FREESCALE XPC8260ZUHFBC

Freescale Semiconductor
Document Number: MPC8260EC
Rev. 2, 05/2010
Technical Data
MPC8260
PowerQUICC II Integrated
Communications Processor
Hardware Specifications
This document contains detailed information on power
considerations, DC/AC electrical characteristics, and AC
timing specifications for the .29 μm (HiP3) devices of the
PowerQUICC II family of communications processors: the
MPC8260 and the MPC8255. Throughout this document,
the MPC8260 and the MPC8255 are collectively referred to
as the MPC8260.
© 2010 Freescale Semiconductor, Inc. All rights reserved.
1.
2.
3.
4.
5.
6.
7.
Contents
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Electrical and Thermal Characteristics . . . . . . . . . . . . 5
Clock Configuration Modes . . . . . . . . . . . . . . . . . . . 20
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Package Description . . . . . . . . . . . . . . . . . . . . . . . . . 37
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 39
Document Revision History . . . . . . . . . . . . . . . . . . . 39
Features
Figure 1 shows the block diagram for the MPC8260.
16 Kbytes
I-Cache
I-MMU
System Interface Unit
(SIU)
G2 Core
16 Kbytes
D-Cache
Bus Interface Unit
D-MMU
60x-to-Local
Bridge
60x Bus
Local Bus
32 bits, up to 66 MHz
Memory Controller
Communication Processor Module (CPM)
Clock Counter
Timers
Serial
DMAs
24 Kbytes
Dual-Port RAM
Interrupt
Controller
System Functions
Parallel I/O
32-bit RISC Microcontroller
and Program ROM
Baud Rate
Generators
MCC11
MCC2
FCC1
FCC2
FCC31
SCC1
SCC2
2 Virtual
IDMAs
SCC3
SCC4
SMC1
SMC2
SPI
I2C
Time Slot Assigner
Serial Interface
8 TDM Ports2
3 MII
Ports3
2 UTOPIA
Ports
Non-Multiplexed
I/O
Notes:
1 Not on MPC8255
2 4 on the MPC8255
3 2 on the MPC8255
Figure 1. MPC8260 Block Diagram
1
Features
The major features of the MPC8260 are as follows:
• Dual-issue integer core
— A core version of the EC603e microprocessor
— System core microprocessor supporting frequencies of 133–200 MHz (150–200 MHz for the
MPC8255)
— Separate 16-Kbyte data and instruction caches:
– Four-way set associative
– Physically addressed
– LRU replacement algorithm
— PowerPC architecture-compliant memory management unit (MMU)
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
2
Freescale Semiconductor
Features
•
•
•
•
•
•
•
•
— Common on-chip processor (COP) test interface
— High-performance (4.4–5.1 SPEC95 benchmark at 200 MHz; 280 Dhrystones MIPS at
200 MHz)
— Supports bus snooping for data cache coherency
— Floating-point unit (FPU)
Separate power supply for internal logic and for I/O
Separate PLLs for G2 core and for the CPM
— G2 core and CPM can run at different frequencies for power/performance optimization
— Internal core/bus clock multiplier that provides 1.5:1, 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
— Internal CPM/bus clock multiplier that provides 2:1, 2.5:1, 3:1, 3.5:1, 4:1, 5:1, 6:1 ratios
64-bit data and 32-bit address 60x bus
— Bus supports multiple master designs
— Supports single- and four-beat burst transfers
— 64-, 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
— Supports data parity or ECC and address parity
32-bit data and 18-bit address local bus
— Single-master bus, supports external slaves
— Eight-beat burst transfers
— 32-, 16-, and 8-bit port sizes controlled by on-chip memory controller
System interface unit (SIU)
— Clock synthesizer
— Reset controller
— Real-time clock (RTC) register
— Periodic interrupt timer
— Hardware bus monitor and software watchdog timer
— IEEE Std 1149.1™ JTAG test access port
Twelve-bank memory controller
— Glueless interface to SRAM, page mode SDRAM, DRAM, EPROM, Flash and other userdefinable peripherals
— Byte write enables and selectable parity generation
— 32-bit address decodes with programmable bank size
— Three user programmable machines, general-purpose chip-select machine, and page-mode
pipeline SDRAM machine
— Byte selects for 64 bus width (60x) and byte selects for 32 bus width (local)
— Dedicated interface logic for SDRAM
CPU core can be disabled and the device can be used in slave mode to an external core
Communications processor module (CPM)
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
3
Features
— Embedded 32-bit communications processor (CP) uses a RISC architecture for flexible support
for communications protocols
— Interfaces to G2 core through on-chip 24-Kbyte dual-port RAM and DMA controller
— Serial DMA channels for receive and transmit on all serial channels
— Parallel I/O registers with open-drain and interrupt capability
— Virtual DMA functionality executing memory-to-memory and memory-to-I/O transfers
— Three fast communications controllers (two on the MPC8255) supporting the following
protocols:
– 10/100-Mbit Ethernet/IEEE Std 802.3™ CDMA/CS interface through media independent
interface (MII)
– ATM—Full-duplex SAR protocols at 155 Mbps, through UTOPIA interface, AAL5, AAL1,
AAL0 protocols, TM 4.0 CBR, VBR, UBR, ABR traffic types, up to 16 K external
connections
– Transparent
– HDLC—Up to T3 rates (clear channel)
— Two multichannel controllers (MCCs) (only MCC2 on the MPC8255)
– Each MCC handles 128 serial, full-duplex, 64-Kbps data channels. Each MCC can be split
into four subgroups of 32 channels each.
– Almost any combination of subgroups can be multiplexed to single or multiple TDM
interfaces up to four TDM interfaces per MCC
— Four serial communications controllers (SCCs) identical to those on the MPC860, supporting
the digital portions of the following protocols:
– Ethernet/IEEE 802.3 CDMA/CS
– HDLC/SDLC and HDLC bus
– Universal asynchronous receiver transmitter (UART)
– Synchronous UART
– Binary synchronous (BISYNC) communications
– Transparent
— Two serial management controllers (SMCs), identical to those of the MPC860
– Provide management for BRI devices as general circuit interface (GCI) controllers in timedivision-multiplexed (TDM) channels
– Transparent
– UART (low-speed operation)
— One serial peripheral interface identical to the MPC860 SPI
— One inter-integrated circuit (I2C) controller (identical to the MPC860 I2C controller)
– Microwire compatible
– Multiple-master, single-master, and slave modes
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
4
Freescale Semiconductor
Electrical and Thermal Characteristics
— Up to eight TDM interfaces (4 on the MPC8255)
– Supports two groups of four TDM channels for a total of eight TDMs
– 2,048 bytes of SI RAM
– Bit or byte resolution
– Independent transmit and receive routing, frame synchronization
– Supports T1, CEPT, T1/E1, T3/E3, pulse code modulation highway, ISDN basic rate, ISDN
primary rate, Freescale interchip digital link (IDL), general circuit interface (GCI), and
user-defined TDM serial interfaces
— Eight independent baud rate generators and 20 input clock pins for supplying clocks to FCCs,
SCCs, SMCs, and serial channels
— Four independent 16-bit timers that can be interconnected as two 32-bit timers
2
Electrical and Thermal Characteristics
This section provides AC and DC electrical specifications and thermal characteristics for the MPC8260.
2.1
DC Electrical Characteristics
This section describes the DC electrical characteristics for the MPC8260. Table 1 shows the maximum
electrical ratings.
Table 1. Absolute Maximum Ratings1
Rating
Symbol
Value
Unit
Core supply voltage2
VDD
-0.3 – 2.75
V
PLL supply voltage2
VCCSYN
-0.3 – 2.75
V
I/O supply voltage3
VDDH
-0.3 – 4.0
V
voltage4
VIN
GND(-0.3) – 3.6
V
Tj
120
°C
TSTG
(-55) – (+150)
°C
Input
Junction temperature
Storage temperature range
Note:
1
Absolute maximum ratings are stress ratings only; functional operation (see Table 2) at the maximums is not
guaranteed. Stress beyond those listed may affect device reliability or cause permanent damage.
