STMICROELECTRONICS STM32F030K6

STM32F030x4 STM32F030x6
STM32F030x8
Value-line ARM-based 32-bit MCU with 16 to 64-KB Flash, timers,
ADC, communication interfaces, 2.4-3.6 V operation
Datasheet target specification
Features
 Core: ARM® 32-bit Cortex™-M0 CPU,
frequency up to 48 MHz
 Memories
– 16 to 64 Kbytes of Flash memory
– 4 to 8 Kbytes of SRAM with HW parity
checking
 CRC calculation unit
 Reset and power management
– Voltage range: 2.4 V to 3.6 V
– Power-on/Power down reset (POR/PDR)
– Low power modes: Sleep, Stop, Standby
 Clock management
– 4 to 32 MHz crystal oscillator
– 32 kHz oscillator for RTC with calibration
– Internal 8 MHz RC with x6 PLL option
– Internal 40 kHz RC oscillator
 Up to 55 fast I/Os
– All mappable on external interrupt vectors
– Up to 36 I/Os with 5 V tolerant capability
LQFP64 10x10 mm
LQFP48 7x7 mm
LQFP32 7x7 mm
– One 16-bit basic timer
– Independent and system watchdog timers
– SysTick timer: 24-bit downcounter
 Calendar RTC with alarm and periodic wakeup
from Stop/Standby
 Communication interfaces
– Up to two I2C interfaces: one supporting
Fast Mode Plus (1 Mbit/s) with 20 mA
current sink
– Up to two USARTs supporting master
synchronous SPI and modem control; one
with auto baud rate detection
– Up to two SPIs (18 Mbit/s) with 4 to 16
programmable bit frame
 Serial wire debug (SWD)
 5-channel DMA controller
 1 x 12-bit, 1.0 µs ADC (up to 16 channels)
– Conversion range: 0 to 3.6 V
– Separate analog supply from 2.4 up to
3.6 V
 Up to 10 timers
– One 16-bit 7-channel advanced-control
timer for 6 channels PWM output, with
deadtime generation and emergency stop
– One 16-bit timer, with up to 4 IC/OC, usable
for IR control decoding
– One 16-bit timer, with 2 IC/OC, 1 OCN,
deadtime generation and emergency stop
– Two 16-bit timers, each with IC/OC and
OCN, deadtime generation, emergency
stop and modulator gate for IR control
– One 16-bit timer with 1 IC/OC
July 2013
TSSOP20
Table 1. Device summary
Reference
Part number
STM32F030x4
STM32F030F4
STM32F030x6
STM32F030C6, STM32F030K6
STM32F030x8
STM32F030C8, STM32F030R8
DocID024849 Rev 1
1/88
www.st.com
Contents
STM32F030x4 STM32F030x6 STM32F030x8
Contents
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3
Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1
ARM® CortexTM-M0 core with embedded Flash and SRAM . . . . . . . . . 12
3.2
Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3
Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4
Cyclic redundancy check calculation unit (CRC) . . . . . . . . . . . . . . . . . . . 13
3.5
Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.2
Power supply supervisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.3
Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.5.4
Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.6
Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.7
General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8
Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.9
Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.10
3.11
2/88
3.5.1
3.9.1
Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 16
3.9.2
Extended interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . 16
Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.1
Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.10.2
Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.1
Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.11.2
General-purpose timers (TIM3, TIM14..17) . . . . . . . . . . . . . . . . . . . . . . 19
3.11.3
Basic timer TIM6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.4
Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.11.5
System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.11.6
SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.12
Real-time clock (RTC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.13
Inter-integrated circuit interfaces (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.14
Universal synchronous/asynchronous receiver transmitters (USART) . . 22
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Contents
3.15
Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.16
Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4
Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5
Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1
Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.1
Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.2
Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.3
Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.4
Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.5
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.1.6
Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1.7
Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.3
Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.1
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3.2
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 41
6.3.3
Embedded reset and power control block characteristics . . . . . . . . . . . 41
6.3.4
Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.3.5
Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3.6
Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.3.7
External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3.8
Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.3.9
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3.10
Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.11
EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.3.12
Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.3.13
I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.14
I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3.15
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3.16
12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.17
Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.18
Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.19
Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
DocID024849 Rev 1
3/88
4
Contents
7
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.1
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.1
Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.2.2
Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . 83
8
Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.
Table 25.
Table 26.
Table 27.
Table 28.
Table 29.
Table 30.
Table 31.
Table 32.
Table 33.
Table 34.
Table 35.
Table 36.
Table 37.
Table 38.
Table 39.
Table 40.
Table 41.
Table 42.
Table 43.
Table 44.
Table 45.
Table 46.
Table 47.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
STM32F030x device features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM32F030x I2C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM32F030x USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
STM32F030x SPI implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Alternate functions selected through GPIOA_AFR registers for port A . . . . . . . . . . . . . . . 31
Alternate functions selected through GPIOB_AFR registers for port B . . . . . . . . . . . . . . . 32
STM32F030x peripheral register boundary addresses. . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 41
Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Typical and maximum current consumption from VDD supply at VDD = 3.6 . . . . . . . . . . . 43
Typical and maximum current consumption from the VDDA supply . . . . . . . . . . . . . . . . . . 43
Typical and maximum VDD consumption in Stop and Standby modes. . . . . . . . . . . . . . . . 44
Typical and maximum VDDA consumption in Stop and Standby modes. . . . . . . . . . . . . . . 44
Typical current consumption in Run mode, code with data processing
running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
HSI14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
DocID024849 Rev 1
5/88
6
List of tables
Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
6/88
STM32F030x4 STM32F030x6 STM32F030x8
ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
IWDG min/max timeout period at 40 kHz (LSI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
WWDG min-max timeout value @48 MHz (PCLK). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
I2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data . . . . . . . . . . 75
LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data . . . . . . . . . . . 77
LQFP32 – 7 x 7mm 32-pin low-profile quad flat package mechanical data . . . . . . . . . . . . 79
TSSOP20 – 20-pin thin shrink small outline package mechanical data . . . . . . . . . . . . . . . 81
Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
LQFP64 64-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
LQFP48 48-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
LQFP32 32-pin package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
TSSOP20 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
STM32F030x memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
TC and TTa I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Five volt tolerant (FT and FTf) I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 75
LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . 77
LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
LQFP32 – 7 x 7mm 32-pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . . . . 79
LQFP32 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
TSSOP20 - 20-pin thin shrink small outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
TSSOP20 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
LQFP64 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
DocID024849 Rev 1
7/88
7
Introduction
1
STM32F030x4 STM32F030x6 STM32F030x8
Introduction
This datasheet provides the ordering information and mechanical device characteristics of
the STM32F030x microcontrollers.
This STM32F030x4, STM32F030x6, and STM32F030x8 datasheet should be read in
conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is
available from the STMicroelectronics website www.st.com.
For information on the ARM Cortex™-M0 core, please refer to the Cortex™-M0 Technical
Reference Manual, available from the www.arm.com website at the following address:
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0432c/index.html.
8/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
2
Description
Description
The STM32F030x microcontroller incorporates the high-performance ARM Cortex™-M0 32bit RISC core operating at a 48 MHz frequency, high-speed embedded memories (up to
64 Kbytes of Flash memory and up to 8 Kbytes of SRAM), and an extensive range of
enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to
two I2Cs, up to two SPIs, and up to two USARTs), one 12-bit ADC, up to 6 general-purpose
16-bit timers and an advanced-control PWM timer.
The STM32F030x microcontroller operates in the -40 to +85 °C temperature range, from a
2.4 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of
low-power applications.
The STM32F030x microcontroller includes devices in four different packages ranging from
20 pins to 64 pins. Depending on the device chosen, different sets of peripherals are
included. The description below provides an overview of the complete range of
STM32F030x peripherals proposed.
These features make the STM32F030x microcontroller suitable for a wide range of
applications such as application control and user interfaces, handheld equipment, A/V
receivers and digital TV, PC peripherals, gaming platforms, e-bikes, consumer appliances,
printers, scanners, alarm systems, video intercoms, and HVACs.
DocID024849 Rev 1
9/88
11
Description
STM32F030x4 STM32F030x6 STM32F030x8
Table 2. STM32F030x device features and peripheral counts
Peripheral
STM32F030F4
STM32F030K6
Flash (Kbytes)
16
32
32
64
64
SRAM (Kbytes)
4
4
4
8
8
4 (16-bit)(1)
5 (16-bit)
5 (16-bit)
Advanced
control
Timers
Comm.
interfaces
General
purpose
STM32F030C6/C8
1 (16-bit)
4 (16-bit)(1)
4 (16-bit)(1)
Basic
-
-
-
1 (16-bit)
1 (16-bit)
SPI
(2)
1
(2)
1
1
(2)
2
2
I2C
1(3)
1(3)
1(3)
2
2
(4)
1(4)
1(4)
2
2
USART
12-bit synchronized ADC
(number of channels)
GPIOs
1
1
(11 channels)
1
(12 channels)
1
(12 channels)
1
(18 channels)
15
26
39
55
Max. CPU frequency
48 MHz
Operating voltage
2.4 to 3.6 V
Operating temperature
Packages
Ambient operating temperature: -40 °C to 85 °C
TSSOP20
LQFP32
1. TIM15 is not present.
2. SPI2 is not present.
3. I2C2 is not present.
4. USART2 is not present.
10/88
STM32F030R8
DocID024849 Rev 1
LQFP48
LQFP64
STM32F030x4 STM32F030x6 STM32F030x8
Description
Figure 1. Block diagram
Serial
Wire
Debug
VDD18
Obl
Flash
interface
SWCLK
SWDIO
as AF
SRAM
controller
NVIC
Bus matrix
CORTEX-M0 CPU
fHCLK = 48 MHz
Flash
up to
64 KB,
32 bits
SRAM
4 / 8 KB
POWER
VOLT.REG
3.3 V TO 1.8 V
VDD = 2.4 to 3.6 V
VSS
@ VDD
POR
Reset
Int
SUPPLY
SUPERVISION
POR/PDR
@ VDDA
NRST
VDDA
VDD
RC HS 14 MHz
RC HS 8 MHz
@ VDDA
GP DMA
5 channels
RC LS
PLL
GPIO port A
PB[15:0]
GPIO port B
PC[15:0]
GPIO port C
PD2
GPIO port D
PF[1:0]
PF[7:4]
GPIO port F
AHB decoder
PA[15:0]
RESET &
CLOCK
CONTROL
AHBPCLK
APBPCLK
ADCCLK
USARTCLK
HCLK
FCLK
CRC
AHB
@ VDD
XTAL OSC
4-32 MHz
IWDG
Power
Controller
@ VDD
XTAL32 kHz
OSC32_IN (PC14)
OSC32_OUT (PC15)
RTC
TAMPER-RTC
(ALARM OUT)
RTC interface
TIMER 1
4 channels
3 compl. channels
BRK, ETR input as AF
TIMER 3
4 ch., ETR as AF
TIMER 14
1 channel as AF
TIMER 15
2 channels
1 compl, BRK as AF
TIMER 16
1 channel
1 compl, BRK as AF
TIMER 17
1 channel
1 compl, BRK as AF
APB
55 AF
EXT. IT
WKUP
WWDG
MOSI,
MISO,
SCK,
NSS as AF
MOSI/MISO,
SCK/NSS,
as AF
SPI1
OSC_IN (PF0)
OSC_OUT (PF1)
IR_OUT as AF
DBGMCU
USART1
SPI2
USART2
RX, TX,CTS, RTS,
CK as AF
RX, TX,CTS, RTS,
CK as AF
SYSCFG IF
@ VDDA
Temp.
sensor
16
AD inputs
12-bit
ADC1
I2C 1
SCL, SDA, SMBA
(20 mA for FM+) as AF
I2C2
SCL, SDA
as AF
IF
TIMER 6
VDDA
VSSA
MSv32137V1
1. TIMER6, TIMER15, SPI2, USART2 and I2C2 are available on STM32F030x8 devices only.
DocID024849 Rev 1
11/88
11
Functional overview
STM32F030x4 STM32F030x6 STM32F030x8
3
Functional overview
3.1
ARM® CortexTM-M0 core with embedded Flash and SRAM
The ARM Cortex™-M0 processor is the latest generation of ARM processors for embedded
systems. It has been developed to provide a low-cost platform that meets the needs of MCU
implementation, with a reduced pin count and low-power consumption, while delivering
outstanding computational performance and an advanced system response to interrupts.
The ARM Cortex™-M0 32-bit RISC processor features exceptional code-efficiency,
delivering the high-performance expected from an ARM core in the memory size usually
associated with 8- and 16-bit devices.
The STM32F0xx family has an embedded ARM core and is therefore compatible with all
ARM tools and software.
Figure 1 shows the general block diagram of the device family.
3.2
Memories
The device has the following features:

