STMICROELECTRONICS TS321

TS321
Low Power Single Operational Amplifier
■
Large output voltage swing:
■
0 to 3.5V min. (@VCC = 5V)
■
Low supply current: 500µA
■
Low input bias current: 20nA
■
Low input offset voltage: 2mV max.
■
Wide power supply range:
■
Single supply: +3V to +30V
■
Dual supplies: ±1.5V to ±15V
■
Stable with high capacitive loads
D
SO-8
(Plastic Micropackage
L
SOT23-5
(Plastic Package)
Pin connections (top view)
Description
The TS321 is intended for cost-sensitive
applications where space saving is of great
importance. This bipolar op-amp offers the
benefits of a reduced component size (SOT23-5
package), with specifications that match (or are
better) industry standard devices (like the popular
LM358A, LM324, etc.). The TS321 has an input
common mode range (Vicm) that includes ground,
and therefore can be employed in single supply
applications.
N.C.
1
8
N.C.
Inverting input
2
-
7
VCC+
Non-inverting input
3
+
6
Output
5
N.C.
V
CC
Output
1
V
CC
2
Non-inverting input
3
4
5
VCC+
4
Inverting input
Order Codes
Part Number
Temperature
Range
TS321ILT
TS321ID/IDT
TS321AILT
TS321AID/AIDT
Package
Packaging
Marking
SOT23-5L
Tape & Reel
K401
SO8
Tube or Tape & Reel
321I
SOT23-5L
Tape & Reel
K402
SO8
Tube or Tape & Reel
321AI
SOT23-5L (automotive grade level)
Tape & Reel
SO-8 (automotive grade level)
Tube or Tape & Reel
-40°C, +125°C
TS321IYLT
K406
TS321AIYLT
TS321IYD/IYDT
TS321AIYD/AIYDT
December 2005
Rev. 4
1/12
www.st.com
12
Typical Application Schematics
TS321
1
Typical Application Schematics
Figure 1.
Typical application schematics
V CC
6mA
4mA
100mA
Q5
Q6
CC
Inverting
input
Q2
Q3
Q1
Q7
Q4
R SC
Q11
Non-inverting
input
Output
Q13
Q10
Q8
Q9
Q12
50mA
GND
2/12
TS321
Absolute Maximum Ratings
2
Absolute Maximum Ratings
Table 1.
Key parameters and their absolute maximum ratings
Symbol
Value
Unit
Supply Voltage
±16 to 32
V
Vi
Input Voltage
-0.3 to +32
V
Vid
Differential Input Voltage
+32
V
VCC
Parameter
Output Short-circuit Duration - note
Iin
Input Current - note
(1)
Infinite
(2)
Toper
Operating Free Air Temperature Range
Tstg
Storage Temperature Range
50
mA
-40 to +125
°C
-65 to +150
°C
250
125
°C/W
(3)
Rthja
Thermal Resistance Junction to Ambient
SOT23-5
SO8
Rthjc
Thermal Resistance Junction to Case
SOT23-5
SO8
81
40
°C/W
HBM: Human Body Model(4)
300
V
200
V
ESD
MM: Machine
Model(5)
1. Short-circuits from the output to VCC can cause excessive heating if VCC > 15V. The maximum output current is
approximately 40mA independent of the magnitude of VCC .
2. This input current only exists when the voltage at any of the input leads is driven negative. It is due to the collector-base
junction of the input PNP transistor becoming forward biased and thereby acting as input diodes clamps. In addition to this
diode action, there is also NPN parasitic action on the IC chip. This transistor action can cause the output voltages of the
Op-amps to go to the VCC voltage level (or to ground for a large overdrive) for the time duration than an input is driven
negative. This is not destructive and normal output will set up again for input voltage higher than -0.3V.
3. Short-circuits can cause excessive heating. Destructive dissipation can result from simultaneous short-circuit on all
amplifiers. All values are typical.
4. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device.
5. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external
series resistor (internal resistor < 5Ω), into pin to pin of device.
3/12
Electrical Characteristics
TS321
3
Electrical Characteristics
Table 2.
Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Symbol
Parameter
Conditions
Min.
Typ.
Max.
Unit
0.5
4
2
5
3
mV
Vio
Input Offset Voltage (1)
Tamb = +25°C
TS321A
Tmin. ≤ Tamb ≤ Tmax.
TS321A
Iio
Input Offset Current
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
2
30
50
nA
Iib
Input Bias Current (2)
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax
20
150
200
nA
Avd
Large Signal Voltage
Gain
VCC+ = +15V, RL = 2kΩ, Vo = 1.4V to 11.4V
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
50
25
100
SVR
Supply Voltage
Rejection Ratio
Rs ≤ 10kΩ
VCC+ = 5 to 30V
Tamb = +25°C
65
110
ICC
Supply Current, no load
Tamb = +25°C, VCC = +5V
VCC = +30V
Tmin. ≤ Tamb ≤ Tmax., VCC = +5V
VCC = +30
Vicm
Common Mode Input
Voltage Range (3)
VCC = +30V
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
0
0
CMR
Common Mode
Rejection Ratio
Rs ≤ 10kΩ
Tamb = +25°C
65
85
Isource
Output Current Source
Vid = +1V
VCC = +15V, Vo = +2V
20
40
Output Sink Current
Vid = -1V
VCC = +15V, Vo = +2V
VCC = +15V, Vo = +0.2V
10
12
20
50
Short Circuit to Ground
VCC = +15V
High Level Output
Voltage
VCC = +30V
Tamb = +25°C, RL = 2kΩ
Tmin. ≤ Tamb ≤ Tmax.
Tamb = +25°C, RL = 10kΩ
Tmin. ≤ Tamb ≤ Tmax.
VCC = +5V, R L = 2kΩ
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
Isink
Io
VOH
VOL
4/12
Low Level Output
Voltage
RL = 10kΩ
Tamb = +25°C
Tmin. ≤ Tamb ≤ Tmax.
V/mV
dB
500
600
600
VCC -1.5
VCC -2
40
26
25.5
27
26.5
800
900
900
1000
µA
V
dB
mA
mA
µA
60
mA
27
28
V
3.5
3
5
15
20
mV
TS321
Table 2.
Symbol
SR
GBP
Electrical Characteristics
Vcc+ = +5V, Vcc- = Ground, Vo = 1.4V, Tamb = +25°C (unless otherwise specified)
Parameter
Conditions
Typ.
Max.
Unit
Slew Rate
VCC = +15V, Vi = 0.5 to 3V, R L = 2kΩ,
CL = 100pF, Tamb = +25°C, unity gain
0.4
V/µs
Gain Bandwith Product
VCC = 30V, f = 100kHz, Tamb = +25°C,
Vin = 10mV, R L = 2kΩ, CL = 100pF
0.8
MHz
60
Degrees
0.015
%
40
nV
-----------Hz
φm
Phase Margin
THD
Total Harmonic
Distortion
f = 1kHz, AV = 20dB, RL = 2kΩ, V o = 2Vpp,
CL = 100pF, Tamb = +25°C, VCC = 30V
Equivalent Input Noise
Voltage
f = 1kHz, Rs = 100Ω, VCC = 30V
en
Min.
1. Vo = 1.4V, Rs = 0W, 5V < VCC+ < 30V, 0 < Vic < VCC+ - 1.5V
2. The direction of the input current is out of the IC. This current is essentially constant, independent of the state of the output
so no loading change exists on the input lines.
3. The input common-mode voltage of either input signal voltage should not be allowed to go negative by more than 0.3V.
The upper end of the common-mode voltage range is VCC+ - 1.5V, but either or both inputs can go to +32V without
damage.
5/12
Electrical Characteristics
Figure 2.
TS321
ICC = f(t)
Figure 3.