2 Caution: VDD/VCCSYN must not exceed VDDH by more than 0.4 V at any time, including during power-on reset.
3
Caution: VDDH can exceed VDD/VCCSYN by 3.3 V during power on reset by no more than 100 mSec. VDDH should
not exceed VDD/VCCSYN by more than 2.0 V during normal operation.
4 Caution: VIN must not exceed VDDH by more than 2.5 V at any time, including during power-on reset.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
5
Electrical and Thermal Characteristics
Table 2 lists recommended operational voltage conditions.
Table 2. Recommended Operating Conditions1
Symbol
2.5-V Device2
Unit
Core supply voltage
VDD
2.4–2.7
V
PLL supply voltage
VCCSYN
2.4–2.7
V
I/O supply voltage
VDDH
3.135 – 3.465
V
VIN
GND (-0.3) – 3.465
V
Tj
105
°C
Rating
Input voltage
Junction temperature (maximum)
1
Caution: These are the recommended and tested operating conditions. Proper device operating outside of these
conditions is not guaranteed.
2
Parts labeled with an “-HVA” suffix are 2.6-V devices.
NOTE: Core, PLL, and I/O Supply Voltages
VDDH, VCCSYN, and VDD must track each other and both must vary in
the same direction—in the positive direction (+5% and +0.1 Vdc) or in the
negative direction (–5% and –0.1 Vdc).
This device contains circuitry protecting against damage due to high static voltage or electrical fields;
however, it is advised that normal precautions be taken to avoid application of any voltages higher than
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused
inputs are tied to an appropriate logic voltage level (either GND or VCC).
Figure 2 shows the undershoot and overshoot voltage of the 60x and local bus memory interface of the
MPC8280. Note that in PCI mode the I/O interface is different.
VIH
VIL
4V
GVDD + 5%
GVDD
GND
GND – 0.3 V
GND – 1.0 V
Not to exceed 10%
of tSDRAM_CLK
Figure 2. Overshoot/Undershoot Voltage
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
6
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 3 shows DC electrical characteristics.
Table 3. DC Electrical Characteristics1
Characteristic
Symbol
Min
Max
Unit
Input high voltage, all inputs except CLKIN
VIH
2.0
3.465
V
Input low voltage
VIL
GND
0.8
V
VIHC
2.4
3.465
V
VILC
GND
0.4
V
IIN
—
10
µA
IOZ
—
10
µA
Signal low input current, VIL = 0.8 V
IL
—
1
µA
Signal high input current, VIH = 2.0 V
IH
—
1
µA
VOH
2.4
—
V
VOL
—
0.5
V
CLKIN input high voltage
CLKIN input low voltage
Input leakage current, VIN = VDDH
2
Hi-Z (off state) leakage current, VIN = VDDH2
Output high voltage, IOH = –2 mA
except XFC, UTOPIA mode, and open drain pins
In UTOPIA mode: IOH = -8.0mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
In UTOPIA mode: IOL = 8.0mA
PA[0-31]
PB[4-31]
PC[0-31]
PD[4-31]
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
7
Electrical and Thermal Characteristics
Table 3. DC Electrical Characteristics1 (continued)
Characteristic
IOL = 7.0mA
BR
BG
ABB/IRQ2
TS
A[0-31]
TT[0-4]
TBST
TSIZE[0–3]
AACK
ARTRY
DBG
DBB/IRQ3
D[0-63]
DP(0)/RSRV/EXT_BR2
DP(1)/IRQ1/EXT_BG2
DP(2)/TLBISYNC/IRQ2/EXT_DBG2
DP(3)/IRQ3/EXT_BR3/CKSTP_OUT
DP(4)/IRQ4/EXT_BG3/CORE_SREST
DP(5)/TBEN/IRQ5/EXT_DBG3
DP(6)/CSE(0)/IRQ6
DP(7)/CSE(1)/IRQ7
PSDVAL
TA
TEA
GBL/IRQ1
CI/BADDR29/IRQ2
WT/BADDR30/IRQ3
L2_HIT/IRQ4
CPU_BG/BADDR31/IRQ5
CPU_DBG
CPU_BR
IRQ0/NMI_OUT
IRQ7/INT_OUT/APE
PORESET
HRESET
SRESET
RSTCONF
QREQ
Symbol
Min
Max
Unit
VOL
—
0.4
V
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
8
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 3. DC Electrical Characteristics1 (continued)
Characteristic
IOL = 5.3mA
CS[0-9]
CS(10)/BCTL1
CS(11)/AP(0)
BADDR[27–28]
ALE
BCTL0
PWE(0:7)/PSDDQM(0:7)/PBS(0:7)
PSDA10/PGPL0
PSDWE/PGPL1
POE/PSDRAS/PGPL2
PSDCAS/PGPL3
PGTA/PUPMWAIT/PGPL4/PPBS
PSDAMUX/PGPL5
LWE[0–3]LSDDQM[0:3]/LBS[0–3]
LSDA10/LGPL0
LSDWE/LGPL1
LOE/LSDRAS/LGPL2
LSDCAS/LGPL3
LGTA/LUPMWAIT/LGPL4/LPBS
LSDAMUX3/LGPL5
LWR
MODCK1/AP(1)/TC(0)/BNKSEL(0)
MODCK2/AP(2)/TC(1)/BNKSEL(1)
MODCK3/AP(3)/TC(2)/BNKSEL(2)
IOL = 3.2mA
L_A14
L_A15/SMI
L_A16
L_A17/CKSTP_OUT
L_A18
L_A19
L_A20
L_A21
L_A22
L_A23
L_A24
L_A25
L_A26
L_A27
L_A28/CORE_SRESET
L_A29
L_A30
L_A31
LCL_D(0-31)
LCL_DP(0-3)
PA[0–31]
PB[4–31]
PC[0–31]
PD[4–31]
TDO
Symbol
Min
Max
Unit
VOL
—
0.4
V
1
The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current,
it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.
2 The leakage current is measured for nominal VDD, VCCSYN, and VDD.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
9
Electrical and Thermal Characteristics
3
Rev C.2 silicon only.
2.2
Thermal Characteristics
Table 4 describes thermal characteristics.
Table 4. Thermal Characteristics
Characteristics
Thermal resistance for TBGA
Symbol
Value
Unit
Air Flow
θJA
13.071
°C/W
NC2
θJA
9.551
°C/W
1 m/s
θJA
10.483
°C/W
NC
θJA
7.783
°C/W
1 m/s
Note:
1
Assumes a single layer board with no thermal vias
Natural convection
3 Assumes a four layer board
2
2.3
Power Considerations
The average chip-junction temperature, TJ, in °C can be obtained from the following:
TJ = TA + (PD x θJA)
(1)
where
TA = ambient temperature °C
θJA = package thermal resistance, junction to ambient, °C/W
PD = PINT + PI/O
PINT = IDD x VDD Watts (chip internal power)
PI/O = power dissipation on input and output pins (determined by user)
For most applications PI/O < 0.3 x PINT. If PI/O is neglected, an approximate relationship between PD and
TJ is the following:
PD = K/(T J + 273° C)
(2)
Solving equations (1) and (2) for K gives:
K = PD x (TA + 273° C) + θJA x PD2
(3)
where K is a constant pertaining to the particular part. K can be determined from equation (3) by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by
solving equations (1) and (2) iteratively for any value of TA.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
10
Freescale Semiconductor
Electrical and Thermal Characteristics
2.3.1
Layout Practices
Each VCC pin should be provided with a low-impedance path to the board’s power supply. Each ground
pin should likewise be provided with a low-impedance path to ground. The power supply pins drive
distinct groups of logic on chip. The VCC power supply should be bypassed to ground using at least four
0.1 µF by-pass capacitors located as close as possible to the four sides of the package. The capacitor leads
and associated printed circuit traces connecting to chip VCC and ground should be kept to less than half an
inch per capacitor lead. A four-layer board is recommended, employing two inner layers as VCC and GND
planes.