Up to 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0
wait states and featuring embedded parity checking with exception generation for failcritical applications.

The non-volatile memory is divided into two arrays:
–
16 to 64 Kbytes of embedded Flash memory for programs and data
–
Option bytes
The option bytes are used to write-protect the memory (with 4 KB granularity) and/or
readout-protect the whole memory with the following options:
3.3
–
Level 0: no readout protection
–
Level 1: memory readout protection, the Flash memory cannot be read from or
written to if either debug features are connected or boot in RAM is selected
–
Level 2: chip readout protection, debug features (Cortex-M0 serial wire) and boot
in RAM selection disabled
Boot modes
At startup, the boot pin and boot selector option bit are used to select one of three boot
options:

Boot from User Flash

Boot from System Memory

Boot from embedded SRAM
The boot loader is located in System Memory. It is used to reprogram the Flash memory by
using USART on pins PA14/PA15 or PA9/PA10.
12/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
3.4
Functional overview
Cyclic redundancy check calculation unit (CRC)
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a CRC-32 (Ethernet) polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.
3.5
Power management
3.5.1
Power supply schemes

VDD = 2.4 to 3.6 V: external power supply for I/Os and the internal regulator. Provided
externally through VDD pins.

VDDA = 2.4 to 3.6 V: external analog power supply for ADC, Reset blocks, RCs and
PLL. The VDDA voltage level must be always greater or equal to the VDD voltage level
and must be provided first.
For more details on how to connect power pins, refer to Figure 10: Power supply scheme.
3.5.2
Power supply supervisors
The device has integrated power-on reset (POR) and power-down reset (PDR) circuits.
They are always active, and ensure proper operation above a threshold of 2 V. The device
remains in reset mode when the monitored supply voltage is below a specified threshold,
VPOR/PDR, without the need for an external reset circuit.
3.5.3

The POR monitors only the VDD supply voltage. During the startup phase it is required
that VDDA should arrive first and be greater than or equal to VDD.

The PDR monitors both the VDD and VDDA supply voltages, however the VDDA power
supply supervisor can be disabled (by programming a dedicated Option bit) to reduce
the power consumption if the application design ensures that VDDA is higher than or
equal to VDD.
Voltage regulator
The regulator has three operating modes: main (MR), low power (LPR) and power down.

MR is used in normal operating mode (Run)

LPR can be used in Stop mode where the power demand is reduced

Power down is used in Standby mode: the regulator output is in high impedance: the
kernel circuitry is powered down, inducing zero consumption (but the contents of the
registers and SRAM are lost)
This regulator is always enabled after reset. It is disabled in Standby mode, providing high
impedance output.
DocID024849 Rev 1
13/88
22
Functional overview
3.5.4
STM32F030x4 STM32F030x6 STM32F030x8
Low-power modes
The STM32F030x microcontroller supports three low-power modes to achieve the best
compromise between low power consumption, short startup time and available wakeup
sources:

Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.

