STMICROELECTRONICS STA559BWQS13TR

STA559BWQS
5-V, 2-A, 2.1-channel high-efficiency digital audio system
with QSound QHD®
Features
!
Wide supply voltage range (4.5 - 9 V)
!
3 Power output configurations:
– 2 channels of ternary PWM (stereo mode)
(2 x 3 W) into 4 Ω at 5 V
– 3 channels - left,right using binary and LFE
using ternary PWM (2.1 mode)
(2 x 0.7 W + 1 x 3 W) into 4 Ω at 5 V
(2 x 1.4 W + 1 x 6 W) into 2 Ω at 5 V
– 2 channels of ternary PWM
(2 x 3 W) + PWM driver for SW
PowerSSO-36
slug down
!
Automatic zero-detect mute
!
Automatic invalid input detect mute
!
2-channel I2S input data interface
!
Input and output channel mapping
!
4 28-bit user programmable biquads (EQ) per
channel
!
2.1 channels of 24-bit DDX®
!
100-dB SNR and dynamic range
!
DC blocking selectable high-pass filter
!
Selectable 32 kHz to 192 kHz input sample
rates
!
Selectable de-emphasis
I2C control with selectable device address
!
Sub channel mix into left and right channels
!
!
!
Digital gain/attenuation +48 dB to -80 dB in
0.5-dB steps
Advanced AM interference frequency
switching and noise-suppression modes
!
!
Soft volume update
Selectable high or low bandwidth
noise-shaping topologies
!
Individual channel and master gain/attenuation
!
!
Dual independent limiters/compressors
Variable max power correction for lower
full-power THD
!
Dynamic range compression or anti-clipping
modes
!
Thermal overload and short-circuit protection
!
Video application supports 576 x fs input mode
!
AutoModes
– 15 preset crossover filters
– 2 preset anti-clipping modes
– Preset night-time listening mode
!
!
Individual channel and master soft and hard
mute
QSound QHD®
– Field proven stereo soundfield
enhancement technology
– Provides improved audio image width,
seperation and depth for stereo signals
– Synthesizes a 3-D stereo soundfield
!
Independent channel volume and DSP bypass
!
PowerSSO-36 slug down package
Table 1. Order codes
Part number
Temp range, °C
Package
Packing
STA559BWQS
0 to 150
PowerSSO-36 slug down
Tube
STA559BWQS13TR
0 to 150
PowerSSO-36 slug down
Tape&Reel
March 2008
Rev 1
1/66
www.st.com
1
Contents
STA559BWQS
Contents
1
2
3
Description and block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2
QSound QHD® . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Connections diagram and pins description . . . . . . . . . . . . . . . . . . . . . 12
2.1
Connections diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2
Pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2
Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3
Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4
Electrical specifications - power Section . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5
Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.1
3.6
4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
I2C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1
Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.1
Data transition or change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.2
Start condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.3
Stop condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.1.4
Data input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2
Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3
Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4
2/66
Functional pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1
Byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.2
Multi-byte write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.1
Current address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.2
Current address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.3
Random address byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
STA559BWQS
5
Contents
4.4.4
Random address multi-byte read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4.5
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.4.6
Read mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Register description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.1
5.2
5.3
5.4
5.5
Configuration register A (addr 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.1
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.5
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Configuration register B (addr 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.1
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2
Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.3
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.4
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.5
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Configuration register C (addr 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.1
DDX power output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.2
DDX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.3.3
Over-current warning detect adjustment bypass . . . . . . . . . . . . . . . . . . 34
Configuration register D (addr 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.1
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.2
De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.3
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.4
Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.5
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.6
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 36
5.4.7
Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.8
MiamiMode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Configuration register E (addr 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.1
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.2
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.3
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.5.4
AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.5
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.6
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . 38
3/66
Contents
STA559BWQS
5.6
5.7
5.8
5.9
5.10
5.5.7
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.5.8
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Configuration register F (addr 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.1
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.6.2
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6.3
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.4
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.5
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.6
IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.7
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Volume control registers (addr 0x06 - 0x0A) . . . . . . . . . . . . . . . . . . . . . . 42
5.7.1
Mute/line output configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7.2
Master volume register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7.3
Channel 1 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.7.4
Channel 2 volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7.5
Channel 3/line output volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Auto mode registers (addr 0x0B and 0x0C) . . . . . . . . . . . . . . . . . . . . . . . 44
5.8.1
AutoMode register 1 (addr 0x0B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8.2
AutoMode register 2 (addr 0x0C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.8.3
AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.8.4
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Channel configuration registers (addr 0x0E - 0x10) . . . . . . . . . . . . . . . . . 46
5.9.1
Tone control bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.9.2
EQ bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.9.3
Volume bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9.4
Binary output enable registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9.5
Limiter select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.9.6
Output mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Tone control register (addr 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.10.1
5.11
5.12
4/66
Tone control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Dynamics control registers (addr 0x12 - 0x15) . . . . . . . . . . . . . . . . . . . . . 48
5.11.1
Limiter 1 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.11.2
Limiter 1 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.11.3
Limiter 2 attack/release rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.11.4
Limiter 2 attack/release threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
User-defined coefficient control registers (addr 0x16 - 0x26) . . . . . . . . . . 51
STA559BWQS
Contents
5.12.1
Coefficient address register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12.2
Coefficient b1data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.12.3
Coefficient b1data register bits 15..8 address . . . . . . . . . . . . . . . . . . . . 52
5.12.4
Coefficient b1data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.5
Coefficient b2 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.6
Coefficient b2 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.7
Coefficient b2 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.8
Coefficient a1 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.9
Coefficient a1 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.12.10 Coefficient a1 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.11 Coefficient a2 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.12 Coefficient a2 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.13 Coefficient a2 data register bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.14 Coefficient b0 data register bits 23..16 . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.15 Coefficient b0 data register bits 15..8 . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.16 Coefficient b0 Data Register Bits 7..0 . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.12.17 Coefficient write/read control register . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.12.18 User-defined EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.12.19 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.12.20 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.12.21 Over-current post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6
5.13
Variable max power correction registers (addr 0x27 - 0x28) . . . . . . . . . . 58
5.14
Variable distortion compensation registers (addr 0x29-0x2A) . . . . . . . . . 58
5.15
Fault detect recovery constant registers (addr 0x2B - 0x2C) . . . . . . . . . . 58
5.16
Device status register (addr 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.1
Application scheme for power supplies . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2
PLL filter schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3
Typical output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
9
License information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5/66
Contents
STA559BWQS
10
Trademarks and other acknowledgements . . . . . . . . . . . . . . . . . . . . . . 64
11
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6/66
STA559BWQS
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Recommended operating condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Electrical specifications - digital section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Electrical specifications - power Section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Functional pin status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Input sample rates and clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Serial data first bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Support serial audio input formats for MSB-First (SAIFB = 0) . . . . . . . . . . . . . . . . . . . . . . 30
Supported serial audio input formats for LSB-First (SAIFB = 1) . . . . . . . . . . . . . . . . . . . . . 31
Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Channel input mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DXX power output mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Output modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
DXX compensating pulse size register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Over-current warning detect adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
MiamiMode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Noise-shaper bandwidth selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Distortion compensation variable enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Output configuration engine selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Invalid input detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Binary output mode clock loss detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
LRCK double trigger protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Auto EAPD on clock loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
IC power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Line output configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7/66
STA559BWQS
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
8/66
Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
AutoMode gain compression/limiters selection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
AM interference frequency switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
AutoMode AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bass management crossover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Bass management crossover frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Channel limiter mapping as a function of CxLS bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Channel output mapping as a function of CxOM bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Tone control boost/cut as a function of BTC and TTC bits . . . . . . . . . . . . . . . . . . . . . . . . . 48
Limiter attack rate as a function of LxA bits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Limiter release rate as a function of LxR bits.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Limiter attack threshold as a function of LxAT bits (AC-Mode). . . . . . . . . . . . . . . . . . . . . . 50
Limiter release threshold as a function of LxRT bits (AC-Mode) . . . . . . . . . . . . . . . . . . . . 50
Limiter attack threshold as a function of LxAT bits (DRC-mode). . . . . . . . . . . . . . . . . . . . . 51
Limiter release threshold as a as a function of LxRT bits (DRC-mode).. . . . . . . . . . . . . . . 51
RAM block for biquads, mixing, scaling, and bass management . . . . . . . . . . . . . . . . . . . . 57
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
STA559BWQS
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Pin connection PowerSSO-36 (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Output power vs supply voltage (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Output power vs. supply voltage (RL = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Output power vs. supply voltage (RL = 8 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Efficiency vs. Pout (Vcc = 9 V; RL = 8 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Efficiency vs. Pout (Vcc = 5 V; RL = 4 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Efficiency vs. Pout (Vcc = 5 V; RL = 2 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
THD vs. frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
PSSR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Channel separation stereo DDX mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Channel separation stereo S.E. mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Channel separation stereo S.E. mode (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FFT 0 dBFS stereo DDX mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FFT -60 dBFS stereo DDX mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
FFT 0 dBFS stereo S.E. mode (RL = 4 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
FFT -60 dBFS stereo S.E. mode (RL = 4 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
FFT 0 dBFS stereo S.E. mode (RL = 2 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
FFT -60 dBFS stereo S.E. mode (RL = 2 Ω). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Write mode sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Read mode sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
OCFG = 00 (default value) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OCFG = 01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
OCFG = 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Basic limiter and volume flow diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
PLL application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Output configuration for stereo BTL mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Double layer PCB with copper ground area and with 16 via holes . . . . . . . . . . . . . . . . . . 61
PowerSSO-36 power derating curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
PowerSSO-36 (slug-up) mechanical data and package dimensions . . . . . . . . . . . . . . . . . 62
9/66
Description and block diagram
1
Description and block diagram
1.1
Description
STA559BWQS
The STA559BWQS is an integration of digital audio processing, digital amplifier control,
DDX® power-output stage and QSound QHD® technology to create a high-power
single-chip DDX solution with high-quality, high-efficiency and all digital amplification.
The STA559BWQS power section consists of four independent half-bridges. These can be
configured via digital control to operate in different modes. 2.1 channels can be provided by
two half-bridges and a single full-bridge, providing up to 2 x 0.7 W + 1 x 3 W of power output.
2 channels can be provided by two full-bridges, providing up to 2x3W of power. The IC can
also be configured as a 2.1 channels with 2 x 3 W provided by the device and external
power for DDX® power drive. Also provided in the STA559BWQS are a full assortment of
digital processing features. This includes up to 4 programmable 28-bit biquads (EQ) per
channel, and bass/treble tone control. AutoModes enable a time-to-market advantage by
substantially reducing the amount of software development needed for certain functions, for
instance, auto volume loudness, preset volume curves and preset EQ settings. New
advanced AM radio interference reduction modes. The serial audio data input interface
accepts all possible formats, including the popular I2S format. Three channels of DDX®
processing are provided. This high quality conversion from PCM audio to DDX patented
3-state PWM switching waveform provides over 100 dB of SNR and dynamic range.
1.2
QSound QHD®
Normally, reduced audio clarity is experienced due to the digital compression of music (and
video-sound) combined with various audio processing techniques used in broadcast
transmission. This is most apparent in products such as digital televisions and audio
players. These devices are faced with a multitude of audio challenges, primarily associated
with the small speakers, that are limited in location and cabinet housing, plus economized
speaker drivers and components. As such digital televisions and audio players are ideal
candidates to benefit from stereo soundfield enhancement in order to deliver a full
surround-like experience.
QSound QHD® and its industry recognized QXpander® technology is a field-proven stereo
soundfield enhancement technology that provides a broader stereo image width with greater
separation and depth for stereo signals and synthesizes a 3-D stereo soundfield. QHD®
removes the small centralized audio sweet spot by creating a very wide stereo image with
full immersive audio. QHD® and its QXpander® technology have been incorporated into
hundreds of QSound and third party hardware and software products, with total shipments
in the millions.
10/66
STA559BWQS
Description and block diagram
1.3
Block diagram
Figure 1.