All output pins on the MPC8260 have fast rise and fall times. Printed circuit (PC) trace interconnection
length should be minimized in order to minimize overdamped conditions and reflections caused by these
fast output switching times. This recommendation particularly applies to the address and data buses.
Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all
device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and
bypassing becomes especially critical in systems with higher capacitive loads because these loads create
higher transient currents in the VCC and GND circuits. Pull up all unused inputs or signals that will be
inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins.
Table 5 provides preliminary, estimated power dissipation for various configurations. Note that suitable
thermal management is required for conditions above PD = 3W (when the ambient temperature is 70° C or
greater) to ensure the junction temperature does not exceed the maximum specified value. Also note that
the I/O power should be included when determining whether to use a heat sink.
Table 5. Estimated Power Dissipation for Various Configurations1
PINT (W)2
Bus
(MHz)
CPM
Multiplier
CPU
Multiplier
CPM
(MHz)
CPU
(MHz)
Vddl
2.4
2.5
2.6
2.7
2.83
33.3
4
4
133.3
133.3
2.04
2.14
2.26
2.38
2.50
50.0
2
3
100
150.0
2.21
2.30
2.45
2.59
2.69
66.7
2
2.5
133.3
166.7
2.47
2.62
2.74
2.88
3.02
66.7
2.5
2.5
166.7
166.7
2.57
2.69
2.83
2.98
3.12
66.7
2
3
133.3
200.0
2.81
2.95
3.12
3.29
3.43
66.7
2.5
3
166.7
200.0
2.88
3.05
3.22
3.38
3.55
50.0
3
4
150
200.0
2.83
3.00
3.14
3.31
3.48
Note:
1
Test temperature = room temperature (25° C)
PINT = IDD x VDD Watts
3
2.8 Vddl does not apply to HiP3 Rev C silicon.
2
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
11
Electrical and Thermal Characteristics
2.4
AC Electrical Characteristics
The following sections include illustrations and tables of clock diagrams, signals, and CPM outputs and
inputs for the 66 MHz MPC8260 device. Note that AC timings are based on a 50-pf load. Typical output
buffer impedances are shown in Table 6.
Table 6. Output Buffer Impedances1
Output Buffers
Typical Impedance (Ω)
60x bus
40
Local bus
40
Memory controller
40
Parallel I/O
46
Note:
1
These are typical values at 65° C. The impedance
may vary by ±25% with process and temperature.
Table 7 lists CPM output characteristics.
Table 7. AC Characteristics for CPM Outputs1
Spec Number
Max Delay (ns)
Min Delay (ns)
66 MHz
66 MHz
Characteristic
Max
Min
sp36a
sp37a
FCC outputs—internal clock (NMSI)
6
1
sp36b
sp37b
FCC outputs—external clock (NMSI)
14
2
sp40
sp41
TDM outputs/SI
25
5
sp38a
sp39a
SCC/SMC/SPI/I2C outputs—internal clock (NMSI)
19
1
sp38b
sp39b
Ex_SCC/SMC/SPI/I2C outputs—external clock (NMSI)
19
2
sp42
sp43
PIO/TIMER/IDMA outputs
14
1
Note:
1
Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are
measured at the pin.
Table 8 lists CPM input characteristics.
NOTE: Rise/Fall Time on CPM Input Pins
It is recommended that the rise/fall time on CPM input pins should not
exceed 5 ns. This should be enforced especially on clock signals. Rise time
refers to signal transitions from 10% to 90% of VCC; fall time refers to
transitions from 90% to 10% of VCC.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
12
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 8. AC Characteristics for CPM Inputs1
Spec Number
Setup (ns)
Hold (ns)
66 MHz
66 MHz
Characteristic
Setup
Hold
sp16a
sp17a
FCC inputs—internal clock (NMSI)
10
0
sp16b
sp17b
FCC inputs—external clock (NMSI)
3
3
sp20
sp21
TDM inputs/SI
15
12
sp18a
sp19a
SCC/SMC/SPI/I2C inputs—internal clock (NMSI)
20
0
sp18b
sp19b
SCC/SMC/SPI/I2C inputs—external clock (NMSI)
5
5
sp22
sp23
PIO/TIMER/IDMA inputs
10
3
Note:
1
Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
Note that although the specifications generally reference the rising edge of the clock, the following AC
timing diagrams also apply when the falling edge is the active edge.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
13
Electrical and Thermal Characteristics
Figure 3 shows the FCC external clock.
Serial ClKin
sp17b
sp16b
FCC input signals
sp36b/sp37b
FCC output signals
Note: When GFMR[TCI] = 0
sp36b/sp37b
FCC output signals
Note: When GFMR[TCI] = 1
Figure 3. FCC External Clock Diagram
Figure 4 shows the FCC internal clock.
BRG_OUT
sp17a
sp16a
FCC input signals
sp36a/sp37a
FCC output signals
Note: When GFMR[TCI] = 0
sp36a/sp37a
FCC output signals
Note: When GFMR.[TCI] = 1
Figure 4. FCC Internal Clock Diagram
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
14
Freescale Semiconductor
Electrical and Thermal Characteristics
Figure 5 shows the SCC/SMC/SPI/I2C external clock.
Serial CLKin
sp18b
sp19b
SCC/SMC/SPI/I2C input signals
(See note)
sp38b/sp39b
SCC/SMC/SPI/I2C output signals
(See note)
Note: There are four possible timing conditions for SCC and SPI:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 5. SCC/SMC/SPI/I2C External Clock Diagram
Figure 6 shows the SCC/SMC/SPI/I2C internal clock.
BRG_OUT
sp18a
sp19a
SCC/SMC/SPI/I2C input signals
(See note)
sp38a/sp39a
SCC/SMC/SPI/I2C output signals
(See note)
Note: There are four possible timing conditions for SCC and SPI:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 6. SCC/SMC/SPI/I2C Internal Clock Diagram
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
15
Electrical and Thermal Characteristics
Figure 7 shows PIO, timer, and DMA signals.
Sys clk
sp23
sp22
PIO/IDMA/TIMER[TGATE assertion] input signals
(See note)
sp23
sp22
TIMER input signal [TGATE deassertion]
(See note)
sp42/sp43
IDMA output signals
sp42/sp43
TIMER/PIO
output signals
Note: TGATE is asserted on the rising edge of the clock; it is deasserted on the falling edge.
Figure 7. PIO, Timer, and DMA Signal Diagram
Table 9 lists SIU input characteristics.
Table 9. AC Characteristics for SIU Inputs1
Spec Number
Setup (ns)
Hold (ns)
66 MHz
66 MHz
Characteristic
Setup
Hold
sp11
sp10
AACK/ARTRY/TA/TS/TEA/DBG/BG/BR
6
1
sp12
sp10
Data bus in normal mode
5
1
sp13
sp10
Data bus in ECC and PARITY modes
8
1
sp14
sp10
DP pins
8
1
sp14
sp10
All other pins
5
1
Note:
1
Input specifications are measured from the 50% level of the signal to the 50% level of the rising edge of CLKIN. Timings are
measured at the pin.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
16
Freescale Semiconductor
Electrical and Thermal Characteristics
Table 10 lists SIU output characteristics.