Stop mode
Stop mode achieves very low power consumption while retaining the content of SRAM
and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the
HSE crystal oscillators are disabled. The voltage regulator can also be put either in
normal or in low power mode.
The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line
source can be one of the 16 external lines or the RTC alarm.

Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.8 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, SRAM and register contents are lost except for the Standby circuitry.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a
rising edge on the WKUP pins, or an RTC alarm occurs.
Note:
The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop
or Standby mode.
3.6
Clocks and startup
System clock selection is performed on startup, however the internal RC 8 MHz oscillator is
selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in
which case it is monitored for failure. If failure is detected, the system automatically switches
back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full
interrupt management of the PLL clock entry is available when necessary (for example on
failure of an indirectly used external crystal, resonator or oscillator).
Several prescalers allow the application to configure the frequency of the AHB and the APB
domains. The maximum frequency of the AHB and the APB domains is 48 MHz.
14/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Functional overview
Figure 2. Clock tree
FLITFCLK
to Flash programming interface
HSI
to I2C1
SYSCLK
LSE
8 MHz HSI
HSI RC
/244
/2
HCLK
PLLSRC
PLLMUL
PLL
x2,x3,..
x16
SW
HSI
PLLCLK
HSE
/8
AHB
AHB
prescaler
/1,2,..512
SYSCLK
CSS
/1,2,
3,..16
OSC_OUT
OSC_IN
4-32 MHz
HSE OSC
14 MHz HSI14
HSI14 RC
/32
OSC32_IN
OSC32_OUT
LSE OSC
32.768kHz
LSE
RTCCLK
to RTC
APB
prescaler
/1,2,4,8,16
to AHB bus, core,
memory and DMA
to cortex System timer
FHCLK Cortex free running clock
PCLK
If (APB1 prescaler
=1) x1 else x2
ADC
Prescaler
/2,4
PCLK
SYSCLK
HSI
LSE
to APB peripherals
to TIM1,3,6,
14,15,16,17
to ADC
14 MHz max
to USART1
RTCSEL[1:0]
LSI
LSI RC
40kHz
to IWDG
/2 PLLCLK
MCO
Main clock
output
HSI
HSI14
HSE
SYSCLK
LSI (1)
LSE (1)
MCO
MS32138V1
1. LSI/LSE is not available on STM32F030x8 devices.
DocID024849 Rev 1
15/88
22
Functional overview
3.7
STM32F030x4 STM32F030x6 STM32F030x8
General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions.
The I/O configuration can be locked if needed following a specific sequence in order to
avoid spurious writing to the I/Os registers.
3.8
Direct memory access controller (DMA)
The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory
and memory-to-peripheral transfers.
The DMA supports circular buffer management, removing the need for user code
intervention when the controller reaches the end of the buffer.
Each channel is connected to dedicated hardware DMA requests, with support for software
trigger on each channel. Configuration is made by software and transfer sizes between
source and destination are independent.
DMA can be used with the main peripherals: SPI, I2C, USART, all TIMx timers (except
TIM14) and ADC.
3.9
Interrupts and events
3.9.1
Nested vectored interrupt controller (NVIC)
The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to
32 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M0) and 4
priority levels.

Closely coupled NVIC gives low latency interrupt processing

Interrupt entry vector table address passed directly to the core

Closely coupled NVIC core interface

Allows early processing of interrupts

Processing of late arriving higher priority interrupts

Support for tail-chaining

Processor state automatically saved

Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimal interrupt
latency.
3.9.2
Extended interrupt/event controller (EXTI)
The extended interrupt/event controller consists of 24 edge detector lines used to generate
interrupt/event requests and wake-up the system. Each line can be independently
configured to select the trigger event (rising edge, falling edge, both) and can be masked
independently. A pending register maintains the status of the interrupt requests. The EXTI
can detect an external line with a pulse width shorter than the internal clock period. Up to 55
GPIOs can be connected to the 16 external interrupt lines.
16/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
3.10
Functional overview
Analog to digital converter (ADC)
The 12-bit analog to digital converter has up to 16 external and 2 internal (temperature
sensor/voltage reference measurement) channels and performs conversions in single-shot
or scan modes. In scan mode, automatic conversion is performed on a selected group of
analog inputs.
The ADC can be served by the DMA controller.
An analog watchdog feature allows very precise monitoring of the converted voltage of one,
some or all selected channels. An interrupt is generated when the converted voltage is
outside the programmed thresholds.
3.10.1
Temperature sensor
The temperature sensor (TS) generates a voltage VSENSE that varies linearly with
temperature.
The temperature sensor is internally connected to the ADC_IN16 input channel which is
used to convert the sensor output voltage into a digital value.
The sensor provides good linearity but it has to be calibrated to obtain good overall
accuracy of the temperature measurement. As the offset of the temperature sensor varies
from chip to chip due to process variation, the uncalibrated internal temperature sensor is
suitable for applications that detect temperature changes only.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored by ST in the system memory area, accessible in read-only mode.
Table 3. Temperature sensor calibration values
Calibration value name
3.10.2
Description
Memory address
TS_CAL1
TS ADC raw data acquired at
temperature of 30 °C,
VDDA= 3.3 V
0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2
TS ADC raw data acquired at
temperature of 110 °C
VDDA= 3.3 V
0x1FFF F7C2 - 0x1FFF F7C3
Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC. VREFINT is internally connected to the ADC_IN17 input channel. The precise voltage
of VREFINT is individually measured for each part by ST during production test and stored in
the system memory area. It is accessible in read-only mode.
Table 4. Internal voltage reference calibration values
Calibration value name
VREFINT_CAL
Description
Raw data acquired at
temperature of 30 °C
VDDA= 3.3 V
DocID024849 Rev 1
Memory address
0x1FFF F7BA - 0x1FFF F7BB
17/88
22
Functional overview
3.11
STM32F030x4 STM32F030x6 STM32F030x8
Timers and watchdogs
Devices of the STM32F0xx family include up to six general-purpose timers, one basic timer
and an advanced control timer.
Table 5 compares the features of the advanced-control, general-purpose and basic timers.
Table 5. Timer feature comparison
Timer
type
Timer
Counter
resolution
Counter
type
Prescaler
factor
DMA request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control
TIM1
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
Yes
TIM3
16-bit
Up,
down,
up/down
Any integer
between 1
and 65536
Yes
4
No
TIM14
16-bit
Up
Any integer
between 1
and 65536
No
1
No
TIM15(1)
16-bit
Up
Any integer
between 1
and 65536
Yes
2
Yes
TIM16,
TIM17
16-bit
Up
Any integer
between 1
and 65536
Yes
1
Yes
TIM6(1)
16-bit
Up
Any integer
between 1
and 65536
Yes
0
No
General
purpose
Basic
1. Available on STM32F030x8 devices only.
3.11.1
Advanced-control timer (TIM1)
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6
channels. It has complementary PWM outputs with programmable inserted dead times. It
can also be seen as a complete general-purpose timer. The 4 independent channels can be
used for:

Input capture

Output compare

PWM generation (edge or center-aligned modes)

