
15
INPUT2(V)
INPUT2(B)
INPUT SW
18
17
INPUT2(H)
2
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ABSOLUTE MAXIMUM RATINGS ( Ambient temperature: 25 C )
Parameter
Rating
Symbol
Vcc
Pd
Topr
Tstg
Surge
Supply voltage
Power dissipation
Operating temperature
Storage temperature
Electrostatic discharge
Recommended supply voltage
Recommended supply voltage range
Unit
7.0
1603 (SP) , 1068 (FP)
-20 to +85 (SP) , -20 to +75 (FP)
-40 to +150
+200
5.0
4.75 to 5.25
Vopr
Vopr'
V
mW
C
C
V
V
V
ELECTRICAL CHARACTERISTICS ( M61323SP VCC=5.0V Ta = 25 C)
Test conditions
Symbol
Parameter
Test
point
(S)
Input
Limits
SW
SW2
Rin1
SW4
Gin1
SW6
Bin1
SW7
Hin1
Circuit current 1
b
b
b
b
b
b
b
b
b
b
b
a
3V
b
IccSTBY Circuit current 2
b
b
b
b
b
b
b
b
b
b
b
b
b
Icc
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
Min.
Typ.
Max.
70
Unit
mA
10
mA
( RGB SW )
Vdc1
Output DC voltage 1
31
28
25
b
b
b
b
b
b
b
b
b
b
b
a
3V
b
1.5
V
Vdc2
Output DC voltage 2
31
28
25
b
b
b
b
b
b
b
b
b
b
b
a
3V
a
3V
1.5
V
Vdc3
Output DC voltage 3
23
b
b
b
b
b
b
b
b
b
b
b
a
3V
b
0.9
V
Vdc4
Output DC voltage 4
23
b
b
b
b
b
b
b
b
b
b
b
a
3V
a
3V
0.9
V
VIMAX1
Maximum allowable
input level 1
31
28
25
b
b
b
b
b
b
b
b
a
3V
b
1.8
Vp-p
VIMAX2
Maximum allowable
input level 2
31
28
25
b
b
b
b
b
a
3V
a
3V
1.8
Vp-p
GV1
Voltage gain 1
31
28
25
b
b
b
b
b
a
3V
b
∆GV1
Relative
voltage gain 1
GV2
Voltage gain 2
∆GV2
Relative
voltage gain 2
GV3
Voltage gain 3
23
b
a
SG2
b
b
b
b
b
b
b
b
b
a
3V
GV4
Voltage gain 4
23
b
b
b
b
b
b
a
SG2
b
b
b
b
a
3V
abb bab bba
SG1 SG1 SG1
b
b
b
abb bab bba
SG2 SG2 SG2
abb bab bba
SG1 SG1 SG1
b
b
b
-0.1
0.7
1.3
dB
-0.4
0
0.4
dB
-0.1
0.7
1.3
dB
-0.4
0
0.4
dB
b
-0.6
0
0.6
dB
a
3V
-0.6
0
0.6
dB
Relative to measured values above
31
28
25
b
b
b
b
b
abb bab bba
SG2 SG2 SG2
b
b
b
a
3V
a
3V
Relative to measured values above
M I T S U B I S H I
3
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions
Symbol
Parameter
Test
point
(S)
Fc1
Freq.characteristic1
(100MHz)
31
28
25
∆Fc1
Relative
Freq.characteristic1
(100MHz)
Fc2
Freq.characteristic2
(100MHz)
∆Fc2
Relative
Freq.characteristic2