Table 10. AC Characteristics for SIU Outputs1
Spec Number
Max Delay (ns)
Min Delay (ns)
66 MHz
66 MHz
Characteristic
Max
Min
sp31
sp30
PSDVAL/TEA/TA
10
0.5
sp32
sp30
ADD/ADD_atr./BADDR/CI/GBL/WT
8
0.5
sp33a
sp30
Data bus
8
0.5
sp33b
sp30
DP
12
0.5
sp34
sp30
memc signals/ALE
6
0.5
sp35
sp30
all other signals
7.5
0.5
Note:
1
Output specifications are measured from the 50% level of the rising edge of CLKIN to the 50% level of the signal. Timings are
measured at the pin.
NOTE
Activating data pipelining (setting BRx[DR] in the memory controller)
improves the AC timing. When data pipelining is activated, sp12 can be
used for data bus setup even when ECC or PARITY are used. Also, sp33a
can be used as the AC specification for DP signals.
Figure 8 shows TDM input and output signals.
Serial CLKin
sp20
sp21
TDM input signals
sp40/sp41
TDM output signals
Note: There are four possible TDM timing conditions:
1. Input sampled on the rising edge and output driven on the rising edge (shown).
2. Input sampled on the rising edge and output driven on the falling edge.
3. Input sampled on the falling edge and output driven on the falling edge.
4. Input sampled on the falling edge and output driven on the rising edge.
Figure 8. TDM Signal Diagram
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
17
Electrical and Thermal Characteristics
Figure 9 shows the interaction of several bus signals.
CLKin
sp11
sp10
AACK/ARTRY/TA/TS/TEA/
DBG/BG/BR input signals
sp12
sp10
sp15
sp10
DATA bus normal mode
input signal
All other input signals
sp30
sp31
PSDVAL/TEA/TA output signals
sp32
sp30
sp33a
sp30
sp35
sp30
ADD/ADD_atr/BADDR/CI/
GBL/WT output signals
DATA bus output signals
All other output signals
Figure 9. Bus Signals
Figure 10 shows signal behavior for all parity modes (including ECC, RMW parity, and standard parity).
CLKin
sp10
sp13
DATA bus, ECC, and PARITY mode input signals
sp10
sp14
DP mode input signal
sp33b/sp30
DP mode output signal
Figure 10. Parity Mode Diagram
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
18
Freescale Semiconductor
Electrical and Thermal Characteristics
Figure 11 shows signal behavior in MEMC mode.
CLKin
V_CLK
sp34/sp30
Memory controller signals
Figure 11. MEMC Mode Diagram
NOTE
Generally, all MPC8260 bus and system output signals are driven from the
rising edge of the input clock (CLKin). Memory controller signals,
however, trigger on four points within a CLKin cycle. Each cycle is divided
by four internal ticks: T1, T2, T3, and T4. T1 always occurs at the rising
edge, and T3 at the falling edge, of CLKin. However, the spacing of T2 and
T4 depends on the PLL clock ratio selected, as shown in Table 11.
Table 11. Tick Spacing for Memory Controller Signals
Tick Spacing (T1 Occurs at the Rising Edge of CLKin)
PLL Clock Ratio
T2
T3
T4
1:2, 1:3, 1:4, 1:5, 1:6
1/4 CLKin
1/2 CLKin
3/4 CLKin
1:2.5
3/10 CLKin
1/2 CLKin
8/10 CLKin
1:3.5
4/14 CLKin
1/2 CLKin
11/14 CLKin
Figure 12 is a graphical representation of Table 11.
CLKin
for 1:2, 1:3, 1:4, 1:5, 1:6
T1
T2
T3
T4
CLKin
for 1:2.5
T1
T2
T3
T4
for 1:3.5
CLKin
T1
T2
T3
T4
Figure 12. Internal Tick Spacing for Memory Controller Signals
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
19
Clock Configuration Modes
NOTE
The UPM machine outputs change on the internal tick determined by the
memory controller programming; the AC specifications are relative to the
internal tick. Note that SDRAM and GPCM machine outputs change on
CLKin’s rising edge.
3
Clock Configuration Modes
To configure the main PLL multiplication factor and the core, CPM, and 60x bus frequencies, the
MODCK[1–3] pins are sampled while HRESET is asserted. Table 12 shows the eight basic configuration
modes. Another 49 modes are available by using the configuration pin (RSTCONF) and driving four pins
on the data bus.
NOTE
Clock configurations change only after POR is asserted.
3.1
Local Bus Mode
Table 12 describes default clock modes for the MPC8260.
Table 12. Clock Default Modes
MODCK[1–3]
Input Clock
Frequency
CPM Multiplication
Factor
CPM
Frequency
000
33 MHz
3
100 MHz
4
133 MHz
001
33 MHz
3
100 MHz
5
166 MHz
010
33 MHz
4
133 MHz
4
133 MHz
011
33 MHz
4
133 MHz
5
166 MHz
100
66 MHz
2
133 MHz
2.5
166 MHz
101
66 MHz
2
133 MHz
3
200 MHz
110
66 MHz
2.5
166 MHz
2.5
166 MHz
111
66 MHz
2.5
166 MHz
3
200 MHz
Core Multiplication Factor Core Frequency
Table 13 describes all possible clock configurations when using the hard reset configuration sequence.
Note also that basic modes are shown in boldface type.
Table 13. Clock Configuration Modes1
MODCK_H–MODCK[1–3]
Input Clock
Frequency2,3,4
CPM Multiplication
Factor2, 5
CPM
Frequency2
Core Multiplication
Factor2, 6
Core
Frequency2
0001_000
33 MHz
2
66 MHz
4
133 MHz
0001_001
33 MHz
2
66 MHz
5
166 MHz
0001_010
33 MHz
2
66 MHz
6
200 MHz
0001_011
33 MHz
2
66 MHz
7
233 MHz
0001_100
33 MHz
2
66 MHz
8
266 MHz
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
20
Freescale Semiconductor
Clock Configuration Modes
Table 13. Clock Configuration Modes1 (continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency2,3,4
CPM Multiplication
Factor2, 5
CPM
Frequency2
Core Multiplication
Factor2, 6
Core
Frequency2
0001_101
33 MHz
3
100 MHz
4
133 MHz
0001_110
33 MHz
3
100 MHz
5
166 MHz
0001_111
33 MHz
3
100 MHz
6
200 MHz
0010_000
33 MHz
3
100 MHz
7
233 MHz
0010_001
33 MHz
3
100 MHz
8
266 MHz
0010_010
33 MHz
4
133 MHz
4
133 MHz
0010_011
33 MHz
4
133 MHz
5
166 MHz
0010_100
33 MHz
4
133 MHz
6
200 MHz
0010_101
33 MHz
4
133 MHz
7
233 MHz
0010_110
33 MHz
4
133 MHz
8
266 MHz
0010_111
33 MHz
5
166 MHz
4
133 MHz
0011_000
33 MHz
5
166 MHz
5
166 MHz
0011_001
33 MHz
5
166 MHz
6
200 MHz
0011_010
33 MHz
5
166 MHz
7
233 MHz
0011_011
33 MHz
5
166 MHz
8
266 MHz
0011_100
33 MHz
6
200 MHz
4
133 MHz
0011_101
33 MHz
6
200 MHz
5
166 MHz
0011_110
33 MHz
6
200 MHz
6
200 MHz
0011_111
33 MHz
6
200 MHz
7
233 MHz
0100_000
33 MHz
6
200 MHz
8
266 MHz
0100_001
Reserved
0100_010
0100_011
0100_100
0100_101
0100_110
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
21
Clock Configuration Modes
Table 13. Clock Configuration Modes1 (continued)
MODCK_H–MODCK[1–3]
Input Clock
Frequency2,3,4
CPM Multiplication
Factor2, 5
0100_111
CPM
Frequency2
Core Multiplication
Factor2, 6
Core
Frequency2
Reserved
0101_000
0101_001
0101_010
0101_011
0101_100
0101_101
66 MHz
2
133 MHz
2
133 MHz
0101_110
66 MHz
2
133 MHz
2.5
166 MHz
0101_111
66 MHz
2
133 MHz
3
200 MHz
0110_000
66 MHz
2
133 MHz
3.5
233 MHz
0110_001
66 MHz
2
133 MHz
4
266 MHz
0110_010
66 MHz
2
133 MHz
4.5
300 MHz
0110_011
66 MHz
2.5
166 MHz
2
133 MHz
0110_100
66 MHz
2.5
166 MHz
2.5
166 MHz
0110_101
66 MHz
2.5
166 MHz
3
200 MHz
0110_110
66 MHz
2.5
166 MHz
3.5
233 MHz
0110_111
66 MHz
2.5
166 MHz
4
266 MHz
0111_000
66 MHz
2.5
166 MHz
4.5
300 MHz
0111_001
66 MHz
3
200 MHz
2
133 MHz
0111_010
66 MHz
3
200 MHz
2.5
166 MHz
0111_011
66 MHz
3
200 MHz
3
200 MHz
0111_100
66 MHz
3
200 MHz
3.5
233 MHz
0111_101
66 MHz
3
200 MHz
4
266 MHz
0111_110
66 MHz
3
200 MHz
4.5
300 MHz
0111_111
66 MHz
3.5
233 MHz
2
133 MHz
1000_000
66 MHz
3.5
233 MHz
2.5
166 MHz
1000_001
66 MHz
3.5
233 MHz
3
200 MHz
1000_010
66 MHz
3.5
233 MHz
3.5
233 MHz
1000_011
66 MHz
3.5
233 MHz
4
266 MHz
1000_100
66 MHz
3.5
233 MHz
4.5
300 MHz
Note:
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
22
Freescale Semiconductor
Pinout
1
2
3
4
5
6
Because of speed dependencies, not all of the possible configurations in Table 13 are applicable.