Block diagram
I2C
I2S
interface
Channel
1A
Power
control
DSP
(Equalization,
Tone,
Volume,
Bass)
Protection
current/thermal
Logic
Channel
1B
DDX
Channel
2A
Regulators
Channel
2B
PLL
Bias
Digital (DSP)
Power
11/66
Connections diagram and pins description
STA559BWQS
2
Connections diagram and pins description
2.1
Connections diagram
Figure 2.
Pin connection PowerSSO-36 (top view)
GND_SUB
1
36
VDD_DIG
SA
2
35
GND_DIG
TEST_MODE
3
34
SCL
VSS
4
33
SDA
VCC_REG
5
32
INT_LINE
OUT2B
6
31
RESET
GND2
7
30
SDI
VCC2
8
29
LRCKI
OUT2A
9
28
BICKI
OUT1B
10
27
XTI
VCC1
11
26
PLL_GND
GND1
12
25
FILTER_PLL
OUT1A
13
24
VDD_PLL
GND_REG
14
23
PWRDN
VDD
15
22
GND_DIG
GND
16
21
VDD_DIG
OUT3B/DDX3B
17
20
TWARN/OUT4B
OUT3A/DDX3A
18
19
EAPD/OUT4A
D05AU1638
2.2
Pins description
Table 2.
12/66
Pin description
Pin
Type
Name
Description
1
GND
GND_SUB
Substrate ground
2
I
SA
I2C select address
3
I
TEST_MODE
4
I/O
VSS
5
I/O
VCC_REG
Internal Vcc reference
6
O
OUT2B
Output half bridge 2B
7
GND
GND2
Power negative supply
8
Power
VCC2
Power positive supply
9
O
OUT2A
Output half bridge 2A
This pin must be connected to ground
Internal reference at Vcc - 3.3 V
STA559BWQS
Connections diagram and pins description
Table 2.
Pin description (continued)
Pin
Type
Name
Description
10
O
OUT1B
Output half bridge 1B
11
Power
VCC1
Power positive supply
12
GND
GND1
Power negative supply
13
I/O
OUT1A
Output half bridge 1A
14
GND
GND_REG
15
Power
VDD
Internal 3.3 V reference voltage
16
I/O
GND
Power negative supply
17
O
OUT3B/DDX3B
PWM out CH3B - external bridge
18
O
OUT3A/DDX3A
PWM out CH3A - external bridge
19
O
EAPD/OUT4A
20
I
TWARN/OUT4B
21
Power
VDD_DIG
Digital supply voltage
22
GND
GND_DIG
Digital ground
23
I
PWRDN
24
Power
VDD_PLL
Positive supply for PLL
25
I
FILTER_PLL
Connection to PLL filter
26
GND
GND_PLL
Negative supply for PLL
27
I
XTI
PLL input clock
28
I
BICKI
I2S serial clock
29
I
LRCKI
I2S left/right clock
30
I
SDI
31
I
RESET
32
O
INT_LINE
Fault interrupt
33
I/O
SDA
I2C serial data
34
I
SCL
I2C serial clock
35
GND
GND_DIG
Digital ground
36
Power
VDD_DIG
Digital supply voltage
Internal ground reference
Power down for external bridge
Thermal warning from external bridge
Power down
I2S serial data channels 1 and 2
Reset
13/66
Connections diagram and pins description
2.3
Thermal data
Table 3.
Thermal data
Symbol
Rth j-amb
STA559BWQS
Parameter
Thermal resistance junction-ambient PowerSSO-36
Min
(1)
Typ
Max
Unit
24
°C/W
Tth-sdj
Thermal shut-down junction temperature
150
°C
Tth-w
Thermal warning temperature
130
°C
Thermal shut-down hysteresis temperature
25
°C
Tth-sdh
1. See Chapter 7: Package thermal characteristics on page 61 for details.
14/66
STA559BWQS
Electrical specifications
3
Electrical specifications
3.1
Absolute maximum ratings
Table 4.
Absolute maximum ratings
Symbol
Parameter
Min
Typ
Max
Unit
18
V
Vcc
Power supply voltage (VCC1, VCC2)
Vdd
Logic supply
-0.3
4
V
Top
Operating junction temperature
-20
150
°C
Tstg
Storage temperature
-40
150
°C
Note:
Stresses beyond those listed under “Absolute maximum ratings” make cause permanent
damage to the device. These are stress ratings only, and functional operation of the device
at these or any other conditions beyond those indicated under “Recommended operating
condition” are not implied. Exposure to absolute-maximum-rated conditions for extended
periods may affect device reliability. In the real application, power supply with nominal value
rated inside recommended operating conditions, may experience some rising beyond the
maximum operating condition for short time when no or very low current is sinked (amplifier
in mute state). In this case the reliability of the device is guaranteed, provided that the
absolute maximum rating is not exceeded.
3.2
Recommended operating condition
Table 5.
Recommended operating condition
Symbol
Parameter
Min
Vcc
Power supply voltage (VCC1, VCC2)
5.0
Vdd
Logic supply
2.7
Tamb
Ambient temperature
-20
Typ
3.3
Max
Unit
16.0
V
3.6
V
70
°C
15/66
Electrical specifications
STA559BWQS
3.3
Electrical specifications - digital section
Table 6.
Electrical specifications - digital section
Symbol
Parameter
Conditions
Iil
Low level input current without pull device Vi = 0 V
Iih
High level input current without pull device
Vil
Low level input voltage
Vih
High level input voltage
Vol
Low level output voltage
Iol = 2 mA
Voh
High level output voltage
Ioh = 2 mA
Ipu
Pull current
Rpu
Equivalent pull resistance
3.4
Vi = VDD_DIG
= 3.6 V
Min
Typ
Max
Unit
-10
10
µA
-10
10
µA
0.2 * VDD_DIG V
0.8 * VDD_DIG
V
0.4 * VDD_DIG V
0.8 * VDD_DIG
-25
V
66
125
µA
50
kΩ
Electrical specifications - power Section
The specifications given in this section are with the operating conditions VCC = 5 V,
fsw = 384 kHz, Tamb = 25° C, RL = 4 Ω unless otherwise specified.
Table 7.
Electrical specifications - power Section
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
180
250
mΩ
10
µA
RdsON
Power Pchannel/Nchannel
MOSFET RdsON
ld = 1 A
Idss
Power Pchannel/Nchannel
leakage ldss
Vcc = 9 V
gP
Power Pchannel RdsON
Matching
ld = 1 A
95
%
gN
Power Nchannel RdsON
Matching
ld = 1 A
95
%
ILDT
Low current dead time (static)
Resistive load(1)
5
10
ns
IHDT
High current dead time
(dynamic)
Iload = 2 A(2)
10
20
ns
Rise time
Resistive load(1)
8
10
ns
(1)
8
10
ns
16
V
10
µA
tr
tf
Vcc
Icc
Fall time
Resistive load
Supply operating voltage
4.5
Supply current from Vcc in
power down
Power Down = 0
Supply current from Vcc in
3-state
TRISTATE = 0
15
mA
Supply current from Vcc in
operation
PCM input signal = -60 dBFS
Switching frequency = 384 kHz
No LC filters
30
mA
80
mA
Supply current DDX processing
Internal clock = 49.152 MHz
(reference only) on VDD_DIG
16/66
STA559BWQS
Table 7.
Electrical specifications
Electrical specifications - power Section (continued)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
Ilim
Overcurrent limit
2.2
3.0
A
Isc
Short circuit protection
2.7
3.6
A
UVL
Under voltage protection
threshold
tmin
Output minimum pulse width
Output power BTL
Output power SE
Output power BTL
Po
Output power SE
Output power BTL
Output power SE
SNR
PSSR
THD+N
XTALK
η
Signal to noise ratio, ternary
mode
Signal to noise ratio binary
mode
No Load
20
V
30
60
ns
2.3
THD = 10%, f = 1 kHz
3
THD = 1%, f = 1 kHz
0.5
THD = 10%, f = 1 kHz
0.7
RL = 8 Ω
Vcc = 9 V
f = 1 kHz
RL = 2 Ω
Vcc = 5 V
f = 1 kHz
THD = 1%
4.2
THD = 10%
5.3
THD = 1%
0.9
THD = 10%
1.2
THD = 1%
4.2
THD = 10%
5.3
THD = 1%
1
THD = 10%
1.3
100
W
W
W
W
W
W
dB
A-weighted
90
Stereo DDX mode, <5 kHz
VRIPPLE = 1 V RMS
Audio input = dither only
Total harmonic
distortion + noise
Crosstalk
Peak efficiency, Binary modes
4.3
THD = 1%, f = 1 kHz
Power Supply Rejection Ratio
Peak efficiency, DDX mode
3.5
80
dB
DDX stereo mode,
Po = 1 W, f = 1 kHz
0.2
%
Stereo DDX mode, <5 kHz
One channel driven @ 1 W
Other channel measured
80
dB
Po = 2 x 3 W, 4 Ω
Po = 2 x 0.7 W + 1 x 3 W, 4 Ω
90
87
%
1. Refer to Test Circuit 1 Figure 3
2. Refer to Test Circuit 2 Figure 4
17/66
Electrical specifications
STA559BWQS
3.5
Testing
3.5.1
Functional pin status
Table 8.
Functional pin status
Pin name
Pin #
Logic value
IC status
PWRDN
23
0
Low absorption
PWRDN
23
1
Normal operation
TWARN
20
0
From external power stage is indicated a temperature
warning.
TWARN
20
1
Normal operation
EAPD
19
0
Low absorption for power stage. All internal regulators are
switched off.
EAPD
19
1
Normal operation
Figure 3.
Test circuit 1
OUTxY
Vcc
(3/4)Vcc
Low current dead time = MAX(DTr,DTf)
(1/2)Vcc
(1/4)Vcc
+Vcc
t
DTr
Duty cycle = 50%
DTf
M58
OUTxY
INxY
R 8Ω
M57
+
-
gnd
Figure 4.
V67 =
vdc = Vcc/2
D03AU1458
Test circuit 2
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+VCC
Duty cycle=A
Duty cycle=B
DTout(A)
M58
DTin(A)
Q1
Q2
INA
Iout=1A
M57
Q3
DTout(B)
Rload=4Ω
OUTA
L67 10µ
C69
470nF
L68 10µ
C71 470nF
C70
470nF
DTin(B)
INB
Iout=1A
Q4
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
18/66
M64
OUTB
M63
D06AU1649
STA559BWQS
Electrical specifications
3.6
Electrical characteristics curves
Figure 5.
Output power vs supply voltage (RL Figure 6.
= 2 Ω)
Output power vs. supply voltage
(RL = 2 Ω)
Po(W) 10
Po(W) 3
9
2.5
8
Rload = 2Ώ
f = 1KHz
2
S.E.
THD=10%
Rload = 2Ώ
7
f = 1KHz
6
BTL
THD=10
%
5
1.5
4
1
THD=1%
3
THD=1%
2
500m
1
0
+4.5 +4.6 +4.7 +4.8 +4.9
+5
0
+4.5 +4.6 +4.7 +4.8 +4.9
+5.1 +5.2 +5.3 +5.4 +5.5 +5.6 +5.7 +5.8 +5.9 +6
+5
+5.1 +5.2 +5.3 +5.4 +5.5 +5.6 +5.7 +5.8 +5.9 +6
Vcc(V)
Figure 7.
Vcc (V)
Output power vs. supply voltage (RL Figure 8.
= 4 Ω)
Po(W) 3
Output power vs. supply voltage (RL
= 4 Ω)
Po(W) 12
11
2.5
Rload = 4Ώ
10
f = 1KHz
2
Rload = 4Ώ
9
THD=10%
S.E.
f = 1KHz
8
THD=10%
BTL
7
1.5
6
THD=1%
THD=1%
1
5
4
500m
3
2
0
+4.5
+5
+5.5
+6
+6.5
+7
+7.5
+8
+8.5
+9
1
+9.5 +10
Vcc (V)
Figure 9.
Po(W)
0
+4.5
3
Po(W)
10
9
2.4
8
2.1
7
1.8
Rload = 6Ώ
1.5
f = 1KHz
1.2
S.E.