(100MHz)
Fc3
Freq.characteristic3
(250MHz)
31
28
25
Fc4
Freq.characteristic4
(250MHz)
31
28
25
CTI1
Crosstalk between
two inputs1 (10MHz)
31
28
25
CTI2
Crosstalk between
two inputs2 (10MHz)
31
28
25
CTI3
Crosstalk between
two inputs3 (100MHz)
31
28
25
CTI4
Crosstalk between
two inputs4 (100MHz)
31
28
25
CTC1
Crosstalk between
channels1 (10MHz)
31
28
25
CTC2
Crosstalk between
channels2 (10MHz)
31
28
25
CTC3
Crosstalk between
channels3 (100MHz)
31
28
25
CTC4
Crosstalk between
channels4 (100MHz)
31
28
25
Input
SW2
Rin1
SW4
Gin1
SW6
Bin1
SW7
Hin1
abb bab bba
SG4 SG4 SG4 b
Limits
SW
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
b
b
b
b
b
b
b
a
3V
b
Relative to measured values above
31
28
25
b
b
b
b
b
abb bab bba
SG4 SG4 SG4
b
b
b
a
3V
a
3V
Relative to measured values above
abb bab bba
SG5 SG5 SG5 b
b
b
b
abb bab bba
SG3 SG3 SG3 b
b
b
b
b
b
abb bab bba
SG4 SG4 SG4 b
b
b
b
b
b
b
b
abb bab bba
SG3 SG3 SG3 b
b
b
b
b
b
b
abb bab bba
SG4 SG4 SG4 b
b
abb bab bba
SG5 SG5 SG5
b
b
b
abb bab bba
SG3 SG3 SG3
b
b
b
abb bab bba
SG4 SG4 SG4
b
b
b
abb bab bba
SG3 SG3 SG3
b
b
b
abb bab bba
SG4 SG4 SG4
-1
0
1
dB
-1
0
1
dB
-1
0
1
dB
-1
0
1
dB
b
b
b
a
3V
b
-3
dB
b
b
b
a
3V
a
3V
-3
dB
b
b
b
a
3V
a
3V
-60
-45
dB
b
b
b
a
3V
b
-60
-45
dB
b
b
b
a
3V
a
3V
-40
-30
dB
b
b
b
a
3V
b
-40
-30
dB
b
b
b
a
3V
b
-50
-40
dB
b
b
b
a
3V
a
3V
-50
-40
dB
b
b
b
a
3V
b
-30
-25
dB
b
b
b
a
3V
a
3V
-30
-25
dB
31
28
25
abb bab bba
SG6 SG6 SG6 b
b
b
b
b
b
b
b
a
3V
b
1.6
2.5
nsec
Tf1
31
28
25
abb bab bba
SG6 SG6 SG6 b
b
b
b
b
b
b
b
a
3V
b
1.6
2.5
nsec
Tr2
31
28
25
b
b
b
b
b
abb bab bba
SG6 SG6 SG6
b
b
b
a
3V
a
3V
1.6
2.5
nsec
31
28
25
b
b
b
b
b
abb bab bba
SG6 SG6 SG6
b
b
b
a
3V
a
3V
1.6
2.5
nsec
Pulse characteristic2
Tf2
b
b
Max. Unit
b
Pulse characteristic1
b
b
b
Typ.
b
Tr1
b
b
b
b
Min.
M I T S U B I S H I
4
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS (cont.)
Test conditions
Symbol
Parameter
Test
point
(S)
Input
SW2
Rin1
SW4
Gin1
SW6
Bin1
SW7
Hin1
Limits
SW
SW8 SW10 SW12 SW14 SW15 SW16 SW22 SW11 SW13
Vin1 Rin2 Gin2 Bin2 Hin2 Vin2 Sync P.sav Switch
Min.
Typ.