The user should choose the input clock frequency and the multiplication factors such that the frequency of the CPU ranges
between 133–200 and the CPM ranges between 50–166 MHz.
Input clock frequency is given only for the purpose of reference. User should set MODCK_H–MODCK_L so that the resulting
configuration does not exceed the frequency rating of the user’s part.
60x and local bus frequency. Identical to CLKIN.
CPM multiplication factor = CPM clock/bus clock
CPU multiplication factor = Core PLL multiplication factor
4
Pinout
This section provides the pin assignments and pinout list for the MPC8260.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
23
Pinout
4.1
Pin Assignments
Figure 13 shows the pinout of the MPC8260 480 TBGA package as viewed from the top surface.
1
2
3
4 5 6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
A
B
A
B
C
C
D
E
D
E
F
F
G
G
H
J
H
J
K
K
L
M
L
M
N
N
P
P
R
T
U
V
R
T
U
V
W
W
Y
Y
AA
AB
AA
AB
AC
AC
AD
AE
AD
AE
AF
AF
AG
AG
AH
AJ
AH
AJ
1
2
3
4 5 6
7
8
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
Not to Scale
Figure 13. Pinout of the 480 TBGA Package as Viewed from the Top Surface
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
24
Freescale Semiconductor
Pinout
Figure 14 shows the side profile of the TBGA package to indicate the direction of the top surface view.
View
Copper Heat Spreader
(Oxidized for Insulation)
Die
Attach
Polymide Tape
Etched
Cavity
Pressure Sensitive
Adhesive
Die
Soldermask
Glob-Top Filled Area
Glob-Top Dam
Copper Traces
1.27 mm Pitch
Wire Bonds
Figure 14. Side View of the TBGA Package
Table 14 shows the pinout list of the MPC8260. Table 15 defines conventions and acronyms used in
Table 14.
Table 14. Pinout List
Pin Name
Ball
BR
W5
BG
F4
ABB/IRQ2
E2
TS
E3
A0
G1
A1
H5
A2
H2
A3
H1
A4
J5
A5
J4
A6
J3
A7
J2
A8
J1
A9
K4
A10
K3
A11
K2
A12
K1
A13
L5
A14
L4
A15
L3
A16
L2
A17
L1
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
25
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
A18
M5
A19
N5
A20
N4
A21
N3
A22
N2
A23
N1
A24
P4
A25
P3
A26
P2
A27
P1
A28
R1
A29
R3
A30
R5
A31
R4
TT0
F1
TT1
G4
TT2
G3
TT3
G2
TT4
F2
TBST
D3
TSIZ0
C1
TSIZ1
E4
TSIZ2
D2
TSIZ3
F5
AACK
F3
ARTRY
E1
DBG
V1
DBB/IRQ3
V2
D0
B20
D1
A18
D2
A16
D3
A13
D4
E12
D5
D9
D6
A6
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
26
Freescale Semiconductor
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
D7
B5
D8
A20
D9
E17
D10
B15
D11
B13
D12
A11
D13
E9
D14
B7
D15
B4
D16
D19
D17
D17
D18
D15
D19
C13
D20
B11
D21
A8
D22
A5
D23
C5
D24
C19
D25
C17
D26
C15
D27
D13
D28
C11
D29
B8
D30
A4
D31
E6
D32
E18
D33
B17
D34
A15
D35
A12
D36
D11
D37
C8
D38
E7
D39
A3
D40
D18
D41
A17
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
27
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
D42
A14
D43
B12
D44
A10
D45
D8
D46
B6
D47
C4
D48
C18
D49
E16
D50
B14
D51
C12
D52
B10
D53
A7
D54
C6
D55
D5
D56
B18
D57
B16
D58
E14
D59
D12
D60
C10
D61
E8
D62
D6
D63
C2
DP0/RSRV/EXT_BR2
B22
IRQ1/DP1/EXT_BG2
A22
IRQ2/DP2/TLBISYNC/EXT_DBG2
E21
IRQ3/DP3/CKSTP_OUT/EXT_BR3
D21
IRQ4/DP4/CORE_SRESET/EXT_BG3
C21
IRQ5/DP5/TBEN/EXT_DBG3
B21
IRQ6/DP6/CSE0
A21
IRQ7/DP7/CSE1
E20
PSDVAL
V3
TA
C22
TEA
V5
GBL/IRQ1
W1
CI/BADDR29/IRQ2
U2
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
28
Freescale Semiconductor
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
WT/BADDR30/IRQ3
U3
L2_HIT/IRQ4
Y4
CPU_BG/BADDR31/IRQ5
U4
CPU_DBG
R2
CPU_BR
Y3
CS0
F25
CS1
C29
CS2
E27
CS3
E28
CS4
F26
CS5
F27
CS6
F28
CS7
G25
CS8
D29
CS9
E29
CS10/BCTL1
F29
CS11/AP0
G28
BADDR27
T5
BADDR28
U1
ALE
T2
BCTL0
A27
PWE0/PSDDQM0/PBS0
C25
PWE1/PSDDQM1/PBS1
E24
PWE2/PSDDQM2/PBS2
D24
PWE3/PSDDQM3/PBS3
C24
PWE4/PSDDQM4/PBS4
B26
PWE5/PSDDQM5/PBS5
A26
PWE6/PSDDQM6/PBS6
B25
PWE7/PSDDQM7/PBS7
A25
PSDA10/PGPL0
E23
PSDWE/PGPL1
B24
POE/PSDRAS/PGPL2
A24
PSDCAS/PGPL3
B23
PGTA/PUPMWAIT/PGPL4/PPBS
A23
PSDAMUX/PGPL5
D22
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
29
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
LWE0/LSDDQM0/LBS0
H28
LWE1/LSDDQM1/LBS1
H27
LWE2/LSDDQM2/LBS2
H26
LWE3/LSDDQM3/LBS3
G29
LSDA10/LGPL0
