STMICROELECTRONICS RBO40-40T

RBO40-40G/T
®
Application Specific Discretes
A.S.D.™
REVERSED BATTERY AND
OVERVOLTAGE PROTECTION
FEATURES
■
■
■
■
■
■
PROTECTION AGAINST “LOAD DUMP” PULSE
40A DIODE TO GUARD AGAINST BATTERY
REVERSAL
MONOLITHIC STRUCTURE FOR GREATER
RELIABILITY
BREAKDOWN VOLTAGE : 24 V min.
CLAMPING VOLTAGE : ± 40 V max.
COMPLIANT WITH ISO / DTR 7637
D2PAK
RBO40-40G
DESCRIPTION
Designed to protect against battery reversal and
load dump overvoltages in automotive applications, this monolithic component offers multiple
functions in the same package :
D1 : reversed battery protection
T1 : clamping against negative overvoltages
T2 : Transil function against “load dump” effect.
TO220-AB
RBO40-40T
FUNCTIONAL DIAGRAM
3
1
2
TM : TRANSIL and ASD are trademarks of STMicroelectronics.
September 2003 - Ed:5
1/10
RBO40-40G / RBO40-40T
ABSOLUTE MAXIMUM RATINGS
Symbol
IFSM
IF
Parameter
Value
Unit
Non repetitive surge peak forward current
(Diode D1)
tp = 10 ms
120
A
DC forward current (Diode D1)
Tc = 75°C
40
A
80
V
1500
W
- 40 to + 150
150
°C
VPP
Peak load dump voltage (see note 1and 2)
5 pulses (1 minute between each pulse)
PPP
Peak pulse power between Input and Output
(Transil T1)
Tj initial = 25°C
Tstg
Tj
Storage temperature range
Maximum junction temperature
TL
Maximum lead temperature for soldering during 10 s
at 4.5mm from case for TO220-AB
10/1000 µs
260
°C
Note 1 : for a surge greater than the maximum value, the device will fail in short-circuit.
Note 2 : see Load Dump curves.
THERMAL RESISTANCE
Symbol
Parameter
Value
Unit
Rth (j-c)
Junction to case
RBO40-40G
RBO40-40T
1.0
1.0
°C/W
Rth (j-a)
Junction to ambient
RBO40-40T
60
°C/W
I32
D1
1
3
I13
Ipp32
IF
T1
2
IR 32
T2
IR M 32
VCL 31 VBR 31 VR M 31
VF 13
IR M 31
IR 31
V13
Ipp31
Ex :VF 13 . between Pin 1 and Pin 3 VBR 32 . between Pin 3 and Pin 2
2/10
VR M 32 VB R 32 VC L 32
V32
3
1
2
RBO40-40G / RBO40-40T
Symbol
Parameter
VRM31/VRM32
Stand-off voltage Transil T1 / Transil T2.
VBR31/VBR32
Breakdown voltage Transil T1 / Transil T2.
IR31/IR32
Leakage current Transil T1 / Transil T2.
VCL31/VCL32
Clamping voltage Transil T1 / Transil T2.
VF13
Forward voltage drop Diode D1.
IPP
Peak pulse current.
αT
Temperature coefficient of VBR.
C31/C32
C13
Capacitance Transil T1 / Transil T2.
Capacitance of Diode D1
ELECTRICAL CHARACTERISTICS : DIODE D1 (- 40°C < Tamb < + 85°C)
Symbol
Value
Test Conditions
Min.
Typ.
Max.
Unit
VF 13
IF = 40 A
1.9
V
VF 13
IF = 20A
1.45
V
VF 13
IF = 1 A
1
V
VF 13
IF = 100 mA
0.95
V
C13
F = 1MHz VR= 0 V
3000
pF
ELECTRICAL CHARACTERISTICS : TRANSIL T1 (- 40°C < Tamb < + 85°C)
Symbol
Value
Test Conditions
Min.
Typ.
Max.
Unit
VBR 31
IR = 1 mA
22
VBR 31
IR = 1 mA, Tamb = 25°C
24
32
V
IRM 31
VRM = 20 V
100
µA
IRM 31
VRM = 20 V, Tamb = 25°C
10
µA
VCL 31
IPP = 37.5A, Tj initial = 25°C
αT
Temperature coefficient of VBR
C 31
F = 1MHz
35
10/1000µs
VR = 0 V
V
40
V
9
-4
3000
10 /°C
pF
ELECTRICAL CHARACTERISTICS : TRANSIL T2 (- 40°C < Tamb < + 85°C)
Symbol
Test Conditions
Value
Min.