Max. Unit
( HV SW )
Vdch1
High level
output voltage 1
18
19
b
b
b
Vdch2
High level
output voltage 2
18
19
b
b
b
Vdcl1
Low level
output voltage 1
18
19
b
b
b
Vdcl2
Low level
output voltage 2
18
19
b
b
b
VithH
Input threshold
voltage H
18
19
b
b
b
VithL
Input threshold
voltage L
18
19
b
b
Tr3
Rising time 3
18
19
b
Tf3
Falling time 3
18
19
HVdr
Rising delay time
HVDf
Falling delay time
a
a
SG8 SG8
b
a
3V
b
3.8
4.2
V
b
a
3V
a
3V
3.8
4.2
V
b
a
3V
b
0.2
0.5
V
b
a
3V
a
3V
0.2
0.5
V
b
b
a
3V
b
1.8
2.0
2.2
V
b
b
b
a
3V
b
1.0
1.4
1.6
V
b
b
b
b
a
3V
b
25
nsec
b
b
b
b
b
a
3V
b
15
nsec
b
b
b
b
b
b
a
3V
b
40
60
nsec
b
b
b
b
b
b
a
3V
b
40
60
nsec
b
b
b
b
b
b
b
b
b
b
b
b
a
a
SG8 SG8
b
b
b
b
b
a
a
SG8 SG8
b
b
b
b
b
a
a
SG8 SG8
b
b
b
b
b
a
a
SG8 SG8
b
18
19
b
b
b
a
a
SG8 SG8
18
19
b
b
b
a
a
SG8 SG8
b
b
a
a
SG8 SG8
b
b
b
b
a
a
SG8 SG8
b
b
a
a
SG8 SG8
( SYNC SEP. )
SYrv
Sync on G input
minimum voltage
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
0.2
SYVH
Sync output
high level voltage
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
3.8
SYVL
Sync output
low level voltage
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
0.2
STr
Sync output
rising time 3
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
25
nsec
STf
Sync output
falling time 3
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
15
nsec
SDr
Sync output
rising delay time
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
40
60
nsec
SDf
Sync output
falling delay time
21
b
b
b
b
b
b
b
b
b
b
a
a
SG7 3V
40
60
nsec
Vp-p
4.3
V
0.5
V
( CHANNEL SELECT SW , POWER SAVE SW )
Vthch1
Channel select SW
threshold voltage 1
a
a
a
a
a
SG6 SG6 SG6 SG8 SG8
b
b
b
b
b
a
a
SG7 3V
variable
Vthch2
Channel select SW
threshold voltage 2
a
a
a
a
a
SG6 SG6 SG6 SG8 SG8
b
b
b
b
b
a
a
SG7 3V
variable
VthPH
Power save SW
threshold voltage 1
a
a
a
a
a
SG6 SG6 SG6 SG8 SG8
b
b
b
b
b
a
SG7
VthPL
Power save SW
threshold voltage 2
a
a
a
a
a
SG6 SG6 SG6 SG8 SG8
b
b
b
b
b
a
SG7
M I T S U B I S H I
a
a
a
variable
b
a
b
variable
V
2.5
1.0
V
V
2.0
1.0
5
15
V
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
ELECTRICAL CHARACTERISTICS TEST METHOD ( M61323SP )
Circuit current 1
No signal. Measure the total circuit current as Icc when supplying 3VDC to Pin11.
Circuit current 2
No signal. Measure the total circuit current as IccSTBY when Pin11 connected to GND.
Output DC voltage 1,2
Set SW13 to GND (or OPEN), measure the DC voltage of TP31(TP28,TP25) when there is no signal input.
The DC voltage is as vdc1(vdc2).
Output DC voltage 3,4
Measure the DC voltage TP23 same as "Output DC voltage 1,2". The DC voltage is Vdc3(Vdc4).
Maximum allowable input level 1,2
Set SW13 to GND, input SG1 to Pin2 only. Gradually increasing the SG1 amplitude, read the amplitude of the
input signal when the output waveform of TP31 is strained. The value is as Vimax1. In the same way,
measure Vimax1 in response to inputs in Pin4 and Pin6 only.
Then set SW13 to OPEN, measure Vimax2 in response to inputs in Pin10,12 and 14 only.
Voltage gain 1,2
1. The conditions is as table.
2. Set SW13 to GND, input SG2(0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR1.
3. Voltage gain GV1 is
VOR1 [Vp-p]
GV1= 20 LOG
0.7
(dB)
4. In the same way, calculate GV1in response to inputs in Pin4 and Pin6 only.
5. Then set SW13 to OPEN, measure GV2 in response to inputs in Pin10,12 and 14 only.
Relative voltage gain 1,2
1. Calculate relative voltage gain ∆GV1 by the following formula.
∆GV1=GV1R-GV1G, GV1G-GV1B, GV1B-GV1R
2. In the same way, calculate ∆GV2.
Voltage gain 3,4
1. The conditions is as table.
2. Read the output amplitude of TP23.
3. Calculate GV3, GV14 same as "Voltage gain 1".
Freq.characteristic 1,2 / Relative freq.characteristic 1,2
1. The conditions is as table. This measurement shall use active probe.
2. Set SW13 to GND, input SG4(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR1.
In the same way,input SG2(0.7Vp-p) to Pin2 only. Measure TP31 output amplitude as VOR2.