THD=10%
+6
+6.5
+7
+7.5
Vcc(V)
+8
+8.5
+9
+9.5 +10
f = 1KHz
5
BTL
0.6
2
0.3
1
+6
THD=10%
+6.5
+7
+7.5
Vcc(V)
+8
+8.5
+9
THD=1%
3
THD=1%
+5.5
Rload = 6Ώ
6
4
0.9
+5
+5.5
Output power vs. supply voltage (RL Figure 10. Output power vs. supply voltage (RL
= 6 Ω)
= 6 Ω)
2.7
0
+4.5
+5
+9.5 +10
0
+4.5
+5
+5.5
+6
+6.5
+7
+7.5
+8
+8.5
+9
+9.5 +10
Vcc(V)
19/66
Electrical specifications
STA559BWQS
Figure 11. Output power vs. supply voltage (RL Figure 12. Output power vs. supply voltage (RL
= 8 Ω)
= 8 Ω)
Po(W)
3
Po(W)10
2.7
9
2.4
8
2.1
7
Rload = 8Ώ
1.8
6
f = 1KHz
1.5
Rload = 8Ώ
5
THD=10%
SE
1.2
0.9
THD=10%
f = 1KHz
4
BTL
3
THD=1%
0.6
THD=1%
2
0.3
1
0
+4.5
+5
+5.5
+6
+6.5
+7
+7.5
+8
+8.5
+9
+9.5 +10
0
+4.5
Vcc(V)
Figure 13. Efficiency vs. Pout (Vcc = 9 V; RL =
8 Ω)
100
90
90
80
80
70
70
+6.5
+7
+7.5
Vcc(V)
+8
+8.5
+9
+9.5 +10
Vcc = 5V
Rload = 4Ώ
Rload= 8Ώ
Eff(%)
f = 1KHz
40
+6
60
Vcc= 9V
Eff (%) 50
+5.5
Figure 14. Efficiency vs. Pout (Vcc = 5 V; RL =
4 Ω)
100
60
+5
50
f = 1KHz
40
BTL
BTL
30
30
20
20
10
10
0
1
2
3
2xPout (W)
4
5
0
6
Figure 15. Efficiency vs. Pout (Vcc = 5 V; RL =
2 Ω)
500m
1
1.5
2xPout (W)
2
2.5
3
Figure 16. THD vs. frequency
THD%
1
100
90
0.5
80
70
Eff(%)
0.1
R load = 2Ώ
40
f = 1KHz
30
BTL
6ohm
Vcc=5V, Po= 1W
0.05
20
0.02
10
20/66
4ohm
Stereo DDX Mode
Vcc = 5V
50
0
8ohm
0.2
60
0.01
20
500m
1
1.5
2
2.5
2 x Pout (W)
3
3.5
4
50
100
200
500
Freq(Hz)
1k
2k
5k
10k
20k
STA559BWQS
Electrical specifications
Figure 17. PSSR
Figure 18. Channel separation stereo DDX
mode (RL = 2 Ω)
dBr +10
dBr
+10
T
+0
+0
-10
-10
Vcc = 5V
-20
-20
Po = 1W
-30
-30
-40
-40
Stereo DDX Mode
-50
-50
Vcc= 5v, Rl=4Ώ
-60
Po = 1W
8ohm
-60
-70
-70
-80
6ohm
4ohm
-80
-90
-90
-100
20
30
40
50
60
70 80 90 100
Frequency Hz
200
-100
20
50
100
200
500
1k
2k
5k
10k
20k
10k
20k
Frequency (Hz)
Figure 19. Channel separation stereo S.E.
mode (RL = 2 Ω)
Figure 20. Channel separation stereo S.E.
mode (RL = 4 Ω)
dBr A
+10
dBr A
+10
+0
+0
-10
-10
-20
-20
-30
-30
-40
-40
-50
-50
-60
-60
Stereo S.E. Mode
-70
Rl = 2Ώ,Vcc=5V
-70
Po = 1W
-80
-80
50
100
200
500
1k
Frequency (Hz)
2k
5k
10k
20k
Po = 1W
Stereo DDX Mode
Vcc=5V, Rl=4Ώ
f = 1KHz
100
200
500
1k
Frequency (Hz)
50
100
200
500
1k
2k
5k
Figure 22. FFT -60 dBFS stereo DDX mode
dBr A
50
-100
20
Frequency (Hz)
Figure 21. FFT 0 dBFS stereo DDX mode
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
Rl = 4Ώ,Vcc=5V
-90
-90
-100
20
Stereo S.E. Mode
2k
5k
10k
20k
dBr A
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
20
Stereo DDX Mode
Vcc=5V, Rl=4Ώ
f = 1KHz
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
21/66
Electrical specifications
STA559BWQS
Figure 23. FFT 0 dBFS stereo S.E. mode (RL =
4 Ω)
dBr A
Figure 24. FFT -60 dBFS stereo S.E. mode (RL
= 4 Ω)
dBr A
+10
+0
+10
+0
-10
Stereo S.E. Mode
-20
Vcc=5V, Rl=4Ώ
-20
-30
f = 1KHz
-30
-10
-40
-40
-50
-50
-60
Vcc=5V, Rl=4Ώ
f = 1KHz
-60
-70
-70
-80
-80
-90
-90
-100
-100
-110
-120
-130
20
Stereo S.E. Mode
-110
-120
50
100
200
500
1k
2k
5k
10k
20k
-130
20
50
100
200
Frequency (Hz)
Figure 25. FFT 0 dBFS stereo S.E. mode (RL =
2 Ω)
dBr A
+10
+0
-10
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
1k
2k
5k
10k
20k
Figure 26. FFT -60 dBFS stereo S.E. mode (RL
= 2 Ω)
dBr A
+10
+0
-10
Stereo S.E. Mode
-20
Stereo S.E. Mode
Vcc=5V, Rl=2Ώ
-30
Vcc=5V, Rl=2Ώ
f = 1KHz
-40
f = 1KHz
-50
-60
-70
-80
-90
-100
-110
-120
-130
20
50
100
200
500
1k
Frequency (Hz)
22/66
500
Frequency (Hz)
2k
5k
10k
20k
-130
20
50
100
200
500
Frequency (Hz)
1k
2k
5k
10k
20k
STA559BWQS
4
I2C bus specification
I2C bus specification
The STA559BWQS supports the I2C protocol via the input ports SCL and SDA_IN (master
to slave) and the output port SDA_OUT (slave to master). This protocol defines any device
that sends data on to the bus as a transmitter and any device that reads the data as a
receiver. The device that controls the data transfer is known as the master and the other as
the slave. The master always starts the transfer and provides the serial clock for
synchronization. STA559BWQS is always a slave device in all of its communications. It
supports up to 400 kb/s rate (fast-mode bit rate). STA559BWQS I2C is a slave only interface.
4.1
Communication protocol
4.1.1
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition
while the clock is high is used to identify a START or STOP condition.
4.1.2
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
4.1.3
Stop condition
STOP is identified by low to high transition of the data bus SDA signal while the clock signal
SCL is stable in the high state. A STOP condition terminates communication between
STA559BWQS and the bus master.
4.1.4
Data input
During the data input the STA559BWQS samples the SDA signal on the rising edge of clock
SCL. For correct device operation the SDA signal must be stable during the rising edge of
the clock and the data can change only when the SCL line is low.
4.2
Device addressing
To start communication between the master and the STA559BWQS, the master must initiate
with a start condition. Following this, the master sends onto the SDA line 8-bits (MSB first)
corresponding to the device select address and read or write mode.
The 7 most significant bits are the device address identifiers, corresponding to the I2C bus
definition. In the STA559BWQS the I2C interface has two device addresses depending on
the SA port configuration, 0x38 when SA = 0, and 0x3A when SA = 1.
The 8th bit (LSB) identifies read or write operation RW, this bit is set to 1 in read mode and 0
for write mode. After a START condition the STA559BWQS identifies on the bus the device
address and if a match is found, it acknowledges the identification on SDA bus during the
9th bit time. The byte following the device identification byte is the internal space address.
23/66
I2C bus specification
4.3
STA559BWQS
Write operation
Following the START condition the master sends a device select code with the RW bit set
to 0. The STA559BWQS acknowledges this and the writes for the byte of internal address.
After receiving the internal byte address the STA559BWQS again responds with an
acknowledgement.
4.3.1
Byte write
In the byte write mode the master sends one data byte, this is acknowledged by the
STA559BWQS. The master then terminates the transfer by generating a STOP condition.
4.3.2
Multi-byte write
The multi-byte write modes can start from any internal address. The master generating a
STOP condition terminates the transfer.
4.4
Read operation
4.4.1
Current address byte read
Following the START condition the master sends a device select code with the RW bit set
to 1. The STA559BWQS acknowledges this and then responds by sending one byte of data.
The master then terminates the transfer by generating a STOP condition.
4.4.2
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequential data bytes will be
read from sequential addresses within the STA559BWQS. The master acknowledges each
data byte read and then generates a STOP condition terminating the transfer.
4.4.3
Random address byte read
Following the START condition the master sends a device select code with the RW bit set to
0. The STA559BWQS acknowledges this and then the master writes the internal address
byte. After receiving, the internal byte address the STA559BWQS again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA559BWQS acknowledges this and then
responds by sending one byte of data. The master then terminates the transfer by
generating a STOP condition.
4.4.4
Random address multi-byte read
The multi-byte read modes could start from any internal address. Sequential data bytes will
be read from sequential addresses within the STA559BWQS. The master acknowledges
each data byte read and then generates a STOP condition terminating the transfer.
24/66
I2C bus specification
STA559BWQS
4.4.5
Write mode sequence
Figure 27. Write mode sequence
ACK
BYTE
WRITE
DEV-ADDR
ACK
DATA IN
RW
START
STOP
ACK
MULTIBYTE
WRITE
DEV-ADDR
ACK
ACK
SUB-ADDR
ACK
DATA IN
DATA IN
RW
START
4.4.6
ACK
SUB-ADDR
STOP
Read mode sequence
Figure 28. Read mode sequence
ACK
CURRENT
ADDRESS
READ
DEV-ADDR
NO ACK
DATA
RW
START
STOP
ACK
RANDOM
ADDRESS
READ
DEV-ADDR
SUB-ADDR
RW
RW= ACK
HIGH
START
SEQUENTIAL
CURRENT
READ
ACK
DEV-ADDR
ACK
DEV-ADDR
START
RW
ACK
DATA
NO ACK
DATA
STOP
ACK
DATA
NO ACK
DATA
STOP
START
ACK
SEQUENTIAL
RANDOM
READ
DEV-ADDR
START
ACK
SUB-ADDR
RW
ACK
DEV-ADDR
START
ACK
DATA
RW
ACK
DATA
NO ACK
DATA
ST
25/66
Register description
STA559BWQS
5
Register description
Table 9.
Register summary
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x00
ConfA
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0x01
ConfB
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
0x02
ConfC
OCRB
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
0x03
ConfD
MME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0x04
ConfE
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
0x05
ConfF
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
OCFG1
OCFG0
0x06
Mute/LOC
LOC1
LOC0
C3M
C2M
C1M
MMute
0x07
Mvol
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
0x08
C1Vol
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0x09
C2Vol
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0x0A
C3Vol
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0x0B
Auto1
AMGC1
AMGC0
0x0C
Auto2
0x0D
Auto3
0x0E
XO3
XO2
XO1
XO0
AMAM2
AMAM1
AMAM0
AMAME
C1Cfg
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VBP
C1EQBP
C1TCB
0x0F
C2Cfg
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VBP
C2EQBP
C2TCB
0x10
C3Cfg
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VBP
0x11
Tone
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0x12
L1ar
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0x13
L1atrt
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0x14
L2ar
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0x15
L2atrt
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0x16
Cfaddr
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0x17
B1cf1
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0x18
B1cf2
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0x19
B1cf3
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0x1A
B2cf1
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0x1B
B2cf2
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0x1C
B2cf3
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0x1D
A1cf1
C3B23
C3B22
C3B21
C3B20
C3B19
C3B18
C3B17
C3B16
0x1E
A1cf2
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0x1F
A1cf3
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
26/66
STA559BWQS
Table 9.