One-pulse mode output
If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If
configured as the 16-bit PWM generator, it has full modulation capability (0-100%).
The counter can be frozen in debug mode.
Many features are shared with those of the standard timers which have the same
architecture. The advanced control timer can therefore work together with the other timers
via the Timer Link feature for synchronization or event chaining.
18/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
3.11.2
Functional overview
General-purpose timers (TIM3, TIM14..17)
There are five synchronizable general-purpose timers embedded in the STM32F030x
devices (see Table 5 for differences). Each general-purpose timer can be used to generate
PWM outputs, or as simple time base.
TIM3
STM32F030x devices feature a synchronizable 4-channel general-purpose timer based on
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 features 4 independent
channels for input capture/output compare, PWM or one-pulse mode output. This gives up
to 12 input captures/output compares/PWMs on the largest packages.
The TIM3 general-purpose timer can work with the TIM1 advanced-control timer via the
Timer Link feature for synchronization or event chaining.
It provides independent DMA request generation.
The TIM3 timer is capable of handling quadrature (incremental) encoder signals and the
digital outputs from 1 to 3 hall-effect sensors.
Its counter can be frozen in debug mode.
TIM14
This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM14 features one single channel for input capture/output compare, PWM or one-pulse
mode output.
Its counter can be frozen in debug mode.
TIM15, TIM16 and TIM17
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single
channel for input capture/output compare, PWM or one-pulse mode output.
The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with
TIM1 via the Timer Link feature for synchronization or event chaining.
TIM15 can be synchronized with TIM16 and TIM17.
TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and
independent DMA request generation.
Their counters can be frozen in debug mode.
3.11.3
Basic timer TIM6
This timer is mainly used as a generic 16-bit time base.
3.11.4
Independent watchdog (IWDG)
The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with
user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it
operates independently from the main clock, it can operate in Stop and Standby modes. It
can be used either as a watchdog to reset the device when a problem occurs, or as a free
DocID024849 Rev 1
19/88
22
Functional overview
STM32F030x4 STM32F030x6 STM32F030x8
running timer for application timeout management. It is hardware or software configurable
through the option bytes. The counter can be frozen in debug mode.
3.11.5
System window watchdog (WWDG)
The system window watchdog is based on a 7-bit downcounter that can be set as free
running. It can be used as a watchdog to reset the device when a problem occurs. It is
clocked from the APB clock (PCLK). It has an early warning interrupt capability and the
counter can be frozen in debug mode.
3.11.6
SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
3.12

A 24-bit down counter

Autoreload capability

Maskable system interrupt generation when the counter reaches 0

Programmable clock source (HCLK or HCLK/8)
Real-time clock (RTC)
The RTC is an independent BCD timer/counter. Its main features are the following:

Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format

Automatically correction for 28, 29 (leap year), 30, and 31 day of the month

Programmable alarm with wake up from Stop and Standby mode capability

On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.

Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal
inaccuracy

2 anti-tamper detection pins with programmable filter. The MCU can be woken up from
Stop and Standby modes on tamper event detection.

Timestamp feature which can be used to save the calendar content. This function can
triggered by an event on the timestamp pin, or by a tamper event. The MCU can be
woken up from Stop and Standby modes on timestamp event detection.

Periodic wakeup from Stop/Standby

Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
The RTC clock sources can be:
20/88

A 32.768 kHz external crystal

A resonator or oscillator

The internal low-power RC oscillator (typical frequency of 40 kHz)