3. Freq.characteristic1 FC1 is
VOR2 [Vp-p]
FC1 = 20 LOG
VOR1 [Vp-p]
(dB)
4. In the same way, calculate FC1 in response to inputs in Pin4 and Pin6 only.
5. The difference between of each channel Freq.characteristic is as ∆FC1.
6. Then set SW13 to OPEN, measure FC2 and ∆FC2 in response to inputs in Pin10,12 and 14 only.
Freq.characteristic 3,4
Measure the FC3, FC4 when SG5 of input signal. (For reference)
M I T S U B I S H I
6
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
Crosstalk between two inputs 1,2
1. The conditions is as table. This measurement shall use active probe.
2. Set SW13 to GND, input SG3 to Pin2 only. Read the output amplitude of TP31. The value is as VOR3.
3. Then set SW13 to OPEN, read the output amplitude of TP31. The value is as VOR3'.
4. Crosstalk between two inputs 1 C.T.I.1 is
C.T.I.1= 20 LOG
VOR3' [Vp-p]
VOR3 [Vp-p]
(dB)
5. In the same way, calculate C.T.I.1 in response to inputs in Pin4 and Pin6 only.
6. Then set SW13 to OPEN, input SG2 to Pin10 only. Read the output amplitude of TP31. The value is as VOR4.
7. Set SW13 to GND, read the output amplitude of TP31. The value is as VOR4'.
8. Crosstalk between two inputs 1 C.T.I.2 is
C.T.I.2= 20 LOG
VOR4'[Vp-p]
VOR4[Vp-p]
(dB)
9. In the same way, calculate C.T.I.2 in response to inputs in Pin12 and Pin14 only.
Crosstalk between two inputs 3,4
Set SG4 as the input signal, and then the same method astable, measure C.T.I.3, C.T.I.4.
Crosstalk between channels 1,2
1. The conditions is as table. This measurement shall use active probe.
2. Set SW13 to GND, input SG3 (0.7Vp-p) to Pin2 only. Read the output amplitude of TP31. The value is as VOR5.
3. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG5, VOB5.
4. Crosstalk between channels1 C.T.C1 is
VOG5 or VOB5
VOR5
C.T.C1= 20 LOG
(dB)
5. In the same way, calculate C.T.C.1 in response to inputs in Pin4 and Pin6 only.
6. Then set SW13 to OPEN, input SG3(0.7Vp-p) to Pin10 only.
Read the output amplitude of TP31. The value is as VOR6.
7. Next, measure TP28, TP25 in the same state, and the amplitude is as VOG6, VOB6.
8. Crosstalk between two inputs 1 C.T.C.2 is
C.T.C2= 20 LOG
VOG6 or VOB6
VOR6
(dB)
9. In the same way, calculate C.T.C.2 in response to inputs in Pin9 and Pin11 only.
Crosstalk between channels 3,4
Set SG4 as the input signal, and then the same method astable, measure C.T.C3, C.T.C4.
Pulse characteristic 1,2
1. The conditions is as table. (SG5 amplitude 0.7Vp-p) Set SW13 to GND (or OPEN).
2. Measure rising Tri and falling Tfi for 10%~90% of the input pulse with active probe.
3. Next, measure rising Tro and falling Tfo for 10%~90% of the output pulse with active probe.
4. Pulse characteristic Tr1, Tf1(Tr2, Tf2) is
100%
90%
Tr1(Tr2) =
(Tro)
2
-
(Tri)
2
10%
(nsec)
0%
Tf1(Tf2) =
(Tfo)
2
-
(Tfi)
2
Tr
Tf
(nsec)
M I T S U B I S H I
7
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
<HV-SW>
Hi level output voltage 1,2 / Lo level output voltage 1,2
1. The conditions is as table. Input SG8 to Pin7 (or Pin8 ). Set SW13 to GND, read the output High level and
low voltage of TP19, TP18. The value is as Vdch1, Vdcl1.