Register description
Register summary (continued)
Addr
Name
D7
D6
D5
D4
D3
D2
D1
D0
0x20
A2cf1
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0x21
A2cf2
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0x22
A2cf3
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0x23
B0cf1
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0x24
B0cf2
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0x25
B0cf3
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0x26
Cfud
RA
R1
WA
W1
0x27
MPCC1
MPCC15 MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0x28
MPCC2
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
0x29
DCC1
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
0x2A
DCC2
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0x2B
FDRC1
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0x2C
FDRC2
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0x2D
Status
PLLUL
FAULT
UVFAULT
OVFAULT
OCFAULT OCWARN
TFAULT
TWARN
0x2E
reserved
RO1BACT
R5BACT
R4BACT
R3BACT
R2BACT
R1BACT
0x2F
reserved
R01BEND
R5BEND
R4BEND
R3BEND
R2BEND R1BEND
0x30
reserved
R5BBAD
R4BBAD
R3BBAD
R2BBAD R1BBAD
5.1
5.1.1
Configuration register A (addr 0x00)
D7
D6
D5
D4
D3
D2
D1
D0
FDRB
TWAB
TWRB
IR1
IR0
MCS2
MCS1
MCS0
0
1
1
0
0
0
1
1
Master clock select
Table 10.
Master clock select
Bit
RW
RST
Name
0
RW
1
MCS0
1
RW
1
MCS1
2
RW
0
MCS2
Description
Master clock select: selects the ratio between the
input I2S sample frequency and the input clock.
The STA559BWQS will support sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz,
96 kHz, 176.4 kHz, and 192 kHz. Therefore the internal clock will be:
"
32.768 MHz for 32 kHz
"
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
"
49.152 MHz for 48Z kHz, 96 kHz, and 192 kHz
27/66
Register description
STA559BWQS
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency, fs.
The relationship between the input clock and the input sample rate is determined by both
the MCSx and the IR (input rate) register bits. The MCSx bits determine the PLL factor
generating the internal clock and the IR bit determines the oversampling ratio used
internally
Table 11.
Input sample rates and clock select
Input sample rate
fs (kHz)
5.1.2
IR
MCS[2:0]
101
100
011
010
001
000
32, 44.1, 48
00
576 fs
128 fs
256 fs
384 fs
512 fs
768 fs
88.2, 96
01
NA
64 fs
128 fs
192 fs
256 fs
384 fs
176.4, 192
1X
NA
32 fs
64fs
96 fs
128 fs
192 fs
Interpolation ratio select
Table 12.
Interpolation ratio select
Bit
RW
RST
Name
Description
4..3
RW
00
IR [1:0]
Interpolation ratio select: selects internal interpolation ratio
based on input I2S sample frequency
The STA559BWQS has variable interpolation (oversampling) settings such that internal
processing and DDX output rates remain consistent. The first processing block interpolates
by either 2-times or 1-time (pass-through) or provides a 2-times downsample. The
oversampling ratio of this interpolation is determined by the IR bits.
Table 13.
28/66
IR bit settings as a function of input sample rate
Input sample rate fs (kHz)
IR
1st stage interpolation ratio
32
00
2 times oversampling
44.1
00
2 times oversampling
48
00
2 times oversampling
88.2
01
Pass-through
96
01
Pass-through
176.4
10
2 times downsampling
192
10
2 times downsampling
STA559BWQS
5.1.3
Register description
Thermal warning recovery bypass
Table 14.
Thermal warning recovery bypass
Bit
RW
RST
Name
5
RW
1
TWRB
Description
Thermal-warning recovery bypass:
0: Thermal warning recovery enabled
1: Thermal warning recovery disabled
If thermal warning adjustment is enabled (TWAB = 0), then the thermal warning recovery
will determine if the -3 dB output limit is removed when thermal warning is negative.
If TWRB = 0 and TWAB = 0, then when a thermal warning disappears the -3 dB output limit
will be removed and the gain will be added back to the system. If TWRB = 1 and TWAB = 0,
then when a thermal warning disappears the -3 dB output limit will remain until TWRB is
changed to zero or the device is reset.
5.1.4
Thermal warning adjustment bypass
Table 15.
Thermal warning adjustment bypass
Bit
RW
RST
Name
6
RW
1
TWAB
Description
Thermal-warning adjustment bypass:
0: Thermal warning adjustment enabled
1: Thermal warning adjustment disabled
The on-chip STA559BWQS power output block provides feedback to the digital controller
using inputs to the power control block. The TWARN input is used to indicate a thermal
warning condition. When TWARN is asserted (set to 0) for a period of time greater than
400 ms, the power control block will force a -3 dB output limit (determined by TWOCL in
Coeff RAM) to the modulation limit in an attempt to eliminate the thermal warning condition.
Once the thermal warning output limit adjustment is applied, it remains in this state until
reset, unless FDRB = 0.
5.1.5
Fault detect recovery bypass
Table 16.
Fault detect recovery bypass
Bit
RW
RST
Name
Description
7
RW
0
FDRB
Fault-detect recovery bypass:
0: Fault detect recovery enabled
1: Fault detect recovery disabled
The on-chip STA559BWQS power output block provides feedback to the digital controller
using inputs to the power control block. The FAULT input is used to indicate a fault condition
(either over-current or thermal). When FAULT is asserted (set to 0), the power control block
will attempt a recovery from the fault by asserting the 3-state output (setting it to 0 which
directs the power output block to begin recovery), hold it at 0 for period of time in the range
of 0.1 ms to 1 s as defined by the fault-detect recovery constant register (FDRC registers
0x29 - 0x2A), then toggle it back to 1. This sequence is repeated as log as the fault
indication exists. This feature is enabled by default but can be bypassed by setting the
FDRB control bit to 1.
29/66
Register description
5.2
5.2.1
Configuration register B (addr 0x01)
D7
D6
D5
D4
D3
D2
D1
D0
C2IM
C1IM
DSCKE
SAIFB
SAI3
SAI2
SAI1
SAI0
1
0
0
0
0
0
0
0
Serial audio input interface format
Table 17.
5.2.2
STA559BWQS
Serial audio input interface format
Bit
RW
RST
Name
0
RW
0
SAI0
1
RW
0
SAI1
2
RW
0
SAI2
3
RW
0
SAI3
Description
Serial audio input interface format: determines the
interface format of the input serial digital audio
interface.
Serial data interface
The STA559BWQS audio serial input was designed to interface with standard digital audio
components and to accept a number of serial data formats. STA559BWQS always acts a
slave when receiving audio input from standard digital audio components. Serial data for two
channels is provided using 3 inputs: left/right clock LRCKI, serial clock BICKI, and serial
data 1 & 2 SDI12.
The SAI register (Configuration Register B - 01h, Bits D3-D0) and the SAIFB register
(configuration register B - 01h, Bit D4) are used to specify the serial data format. The default
serial data format is I2S, MSB-First. Available formats are shown in the tables and figure that
follow.
5.2.3
Serial data first bit
Table 18.
Serial data first bit
SAIFB
Table 19.
Format
0
MSB-first
1
LSB-first
Support serial audio input formats for MSB-First (SAIFB = 0)
BICKI
SAI [3:0]
SAIFB
Interface format
0000
0
I2S 15 bit data
0001
0
Left/Right-justified 16 bit data
32 fs
30/66
STA559BWQS
Register description
Table 19.
Support serial audio input formats for MSB-First (SAIFB = 0) (continued)
BICKI
SAI [3:0]
SAIFB
Interface format
0000
0
I2
0001
0
Left-Justified 16-24 bit data
0010
0
Right-Justified 24 bit data
0110
0
Right-Justified 20 bit data
1010
0
Right-Justified 18 bit data
1110
0
Right-Justified 16 bit data
0000
0
I2S 16-24 bit data
0001
0
Left-Justified 16-24 bit data
0010
0
Right-Justified 24 bit data
0110
0
Right-Justified 20 bit data
1010
0
Right-Justified 18 bit data
1110
0
Right-Justified 16 bit data
S 16-23 bit data
48 fs
64 fs
Table 20.
Supported serial audio input formats for LSB-First (SAIFB = 1)
BICKI
SAI [3:0]
SAIFB
Interface format
1100
1
I2S
1110
1
Left/Right-Justified 16 bit data
0100
1
I2S 23 bit data
0100
1
I2S 20 bit data
1000
1
I2S 18 bit data
1100
1
LSB First I2S 16 bit data
0001
1
Left-Justified 24 bit data
0101
1
Left-Justified 20 bit data
1001
1
Left-Justified 18 bit data
1101
1
Left-Justified 16 bit data
0010
1
Right-Justified 24 bit data
0110
1
Right-Justified 20 bit data
1010
1
Right-Justified 18 bit data
1110
1
Right-Justified 16 bit data
15 bit data
32 fs
48 fs
31/66
Register description
STA559BWQS
Table 20.
Supported serial audio input formats for LSB-First (SAIFB = 1) (continued)
BICKI
SAI [3:0]
SAIFB
Interface format
2
0000
1
I S 24 bit data
0100
1
I2S 20 bit data
1000
1
I2S 18 bit data
1100
1
LSB first I2S 16 bit data
0001
1
Left-Justified 24 bit data
0101
1
Left-Justified 20 bit data
1001
1
Left-Justified 18 bit data
1101
1
Left-Justified 16 bit data
0010
1
Right-Justified 24 bit data
0110
1
Right-Justified 20 bit data
1010
1
Right-Justified 18 bit data
1110
1
Right-Justified 16 bit data
64 fs
5.2.4
Delay serial clock enable
Table 21.
Bit
5
5.2.5
Delay serial clock enable
RW
RW
RST
0
Name
Description
DSCKE
Delay serial clock enable:
0: No serial clock delay
1: Serial clock delay by 1 core clock cycle to tolerate
anomalies in some I²S master devices
Channel input mapping
Table 22.
Channel input mapping
Bit
RW
RST
Name
Description
6
RW
0
C1IM
0: Processing channel 1 receives left I2S input
1: Processing channel 1 receives right I2S input
7
RW
1
C2IM
0: Processing channel 2 receives left I2S input
1: Processing channel 2 receives right I2S input
Each channel received via I2S can be mapped to any internal processing channel via the
Channel Input Mapping registers. This allows for flexibility in processing. The default
settings of these registers map each I2S input channel to its corresponding processing
channel.
32/66
STA559BWQS
5.3
Register description
Configuration register C (addr 0x02)
D7
5.3.1
D5
D4
D3
D2
D1
D0
OCRB
D6
CSZ3
CSZ2
CSZ1
CSZ0
OM1
OM0
1
0
1
0
1
1
1
DDX power output mode
Table 23.
DXX power output mode
Bit
RW
RST
Name
0
RW
1
OM0
1
RW
1
OM1
Description
DDX power output mode: selects configuration of
DDX output.
The DDX power output mode selects how the DDX output timing is configured.
Different power devices use different output modes.
Table 24.
Output modes
OM[1,0]
5.3.2
Output stage - Mode
00
Drop compensation
01
Discrete output stage - Tapered compensation
10
Full power mode
11
Variable drop compensation (CSZx bits)
DDX compensating pulse size register
Table 25.
DXX compensating pulse size register
Bit
RW
RST
Name
2
RW
1
CSZ0
3
RW
0
CSZ1
4
RW
1
CSZ2
5
RW
0
CSZ3
Table 26.
Description
Contra size register: when OM[1,0] = 11, this
register determines the size of the DDX
compensating pulse from 0 clock ticks to 15 clock
periods.
Compensating pulse size
CSZ[3:0]
Compensating pulse size
0000
0ns (0 tick) Compensating pulse size
0001
20ns (1 tick) Clock period compensating pulse size
…
1111
…
300 ns (15 tick) Clock period compensating pulse size
33/66
Register description
5.3.3
STA559BWQS
Over-current warning detect adjustment bypass
Table 27.
Over-current warning detect adjustment bypass
Bit
RW
RST
Name
7
RW
1
OCRB
Description
Over-current warning adjustment bypass:
0: Over-current warning adjustment enabled
1: Over-current warning adjustment disabled
The OCWARN input is used to indicate an over-current warning condition. When OCWARN
is asserted (set to 0), the power control block will force a adjustment to the modulation limit
(default -3 dB) in an attempt to eliminate the over-current warning condition. Once the overcurrent warning volume adjustment is applied, it remains in this state until reset is applied.
The level of adjustment can be changed via the TWOCL (Thermal Warning/Over Current
Limit) setting which is address 0 x 37 of the user defined coefficient RAM.