D27
LSDWE/LGPL1
C28
LOE/LSDRAS/LGPL2
E26
LSDCAS/LGPL3
D25
LGTA/LUPMWAIT/LGPL4/LPBS
C26
LGPL5/LSDAMUX1
B27
LWR
D28
L_A14
N27
L_A15/SMI
T29
L_A16
R27
L_A17/CKSTP_OUT
R26
L_A18
R29
L_A19
R28
L_A20
W29
L_A21
P28
L_A22
N26
L_A23
AA27
L_A24
P29
L_A25
AA26
L_A26
N25
L_A27
AA25
L_A28/CORE_SRESET
AB29
L_A29
AB28
L_A30
P25
L_A31
AB27
LCL_D0
H29
LCL_D1
J29
LCL_D2
J28
LCL_D3
J27
LCL_D4
J26
LCL_D5
J25
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
30
Freescale Semiconductor
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
LCL_D6
K25
LCL_D7
L29
LCL_D8
L27
LCL_D9
L26
LCL_D10
L25
LCL_D11
M29
LCL_D12
M28
LCL_D13
M27
LCL_D14
M26
LCL_D15
N29
LCL_D16
T25
LCL_D17
U27
LCL_D18
U26
LCL_D19
U25
LCL_D20
V29
LCL_D21
V28
LCL_D22
V27
LCL_D23
V26
LCL_D24
W27
LCL_D25
W26
LCL_D26
W25
LCL_D27
Y29
LCL_D28
Y28
LCL_D29
Y25
LCL_D30
AA29
LCL_D31
AA28
LCL_DP0
L28
LCL_DP1
N28
LCL_DP2
T28
LCL_DP3
W28
IRQ0/NMI_OUT
T1
IRQ7/INT_OUT/APE
D1
TRST
AH3
TCK
AG5
TMS
AJ3
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
31
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
TDI
AE6
TDO
AF5
TRIS
AB4
PORESET
AG6
HRESET
AH5
SRESET
AF6
QREQ
AA3
RSTCONF
AJ4
MODCK1/AP1/TC0/BNKSEL0
W2
MODCK2/AP2/TC1/BNKSEL1
W3
MODCK3/AP3/TC2/BNKSEL2
W4
XFC
AB2
CLKIN1
AH4
PA0/RESTART1/DREQ3/FCC2_UTM_TXADDR2
AC292
PA1/REJECT1/FCC2_UTM_TXADDR1/DONE3
AC252
PA2/CLK20/FCC2_UTM_TXADDR0/DACK3
AE282
PA3/CLK19/FCC2_UTM_RXADDR0/DACK4/L1RXD1A2
AG292
PA4/REJECT2/FCC2_UTM_RXADDR1/DONE4
AG282
PA5/RESTART2/DREQ4/FCC2_UTM_RXADDR2
AG262
PA6/L1RSYNCA1
AE242
PA7/SMSYN2/L1TSYNCA1/L1GNTA1
AH252
PA8/SMRXD2/L1RXD0A1/L1RXDA1
AF232
PA9/SMTXD2/L1TXD0A1
AH232
PA10/FCC1_UT8_RXD0/FCC1_UT16_RXD8/MSNUM5
AE222
PA11/FCC1_UT8_RXD1/FCC1_UT16_RXD9/MSNUM4
AH222
PA12/FCC1_UT8_RXD2/FCC1_UT16_RXD10/MSNUM3
AJ212
PA13/FCC1_UT8_RXD3/FCC1_UT16_RXD11/MSNUM2
AH202
PA14/FCC1_UT8_RXD4/FCC1_UT16_RXD12/FCC1_RXD3
AG192
PA15/FCC1_UT8_RXD5/FCC1_UT16_RXD13/FCC1_RXD2
AF182
PA16/FCC1_UT8_RXD6/FCC1_UT16_RXD14/FCC1_RXD1
AF172
PA17/FCC1_UT8_RXD7/FCC1_UT16_RXD15/FCC1_RXD0/FCC1_RXD
AE162
PA18/FCC1_UT8_TXD7/FCC1_UT16_TXD15/FCC1_TXD0/FCC1_TXD
AJ162
PA19/FCC1_UT8_TXD6/FCC1_UT16_TXD14/FCC1_TXD1
AG152
PA20/FCC1_UT8_TXD5/FCC1_UT16_TXD13/FCC1_TXD2
AJ132
PA21/FCC1_UT8_TXD4/FCC1_UT16_TXD12/FCC1_TXD3
AE132
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
32
Freescale Semiconductor
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
PA22/FCC1_UT8_TXD3/FCC1_UT16_TXD11
AF122
PA23/FCC1_UT8_TXD2/FCC1_UT16_TXD10
AG112
PA24/FCC1_UT8_TXD1/FCC1_UT16_TXD9/MSNUM1
AH92
PA25/FCC1_UT8_TXD0/FCC1_UT16_TXD8/MSNUM0
AJ82
PA26/FCC1_UTM_RXCLAV/FCC1_UTS_RXCLAV/FCC1_MII_RX_ER
AH72
PA27/FCC1_UT_RXSOC/FCC1_MII_RX_DV
AF72
PA28/FCC1_UTM_RXENB/FCC1_UTS_RXENB/FCC1_MII_TX_EN
AD52
PA29/FCC1_UT_TXSOC/FCC1_MII_TX_ER
AF12
PA30/FCC1_UTM_TXCLAV/FCC1_UTS_TXCLAV/FCC1_MII_CRS/FCC1_RTS
AD32
PA31/FCC1_UTM_TXENB/FCC1_UTS_TXENB/FCC1_MII_COL
AB52
PB4/FCC3_TXD3/FCC2_UT8_RXD0/L1RSYNCA2/FCC3_RTS
AD282
PB5/FCC3_TXD2/FCC2_UT8_RXD1/L1TSYNCA2/L1GNTA2
AD262
PB6/FCC3_TXD1/FCC2_UT8_RXD2/L1RXDA2/L1RXD0A2
AD252
PB7/FCC3_TXD0/FCC3_TXD/FCC2_UT8_RXD3/L1TXDA2/L1TXD0A2
AE262
PB8/FCC2_UT8_TXD3/FCC3_RXD0/FCC3_RXD/TXD3/L1RSYNCD1
AH272
PB9/FCC2_UT8_TXD2/FCC3_RXD1/L1TXD2A2/L1TSYNCD1/L1GNTD1
AG242
PB10/FCC2_UT8_TXD1/FCC3_RXD2/L1RXDD1
AH242
PB11/FCC3_RXD3/FCC2_UT8_TXD0/L1TXDD1
AJ242
PB12/FCC3_MII_CRS/L1CLKOB1/L1RSYNCC1/TXD2
AG222
PB13/FCC3_MII_COL/L1RQB1/L1TSYNCC1/L1GNTC1/L1TXD1A2
AH212
PB14/FCC3_MII_TX_EN/RXD3/L1RXDC1
AG202
PB15/FCC3_MII_TX_ER/RXD2/L1TXDC1
AF192
PB16/FCC3_MII_RX_ER/L1CLKOA1/CLK18
AJ182
PB17/FCC3_MII_RX_DV/L1RQA1/CLK17
AJ172
PB18/FCC2_UT8_RXD4/FCC2_RXD3/L1CLKOD2/L1RXD2A2
AE142
PB19/FCC2_UT8_RXD5/FCC2_RXD2/L1RQD2/L1RXD3A2
AF132
PB20/FCC2_UT8_RXD6/FCC2_RXD1/L1RSYNCD2/L1TXD1A1
AG122
PB21/FCC2_UT8_RXD7/FCC2_RXD0/FCC2_RXD/L1TSYNCD2/L1GNTD2/
L1TXD2A1
AH112
PB22/FCC2_UT8_TXD7/FCC2_TXD0/FCC2_TXD/L1RXD1A1/L1RXDD2
AH162
PB23/FCC2_UT8_TXD6/FCC2_TXD1/L1RXD2A1/L1TXDD2
AE152
PB24/FCC2_UT8_TXD5/FCC2_TXD2/L1RXD3A1/L1RSYNCC2
AJ92
PB25/FCC2_UT8_TXD4/FCC2_TXD3/L1TSYNCC2/L1GNTC2/L1TXD3A1
AE92
PB26/FCC2_MII_CRS/FCC2_UT8_TXD1/L1RXDC2
AJ72