2. Input SG8 to Pin15 (or Pin16 ). Set SW13 to OPEN, read the output High level and low voltage of TP19, TP18.
The value is as Vdch2, Vdcl2.
Input threshold voltage H / Input threshold voltage L
1. Set SW13 to GND (or OPEN). Gradually increasing the voltage of Pin7 (or Pin15 ) from 0V, measure the input
voltage of Pin7 (or Pin15 ) when the TP19 voltage turned high level (3.8V or more). The value is as VithH.
2. Gradually decreasing the voltage of Pin7 (or Pin15 ) from 3V, measure the input voltage of Pin7 (or Pin15 )
when the TP19 voltage turned low level (0.5V or less). The value is as VithL.
3. In the same way, measure the input voltage of Pin8 (or Pin16 ) as VithH, VithL.
100%
Rising time / Falling time
80%
1. The conditions is as table. This measurement shall use active probe.
2. Measure rising Tri and falling Tfi for 20%~80% of the
20%
output pulse as Tr3, Tf3 (Tr4, Tf4 ) .
0%
Rising delay time / Falling delay time
Tr'
Tf'
Set SW13 to GND (or OPEN), input SG8 to Pin7 (or Pin15 ).
Measure the rising delay time HVdr and the falling delay time HVdf. SG8
50%
In the same way, measure HVdr and HVdf
when input SG8 to Pin8 (or Pin16 ).
HVDr
HVDf
50%
Waveform output
<Sync-Separation>
Sync input minimum voltage
Gradually decreasing the amplitude of SG7 in Pin22, measure the amplitude of SG7 when the Sync-Sep output
signal turn off . The value is as SYrv.
Sync output High level voltage / Sync output Low level voltage
Input SG7 to Pin22, read the output High level and low voltage of TP21. The value is as SYVH, SYVL.
Sync output rising time / Sync output falling time
100%
1. The conditions is as table. (SG7 amplitude 0.3Vp-p)
90%
This measurement shall use active probe.
2. Measure rising Tri and falling Tfi for 10%~90%
10%
of the input pulse as STr, STf .
0%
Sync output rising delay time
STr
STf
SG7
Sync output falling delay time
Input SG7 to Pin22. Measure the rising delay time Sdr
50%
and the falling delay time Sdf.
SDf
SDr
50%
Waveform output
<Others>
Channel select SW threshold 1,2
1. Gradually increasing the voltage of Pin13 from 0V,
is selected. The value is as Vthch1.
2.Gradually decreasing the voltage of Pin13 from 5V,
is selected. The value is as Vthch2.
Power save SW threshold 1,2
1. Gradually increasing the voltage of Pin11 from 0V,
mode . The value is as VthPL.
2.Gradually decreasing the voltage of Pin13 from 5V,
mode . The value is as VthPH.
measure the maximum voltage of Pin13 when the channel 1
measure the minimum voltage of Pin13 when the channel 2
measure the maximum voltage of Pin11 when the Power save
measure the minimum voltage of Pin11 when the Power save
M I T S U B I S H I
8
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
INPUT SIGNAL
SG1
Sine wave(f=60KHz, 0.7Vp-p(Amplitude variable))
0.7Vp-p
(variable)
SG2
Sine wave(f=1MHz, 0.7Vp-p(Amplitude variable))
Sine wave(f=10MHz, 0.7Vp-p(Amplitude variable))
SG3
Sine wave(f=100MHz, 0.7Vp-p(Amplitude variable))
SG4
SG5
Sine wave(f=250MHz, 0.7Vp-p(Amplitude variable))
SG6
0.7Vpp
SG7
DUTY 80%
fH=60kHz
0.7Vp-p
Sync (fH=60KHz)
Amplitude variable
(Typ. =0.3Vp-p)
4.5us
SG8
TTL
5V
DUTY=50%
fH=60kHz
0V
THERMAL DERATING CURVE
( SP )
( FP )
1750
1750
1603
1500
1500
1250
1250
1000
1068
1000
833
750
750
640
500
500
250
250
0
-25
0
0
25
50
75
85
100
125
Ambient temperature Ta ( C )
150
-25
0
25
50
75
100
125
Ambient temperature Ta ( C )
M I T S U B I S H I
9
15
150
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
TEST CIRCUIT ( M61323SP )
1u
0.01u
A
47u
a
b
SW B
VccB 5V
M I T S U B I S H I
10
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
APPLICATION EXAMPLE ( M61323SP )
M I T S U B I S H I
11
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DESCRIPTION OF PIN ( M61323SP )
DC
Pin
No.