5.4
5.4.1
Configuration register D (addr 0x03)
D7
D6
D5
D4
D3
D2
D1
D0
MME
ZDE
DRC
BQL
PSL
DSPB
DEMP
HPB
0
1
0
0
0
0
0
0
High-pass filter bypass
Table 28.
High-pass filter bypass
Bit
RW
RST
Name
0
RW
0
HPB
Description
High-pass filter bypass bit. setting of one bypasses
internal AC coupling digital high-pass filter.
The STA559BWQS features an internal digital high-pass filter for the purpose of AC
coupling. The purpose of this filter is to prevent DC signals from passing through a DDX
amplifier. DC signals can cause speaker damage. When HPB = 0, this filter is enabled.
5.4.2
De-emphasis
Table 29.
De-emphasis
Bit
RW
RST
Name
1
RW
0
DEMP
Description
De-emphasis:
0: No de-emphasis
1: De-emphasis
Setting the DEMP bit enables de-emphasis on all channels
34/66
STA559BWQS
5.4.3
Register description
DSP bypass
Table 30.
DSP bypass
Bit
RW
RST
Name
2
RW
0
DSPB
Description
DSP bypass bit:
0: Normal operation
1: Bypass of biquad and bass/treble functionality
Setting the DSPB bit bypasses the EQ functionality of the STA559BWQS.
5.4.4
Post-scale link
Table 31.
Post-scale link
Bit
RW
RST
Name
3
RW
0
PSL
Description
Post-scale link:
0: Each channel uses individual post-scale value
1: Each channel uses channel 1 post-scale value
Post-scale functionality can be used for power-supply error correction. For multi-channel
applications running off the same power-supply, the post-scale values can be linked to the
value of channel 1 for ease of use and update the values faster.
5.4.5
Biquad coefficient link
Table 32.
Biquad coefficient link
Bit
RW
RST
Name
4
RW
0
BQL
Description
Biquad link:
0: Each channel uses coefficient values
1: Each channel uses channel 1 coefficient values
For ease of use, all channels can use the biquad coefficients loaded into the channel 1
coefficient RAM space by setting the BQL bit to 1. Therefore, any EQ updates only have to
be performed once.
35/66
Register description
5.4.6
STA559BWQS
Dynamic range compression/anti-clipping bit
Table 33.
Dynamic range compression/anti-clipping bit
Bit
RW
RST
Name
5
RW
0
DRC
Description
Dynamic range compression/anti-clipping
0: Limiters act in anti-clipping mode
1: Limiters act in dynamic range compression mode
Both limiters can be used in one of two ways, anti-clipping or dynamic range compression.
When used in anti-clipping mode the limiter threshold values are constant and dependent on
the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that provides a reduction in the
dynamic range regardless of the volume level.
5.4.7
Zero-detect mute enable
Table 34.
Zero-detect mute enable
Bit
RW
RST
Name
6
RW
1
ZDE
Description
Zero-detect mute enable: setting of 1 enables the
automatic zero-detect mute
Setting the ZDE bit enables the zero-detect automatic mute. The zero-detect circuit looks at
the data for each processing channel at the output of the crossover (bass management)
filter. If any channel receives 2048 consecutive zero value samples (regardless of fs) then
that individual channel is muted if this function is enabled.
5.4.8
MiamiMode enable
Table 35.
36/66
MiamiMode enable
Bit
RW
RST
Name
Description
7
RW
0
MME
Miami-Mode enable:
0: Sub mix into left/right disabled
1: Sub mix into left/right enabled
STA559BWQS
5.5
5.5.1
Register description
Configuration register E (addr 0x04)
D7
D6
D5
D4
D3
D2
D1
D0
SVE
ZCE
DCCV
PWMS
AME
NSBW
MPC
MPCV
1
1
0
0
0
0
1
0
Max power correction variable
Table 36.
Bit
RW
0
5.5.2
Max power correction variable
RST
RW
Name
0
MPCV
Description
Max power correction variable:
0: Use standard MPC coefficient
1: Use MPCC bits for MPC coefficient
Max power correction
Table 37.
Max power correction
Bit
RW
RST
Name
1
RW
1
MPC
Description
Max power correction: setting of 1 enables power
bridge correction for THD reduction near maximum
power output.
Setting the MPC bit turns on special processing that corrects the STA50x power device at
high power. This mode should lower the THD + N of a full DDX system at maximum power
output and slightly below. If enabled, MPC is operational in all output modes except tapered
(OM[1,0] = 01) and binary. When OCFG = 00, MPC will not effect channels 3 and 4, the lineout channels.
5.5.3
Noise-shaper bandwidth selection
Table 38.
Noise-shaper bandwidth selection
Bit
RW
RST
Name
Description
2
RW
0
NSBW
Noise-shaper bandwidth selection:
1 - 3rd order NS
0 - 4th order NS
37/66
Register description
5.5.4
STA559BWQS
AM mode enable
Table 39.
AM mode enable
Bit
RW
RST
Name
3
RW
0
AME
Description
AM mode enable:
0 - Normal DDX operation.
1 - AM reduction mode DDX operation
STA559BWQS features a DDX processing mode that minimizes the amount of noise
generated in frequency range of AM radio. This mode is intended for use when DDX is
operating in a device with an AM tuner active. The SNR of the DDX processing is reduced to
~83 dB in this mode, which is still greater than the SNR of AM radio.
5.5.5
PWM speed mode
Table 40.
5.5.6
Bit
RW
RST
Name
4
RW
0
PWMS
Description
PWM speed selection:
0 - Normal speed (384 kHz) all channels
1 - Odd speed (341.3k Hz) all channels
Distortion compensation variable enable
Table 41.
5.5.7
PWM speed mode
Distortion compensation variable enable
Bit
RW
RST
Name
5
RW
0
DCCV
Description
Distortion compensation variable enable:
0 - Uses preset DC coefficient.
1 - Uses DCC coefficient.
Zero-crossing volume enable
Table 42.
Bit
6
RW
RW
Zero-crossing volume enable
RST
1
Name
ZCE
Description
Zero-crossing volume enable:
1 - Volume adjustments will only occur at digital zerocrossings
0 - Volume adjustments will occur immediately
The ZCE bit enables zero-crossing volume adjustments. When volume is adjusted on digital
zero-crossings no clicks will be audible.
38/66
STA559BWQS
5.5.8
Register description
Soft volume update enable
Table 43.
5.6
5.6.1
Soft volume update enable
Bit
RW
RST
Name
7
RW
1
SVE
Description
Soft volume enable:
1: Volume adjustments ramp according to SVR settings
0: Volume adjustments will occur immediately
Configuration register F (addr 0x05)
D7
D6
D5
D4
D3
D2
D1
D0
EAPD
PWDN
ECLE
LDTE
BCLE
IDE
OCFG1
OCFG0
0
1
0
1
1
1
0
0
Output configuration
Table 44.
Output configuration
Bit
RW
RST
Name
0
RW
0
OCFG0
1
RW
0
OCFG1
Description
Selects the output configuration
Table 45.
OCFG[1:0]
Output configuration engine selection
Output configuration
Config pin
00
2 channel (full-bridge) power, 2 channel data-out:
1A/1B →1A/1B
2A/2B → 2A/2B
LineOut1 → 3A/3B
LineOut2 → 4A/4B
Line out configuration determined by LOC register
0
01
2 (half-bridge). 1 (full-bridge) on-board power:
1A → 1A
Binary 0 °
2A → 1B
Binary 90°
3A/3B → 2A/2B Binary 45°
1A/B → 3A/B
Binary 0°
2A/B → 4A/B
Binary 90°
0
10
2 channel (full-bridge) power, 1 channel DDX:
1A/1B → 1A/1B
2A/2B → 2A/2B
3A/3B → 3A/3B
EAPDEXT and TWARNEXT active
0
39/66
Register description
Note:
STA559BWQS
To the left of the arrow is the processing channel. Note that though the defaults are
shown, using channel output mapping, any of the three processing channel
outputs can be used for any of the three inputs
Figure 29. OCFG = 00 (default value)
Figure 30. OCFG = 01
OUT1A
Half
Bridge
Half
Bridge
Channel 1
Half
Bridge
Channel 1
OUT1A
OUT1B
Half
Bridge
OUT2A
Half
Bridge
Channel 2
OUT1B
Channel 2
Half
Bridge
Half
Bridge
OUT2B
OUT3A
LineOut 1
OUT4A
OUT4B
Half
Bridge
LPF
OUT3B
OUT2A
Channel 3
OUT2B
LineOut 2
LPF
Figure 31. OCFG = 10
Half
Bridge
OUT1A
Channel 1
Half
Bridge
Half
Bridge
Half
Bridge
OUT1B
OUT2A
Channel 2
OUT2B
OUT3A
OUT3B
Power
Device
Channel 3
EAPD
5.6.2
Invalid input detect mute enable
Table 46.
Invalid input detect mute enable
Bit
RW
RST
Name
Description
2
RW
1
IDE
Invalid input detect mute enable: setting of 1 enables
the automatic invalid input detect mute
Setting the IDE bit enables this function, which looks at the input I2S data and will
automatically mute if the signals are perceived as invalid.
40/66
STA559BWQS
5.6.3
Register description
Binary output mode clock loss detection
Table 47.
Binary output mode clock loss detection
Bit
RW
RST
Name
3
RW
1
BCLE
Description
Binary output mode clock loss detection enable
Detects loss of input MCLK in binary mode and will output 50% duty cycle.
5.6.4
LRCK double trigger protection
Table 48.
LRCK double trigger protection
Bit
RW
RST
Name
4
RW
1
LDTE
Description
LRCLK double trigger protection enable
Actively prevents double trigger of LRCLK.
5.6.5
Auto EAPD on clock loss
Table 49.
Auto EAPD on clock loss
Bit
RW
RST
Name
5
RW
0
ECLE
Description
Auto EAPD on clock loss
When active, will issue a power device power down signal (EAPD) on clock loss detection.
5.6.6
IC power down
Table 50.
IC power down
Bit
RW
RST
Name
7
RW
1
PWDN
Description
IC power down:
0 - IC powerdown low-power condition
1 - IC normal operation
The PWDN register is used to place the IC in a low-power state. When PWDN is written as
0, the output will begin a soft-mute. After the mute condition is reached, EAPD will be
asserted to power down the power-stage, then the master clock to all internal hardware
expect the I2C block will be gated. This places the IC in a very low power consumption state.
41/66
Register description
5.6.7
STA559BWQS
External amplifier power down
Table 51.
External amplifier power down
Bit
RW
RST
Name
7
RW
0
EAPD
Description
External amplifier power down:
0: External power stage power down active
1: Normal operation
The EAPD register directly disables/enables the internal power circuitry.
When EAPD = 0, the internal power section is placed on a low-power state (disabled). This
register will also control the DDX4B/EAPD output pin when OCFG = 10.
5.7
Volume control registers (addr 0x06 - 0x0A)
5.7.1
Mute/line output configuration register
D7
D6
LOC1
0
Table 52.
D5
D4
D3
D2
D1
D0
LOC0
C3M
C2M
C1M
MMUTE
0
0
0
0
0
Line output configuration
LOC[1:0]
Line output configuration
00
Line output fixed - no volume, no EQ
01
Line output variable - CH3 volume effects line output, no EQ
10
Line output variable with EQ - CH3 volume effects line output
Line output is only active when OCFG = 00. In this case LOC will determine the line output
configuration. The source of the line output is always the channel 1 and 2 inputs.
5.7.2
5.7.3
42/66
Master volume register
D7
D6
D5
D4
D3
D2
D1
D0
MV7
MV6
MV5
MV4
MV3
MV2
MV1
MV0
1
1
1
1
1
1
1
1
Channel 1 volume
D7
D6
D5
D4
D3
D2
D1
D0
C1V7
C1V6
C1V5
C1V4
C1V3
C1V2
C1V1
C1V0
0
1
1
0
0
0
0
0
STA559BWQS
5.7.4
5.7.5
Register description
Channel 2 volume
D7
D6
D5
D4
D3
D2
D1
D0
C2V7
C2V6
C2V5
C2V4
C2V3
C2V2
C2V1
C2V0
0
1
1
0
0
0
0
0
Channel 3/line output volume
D7
D6
D5
D4
D3
D2
D1
D0
C3V7
C3V6
C3V5
C3V4
C3V3
C3V2
C3V1
C3V0
0
1
1
0
0
0
0
0
The volume structure of the STA559BWQS consists of individual volume registers for each
channel and a master volume register that provides an offset to each channels volume
setting. The individual channel volumes are adjustable in 0.5dB steps from +48 dB to 80 dB.