PB27/FCC2_MII_COL/FCC2_UT8_TXD0/L1TXDC2
AH62
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
33
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
PB28/FCC2_MII_RX_ER/FCC2_RTS/L1TSYNCB2/L1GNTB2/TXD1
AE32
PB29/FCC2_UTM_RXCLAV/FCC2_UTS_RXCLAV/L1RSYNCB2/
FCC2_MII_TX_EN
AE22
PB30/FCC2_MII_RX_DV/FCC2_UT_TXSOC/L1RXDB2
AC52
PB31/FCC2_MII_TX_ER/FCC2_UT_RXSOC/L1TXDB2
AC42
PC0/DREQ1/BRGO7/SMSYN2/L1CLKOA2
AB262
PC1/DREQ2/BRGO6/L1RQA2
AD292
PC2/FCC3_CD/FCC2_UT8_TXD3/DONE2
AE292
PC3/FCC3_CTS/FCC2_UT8_TXD2/DACK2/CTS4
AE272
PC4/FCC2_UTM_RXENB/FCC2_UTS_RXENB/SI2_L1ST4/FCC2_CD
AF272
PC5/FCC2_UTM_TXCLAV/FCC2_UTS_TXCLAV/SI2_L1ST3/FCC2_CTS
AF242
PC6/FCC1_CD/L1CLKOC1/FCC1_UTM_RXADDR2/FCC1_UTS_RXADDR2/
FCC1_UTM_RXCLAV1
AJ262
PC7/FCC1_CTS/L1RQC1/FCC1_UTM_TXADDR2/FCC1_UTS_TXADDR2/
FCC1_UTM_TXCLAV1
AJ252
PC8/CD4/RENA4/FCC1_UT16_TXD0/SI2_L1ST2/CTS3
AF222
PC9/CTS4/CLSN4/FCC1_UT16_TXD1/SI2_L1ST1/L1TSYNCA2/L1GNTA2
AE212
PC10/CD3/RENA3/FCC1_UT16_TXD2/SI1_L1ST4/FCC2_UT8_RXD3
AF202
PC11/CTS3/CLSN3/L1CLKOD1/L1TXD3A2/FCC2_UT8_RXD2
AE192
PC12/CD2/RENA2/SI1_L1ST3/FCC1_UTM_RXADDR1/FCC1_UTS_RXADDR1
AE182
PC13/CTS2/CLSN2/L1RQD1/FCC1_UTM_TXADDR1/FCC1_UTS_TXADDR1
AH182
PC14/CD1/RENA1/FCC1_UTM_RXADDR0/FCC1_UTS_RXADDR0
AH172
PC15/CTS1/CLSN1/SMTXD2/FCC1_UTM_TXADDR0/FCC1_UTS_TXADDR0
AG162
PC16/CLK16/TIN4
AF152
PC17/CLK15/TIN3/BRGO8
AJ152
PC18/CLK14/TGATE2
AH142
PC19/CLK13/BRGO7/SPICLK
AG132
PC20/CLK12/TGATE1
AH122
PC21/CLK11/BRGO6
AJ112
PC22/CLK10/DONE1
AG102
PC23/CLK9/BRGO5/DACK1
AE102
PC24/FCC2_UT8_TXD3/CLK8/TOUT4
AF92
PC25/FCC2_UT8_TXD2/CLK7/BRGO4
AE82
PC26/CLK6/TOUT3/TMCLK
AJ62
PC27/FCC3_TXD/FCC3_TXD0/CLK5/BRGO3
AG22
PC28/CLK4/TIN1/TOUT2/CTS2/CLSN2
AF32
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
34
Freescale Semiconductor
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
PC29/CLK3/TIN2/BRGO2/CTS1/CLSN1
AF22
PC30/FCC2_UT8_TXD3/CLK2/TOUT1
AE12
PC31/CLK1/BRGO1
AD12
PD4/BRGO8/L1TSYNCD1/L1GNTD1/FCC3_RTS/SMRXD2
AC282
PD5/FCC1_UT16_TXD3/DONE1
AD272
PD6/FCC1_UT16_TXD4/DACK1
AF292
PD7/SMSYN1/FCC1_UTM_TXADDR3/FCC1_UTS_TXADDR3/
FCC1_UTM_TXADDR4/FCC1_TXCLAV2
AF282
PD8/SMRXD1/FCC2_UT_TXPRTY/BRGO5
AG252
PD9/SMTXD1/FCC2_UT_RXPRTY/BRGO3
AH262
PD10/L1CLKOB2/FCC2_UT8_RXD1/L1RSYNCB1/BRGO4
AJ272
PD11/L1RQB2/FCC2_UT8_RXD0/L1TSYNCB1/L1GNTB1
AJ232
PD12/SI1_L1ST2/L1RXDB1
AG232
PD13/SI1_L1ST1/L1TXDB1
AJ222
PD14/FCC1_UT16_RXD0/L1CLKOC2/I2CSCL
AE202
PD15/FCC1_UT16_RXD1/L1RQC2/I2CSDA
AJ202
PD16/FCC1_UT_TXPRTY/L1TSYNCC1/L1GNTC1/SPIMISO
AG182
PD17/FCC1_UT_RXPRTY/BRGO2/SPIMOSI
AG172
PD18/FCC1_UTM_RXADDR4/FCC1_UTS_RXADDR4/FCC1_UTM_RXCLAV3/
SPICLK/FCC2_UTM_RXADDR3/FCC2_UTS_RXADDR0
AF162
PD19/FCC1_UTM_TXADDR4/FCC1_UTS_TXADDR4/FCC1_UTM_TXCLAV3/
SPISEL/BRGO1/FCC2_UTM_TXADDR3/FCC2_UTS_TXADDR0
AH152
PD20/RTS4/TENA4/FCC1_UT16_RXD2/L1RSYNCA2
AJ142
PD21/TXD4/FCC1_UT16_RXD3/L1RXD0A2/L1RXDA2
AH132
PD22/RXD4/FCC1_UT16_TXD5/L1TXD0A2/L1TXDA2
AJ122
PD23/RTS3/TENA3/FCC1_UT16_RXD4/L1RSYNCD1
AE122
PD24/TXD3/FCC1_UT16_RXD5/L1RXDD1
AF102
PD25/RXD3/FCC1_UT16_TXD6/L1TXDD1
AG92
PD26/RTS2/TENA2/FCC1_UT16_RXD6/L1RSYNCC1
AH82
PD27/TXD2/FCC1_UT16_RXD7/L1RXDC1
AG72
PD28/RXD2/FCC1_UT16_TXD7/L1TXDC1
AE42
PD29/RTS1/TENA1/FCC1_UTM_RXADDR3/FCC1_UTS_RXADDR3/
FCC1_UTM_RXCLAV2/FCC2_UTM_RXADDR4/FCC2_UTS_RXADDR1
AG12
PD30/FCC2_UTM_TXENB/FCC2_UTS_TXENB/TXD1
AD42
PD31/RXD1
AD22
VCCSYN
AB3
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
35
Pinout
Table 14. Pinout List (continued)
Pin Name
Ball
VCCSYN1
B9
GNDSYN
AB1
SPARE13
AE11
SPARE43
U5
SPARE54
AF25
3
SPARE6
V4
THERMAL05
AA1
THERMAL15
AG4
I/O power
AG21, AG14, AG8, AJ1, AJ2, AH1,
AH2, AG3, AF4, AE5, AC27, Y27,
T27, P27, K26, G27, AE25, AF26,
AG27, AH28, AH29, AJ28, AJ29, C7,
C14, C16, C20, C23, E10, A28, A29,
B28, B29, C27, D26, E25, H3, M4,
T3, AA4, A1, A2, B1, B2, C3, D4, E5
Core Power
U28, U29, K28, K29, A9, A19, B19,
M1, M2, Y1, Y2, AC1, AC2, AH19,
AJ19, AH10, AJ10, AJ5
Ground
AA5, AF21, AF14, AF8, AE7, AF11,
AE17, AE23, AC26, AB25, Y26, V25,
T26, R25, P26, M25, K27, H25, G26,
D7, D10, D14, D16, D20, D23, C9,
E11, E13, E15, E19, E22, B3, G5,
H4, K5, M3, P5, T4, Y5, AA2, AC3
Note:
1
Only on Rev C.2 silicon.