AC coupled inverting amplifier
Rf
100kW
CI
A V= -
Rf
R1
(as shown AV = -10)
R1
10kW
Co
0
eo
eI ~
R2
VCC 100kW
RB
6.2kW
R3
100kW
2VPP
RL
10kW
C1
10mF
Figure 4.
Non-inverting DC gain
Figure 5.
R1
100kW
A V = 1 + R2
R1
10kW
(As shown A V = 101)
1/4
TS324
eO
+5V
AC coupled non-inverting amplifier
R2
1MW
A V= 1 + R2
R1
(as shown AV = 11)
C1
0.1mF
Co
0
eo
CI
e O (V)
R1
10kW
R2
1MW
RB
6.2kW
eI ~
R3
1MW
RL
10kW
R4
100kW
VCC
0
Figure 6.
e1
DC summing amplifier
100kW
eO
100kW
e2
100kW
e3
100kW
100kW
e4
6/12
e I (mV)
100kW
C2
10mF
R5
100kW
2VPP
TS321
Macromodel
4
Macromodel
Note:
Please consider following remarks before using this macromodel:
All models are a trade-off between accuracy and complexity (i.e. simulation time).
Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a
design approach and help to select surrounding component values.
A macromodel emulates the NOMINAL performance of a TYPICAL device within
SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the
macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main
parameters of the product.
Data issued from macromodels used outside of its specified conditions (Vcc, Temperature,
etc) or even worse: outside of the device operating conditions (Vcc, Vicm, etc) are not
reliable in any way.
** Standard Linear Ics Macromodels, 1993.
** CONNECTIONS :
* 1 INVERTING INPUT
* 2 NON-INVERTING INPUT
* 3 OUTPUT
* 4 POSITIVE POWER SUPPLY
* 5 NEGATIVE POWER SUPPLY
.SUBCKT TS321 1 2 3 4 5
***************************
.MODEL MDTH D IS=1E-8 KF=3.104131E-15 CJO=10F
* INPUT STAGE
CIP 2 5 1.000000E-12
CIN 1 5 1.000000E-12
EIP 10 5 2 5 1
EIN 16 5 1 5 1
RIP 10 11 2.600000E+01
RIN 15 16 2.600000E+01
RIS 11 15 2.003862E+02
DIP 11 12 MDTH 400E-12
DIN 15 14 MDTH 400E-12
VOFP 12 13 DC 0
VOFN 13 14 DC 0
IPOL 13 5 1.000000E-05
CPS 11 15 3.783376E-09
DINN 17 13 MDTH 400E-12
VIN 17 5 0.000000e+00
DINR 15 18 MDTH 400E-12
VIP 4 18 2.000000E+00
FCP 4 5 VOFP 3.400000E+01
FCN 5 4 VOFN 3.400000E+01
FIBP 2 5 VOFN 2.000000E-03
FIBN 5 1 VOFP 2.000000E-03
* AMPLIFYING STAGE
FIP 5 19 VOFP 3.600000E+02
FIN 5 19 VOFN 3.600000E+02
RG1 19 5 3.652997E+06
RG2 19 4 3.652997E+06
CC 19 5 6.000000E-09
7/12
Macromodel
TS321
DOPM 19 22 MDTH 400E-12
DONM 21 19 MDTH 400E-12
HOPM 22 28 VOUT 7.500000E+03
VIPM 28 4 1.500000E+02
HONM 21 27 VOUT 7.500000E+03
VINM 5 27 1.500000E+02
EOUT 26 23 19 5 1
VOUT 23 5 0
ROUT 26 3 20
COUT 3 5 1.000000E-12
DOP 19 25 MDTH 400E-12
VOP 4 25 2.242230E+00
DON 24 19 MDTH 400E-12
VON 24 5 7.922301E-01
.ENDS
Table 3.