The high-speed external clock divided by 32
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
3.13
Functional overview
Inter-integrated circuit interfaces (I2C)
Up to two I2C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both
can support Standard mode (up to 100 kbit/s) or Fast mode (up to 400 kbit/s). I2C1 also
supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.
Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2
addresses, 1 with configurable mask). They also include programmable analog and digital
noise filters.
Table 6. Comparison of I2C analog and digital filters
Analog filter
Digital filter
Pulse width of
suppressed spikes
 50 ns
Programmable length from 1 to 15
I2C peripheral clocks
Benefits
Available in Stop mode
1. Extra filtering capability vs.
standard requirements.
2. Stable length
Drawbacks
Variations depending on
temperature, voltage, process
Wakeup from Stop on address
match is not available when digital
filter is enabled.
In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP
capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts
verifications and ALERT protocol management.
The I2C interfaces can be served by the DMA controller.
Refer to Table 7 for the differences between I2C1 and I2C2.
Table 7. STM32F030x I2C implementation
I2C features(1)
I2C1
I2C2
7-bit addressing mode
X
X
10-bit addressing mode
X
X
Standard mode (up to 100 kbit/s)
X
X
Fast mode (up to 400 kbit/s)
X
X
Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s)
X
-
SMBus
X
-
1. X = supported.
DocID024849 Rev 1
21/88
22
Functional overview
3.14
STM32F030x4 STM32F030x6 STM32F030x8
Universal synchronous/asynchronous receiver transmitters
(USART)
The device embeds up to two universal synchronous/asynchronous receiver transmitters
(USART1 and USART2), which communicate at speeds of up to 6 Mbit/s.
They provide hardware management of the CTS and RTS signals, multiprocessor
communication mode, master synchronous communication and single-wire half-duplex
communication mode. The USART1 supports also auto baud rate feature.
The USART interfaces can be served by the DMA controller.
Refer to Table 8 for the differences between USART1 and USART2.
Table 8. STM32F030x USART implementation
USART modes/features(1)
USART1
USART2
Hardware flow control for modem
X
X
Continuous communication using DMA
X
X
Multiprocessor communication
X
X
Synchronous mode
X
X
Single-wire half-duplex communication
X
X
Receiver timeout interrupt
X
-
Auto baud rate detection
X
-
1. X = supported.
3.15
Serial peripheral interface (SPI)
Up to two SPIs are able to communicate up to 18 Mbits/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode
frequencies and the frame size is configurable from 4 bits to 16 bits.
Refer to Table 9 for the differences between SPI1 and SPI2.
Table 9. STM32F030x SPI implementation
SPI features(1)
SPI1
SPI2
Hardware CRC calculation
X
X
Rx/Tx FIFO
X
X
NSS pulse mode
X
X
TI mode
X
X
1. X = supported.
3.16
Serial wire debug port (SW-DP)
An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected
to the MCU.
22/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Pinouts and pin descriptions
PC13
PC14/OSC32_IN
PC15/OSC32_OUT
PF0/OSC_IN
PF1/OSC_OUT
NRST
PC0
PC1
PC2
PC3
VSSA
VDDA
PA0
PA1
PA2
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
1
47
2
46
3
45
4
44
5
43
6
42
7
41
8
LQFP64
40
9
39
10
38
11
37
12
36
13
35
14
34
15
33
16
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PC9
PC8
PC7
PC6
PB15
PB14
PB13
PB12
PA4
PA5
PA6
PA7
PC4
PC5
PB0
PB1
PB2
PB10
PB11
VSS
VDD
VDD
PB9
PB8
BOOT0
PB7
PB6
PB5
PB4
PB3
PD2
PC12
PC11
PC10
PA15
PA14
VDD
VSS
Figure 3. LQFP64 64-pin package pinout
PA3
PF4
PF5
4
Pinouts and pin descriptions
MS32729V1
1. The above figure shows the package top view.
DocID024849 Rev 1
23/88
32
Pinouts and pin descriptions
STM32F030x4 STM32F030x6 STM32F030x8
VDD
1
PC13
PC14/OSC32_IN
2
PC15/OSC32_OUT
PF0/OSC_IN
PF1/OSC_OUT
4
NRST
7
VSSA
8
VDDA
PA0
PA1
9
PA14
PB3
PA15
PB4
PB6
PB5
PB7
PB8
BOOT0
48 47 46 45 44 43 42 41 40 39 38 37
36
3
5
6
LQFP48
10
35
34
33
32
31
30
29
28
27
26
25
PF7
PF6
PA13
PA12
PA11
PA10
PA9
PA8
PB15
PB14
PB13
PB12
VDD
PB11
VSS
PB10
PB1
PB2
PB0
PA5
PA6
PA7
11
12
13 14 15 16 17 18 19 20 21 22 23 24
PA3
PA4
PA2
PB9
VDD
VSS
Figure 4. LQFP48 48-pin package pinout
MS32730V1
1. The above figure shows the package top view.
PB3
PA15
PB4
PB6
PB5
PB7
VSS
BOOT0
Figure 5. LQFP32 32-pin package pinout
32 31 30 29 28 27 26 25
VDD
PF0/OSC_IN
1
PF1/OSC_OUT
3
NRST
VDDA
PA0
PA1
4
PA2
24
23
22
2
21
20
19
18
17
LQFP32
5
6
7
8
PA14
PA13
PA12
PA11
PA10
PA9
PA8
VDD
PB1
VSS
PB0
PA6
PA7
PA5
PA3
PA4
9 10 11 12 13 14 15 16
MS32144V1
1. The above figure shows the package top view.
24/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Pinouts and pin descriptions
Figure 6. TSSOP20 package pinout
20
19
BOOT0
1
PF0/OSC_IN
2
PF1/OSC_OUT
3
4
18
PA14
PA13
PA10
17
PA 9
5
16
VDD
6
15
7
8
9
10
14
VSS
PB1
13
12
11
PA7
PA6
PA5
NRST
VDDA
PA0
PA1
PA2
PA3
PA4
MS32731V1
1. The above figure shows the package top view.
Table 10. Legend/abbreviations used in the pinout table
Name
Pin name
Pin type
Abbreviation
Definition
Unless otherwise specified in brackets below the pin name, the pin function
during and after reset is the same as the actual pin name
S
Supply pin
I
Input only pin
I/O
Input / output pin
FT
5 V tolerant I/O
FTf
5 V tolerant I/O, FM+ capable
TTa
3.3 V tolerant I/O directly connected to ADC
TC
Standard 3.3V I/O
I/O structure
B
RST
Notes
Pin
functions
Dedicated BOOT0 pin
Bidirectional reset pin with embedded weak pull-up resistor
Unless otherwise specified by a note, all I/Os are set as floating inputs during
and after reset.
Alternate functions Functions selected through GPIOx_AFR registers
Additional functions Functions directly selected/enabled through peripheral registers
DocID024849 Rev 1
25/88
32
Pinouts and pin descriptions
STM32F030x4 STM32F030x6 STM32F030x8
Table 11. Pin definitions
TSSOP20
1
-
-
VDD
S
I/O structure
LQFP32
1
Pin name
(function after
reset)
Pin type
LQFP48
Pin functions
LQFP64
Pin number
Notes
Alternate functions
Additional functions
Complementary power supply
2
2
-
-
PC13
I/O
TC
(1)
-
RTC_TAMP1,
RTC_TS,
RTC_OUT,
WKUP2
3
3
-
-
PC14-OSC32_IN
(PC14)
I/O
TC
(1)
-
OSC32_IN
4
4
-
-
PC15-OSC32_OUT
(PC15)
I/O
TC
(1)
-
OSC32_OUT
5
5
2
2
PF0-OSC_IN
(PF0)
I/O
FT
-
OSC_IN
6
6
3
3
PF1-OSC_OUT
(PF1)
I/O
FT
-
OSC_OUT
7
7
4
4
NRST
I/O
RST
8
-
-
-
PC0
I/O
TTa
EVENTOUT
ADC_IN10
9
-
-
-
PC1
I/O
TTa
EVENTOUT
ADC_IN11
10
-
-
-
PC2
I/O
TTa
EVENTOUT
ADC_IN12
11
-
-
-
PC3
I/O
TTa
EVENTOUT
ADC_IN13
12
8
-
-
VSSA
S
Analog ground
13
9
5
5
VDDA
S
Analog power supply
14
10
6
6
PA0
I/O
15
16
11
12
7
8
7
8
PA1
PA2
I/O
I/O
Device reset input / internal reset output
(active low)
TTa
USART1_CTS(2),
USART2_CTS(3)
ADC_IN0,
RTC_TAMP2,
WKUP1
TTa
USART1_RTS(2),
USART2_RTS(3),
EVENTOUT
ADC_IN1
TTa
USART1_TX(2),
USART2_TX(3),
TIM15_CH1(3)
ADC_IN2
ADC_IN3
17
13
9
9
PA3
I/O
TTa
USART1_RX(2),
USART2_RX(3),
TIM15_CH2(3)
18
-
-
-
PF4
I/O
FT
EVENTOUT
-
19
-
-
-
PF5
I/O
FT
EVENTOUT
-
26/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Pinouts and pin descriptions
Table 11. Pin definitions (continued)
I/O structure
Pin name
(function after
reset)
Pin type
Pin functions
TSSOP20
LQFP32
LQFP48
LQFP64
Pin number
Notes
Alternate functions
Additional functions
ADC_IN4
20
14
10
10
PA4