Typ.
Max.
Unit
VBR 32
IR = 1 mA
22
35
V
VBR 32
IR = 1 mA, Tamb = 25°C
24
32
V
IRM 32
VRM = 20 V
100
µA
IRM 32
VRM = 20 V, Tamb = 25°C
10
µA
VCL 32
IPP = 20 A (note 1)
40
V
9
-4
αT
Temperature coefficient of VBR
C32
F = 1MHz
VR = 0 V
8000
10 /°C
pF
Note 1 : One pulse, see pulse definition in load dump test generator circuit.
3/10
RBO40-40G / RBO40-40T
PRODUCT DESCRIPTION
3
1
The RBO has 3 functions integrated on the same
chip.
D1 : “Diode function” in order to protect against
reversed battery operation.
T2 : “Transil function” in order to protect against
positive surge generated by electric systems
(ignition, relay. ...).
T1 : Protection for motor drive application
(See below).
2
BASIC APPLICATION
* The monolithic multi-function protection
(RBO) has been developed to protect sensitive semiconductors in car electronic
modules against both overvoltage and
battery reverse.
* In addition, the RBO circuit prevents
overvoltages generated by the module from
affecting the car supply network.
MOTOR DRIVER APPLICATION
BATTERY
Filter
D1
T2
MOTOR
T1
RBO
DEVICE
MOTOR CONTROL
In this application, one half of the motor drive circuit is supplied through the “RBO” and is thus protected
as per its basic function application.
The second part is connected directly to the “car supply network” and is protected as follows :
- For positive surges : T2 (clamping phase) and D1 in forward-biased.
- For negative surges : T1 (clamping phase) and T2 in forward-biased.
4/10
RBO40-40G / RBO40-40T
PINOUT configuration in D2PAK :
- Input (1) :
- Output (3) :
- Gnd (2) :
Pin 1
Pin 3
Connected to base Tab
Marking
Logo, date code, RBO40-40G
:
D1
T2
T1
TAB
PINOUT configuration in TO220AB :
- Input (1) :
- Output (3) :
- GND (2) :
Pin 1
Pin 3
Connected to base Tab
D1
T2
Marking
:
Logo, date code, RBO40-40T
T1
(TAB)
5/10
RBO40-40G / RBO40-40T
LOAD DUMP TEST GENERATOR CIRCUIT (SCHAFFNER NSG 506 C). Issued from ISO / DTR 7637.
Open circuit (voltage curve)
(pulse test n°5)
Corresponding current wave with D.U.T.
I
t
tr
U(V)
Ipp
offset
10% / 13.5V
90%
Vs
10%
Vbat
Ipp/2
0
t
0
Impulse
tp = 40ms
t
N°5
Vs (V)
66.5
Vbat (V)
13.5
Ri (Ω)
2
t (ms)
200 (*)
tr (ms)
<10
Number
5
60s between each pulse
(*) Generator setting
CALIBRATION METHOD FOR SCHAFFNER NSG 506 C
1) With open circuit (generator is in open circuit):
- calibrate Vs
2) With short circuit (generator is in short circuit):
- calibrate Ri (Ri = 2Ω)
3) With D.U.T.
- calibrate tp (tp = 40ms @ Ipp/2)
Typical Voltage curve (open circuit)
Typical Voltage and Current curve with D.U.T.
typ. Vpp
typ. VCL
Ipp
20ms/div.
5.0V/div.
VBat
20ms/div.
10.0V/div.
6/10
20ms/div.
3A/div.
RBO40-40G / RBO40-40T
Fig. 1 : Peak pulse power versus exponential
pulse duration (Tj initial = 85°C).
Fig. 2-1 : Clamping voltage versus peak pulse
current (Tj initial = 85°C).
Exponential waveform tp = 40 ms and tp = 1 ms
(TRANSIL T2).
VCL(V)
Ppp(kW)
10.0
45.0
5.0
42.5
2.0
40.0
Transil T2
tp = 40ms
1.0
37.5
Transil T1
0.5
0.2
0.1
32.5
tp(ms)
2
1
5
10
Ipp(A)
20
50
100
Fig. 2-2 : Clamping voltage versus peak pulse
current (Tj initial = 85°C).