The default configuration of the CPM pins (PA[0–31], PB[4–31], PC[0–31], PD[4–31]) is input. To prevent excessive DC current,
it is recommended to either pull unused pins to GND or VDDH, or to configure them as outputs.
3 Must be pulled down or left floating.
4
Must be pulled down or left floating. However, if compatibility with HiP4 silicon is required, this pin must be pulled up or left
floating.
5 For information on how to use this pin, refer to MPC8260 PowerQUICC II Thermal Resistor Guide available at
www.freescale.com.
2
Symbols used in Table 14 are described in Table 15.
Table 15. Symbol Legend
Symbol
Meaning
OVERBAR
Signals with overbars, such as TA, are active low
UTM
Indicates that a signal is part of the UTOPIA master interface
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
36
Freescale Semiconductor
Package Description
Table 15. Symbol Legend (continued)
Symbol
5
Meaning
UTS
Indicates that a signal is part of the UTOPIA slave interface
UT8
Indicates that a signal is part of the 8-bit UTOPIA interface
UT16
Indicates that a signal is part of the 16-bit UTOPIA interface
MII
Indicates that a signal is part of the media independent interface
Package Description
The following sections provide the package parameters and mechanical dimensions for the MPC8260.
5.1
Package Parameters
Package parameters are provided in Table 16. The package type is a 37.5 × 37.5 mm, 480-lead TBGA.
Table 16. Package Parameters
Parameter
Value
Package Outline
37.5 x 37.5 mm
Interconnects
480 (29 x 29 ball array)
Pitch
1.27 mm
Nominal unmounted package height 1.55 mm
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
37
Package Description
5.2
Mechanical Dimensions
Figure 15 provides the mechanical dimensions and bottom surface nomenclature of the 480 TBGA
package.
Notes:
1. Dimensions and Tolerancing per
ASME Y14.5M-1994.
2. Dimensions in millimeters.
3. Dimension b is measured at the
maximum solder ball diameter, parallel
to primary data A.
Millimeters
Dim
Min
Max
A
1.45
1.65
A1
0.60
0.70
A2
0.85
0.95
A3
0.25
—
b
0.65
0.85
D
37.50 BSC
D1
35.56 REF
e
1.27 BSC
E
37.50 BSC
E1
35.56 REF
Figure 15. Mechanical Dimensions and Bottom Surface Nomenclature
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
38
Freescale Semiconductor
Ordering Information
6
Ordering Information
Figure 16 provides an example of the Freescale part numbering nomenclature for the MPC8260. In
addition to the processor frequency, the part numbering scheme also consists of a part modifier that
indicates any enhancement(s) in the part from the original production design. Each part number also
contains a revision code that refers to the die mask revision number and is specified in the part numbering
scheme for identification purposes only. For more information, contact your local Freescale sales office.
MPC 82XX C ZU XXX X XX
Die Revision Level
(Nn = Major.minor)
Product Code
Core Voltage
Device Number
Processor Frequency
(CPU/CPM/Bus)
Package
(ZU = 480 TBGA)
Temperature Range
Blank = 0 to 105 °C
C = -40 to 105 °C
Figure 16. Freescale Part Number Key
7
Document Revision History
Table 17 lists significant changes in each revision of this document.
Table 17. Document Revision History
Rev.
Number
2
Date
Substantive Change(s)
05/2010 Added a note about rise/fall time on CPM input pins above Table 8, “AC Characteristics for CPM Inputs.”
1.3
9/2005
• Document template update.
1.2
8/2003
• Note: In revision 0.7, sp30 (Table 10) was changed. This change was not previously recorded in this
“Document Revision History” Table.
• Addition of MPC8255 description to Section 1, “Features”
• Addition of Figure 2
• Addition of VCCSYN to “Note: Core, PLL, and I/O Supply Voltages” following Table 2
• Addition of note 1 to Table 3
• Addition of notes or modifications to Figure 3 through Figure 8
• Addition of reference notes 4, 5, and 6 to Table 13
• Addition of note 2 to Table 14
• Addition of SPICLK to PC19 in Table 14. It is documented correctly in the MPC8260 PowerQUICC
II™ Family Reference Manual but had previously been omitted from Table 14.
1.1
5/2002
• Section 1, “Features”: updated minimum supported core frequency to 133 MHz
• Addition of “Note” at bottom of page 5.
• Table 13: Note 3.
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
Freescale Semiconductor
39
Document Revision History
Table 17. Document Revision History (continued)
Rev.
Number
Date
1.0
3/2002
• Table 14: modified notes to pins AE11 and AF25.
• Table 14: added note to pins AA1 and AG4 (Therm0 and Therm1).
0.9
2/2002
• Table 14: additional note added to AE11
0.8
2/2002
• Table 7, Table 8, Table 9, and Table 10: revision 0.7 of this document incorrectly included values for
83 MHz. 83 MHz is not supported on the MPC8260.
• Table 14: notes added to pins at AE11, AF25, U5, and V4.
0.7
11/2001
• Revision of Table 5, “Power Dissipation”
• Modifications to Figure 9, Table 2,Table 10, Table 11
• Additional revisions to text and figures throughout
0.6
5/2001
Corrected the thermal values in Table 3, “Thermal Characteristics.”
0.2–0.5
—
0.1
1/2000
0
—
Substantive Change(s)
Temporary revisions
—
Initial version
MPC8260 PowerQUICC II Integrated Communications Processor Hardware Specifications, Rev. 2
40
Freescale Semiconductor
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or
+1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.
Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of
any product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters which may be
provided in Freescale Semiconductor data sheets and/or specifications can and do
vary in different applications and actual performance may vary over time. All operating
parameters, including “Typicals” must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku
Tokyo 153-0064
Japan
0120 191014 or
+81 3 5437 9125
[email protected]
under its patent rights nor the rights of others. Freescale Semiconductor products are
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
[email protected]
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
For Literature Requests Only:
Freescale Semiconductor
Literature Distribution Center
1-800 441-2447 or
+1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor
@hibbertgroup.com
Document Number: MPC8260EC
Rev. 2
05/2010
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.
Freescale, the Freescale logo, and PowerQUICCare trademarks of
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. QUICC Engine, is
a trademarksof Freescale Semiconductor, Inc. All other product or service
names are the property of their respective owners. The Power Architecture
and Power.org word marks and the Power and Power.org logos and related
marks are trademarks and service marks licensed by Power.org. IEEE
1149.1 and 802.3 are registered trademarks of the Institute of Electrical and
Electronics Engineers, Inc. (IEEE). This product is not endorsed or
approved by the IEEE.
© 2010 Freescale Semiconductor, Inc.