VCC+ = 3V, VCC- = 0V, RL, CL connected to VCC/2, Tamb = 25°C (unless otherwise specified)
Symbol
Conditions
Vio
Unit
0
mV
Avd
RL = 2kΩ
100
V/mV
ICC
No load, per operator
300
µA
0 to +3.5
V
Vicm
VOH
RL = 2kΩ
+3.5
V
VOL
RL = 2kΩ
5
mV
Vo = 0V
40
mA
GBP
RL = 2kΩ, CL = 100pF
0.8
MHz
SR
RL = 2kΩ, CL = 100pF
0.4
V/µs
∅m
RL = 2kΩ, CL = 100pF
60
Degrees
Ios
8/12
Value
TS321
Macromodel
Figure 7.
ICC = f(t)
Figure 8.
AC coupled inverting amplifier
Rf
100kW
CI
A V= -
Rf
R1
(as shown AV = -10)
R1
10kW
Co
0
eo
eI ~
R2
VCC 100kW
RB
6.2kW
R3
100kW
2VPP
RL
10kW
C1
10mF
Figure 9.
Non-inverting DC gain
Figure 10. AC coupled non-inverting amplifier
R1
100kW
A V = 1 + R2
R1
10kW
(As shown A V = 101)
1/4
TS324
eO
+5V
R2
1MW
A V= 1 + R2
R1
(as shown AV = 11)
C1
0.1mF
Co
0
eo
CI
e O (V)
R1
10kW
R2
1MW
RB
6.2kW
eI ~
R3
1MW
2VPP
RL
10kW
R4
100kW
VCC
0
e I (mV)
C2
10mF
R5
100kW
Figure 11. DC summing amplifier
e1
100kW
eO
100kW
e2
100kW
e3
100kW
100kW
e4
100kW
9/12
Package Mechanical Data
5
TS321
Package Mechanical Data
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second level interconnect. The category of
second level interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label. ECOPACK is an ST trademark.
ECOPACK specifications are available at: www.st.com.
5.1
SO-8 Package
SO-8 MECHANICAL DATA
DIM.
mm.
MIN.
TYP
inch
MAX.
MIN.
TYP.
MAX.
A
1.35
1.75
0.053
0.069
A1
0.10
0.25
0.04
0.010
A2
1.10
1.65
0.043
0.065
B
0.33
0.51
0.013
0.020
C
0.19
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
3.80
4.00
0.150
e
1.27
0.157
0.050
H
5.80
6.20
0.228
0.244
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
k
ddd
8˚ (max.)
0.1
0.04
0016023/C
10/12
TS321
5.2
Package Mechanical Data
SOT23-5 Package
SOT23-5L MECHANICAL DATA
mm.
mils
DIM.
MIN.
TYP
MAX.
MIN.
TYP.
MAX.
A
0.90
1.45
35.4
57.1
A1
0.00
0.15
0.0
5.9
A2
0.90
1.30
35.4
51.2
b
0.35
0.50
13.7
19.7
C
0.09
0.20
3.5
7.8
D
2.80
3.00
110.2
118.1
E
2.60
3.00
102.3
118.1
E1
1.50
1.75
59.0
68.8
e
0 .95
37.4
e1
1.9
74.8
L
0.35
0.55
13.7
21.6
11/12
Revision history
6
TS321
Revision history
Table 4.
Document revision history
Date
Revision
June 2001
1
– Initial release.
July 2005
2
– PPAP references inserted in the datasheet see table order
codes table on page 1.
– ESD protection inserted in Table 1 on page 3
Sept. 2005
3
– Correction of errors in package names and markings in order
codes table on page 1.
– Minor grammatical and formatting corrections.
4
– Missing PPAP references inserted see order codes table on
page 1.
– Thermal Resistance Junction to Ambient and Thermal
Resistance Junction to Case information added in Table 1 on
page 3.
– Macromodel updated see Chapter 4: Macromodel.
Dec. 2005
Changes
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are
subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products
are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 12 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
12/12