As an example if C3V = 00h or +48 dB and MV = 18h or –12 dB, then the total gain for
channel 3 = +36 dB.
The master mute when set to 1 will mute all channels at once, whereas the individual
channel mutes (CxM) will mute only that channel. Both the master mute and the channel
mutes provide a “soft mute” with the volume ramping down to mute in 4096 samples from
the maximum volume setting at the internal processing rate (approximately 96 kHz).
A “hard mute” can be obtained by commanding a value of 0xFF (255) to any channel volume
register or the master volume register. When volume offsets are provided via the master
volume register any channel that whose total volume is less than –80 dB will be muted.
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register F)
on a per channel basis as this creates the smoothest possible volume transitions. When
ZCE = 0, volume updates will occur immediately.
Table 53.
Master volume offset as a function of MV[7:0]
MV[7:0]
Volume offset from channel value
00000000 (0x00)
0 dB
00000001 (0x01)
-0.5 dB
00000010 (0x02)
-1 dB
…
…
01001100 (0x4C)
-38 dB
…
…
11111110 (0xFE)
-127.5 dB
11111111 (0xFF)
Hard master mute
Table 54.
Channel volume as a function of CxV[7:0]
CxV[7:0]
Volume
00000000 (0x00)
+48 dB
00000001 (0x01)
+47.5 dB
43/66
Register description
Table 54.
STA559BWQS
Channel volume as a function of CxV[7:0]
CxV[7:0]
Volume
00000010 (0x02)
+47 dB
…
…
01011111 (0x5F)
+0.5 dB
01100000 (0x60)
0 dB
01100001 (0x61)
-0.5 dB
…
…
11010111 (0xD7)
-59.5 dB
11011000 (0xD8)
-60 dB
11011001 (0xD9)
-61 dB
11011010 (0xDA)
-62 dB
…
…
11101100 (0xEC)
-80 dB
11101101 (0xED)
Hard channel mute
…
…
11111111 (0xFF)
Hard channel mute
5.8
Auto mode registers (addr 0x0B and 0x0C)
5.8.1
AutoMode register 1 (addr 0x0B)
D7
D6
Table 55.
D5
D4
AMGC1
AMGC2
0
0
D3
44/66
D1
D0
AutoMode gain compression/limiters selection
AMGC[1:0]
5.8.2
D2
Mode
00
User programmable GC
01
AC no clipping 2.1
10
AC limited clipping (10%) 2.1
11
DRC nighttime listening mode 2.1
AutoMode register 2 (addr 0x0C)
D7
D6
D5
D4
D3
D2
D1
D0
XO3
XO2
XO1
XO0
AMAM2
AMAM1
AMAM0
AMAME
0
0
0
0
0
0
0
0
STA559BWQS
5.8.3
Register description
AM interference frequency switching
Table 56.
AM interference frequency switching
Bit
RW
RST
Name
Description
0
RW
0
AMAME
AutoMode AM enable
0: Switching frequency determined by PWMS setting
1: Switching frequency determined by AMAM settings
Table 57.
5.8.4
AutoMode AM switching frequency selection
AMAM[2:0]
48 kHz/96 kHz Input Fs
44.1 kHz/88.2 kHz Input Fs
000
0.535 MHz - 0.720 MHz
0.535 MHz - 0.670 Mhz
001
0.721 MHz - 0.900 MHz
0.671 MHz - 0.800 MHz
010
0.901 MHz - 1.100 MHz
0.801 MHz - 1.000 MHz
011
1.101 MHz - 1.300 MHz
1.001 MHz - 1.180 MHz
100
1.301 MHz - 1.480 MHz
1.181 MHz - 1.340 MHz
101
1.481 MHz - 1.600 MHz
1.341 MHz - 1.500 MHz
110
1.601 MHz - 1.700 MHz
1.501 MHz - 1.700 MHz
Bass management crossover
Table 58.
Bass management crossover
Bit
RW
RST
Name
4
RW
0
XO0
5
RW
0
XO1
6
RW
0
XO2
7
RW
0
XO3
Table 59.
Description
Selects the bass-management crossover frequency.
A 1st-order hi-pass filter (channels 1 and 2) or a
2nd-order lo-pass filter (channel 3) at the selected
frequency is performed.
Bass management crossover frequency
XO[3:0]
Crossover Frequency
0000
User-Defined
0001
80 Hz
0010
100 Hz
0011
120 Hz
0100
140 Hz
0101
160 Hz
0110
180 Hz
0111
200 Hz
1000
220 Hz
1001
240 Hz
45/66
Register description
Table 59.
STA559BWQS
Bass management crossover frequency
XO[3:0]
5.9
5.9.1
Crossover Frequency
1010
260 Hz
1011
280 Hz
1100
300 Hz
1101
320 Hz
1110
340 Hz
1111
360 Hz
Channel configuration registers (addr 0x0E - 0x10)
D7
D6
D5
D4
D3
D2
D1
D0
C1OM1
C1OM0
C1LS1
C1LS0
C1BO
C1VPB
C1EQBP
C1TCB
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C2OM1
C2OM0
C2LS1
C2LS0
C2BO
C2VPB
C2EQBP
C2TCB
0
1
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
C3OM1
C3OM0
C3LS1
C3LS0
C3BO
C3VPB
1
0
0
0
0
0
Tone control bypass
Tone control (bass/treble) can be bypassed on a per channel basis for channels 1 and 2.
CxTCB:
0 - Perform tone control on channel X - normal operation
1 - Bypass tone control on channel X
5.9.2
EQ bypass
EQ control can be bypassed on a per channel basis for channels 1 and 2. If EQ control is
bypassed on a given channel the prescale and all filters (high-pass, biquads, de-emphasis,
bass, treble in any combination) are bypassed for that channel.
CxEQBP:
0 - Perform EQ on channel X - normal operation
1 - Bypass EQ on channel X
46/66
STA559BWQS
5.9.3
Register description
Volume bypass
Each channel contains an individual channel volume bypass. If a particular channel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particular channel affects the volume setting, the master volume setting will not affect that
channel.
5.9.4
Binary output enable registers
Each individual channel output can be set to output a binary PWM stream. In this mode
output A of a channel will be considered the positive output and output B is negative inverse.
CxBO:
0 - DDX tri-state output - normal operation
1 - Binary output.
5.9.5
Limiter select
Limiter selection can be made on a per-channel basis according to the channel limiter select
bits.
.
Table 60.
Channel limiter mapping as a function of CxLS bits
CxLS[1,0]
5.9.6
Channel limiter mapping
00
Channel has limiting disabled
01
Channel is mapped to limiter #1
10
Channel is mapped to limiter #2
Output mapping
Output mapping can be performed on a per channel basis according to the CxOM channel
output mapping bits. Each input into the output configuration engine can receive data from
any of the three processing channel outputs.
.
Table 61.
Channel output mapping as a function of CxOM bits
CxOM[1,0]
00
01
10
Channel x output source from
Channel 1
Channel 2
Channel 3
47/66
Register description
STA559BWQS
5.10
Tone control register (addr 0x11)
5.10.1
Tone control
D7
D6
D5
D4
D3
D2
D1
D0
TTC3
TTC2
TTC1
TTC0
BTC3
BTC2
BTC1
BTC0
0
1
1
1
0
1
1
1
Table 62.
Tone control boost/cut as a function of BTC and TTC bits
BTC[3:0]/TTC[3:0]
Boost/cut
0000
0001
…
0111
0110
0111
1000
1001
…
1101
1110
1111
-12 dB
-12 dB
…
-4 dB
-2 dB
0 dB
+2 dB
+4 dB
…
+12 dB
+12 dB
+12 dB
5.11
Dynamics control registers (addr 0x12 - 0x15)
5.11.1
Limiter 1 attack/release rate
5.11.2
5.11.3
48/66
D7
D6
D5
D4
D3
D2
D1
D0
L1A3
L1A2
L1A1
L1A0
L1R3
L1R2
L1R1
L1R0
0
1
1
0
1
0
1
0
Limiter 1 attack/release threshold
D7
D6
D5
D4
D3
D2
D1
D0
L1AT3
L1AT2
L1AT1
L1AT0
L1RT3
L1RT2
L1RT1
L1RT0
0
1
1
0
1
0
0
1
Limiter 2 attack/release rate
D7
D6
D5
D4
D3
D2
D1
D0
L2A3
L2A2
L2A1
L2A0
L2R3
L2R2
L2R1
L2R0
0
1
1
0
1
0
1
0
STA559BWQS
5.11.4
Register description
Limiter 2 attack/release threshold
D7
D6
D5
D4
D3
D2
D1
D0
L2AT3
L2AT2
L2AT1
L2AT0
L2RT3
L2RT2
L2RT1
L2RT0
0
1
1
0
1
0
0
1
The STA559BWQS includes 2 independent limiter blocks. The purpose of the limiters is to
automatically reduce the dynamic range of a recording to prevent the outputs from clipping
in anti-clipping mode or to actively reduce the dynamic range for a better listening
environment such as a night-time listening mode which is often needed for DVDs. The two
modes are selected via the DRC bit in configuration register F, bit 0 address 0x05. Each
channel can be mapped to either limiter or not mapped, meaning that channel will clip when
0dBFS is exceeded. Each limiter will look at the present value of each channel that is
mapped to it, select the maximum absolute value of all these channels, perform the limiting
algorithm on that value, and then if needed adjust the gain of the mapped channels in
unison.
The limiter attack thresholds are determined by the LxAT registers. It is recommended in
anti-clipping mode to set this to 0dBFS, which corresponds to the maximum unclipped
output power of a DDX amplifier. Since gain can be added digitally within STA559BWQS it is
possible to exceed 0dBFS or any other LxAT setting, when this occurs, the limiter, when
active, will automatically start reducing the gain. The rate at which the gain is reduced when
the attack threshold is exceeded is dependent upon the attack rate register setting for that
limiter. The gain reduction occurs on a peak-detect algorithm.
The release of limiter, when the gain is again increased, is dependent on a RMS-detect
algorithm. The output of the volume/limiter block is passed through a RMS filter. The output
of this filter is compared to the release threshold, determined by the release threshold
register. When the RMS filter output falls below the release threshold, the gain is again
increased at a rate dependent upon the release rate register. The gain can never be
increased past it's set value and therefore the release will only occur if the limiter has
already reduced the gain. The release threshold value can be used to set what is effectively
a minimum dynamic range, this is helpful as over-limiting can reduce the dynamic range to
virtually zero and cause program material to sound "lifeless".
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the
attack threshold is set relative to the maximum volume setting of the channels mapped to
that limiter and the release threshold is set relative to the maximum volume setting plus the
attack threshold.
Figure 32. Basic limiter and volume flow diagram.
49/66
Register description
Table 63.
STA559BWQS
Limiter attack rate as a function
of LxA bits.
LxA[3:0]
Attack rate dB/ms
0000
3.1584
Fast
Table 64.
Limiter release rate as a
function of LxR bits.
LxR[3:0]
Release rate dB/ms
0000
0.5116
0001
0.1370
0001
2.7072
0010
2.2560
0010
0.0744
0011
1.8048
0011
0.0499
0100
1.3536
0100
0.0360
0101
0.9024
0101
0.0299
0110
0.4512
0110
0.0264
0111
0.2256
0111
0.0208
1000
0.1504
1000
0.0198
1001
0.1123
1001
0.0172
1010
0.0902
1010
0.0147
1011
0.0752
1011
0.0137
1100
0.0645
1100
0.0134
1101
0.0564
1101
0.0117
1110
0.0501
1110
0.0110
1111
0.0451
1111
0.0104
Slow
Fast
Slow
Anti-clipping mode
Table 65.
Limiter attack threshold as a
function of LxAT bits (AC-Mode)
Table 66.