I/O
TTa
SPI1_NSS,
USART1_CK(2)
USART2_CK(3),
TIM14_CH1
21
15
11
11
PA5
I/O
TTa
SPI1_SCK
ADC_IN5
TTa
SPI1_MISO,
TIM3_CH1,
TIM1_BKIN,
TIM16_CH1,
EVENTOUT
ADC_IN6
ADC_IN7
22
16
12
12
PA6
I/O
23
17
13
13
PA7
I/O
TTa
SPI1_MOSI,
TIM3_CH2,
TIM14_CH1,
TIM1_CH1N,
TIM17_CH1,
EVENTOUT
24
-
-
-
PC4
I/O
TTa
EVENTOUT
ADC_IN14
25
-
-
-
PC5
I/O
TTa
-
ADC_IN15
26
18
14
-
PB0
I/O
TTa
TIM3_CH3,
TIM1_CH2N,
EVENTOUT
ADC_IN8
27
19
15
14
PB1
I/O
TTa
TIM3_CH4,
TIM14_CH1,
TIM1_CH3N
ADC_IN9
28
20
-
-
PB2
I/O
FT
-
-
29
21
-
-
PB10
I/O
FT
I2C1_SCL(2),
I2C2_SCL(3)
-
30
22
-
-
PB11
I/O
FT
I2C1_SDA(2),
I2C2_SDA(3),
EVENTOUT
-
31
23
16
-
VSS
S
Ground
32
24
17
16
VDD
S
Digital power supply
33
25
-
-
PB12
I/O
(4)
FT
DocID024849 Rev 1
SPI1_NSS(2),
SPI2_NSS(3),
TIM1_BKIN,
EVENTOUT
-
27/88
32
Pinouts and pin descriptions
STM32F030x4 STM32F030x6 STM32F030x8
Table 11. Pin definitions (continued)
TSSOP20
26
-
-
35
27
-
-
PB13
PB14
I/O structure
LQFP32
34
Pin name
(function after
reset)
Pin type
LQFP48
Pin functions
LQFP64
Pin number
Alternate functions
Additional functions
I/O
FT
SPI1_SCK(2),
SPI2_SCK(3),
TIM1_CH1N
-
FT
SPI1_MISO(2),
SPI2_MISO(3),
TIM1_CH2N,
TIM15_CH1(3)
-
RTC_REFIN
I/O
Notes
36
28
-
-
PB15
I/O
FT
SPI1_MOSI(2),
SPI2_MOSI(3),
TIM1_CH3N,
TIM15_CH1N(3),
TIM15_CH2(3)
37
-
-
-
PC6
I/O
FT
TIM3_CH1
-
38
-
-
-
PC7
I/O
FT
TIM3_CH2
-
39
-
-
-
PC8
I/O
FT
TIM3_CH3
-
40
-
-
-
PC9
I/O
FT
TIM3_CH4
-
FT
USART1_CK,
TIM1_CH1,
EVENTOUT,
MCO
-
FT
USART1_TX,
TIM1_CH2,
TIM15_BKIN(3)
I2C1_SCL(2)
-
-
41
42
29
30
18
19
-
17
PA8
PA9
I/O
I/O
43
31
20
18
PA10
I/O
FT
USART1_RX,
TIM1_CH3,
TIM17_BKIN
I2C1_SDA(2)
44
32
21
-
PA11
I/O
FT
USART1_CTS,
TIM1_CH4,
EVENTOUT
-
45
33
22
-
PA12
I/O
FT
USART1_RTS,
TIM1_ETR,
EVENTOUT
-
46
34
23
19
PA13
(SWDIO)
I/O
FT
IR_OUT,
SWDIO
-
47
35
-
-
PF6
I/O
FT
I2C1_SCL(2),
I2C2_SCL(3)
-
28/88
(5)
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Pinouts and pin descriptions
Table 11. Pin definitions (continued)
LQFP48
LQFP32
TSSOP20
Pin type
I/O structure
Pin functions
LQFP64
Pin number
48
36
-
-
PF7
I/O
FT
49
37
24
20
PA14
(SWCLK)
I/O
FT
Pin name
(function after
reset)
Notes
Alternate functions
Additional functions
I2C1_SDA(2),
I2C2_SDA(3)
-
USART1_TX(2),
USART2_TX(3),
SWCLK
-
-
(5)
50
38
25
-
PA15
I/O
FT
SPI1_NSS,
USART1_RX(2),
USART2_RX(3),
EVENTOUT
51
-
-
-
PC10
I/O
FT
-
-
52
-
-
-
PC11
I/O
FT
-
-
53
-
-
-
PC12
I/O
FT
-
-
54
-
-
-
PD2
I/O
FT
TIM3_ETR
-
55
39
26
-
PB3
I/O
FT
SPI1_SCK,
EVENTOUT
-
56
40
27
-
PB4
I/O
FT
SPI1_MISO,
TIM3_CH1,
EVENTOUT
-
-
57
41
28
-
PB5
I/O
FT
SPI1_MOSI,
I2C1_SMBA,
TIM16_BKIN,
TIM3_CH2
58
42
29
-
PB6
I/O
FTf
I2C1_SCL,
USART1_TX,
TIM16_CH1N
-
59
43
30
-
PB7
I/O
FTf
I2C1_SDA,
USART1_RX,
TIM17_CH1N
-
60
44
31
1
BOOT0
I
B
61
45
-
-
PB8
I/O
FTf
62
46
-
-
PB9
I/O
Boot memory selection
(5)
FTf
DocID024849 Rev 1
I2C1_SCL,
TIM16_CH1
-
I2C1_SDA,
IR_OUT,
TIM17_CH1,
EVENTOUT
-
29/88
32
Pinouts and pin descriptions
STM32F030x4 STM32F030x6 STM32F030x8
Table 11. Pin definitions (continued)
LQFP64
LQFP48
LQFP32
TSSOP20
Pin name
(function after
reset)
I/O structure
Pin functions
Pin type
Pin number
63
47
32
15
VSS
S
Ground
64
48
1
16
VDD
S
Digital power supply
Notes
Alternate functions
Additional functions
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount
of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These GPIOs must not be used as current sources (e.g. to drive an LED).
2. This feature is available on STM32F030x6 and STM32F030x4 devices only.
3. This feature is available on STM32F030x8 devices only.
4. On LQFP32 package, PB2 and PB8 should be treated as unconnected pins (even when they are not
available on the package, they are not forced to a defined level by hardware).
5. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on
SWDIO pin and internal pull-down on SWCLK pin are activated.
30/88
DocID024849 Rev 1
Pin name
AF0
AF1
AF2
AF3
AF4
AF5
AF6
PA0
-
-
-
-
-
-
PA1
EVENTOUT
-
-
-
-
-
PA2
TIM15_CH1(2)
-
-
-
-
-
PA3
TIM15_CH2(2)
-
-
-
-
-
PA4
SPI1_NSS
-
-
TIM14_CH1
-
-
PA5
SPI1_SCK
-
-
-
-
-
-
PA6
SPI1_MISO
TIM3_CH1
TIM1_BKIN
-
-
TIM16_CH1
EVENTOUT
PA7
SPI1_MOSI
TIM3_CH2
TIM1_CH1N
-
TIM14_CH1
TIM17_CH1
EVENTOUT
PA8
MCO
USART1_CK
TIM1_CH1
EVENTOUT
-
-
-
-
-
USART1_CTS(1)
USART2_CTS(2)
USART1_RTS(1)
USART2_RTS(2)
USART1_TX(1)
USART2_TX(2)
USART1_RX(1)
USART2_RX(2)
USART1_CK(1)
DocID024849 Rev 1
PA9
(2)
TIM15_BKIN
USART2_CK(2)
USART1_TX
TIM1_CH2
-
I2C1_SCL(1)
TIM17_BKIN
USART1_RX
TIM1_CH3
-
I2C1_SDA(1)
-
-
PA11
EVENTOUT
USART1_CTS
TIM1_CH4
-
-
-
-
PA12
EVENTOUT
USART1_RTS
TIM1_ETR
-
-
-
-
PA13
SWDIO
IR_OUT
-
-
-
-
-
PA14
SWCLK
-
-
-
-
-
PA15
SPI1_NSS
-
EVENTOUT
-
-
-
USART1_TX(1)
USART2_TX(2)
USART1_RX(1)
USART2_RX(2)
31/88
1. This feature is available on STM32F030x6 and STM32F030x4 devices only.
2. This feature is available on STM32F030x8 devices only.
Pinouts and pin descriptions
PA10
STM32F030x4 STM32F030x6 STM32F030x8
Table 12. Alternate functions selected through GPIOA_AFR registers for port A
AF0
AF1
AF2
AF3
PB0
EVENTOUT
TIM3_CH3
TIM1_CH2N
-
PB1
TIM14_CH1
TIM3_CH4
TIM1_CH3N
-
PB2
-
-
-
-
PB3
SPI1_SCK
EVENTOUT
-
-
PB4
SPI1_MISO
TIM3_CH1
EVENTOUT
-
PB5
SPI1_MOSI
TIM3_CH2
TIM16_BKIN
I2C1_SMBA
PB6
USART1_TX
I2C1_SCL
TIM16_CH1N
-
PB7
USART1_RX
I2C1_SDA
TIM17_CH1N
-
PB8
-
I2C1_SCL
TIM16_CH1
-
PB9
IR_OUT
I2C1_SDA
TIM17_CH1
EVENTOUT
-
-
-
-
EVENTOUT
TIM1_BKIN
-
-
TIM1_CH1N
-
TIM15_CH1(2)
TIM1_CH2N
-
TIM15_CH2(2)
TIM1_CH3N
TIM15_CH1N(2)
(1)
I2C1_SCL
PB10
-
PB11
EVENTOUT
I2C2_SCL(2)
I2C1_SDA(1)
I2C2_SDA(2)
SPI1_NSS(1)
PB12
SPI2_NSS(2)
SPI1_SCK(1)
PB13
SPI2_SCK(2)
SPI1_MISO(1)
PB14
SPI2_MISO(2)
SPI1_MOSI(1)
PB15
SPI2_MOSI(2)
1. This feature is available on STM32F030x6 and STM32F030x4 devices only.
2. This feature is available on STM32F030x8 devices only.
STM32F030x4 STM32F030x6 STM32F030x8
DocID024849 Rev 1
Pin name
Pinouts and pin descriptions
32/88
Table 13. Alternate functions selected through GPIOB_AFR registers for port B
STM32F030x4 STM32F030x6 STM32F030x8
5
Memory mapping
Memory mapping
Figure 7. STM32F030x memory map
0xFFFF FFFF
0x4800 17FF
AHB2
7
0x4800 0000
0xE010 0000
0xE000 0000
Cortex- M Internal
Peripherals
reserved
6
0xC000 0000
0x4002 43FF
")#
5
0x4002 0000
reserved
0xA000 0000
0x4001 8000
4
"1#
0x1FFF FFFF
reserved
0x1FFF FC00
0x4001 0000
Option Bytes
0x1FFF F800
0x8000 0000
reserved
System memory
0x4000 8000
3
0x1FFF EC00
"1#
0x6000 0000
0x4000 0000
reserved
2
0x4000 0000
Peripherals
0x0801 0000
1
Flash memory
0x2000 0000
SRAM
Y
reserved
0
CODE
0x0001 0000
'MBTITZTUFNNFNPSZ
PS43".EFQFOEJOHPO
#005DPOGJHVSBUJPO
0x0000 0000
0x0000 0000
Reserved
MS19840V1
DocID024849 Rev 1
33/88
35
Memory mapping
STM32F030x4 STM32F030x6 STM32F030x8
Table 14. STM32F030x peripheral register boundary addresses
Bus
Boundary address
Size
Peripheral
0x4800 1800 - 0x5FFF FFFF
~384 MB
Reserved
0x4800 1400 - 0x4800 17FF
1 KB
GPIOF
0x4800 1000 - 0x4800 13FF
1 KB
Reserved
0x4800 0C00 - 0x4800 0FFF
1 KB
GPIOD
0x4800 0800 - 0x4800 0BFF
1 KB
GPIOC
0x4800 0400 - 0x4800 07FF
1 KB
GPIOB
0x4800 0000 - 0x4800 03FF
1 KB
GPIOA
0x4002 4400 - 0x47FF FFFF
~128 MB
Reserved
0x4002 3400 - 0x4002 43FF
4 KB
Reserved
0x4002 3000 - 0x4002 33FF
1 KB
CRC
0x4002 2400 - 0x4002 2FFF
3 KB
Reserved
0x4002 2000 - 0x4002 23FF
1 KB
FLASH Interface
0x4002 1400 - 0x4002 1FFF
3 KB
Reserved
0x4002 1000 - 0x4002 13FF
1 KB
RCC
0x4002 0400 - 0x4002 0FFF
3 KB
Reserved
0x4002 0000 - 0x4002 03FF
1 KB