Exponential waveform tp = 1 ms and tp = 20 µs
(TRANSIL T1).
55
tp = 1ms
35.0
30.0
0.1
0.2
0.5
1
2
5
10
20
50
100
Fig. 3 : Relative variation of peak pulse power
versus junction temperature.
Ppp[Tj]/Ppp[Tj initial=85°C]
VCL(V)
1.20
50
1.00
45
0.80
40
tp = 1ms
0.60
tp = 20µs
35
0.40
30
25
0.20
1
2
5
Ipp(A)
10
20
Tj initial (°C)
50
100
200
500
0.00
0
25
50
75
100
125
150
175
7/10
RBO40-40G / RBO40-40T
Fig. 4 : Relative variation of thermal impedance
junction to case versus pulse duration.
Fig. 5-1 : Peak forward voltage drop versus peak
forward current (typical values) - (TRANSIL T2).
Zth(j-c)/Rth(j-c)
VFM(V)
2.0
1.0
1.8
1.6
0.5
1.4
1.2
1.0
0.2
Tj = 25°°C
0.8
tp (s)
0.1
1E-3
1E-2
Tj = 150°°C
0.6
1E-1
1E+0
1E+1
Fig. 5-2 : Peak forward voltage drop versus peak
forward current (typical values) - (DIODE D1).
0.4
0.1
IFM(A)
0.2
0.5
1
2
VFM(V)
3.0
2.5
2.0
1.5
Tj = 25°°C
Tj = 150°°C
IFM(A)
0.5
0.1
0.2
0.5
1
2
5
10
20
50
100
ORDERING INFORMATION
RBO
40
Reverse Battery &
Overvoltage Protection
8/10
-
40
G
VCL = 40V
IF(AV) = 40A
10
20
50
Fig. 6 : Relative variation of leakage current
versus junction temperature.
3.5
1.0
5
Package:
G = D2PAK
T = TO-220AB
100
RBO40-40G / RBO40-40T
PACKAGE MECHANICAL DATA
D2PAK Plastic
DIMENSIONS
REF.
A
E
C2
L2
D
L
Millimeters
Min.
Typ. Max. Min.
Typ. Max.
A
4.30
4.60 0.169
0.181
A1
2.49
2.69 0.098
0.106
A2
0.03
0.23 0.001
0.009
B
0.70
0.93 0.027
0.037
B2
L3
A1
B2
R
C
B
G
A2
2.0 MIN.
FLAT ZONE
1.40
0.055
C
0.45
0.60 0.017
0.024
C2
1.21
1.36 0.047
0.054
D
8.95
9.35 0.352
0.368
E
10.00
10.28 0.393
0.405
G
4.88
5.28 0.192
0.208
L
15.00
15.85 0.590
0.624
L2
1.27
1.40 0.050
0.055
L3
1.40
1.75 0.055
0.069
R
V2
Inches
V2
0.40
0°
0.016
8°
0°
8°
FOOT-PRINT (in millimeters)
D2PAK
16.90
10.30
5.08
1.30
3.70
8.90
9/10
RBO40-40G / RBO40-40T
PACKAGE MECHANICAL DATA
TO-220AB Plastic
DIMENSIONS
REF.
B
Millimeters
Inches
Min. Typ. Max. Min. Typ. Max.
C
b2
A
L
F
I
A
l4
c2
a1
l3
l2
a2
b1
M
c1
e
15.20
a1
15.90 0.598
3.75
0.625
0.147
a2
13.00
14.00 0.511
0.551
B
10.00
10.40 0.393
0.409
b1
0.61
0.88 0.024
0.034
b2
1.23
1.32 0.048
0.051
C
4.40
4.60 0.173
0.181
c1
0.49
0.70 0.019
0.027
c2
2.40
2.72 0.094
0.107
e
2.40
2.70 0.094
0.106
F
6.20
6.60 0.244
0.259
I
3.75
3.85 0.147
0.151
I4
15.80 16.40 16.80 0.622 0.646 0.661
L
2.65
2.95 0.104
0.116
l2
1.14
1.70 0.044
0.066
l3
1.14
M
1.70 0.044
2.60
0.066
0.102
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of
use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by
implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners.
© 2003 STMicroelectronics - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - United States
www.st.com
10/10