Limiter release threshold as a
function of LxRT bits (ACMode)
LxAT[3:0]
AC (dB relative to FS)
LxRT[3:0]
AC (dB relative to FS)
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
-12
-10
-8
-6
-4
-2
0
+2
+3
+4
+5
+6
+7
+8
+9
+10
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
-∞
-29 dB
-20 dB
-16 dB
-14 dB
-12 dB
-10 dB
-8 dB
-7 dB
-6 dB
-5 dB
-4 dB
-3 dB
-2 dB
-1 dB
-0 dB
50/66
STA559BWQS
Register description
Dynamic range compression mode
Table 67.
Limiter attack threshold as a
function of LxAT bits (DRCmode).
Table 68.
Limiter release threshold as a
as a function of LxRT bits
(DRC-mode).
LxAT[3:0]
DRC (dB relative to volume)
LxRT [3:0]
DRC (db relative to
volume + LxAT)
0000
-31
0000
-∞
0001
-29
0001
-38 dB
0010
-27
0010
-36 dB
0011
-25
0011
-33 dB
0100
-23
0100
-31 dB
0101
-21
0101
-30 dB
0110
-19
0110
-28 dB
0111
-17
0111
-26 dB
1000
-16
1000
-24 dB
1001
-15
1001
-22 dB
1010
-14
1010
-20 dB
1011
-13
1011
-18 dB
1100
-12
1100
-15 dB
1101
-10
1101
-12 dB
1110
-7
1110
-9 dB
1111
-4
1111
-6 dB
5.12
User-defined coefficient control registers (addr 0x16 - 0x26)
5.12.1
Coefficient address register
D7
5.12.2
D6
D5
D4
D3
D2
D1
D0
CFA5
CFA4
CFA3
CFA2
CFA1
CFA0
0
0
0
0
0
0
Coefficient b1data register bits 23..16
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
51/66
Register description
5.12.3
5.12.4
5.12.5
5.12.6
5.12.7
5.12.8
5.12.9
52/66
STA559BWQS
Coefficient b1data register bits 15..8 address
D7
D6
D5
D4
D3
D2
D1
D0
C1B15
C1B14
C1B13
C1B12
C1B11
C1B10
C1B9
C1B8
0
0
0
0
0
0
0
0
Coefficient b1data register bits 7..0
D7
D6
D5
D4
D3
D2
D1
D0
C1B7
C1B6
C1B5
C1B4
C1B3
C1B2
C1B1
C1B0
0
0
0
0
0
0
0
0
Coefficient b2 data register bits 23..16
D7
D6
D5
D4
D3
D2
D1
D0
C2B23
C2B22
C2B21
C2B20
C2B19
C2B18
C2B17
C2B16
0
0
0
0
0
0
0
0
Coefficient b2 data register bits 15..8
D7
D6
D5
D4
D3
D2
D1
D0
C2B15
C2B14
C2B13
C2B12
C2B11
C2B10
C2B9
C2B8
0
0
0
0
0
0
0
0
Coefficient b2 data register bits 7..0
D7
D6
D5
D4
D3
D2
D1
D0
C2B7
C2B6
C2B5
C2B4
C2B3
C2B2
C2B1
C2B0
0
0
0
0
0
0
0
0
Coefficient a1 data register bits 23..16
D7
D6
D5
D4
D3
D2
D1
D0
C1B23
C1B22
C1B21
C1B20
C1B19
C1B18
C1B17
C1B16
0
0
0
0
0
0
0
0
Coefficient a1 data register bits 15..8
D7
D6
D5
D4
D3
D2
D1
D0
C3B15
C3B14
C3B13
C3B12
C3B11
C3B10
C3B9
C3B8
0
0
0
0
0
0
0
0
STA559BWQS
5.12.10
5.12.11
5.12.12
5.12.13
5.12.14
5.12.15
5.12.16
Register description
Coefficient a1 data register bits 7..0
D7
D6
D5
D4
D3
D2
D1
D0
C3B7
C3B6
C3B5
C3B4
C3B3
C3B2
C3B1
C3B0
0
0
0
0
0
0
0
0
Coefficient a2 data register bits 23..16
D7
D6
D5
D4
D3
D2
D1
D0
C4B23
C4B22
C4B21
C4B20
C4B19
C4B18
C4B17
C4B16
0
0
0
0
0
0
0
0
Coefficient a2 data register bits 15..8
D7
D6
D5
D4
D3
D2
D1
D0
C4B15
C4B14
C4B13
C4B12
C4B11
C4B10
C4B9
C4B8
0
0
0
0
0
0
0
0
Coefficient a2 data register bits 7..0
D7
D6
D5
D4
D3
D2
D1
D0
C4B7
C4B6
C4B5
C4B4
C4B3
C4B2
C4B1
C4B0
0
0
0
0
0
0
0
0
Coefficient b0 data register bits 23..16
D7
D6
D5
D4
D3
D2
D1
D0
C5B23
C5B22
C5B21
C5B20
C5B19
C5B18
C5B17
C5B16
0
0
0
0
0
0
0
0
Coefficient b0 data register bits 15..8
D7
D6
D5
D4
D3
D2
D1
D0
C5B15
C5B14
C5B13
C5B12
C5B11
C5B10
C5B9
C5B8
0
0
0
0
0
0
0
0
Coefficient b0 Data Register Bits 7..0
D7
D6
D5
D4
D3
D2
D1
D0
C5B7
C5B6
C5B5
C5B4
C5B3
C5B2
C5B1
C5B0
0
0
0
0
0
0
0
0
53/66
Register description
5.12.17
STA559BWQS
Coefficient write/read control register
D7
D6
D5
D4
D3
D2
D1
D0
RA
R1
WA
W1
0
0
0
0
Coefficients for user-defined EQ, mixing, scaling, and bass management are handled
internally in the STA559BWQS via RAM. Access to this RAM is available to the user via an
I2C register interface. A collection of I²C registers are dedicated to this function. One
contains a coefficient base address, five sets of three store the values of the 24-bit
coefficients to be written or that were read, and one contains bits used to control the
write/read of the coefficient(s) to/from RAM. The following are instructions for reading and
writing coefficients.
Reading a coefficient from RAM
"
write 6-bits of address to I2C register 0x16
"
write 1 to R1 bit in I2C address 0x26
"
read top 8-bits of coefficient in I2C address 0x17
"
read middle 8-bits of coefficient in I2C address 0x18
"
read bottom 8-bits of coefficient in I2C address 0x19.
Reading a set of coefficients from RAM
54/66
"
write 6-bits of address to I2C register 0x16
"
write 1 to RA bit in I2C address 0x26
"
read top 8-bits of coefficient in I2C address 0x17
"
read middle 8-bits of coefficient in I2C address 0x18
"
read bottom 8-bits of coefficient in I2C address 0x19
"
read top 8-bits of coefficient b2 in I2C address 0x1A
"
read middle 8-bits of coefficient b2 in I2C address 0x1B
"
read bottom 8-bits of coefficient b2 in I2C address 0x1C
"
read top 8-bits of coefficient a1 in I2C address 0x1D
"
read middle 8-bits of coefficient a1 in I2C address 0x1E
"
read bottom 8-bits of coefficient a1 in I2C address 0x1F
"
read top 8-bits of coefficient a2 in I2C address 0x20
"
read middle 8-bits of coefficient a2 in I2C address 0x21
"
read bottom 8-bits of coefficient a2 in I2C address 0x22
"
read top 8-bits of coefficient b0 in I2C address 0x23
"
read middle 8-bits of coefficient b0 in I2C address 0x24
"
read bottom 8-bits of coefficient b0 in I2C address 0x25.
STA559BWQS
Register description
Writing a single coefficient to RAM
"
write 6-bits of address to I2C register 0x16
"
write top 8-bits of coefficient in I2C address 0x17
"
write middle 8-bits of coefficient in I2C address 0x18
"
write bottom 8-bits of coefficient in I2C address 0x19
"
write 1 to W1 bit in I2C address 0x26.
Writing a set of coefficients to RAM
"
write 6-bits of starting address to I2C register 0x16
"
write top 8-bits of coefficient b1 in I2C address 0x17
"
write middle 8-bits of coefficient b1 in I2C address 0x18
"
write bottom 8-bits of coefficient b1 in I2C address 0x19
"
write top 8-bits of coefficient b2 in I2C address 0x1A
"
write middle 8-bits of coefficient b2 in I2C address 0x1B
"
write bottom 8-bits of coefficient b2 in I2C address 0x1C
"
write top 8-bits of coefficient a1 in I2C address 0x1D
"
write middle 8-bits of coefficient a1 in I2C address 0x1E
"
write bottom 8-bits of coefficient a1 in I2C address 0x1F
"
write top 8-bits of coefficient a2 in I2C address 0x20
"
write middle 8-bits of coefficient a2 in I2C address 0x21
"
write bottom 8-bits of coefficient a2 in I2C address 0x22
"
write top 8-bits of coefficient b0 in I2C address 0x23
"
write middle 8-bits of coefficient b0 in I2C address 0x24
"
write bottom 8-bits of coefficient b0 in I2C address 0x25
"
write 1 to WA bit in I2C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of updating the
five coefficients corresponding to a given biquad (filter) simultaneously to avoid possible
unpleasant acoustic side-effects. When using this technique, the 6-bit address would
specify the address of the biquad b1 coefficient (for example, 0, 5, 10, 20, 35 decimal), and
the STA559BWQS will generate the RAM addresses as offsets from this base value to write
the complete set of coefficient data.
5.12.18
User-defined EQ
The STA559BWQS provides the ability to specify four EQ filters (biquads) per each of the
two input channels. The biquads use the following equation:
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]
where Y[n] represents the output and X[n] represents the input. Multipliers are 24-bit signed
fractional multipliers, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
55/66
Register description
STA559BWQS
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1/2
CxHy1 = b2
CxHy2 = -a1/2
CxHy3 = -a2
CxHy4 = b0/2
where x represents the channel and the y the biquad number. For example C2H41 is the b2
coefficient in the fourth biquad for channel 2.
Additionally, the STA559BWQS allows specification of a high-pass filter (processing
channels 1 and 2) and a lo-pass filter (processing channel 3) to be used for bassmanagement crossover when the XO setting is 000 (user-defined). Both of these filters
when defined by the user (rather than using the preset crossover filters) are 2nd order filters
that use the biquad equation noted above. They are loaded into the C12H0-4 and C3Hy0-4
areas of RAM noted in the table below.
By default, all user-defined filters are pass-thru where all coefficients are set to 0, except the
b0/2 coefficient which is set to 0x400000 (representing 0.5)
5.12.19
Pre-scale
The STA559BWQS provides a multiplication for each input channel for the purpose of
scaling the input prior to EQ. This pre-EQ scaling is accomplished by using a 24-bit signed
fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. The scale factor
for this multiply is loaded into RAM using the same I2C registers as the biquad coefficients
and the bass-management. All channels can use the channel 1 pre-scale factor by setting
the Biquad link bit. By default, all pre-scale factors are set to 0x7FFFFF.
5.12.20
Post-scale
The STA559BWQS provides one additional multiplication after the last interpolation stage
and the distortion compensation on each channel. This post-scaling is accomplished by
using a 24-bit signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF =
0.9999998808. The scale factor for this multiply is loaded into RAM using the same I2C
registers as the biquad coefficients and the bass-management. This post-scale factor can
be used in conjunction with an ADC equipped micro-controller to perform power-supply
error correction. All channels can use the channel 1 post-scale factor by setting the postscale link bit. By default, all post-scale factors are set to 0x7FFFFF. When Line output is
being utilized, channel 3 post-scale will affect both channels 3 and 4.
5.12.21
Over-current post-scale
The STA559BWQS provides a simple mechanism for reacting to over-current detection in
the power-block. When the ocwarn input is asserted, the over-current post-scale value is
used in place of the normal post-scale value to provide output attenuation on all channels.
The default setting provides 3 dB of output attenuation when ocwarn is asserted.
The amount of attenuation to be applied in this situation can be adjusted by modifying the
Over-current Post-scale value. As with the normal post-scale, this scaling value is a 24-bit
signed fractional multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default,
the over-current post-scale factor is set to 0x5A9DF7. Once the over-current attenuation is
applied, it remains until the device is reset.
56/66
STA559BWQS
Register description
Table 69.