DMA
0x4001 8000 - 0x4001 FFFF
32 KB
Reserved
0x4001 5C00 - 0x4001 7FFF
9 KB
Reserved
0x4001 5800 - 0x4001 5BFF
1 KB
DBGMCU
0x4001 4C00 - 0x4001 57FF
3 KB
Reserved
0x4001 4800 - 0x4001 4BFF
1 KB
TIM17
0x4001 4400 - 0x4001 47FF
1 KB
TIM16
0x4001 4000 - 0x4001 43FF
1 KB
TIM15(1)
0x4001 3C00 - 0x4001 3FFF
1 KB
Reserved
0x4001 3800 - 0x4001 3BFF
1 KB
USART1
0x4001 3400 - 0x4001 37FF
1 KB
Reserved
0x4001 3000 - 0x4001 33FF
1 KB
SPI1
0x4001 2C00 - 0x4001 2FFF
1 KB
TIM1
0x4001 2800 - 0x4001 2BFF
1 KB
Reserved
0x4001 2400 - 0x4001 27FF
1 KB
ADC
0x4001 0800 - 0x4001 23FF
7 KB
Reserved
0x4001 0400 - 0x4001 07FF
1 KB
EXTI
0x4001 0000 - 0x4001 03FF
1 KB
SYSCFG
0x4000 8000 - 0x4000 FFFF
32 KB
Reserved
AHB2
AHB1
APB
34/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Memory mapping
Table 14. STM32F030x peripheral register boundary addresses (continued)
Bus
Boundary address
Size
Peripheral
0x4000 7400 - 0x4000 7FFF
3 KB
Reserved
0x4000 7000 - 0x4000 73FF
1 KB
PWR
0x4000 5C00 - 0x4000 6FFF
5 KB
Reserved
0x4000 5800 - 0x4000 5BFF
1 KB
I2C2(1)
0x4000 5400 - 0x4000 57FF
1 KB
I2C1
0x4000 4800 - 0x4000 53FF
3 KB
Reserved
0x4000 4400 - 0x4000 47FF
1 KB
USART2(1)
0x4000 3C00 - 0x4000 43FF
2 KB
Reserved
0x4000 3800 - 0x4000 3BFF
1 KB
SPI2(1)
0x4000 3400 - 0x4000 37FF
1 KB
Reserved
0x4000 3000 - 0x4000 33FF
1 KB
IWDG
0x4000 2C00 - 0x4000 2FFF
1 KB
WWDG
0x4000 2800 - 0x4000 2BFF
1 KB
RTC
0x4000 2400 - 0x4000 27FF
1 KB
Reserved
0x4000 2000 - 0x4000 23FF
1 KB
TIM14
0x4000 1400 - 0x4000 1FFF
3 KB
Reserved
0x4000 1000 - 0x4000 13FF
1 KB
TIM6(1)
0x4000 0800 - 0x4000 0FFF
2 KB
Reserved
0x4000 0400 - 0x4000 07FF
1 KB
TIM3
0x4000 0000 - 0x4000 03FF
1 KB
Reserved
APB
1. This feature is available on STM32F030x8 devices only. For STM32F030x6 and
STM32F060x4, the area is Reserved.
DocID024849 Rev 1
35/88
35
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
6
Electrical characteristics
6.1
Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1
Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean±3).
6.1.2
Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3.3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean±2).
6.1.3
Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4
Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 8.
6.1.5
Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 9.
Figure 8. Pin loading conditions
Figure 9. Pin input voltage
MCU pin
MCU pin
C = 50 pF
VIN
MS19210V1
36/88
DocID024849 Rev 1
MS19211V1
STM32F030x4 STM32F030x6 STM32F030x8
6.1.6
Electrical characteristics
Power supply scheme
Figure 10. Power supply scheme
OUT
GP I/Os
IN
Level shifter
LSE, RTC,
Wake-up logic
IO
Logic
Kernel logic
(CPU,
Digital
& Memories)
VDD
2 × VDD
2 × 100 nF
+ 1 × 4.7 μF
VDDA
Regulator
2 × VSS
VDDA
VREF+
VREF-
10 nF
+ 1 μF
ADC
Analog:
RCs, PLL,
...
VSSA
MS32141V1
Caution:
Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
DocID024849 Rev 1
37/88
73
Electrical characteristics
6.1.7
STM32F030x4 STM32F030x6 STM32F030x8
Current consumption measurement
Figure 11. Current consumption measurement scheme
IDD
VDD
IDDA
VDDA
MS32142V1
6.2
Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 15: Voltage characteristics,
Table 16: Current characteristics, and Table 17: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability.
Table 15. Voltage characteristics(1)
Symbol
VDD–VSS
VDD–VDDA
VIN(2)
|VDDx|
|VSSX VSS|
VESD(HBM)
Ratings
Min
Max
Unit
–0.3
4.0
V
-
0.4
V
Input voltage on FT and FTf pins
VSS  0.3
VDD + 4.0
V
Input voltage on TTa pins
VSS  0.3
4.0
V
Input voltage on any other pin
VSS 0.3
4.0
V
Variations between different VDD power pins
-
50
mV
Variations between all the different ground
pins
-
50
mV
External main supply voltage (including
VDDA and VDD)
Allowed voltage difference for VDD > VDDA
Electrostatic discharge voltage (human
body model)
see Section 6.3.12: Electrical
sensitivity characteristics
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the
maximum allowed injected current values.
38/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Table 16. Current characteristics
Symbol
Ratings
Max.
IVDD
Total current into sum of all VDD_x and VDDSDx power lines
(source)(1)
120
IVSS
Total current out of sum of all VSS_x and VSSSD ground lines
(sink)(1)
-120
IVDD(PIN)
IVSS(PIN)
IIO(PIN)
IIO(PIN)
Maximum current into each VDD_x or VDDSDx power pin (source)(1)
Maximum current out of each VSS_x or VSSSD ground pin (sink)
-100
25
Output current source by any I/O and control pin
-25
Total output current sunk by sum of all IOs and control pins(2)
Total output current sourced by sum of all IOs and control pins
mA
80
(2)
Injected current on FT, FTf and B pins
-80
-5/+0
(4)
±5
Injected current on TC and RST pin
Injected current on TTa pins(5)
IINJ(PIN)
100
Output current sunk by any I/O and control pin
(3)
IINJ(PIN)
(1)
Unit
±5
Total injected current (sum of all I/O and control
pins)(6)
± 25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current
must not be sunk/sourced between two consecutive power supply pins referring to high pin count QFP
packages.
3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified
maximum value.
4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer to Table 15: Voltage characteristics for the maximum allowed input voltage values.
5. A positive injection is induced by VIN>VDDA while a negative injection is induced by VIN<VSS. IINJ(PIN) must
never be exceeded. Refer also to Table 15: Voltage characteristics for the maximum allowed input voltage
values. Negative injection disturbs the analog performance of the device. See note (2) below Table 50: ADC
accuracy.
6. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the
positive and negative injected currents (instantaneous values).
Table 17. Thermal characteristics
Symbol
TSTG
TJ
Ratings
Storage temperature range
Maximum junction temperature
DocID024849 Rev 1
Value
Unit
–65 to +150
°C
150
°C
39/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
6.3
Operating conditions
6.3.1
General operating conditions
Table 18. General operating conditions
Symbol
Parameter
Conditions
Min
Max
Unit
fHCLK
Internal AHB clock frequency
0
48
fPCLK
Internal APB clock frequency
0
48
VDD
Standard operating voltage
2.4
3.6
V
VDDA
Analog operating voltage
2.4
3.6
V
Input voltage on FT and FTf pins
VSS –0.3
VDD +4.0
V
Input voltage on TTa pins
VSS –0.3
4.0
V
Input voltage on any other pin
VSS –0.3
4.0
V
LQFP64
-
444
LQFP48
-
364
LQFP32
-
357
TSSOP20
-
182
–40
85
VIN
(1)
PD
TA
TJ
MHz
Power dissipation at TA = 85 °C
for suffix 6(2)
Must have a potential equal to or
higher than VDD
mW
Maximum power dissipation
Ambient temperature for 6 suffix
version
Low power dissipation
–40
105
Junction temperature range
6 suffix version
–40
105
(3)
°C
°C
1. VIN maximum must always be respected. Refer to Table 16: Current characteristics for the maximum allowed
injected current values.
2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
40/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
6.3.2
Electrical characteristics
Operating conditions at power-up / power-down
The parameters given in Table 19 are derived from tests performed under the ambient
temperature condition summarized in Table 18.
Table 19. Operating conditions at power-up / power-down
Symbol
Parameter
tVDD
tVDDA
6.3.3
Conditions
Min
Max
VDD rise time rate
0