Description
1
3
5
20
Vcc(R)
Vcc(G)
Vcc(B)
Vcc(H,V,Sync-Sep.)
5.0
26
29
32
Vcc(ROUT)
Vcc(GOUT)
Vcc(BOUT)
5.0
2
4
6
10
12
14
Input1(R)
Input1(G)
Input1(B)
Input2(R)
Input2(G)
Input2(B)
Voltage[V]
Notes
Peripheral circuits at pins
3V
Input signal with
low impedance.
643
2.3
2.2mA
500
7
8
15
16
Input1(H)
Input1(V)
Input2(H)
Input2(V)
Input pulse between
3V and 5V.
7K
3 to 5V
0 to 0.8V
SW
9
17
24
27
30
GND(V-SW)
GND
(H,V,Sync-Sep.)
GND(B-out)
GND(G-out)
GND(R-out)
GND
M I T S U B I S H I
12
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DISCRIPTION OF PIN ( M61323SP cont.)
Pin
No.
DC
Description
Voltage[V]
Peripheral circuits at pins
2.0V
Notes
11
PwrSave-SW
2.5
Do not apply more
5V DC voltage.
13
CONT-SW
2.4
Do not apply more
5V DC voltage.
2.4V
18
19
Vout
Hout
M I T S U B I S H I
13
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
DISCRIPTION OF PIN ( M61323SP cont.)
DC
Pin
No.
Description
21
Sync sep OUT
Voltage[V]
Notes
Peripheral circuits at pins
10K
Connect a capacitance
10K
22
between the pin and GND
Sync sep IN
when not use SYNC-SEP.
2K
CLUMPref
23
Vth
G Buffer OUT
2K
32,29,26PIN
25
28
31
Video OUT (B)
Video OUT (G)
Video OUT (R)
50
1.5
31,28,25PIN
30,27,24PIN
M I T S U B I S H I
14
15
MITSUBISHI ICs <Monitor>
M61323SP/FP
WIDE FREQUENCY BAND ANALOG SWITCH
NOTE HOW TO USE THIS IC ( M61323SP )
1. R,G,B input signal is 0.7Vp-p of standard video signal.
2. H,V input is 5.0V TTL type.
5V
I<5mA
50
3. Input signal with sufficient low impedance to input terminal.
R
4. The terminal of R,G,B output pin are shown as Fig.1.
When resistance is connected between the pin31(28,25) and GND,
Icc will be increase.
5. Switch(Pin13) can be changed by supplying some voltage as Fig.2.
0 to 0.5V:INPUT1
2.5 to 5V:INPUT2
Do not apply Vcc or more DC voltage.
6. Power save mode is provided for saving Icc less than about 10mA as Fig.3.
0 to 0.5V:Power save mode (H.V-SW,Sync-Sep.,G-Buffer)
2.5 to 5V:Normal mode
Do not apply 5V or more DC voltage.
7. When not use the Sync-separation circuit built in this IC, capacitance of
several tens of pF is required between the pin22 and GND.
Fig.1
13
Fig.2
11
Fig.3
CAUTIONS FOR MANUFACTURING BOARDS
Built-in wide band preamplifier may cause oscillation due to the wiring shape on the board.
Be careful for the following points.
Vcc shall use a stable power supply.
(Individual Vcc should use an independent power supply.)
GND should be as wide as possible. Basically,solid earth should be used.
Make the load capacitance of output pins as small as possible.
Also ground the hold capacitance to stable GND ,wicth is as near to the pin as possible.
Insertion of a resistance of several tens of ohms between the output pin and the circuit
at the next stage makes oscillation harder.
When inserting an output pull-down resistance, make wire between the output pin and the
resistance as short as possible.
M I T S U B I S H I
15
15
This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.