RAM block for biquads, mixing, scaling, and bass management
Index (Decimal) Index (Hex)
Coefficient
Default
0
0x00
C1H10(b1/2)
0x000000
1
0x01
C1H11(b2)
0x000000
2
0x02
C1H12(a1/2)
0x000000
3
0x03
C1H13(a2)
0x000000
4
0x04
C1H14(b0/2)
0x400000
5
0x05
C1H20
0x000000
Channel 1 - Biquad 1
Channel 1 - Biquad 2
…
…
…
…
…
19
0x13
Channel 1 - Biquad 4
C1H44
0x400000
20
0x14
C2H10
0x000000
21
0x15
C2H11
0x000000
Channel 2 - Biquad 1
…
…
…
…
…
39
0x27
Channel 2 - Biquad 4
C2H44
0x400000
40
0x28
C12H0(b1/2)
0x000000
41
0x29
C12H1(b2)
0x000000
High-pass 2nd order filter
for XO = 000
42
0x2A
C12H2(a1/2)
0x000000
43
0x2B
C12H3(a2)
0x000000
44
0x2C
C12H4(b0/2)
0x400000
45
0x2D
C3H0(b1/2)
0x000000
46
0x2E
47
0x2F
48
C3H1(b2)
0x000000
C3H2(a1/2)
0x000000
0x30
C3H3(a2)
0x000000
49
0x31
C3H4(b0/2)
0x400000
50
0x32
Channel 1 - Pre-scale
C1PreS
0x7FFFFF
51
0x33
Channel 2 - Pre-scale
C2PreS
0x7FFFFF
52
0x34
Channel 1 - Post-scale
C1PstS
0x7FFFFF
53
0x35
Channel 2 - Post-scale
C2PstS
0x7FFFFF
54
0x36
Channel 3 - Post-scale
C3PstS
0x7FFFFF
55
0x37
TWARN/OC– Limit
TWOCL
0x5A9DF7
56
0x38
Channel 1 - Mix 1
C1MX1
0x7FFFFF
57
0x39
Channel 1 - Mix 2
C1MX2
0x000000
58
0x3A
Channel 2 - Mix 1
C2MX1
0x000000
59
0x3B
Channel 2 - Mix 2
C2MX2
0x7FFFFF
60
0x3C
Channel 3 - Mix 1
C3MX1
0x400000
61
0x3D
Channel 3 - Mix 2
C3MX2
0x400000
62
0x3E
UNUSED
63
0x3F
UNUSED
Low-pass 2nd order filter
for XO = 000
57/66
Register description
5.13
STA559BWQS
Variable max power correction registers (addr 0x27 - 0x28)
MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This coefficient is
used in place of the default coefficient when MPCV = 1.
5.14
D7
D6
D5
D4
D3
D2
D1
D0
MPCC15
MPCC14
MPCC13
MPCC12
MPCC11
MPCC10
MPCC9
MPCC8
0
0
0
1
1
0
1
0
D7
D6
D5
D4
D3
D2
D1
D0
MPCC7
MPCC6
MPCC5
MPCC4
MPCC3
MPCC2
MPCC1
MPCC0
1
1
0
0
0
0
0
0
Variable distortion compensation registers (addr 0x29-0x2A)
DCC bits determine the 16 MSBs of the distortion compensation coefficient. This coefficient
is used in place of the default coefficient when DCCV = 1.
5.15
D7
D6
D5
D4
D3
D2
D1
D0
DCC15
DCC14
DCC13
DCC12
DCC11
DCC10
DCC9
DCC8
1
1
1
1
0
0
1
1
D7
D6
D5
D4
D3
D2
D1
D0
DCC7
DCC6
DCC5
DCC4
DCC3
DCC2
DCC1
DCC0
0
0
1
1
0
0
1
1
Fault detect recovery constant registers (addr 0x2B - 0x2C)
FDRC bits specify the 16-bit Fault Detect Recovery time delay. When FAULT is asserted, the
TRISTATE output will be immediately asserted low and held low for the time period specified
by this constant. A constant value of 0x0001 in this register is approximately 0.083 ms. The
default value of 0x000C specifies approximately 0.1 ms.
5.16
D7
D6
D5
D4
D3
D2
D1
D0
FDRC15
FDRC14
FDRC13
FDRC12
FDRC11
FDRC10
FDRC9
FDRC8
0
0
0
0
0
0
0
0
D7
D6
D5
D4
D3
D2
D1
D0
FDRC7
FDRC6
FDRC5
FDRC4
FDRC3
FDRC2
FDRC1
FDRC0
0
0
0
0
1
1
0
0
Device status register (addr 0x2D)
D7
D6
D5
D4
D3
D2
D1
D0
PLLUL
FAULT
UVFAULT
OVFAULT
OCFAULT
OCWARN
TFAULT
TWARN
This read-only register provides fault and thermal-warning status information from the power
control block.
58/66
STA559BWQS
Application
6
Application
6.1
Application scheme for power supplies
Figure 33 below shows a circuit diagram of a typical application for STA559BWQS.Particular
care has to be given to the layout of the PCB, especially the power supplies. The 3.3-Ω
resistors on the digital supplies (VDD_DIG) have to be placed as close as possible to the
device. This helps to prevent unwanted oscillation on the digital portion of the device due to
inductive tracks of the PCB. This same rule also applies to all the decoupling capacitors in
order to limit any kind of spikes on the supplies.
Figure 33. Application schematic
3R3
1
2
+
3
1000uF 35V
4
100nF
1uF 35V
5
6
OUT2B
7
8
100nF
OUT2A
100nF
VCC
OUT1B
9
10
11
12
1uF 35V
13
OUT1A
14
100nF
15
16
6.2
DDX3B
17
DDX3A
18
GND_SUB
VDD_DIG
SA
GND_DIG
TEST_MODE
SCL
VSS
SDA
VCC_REG
INT_LINE
OUT2B
RESET
GND2
SDI
VCC2
LRCKI
OUT2A
BICKI
OUT1B
XTI
VCC1
PLL_GND
GND1
FILTER_PLL
OUT1A
VDD_PLL
GND_REG
PWRDN
VDD
GND_DIG
GND
CONFIG
VDD_DIG
DDX3B
TWARN/4A
DDX3A
EAPD/4B
3V3
36
100nF
35
34
SCL
33
SDA
INTL
32
3V3
GND_DIG
10K
31
RESET
30
DATA
29
LRCKI
28
BICKI
27
XTI
GND_DIG
BEAD
26
25
PLL_FILT
100nF
PLL_GND
BEAD
24
23
GND_DIG
3V3
PWDN
22
21
RESET
1nF
100nF
3R3
GND_DIG
3V3
20
TW
19
EAPD
PLL filter schematic
It is recommended to use the below schematic and values in Figure 34 below for the PLL
loop filter. In order to achieve the best performance from the device in general applications
the filter ground (PLL_GND) must be connected as close as possible to the device pin
PLL_GND. Concerning the component values, please take into account that the greater is
the filter bandwidth, the less is the lock time but the higher is the PLL output jitter.
Figure 34. PLL application schematic
FILTER_PLL
2K2
680pF
4.7nF
Component leads
must be kept as
short as possible
100pF
BEAD
GND_DIG
PLL_GND
59/66
Application
6.3
STA559BWQS
Typical output configuration
Figure 35 shows the typical output configuration used for BTL stereo mode. Please refer to
the application note for other recommended output configuration schematics.
Figure 35. Output configuration for stereo BTL mode
22uH
OUT1A
100nF
6.2
22
6.2
330pF
100nF
470nF
LEFT
470nF
RIGHT
100nF
100nF
OUT1B
22uH
22uH
OUT2A
100nF
6.2
22
6.2
330pF
100nF
OUT2B
22uH
60/66
100nF
100nF
STA559BWQS
7
Package thermal characteristics
Package thermal characteristics
Due to the high efficiency of the system the dissipated power is negligible, allowing the use
of the STA559BWQS without heat sink but using only a small copper area on the PCB.
Using a double layer PCB the thermal resistance junction to ambient with two copper ground
areas of 3 x 3 cm2 and with 16 via holes (see Figure 36) is 24° C/W in natural air convection.
The dissipated power within the device depends primarily on the supply voltage, load
impedance and output modulation level.
The max estimated dissipated power for the STA559BWQS is:
2 x 3 W into 4 Ω at 5 V
Pd max ~ 600mW
2 x 0.7 W + 1 x 3 W into 4 Ω at 5 V
Pd max < 500mW
2 x 1.4 W + 1 x 6 W into 2 Ω at 5 V
Pd max ~ 800mW
This gives, with the suggested board copper area, a max ∆Tj of only approximately 20° C for
the worst case of the above mentioned applications. The safety margin before the thermal
protection intervention (Tj=150°C) is thus ensured, also in severe environments where the
ambient temperature exceeds 50° C.
Figure 36. Double layer PCB with copper ground area and with 16 via holes
Figure 37 shows the power derating curves for the PowerSSO-36 package on a board with
two different sizes of copper layers.
Figure 37. PowerSSO-36 power derating curve
Pd (W)
8
7
Copper Area 3x3 cm
and via holes
6
5
STA559BWQS
STA335BW
PSSO36
PowerSSO-36
4
3
Copper Area 2x2 cm
and via holes
2
1
0
0
20
40
60
80
100
120
140
160
Tamb ( °C)
61/66
Package information
8
STA559BWQS
Package information
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
Figure 38. PowerSSO-36 (slug-up) mechanical data and package dimensions
DIM.
MIN.
2.15
2.15
0
0.18
0.23
10.10
A
A2
a1
b
c
D (1)
mm
TYP.
7.4
E (1)
e
e3
F
G
G1
H
h
k
L
M
N
O
Q
S
T
U
X
Y
MAX.
2.47
2.40
0.075
0.36
0.32
10.50
MIN.
0.084
0.084
0
0.007
0.009
0.398
7.6
0.291
0.5
8.5
2.3
inch
TYP.
MAX.
0.097
0.094
0.003
0.014
0.012
0.413
OUTLINE AND
MECHANICAL DATA
0.299
0.019
0.335
0.090
0.10
0.06
10.50
0.40
10.10
0.004
0.002
0.413
0.016
0.398
5˚
5˚
0.55
0.90
0.022
4.3
0.035
0.169
10˚
10˚
1.2
0.8
2.9
3.65
1.0
0.047
0.031
0.114
0.144
0.039
4.1
6.5
4.7
7.3
0.161
0.256
PowerSSO-36
(slug-down)
0.185
0.287
A
A2
(1) "D” and “E" do not include mold flash or protrusions Mold flash
or protrusions shall not exceed 0.15 mm per side(0.006”)
hx45û
Gauge plane 0.25
c
G
LEAD COPLANARITY
A
D
M
a1
stand-off
Y
k
e
T
L
H
E
X
O
F
S
Q
U
BOTTOM VIEW
B
0.1 M A B
b
e3
7587131 A
62/66
STA559BWQS
9
License information
License information
Supply of this product does not convey a license under the relevant intellectual property of
the companies mentioned in this chapter nor imply any right to use this intellectual property
in any finished end-user or ready to use final product. An independent license for such use
is required and can be obtained by contacting the company or companies concerned. Once
the license is obtained, a copy must be sent to STMicroelectronics. The details of all the
features requiring licenses are not provided within the datasheet and register manual. They
are provided only after a copy of the license has been received by STMicroelectronics.
The feature requiring license is:
QXpander (QHD®)
QHD® and QXpander® are intellectual property of QSounds Lab Inc. A license can be
obtained with the STA559BWQS via STMicroelectronics, please contact the HPC Audio
Division Product Manager for details.
Alternatively the license can be obtained directly from QSound Labs Inc.
For details please contact:
[email protected]
or
QSound Labs, Inc
400 - 3115 12th Street NE
Calgary, AB
Canada T2E 7J2
63/66
Trademarks and other acknowledgements
10
Trademarks and other acknowledgements
DDX is a registered trademark of Apogee Technology Inc.
ECOPACK is a registered trademark of STMicroelectronics.
QHD and QXpander are registered trademarks of QSound Labs Inc.
64/66
STA559BWQS
STA559BWQS
11
Revision history
Revision history
Table 70.
Document revision history
Date
Revision
28-Mar-2008
1
Changes
Initial release.
65/66
STA559BWQS
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
66/ 66