VDD fall time rate
20

VDDA rise time rate
0

VDDA fall time rate
20

Unit
µs/V
Embedded reset and power control block characteristics
The parameters given in Table 20 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 18: General operating
conditions.
Table 20. Embedded reset and power control block characteristics
Symbol
Parameter
Conditions
VPOR/PDR(1)
Power on/power down
reset threshold
VPDRhyst(1)
PDR hysteresis
tRSTTEMPO(3)
Min
Typ
Max
Unit
Falling edge
1.8(2)
1.88
2.06
V
Rising edge
1.84
1.92
2.10
V
-
40
-
mV
1.5
2.5
4.5
ms
Reset temporization
1. The PDR detector monitors VDD and also VDDA (if kept enabled in the option bytes). The POR
detector monitors only VDD.
2. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
3. Guaranteed by design, not tested in production.
6.3.4
Embedded reference voltage
The parameters given in Table 21 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 18: General operating
conditions.
Table 21. Embedded internal reference voltage
Symbol
Parameter
VREFINT
Internal reference voltage
TS_vrefint (2)
ADC sampling time when
reading the internal
reference voltage
Conditions
–40 °C < TA < +85 °C
DocID024849 Rev 1
Min Typ
Max
Unit
1.16 1.2 1.24(1)
V
17.1(3)
µs
-
5.1
41/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 21. Embedded internal reference voltage (continued)
Symbol
Parameter
Conditions
VREFINT
Internal reference voltage
spread over the temperature
range
VDDA = 3 V ±10 mV
TCoeff
Min Typ
Temperature coefficient
Max
Unit
mV
-
-
10(3)
-
-
100(3) ppm/°C
1. Data based on characterization results, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
3. Guaranteed by design, not tested in production.
6.3.5
Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 11: Current consumption
measurement scheme.
All Run-mode current consumption measurements given in this section are performed with a
reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:

All I/O pins are in input mode with a static value at VDD or VSS (no load)

All peripherals are disabled except when explicitly mentioned

The Flash memory access time is adjusted to the fHCLK frequency (0 wait state from 0
to 24 MHz and 1 wait state above 24 MHz)

Prefetch is ON when the peripherals are enabled, otherwise it is OFF (to enable
prefetch the PRFTBE bit in the FLASH_ACR register must be set before clock setting
and bus prescaling)

When the peripherals are enabled fPCLK = fHCLK
The parameters given in Table 22 to are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions.
42/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Table 22.
Electrical characteristics
Typical and maximum current consumption from VDD supply at VDD = 3.6
All peripherals enabled
Symbol
Parameter
Conditions
Max @ TA(1)
fHCLK
Unit
Typ
85 °C
IDD
Supply current in
Run mode, code HSI clock, PLL on
executing from
Flash
HSI clock, PLL off
48 MHz
22
22.8
24 MHz
12.2
13.2
8 MHz
4.4
5.2
Supply current in
Run mode, code HSI clock, PLL on
executing from
RAM
HSI clock, PLL off
48 MHz
22.2
23.2
24 MHz
11.2
12.2
8 MHz
4.0
4.5
Supply current in
Sleep mode, code HSI clock, PLL on
executing from
Flash or RAM
HSI clock, PLL off
48 MHz
14
15.3
24 MHz
7.3
7.8
8 MHz
2.6
2.9
mA
1. Data based on characterization results, not tested in production unless otherwise specified.
Table 23. Typical and maximum current consumption from the VDDA supply
VDDA = 3.6 V
Symbol
Parameter
Conditions(1)
HSE bypass, PLL on
Supply current
in Run mode, HSE bypass, PLL off
code executing
from Flash or
HSI clock, PLL on
RAM
HSI clock, PLL off
IDDA
fHCLK
Typ
Max @ TA(2)
85 °C
48 MHz
175
215
8 MHz
3.9
4.9
1 MHz
3.9
4.1
48 MHz
244
275
8 MHz
85
105
48 MHz
174
215
8 MHz
3.9
4.9
1 MHz
3.9
4.9
48 MHz
244
299
8 MHz
85
105
Unit
µA
HSE bypass, PLL on
Supply current
in Sleep mode, HSE bypass, PLL off
code executing
from Flash or
HSI clock, PLL on
RAM
HSI clock, PLL off
1. Current consumption from the VDDA supply is independent of whether the peripherals are on or
off. Furthermore when the PLL is off, IDDA is independent from the frequency.
2. Data based on characterization results, not tested in production.
DocID024849 Rev 1
43/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 24. Typical and maximum VDD consumption in Stop and Standby modes
Symbol
IDD
Parameter
Conditions
Typ @VDD
(VDD = VDDA)
Max(1)
3.6 V
TA = 85 °C
19
48
5
32
2
-
Regulator in run mode, all
Supply current in oscillators OFF
Stop mode
Regulator in low-power mode, all
oscillators OFF
Supply current in
LSI ON and IWDG ON
Standby mode
Unit
µA
1. Data based on characterization results, not tested in production unless otherwise specified.
Table 25. Typical and maximum VDDA consumption in Stop and Standby modes
Parameter
Supply current in
Stop mode
Supply current in
Standby mode
Conditions
VDDA monitoring ON
Symbol
Regulator in run or low
power mode,
all oscillators OFF
LSI ON and IWDG ON
LSI OFF and IWDG OFF
Typ @VDD
(VDD =
VDDA)
Max(1)
3.6 V
TA = 85 °C
2.9
3.5
3.3
-
2.8
3.5
IDDA
Supply current in
Standby mode
VDDA monitoring OFF
µA
Supply current in
Stop mode
Regulator in run mode or
low power,
all oscillators OFF
LSI ON and IWDG ON
LSI OFF and IWDG OFF
1. Data based on characterization results, not tested in production.
44/88
Unit
DocID024849 Rev 1
1.7
-
2.3
-
1.4
-
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Typical current consumption
The MCU is placed under the following conditions:

VDD=VDDA=3.3 V

All I/O pins are in analog input configuration

The Flash access time is adjusted to fHCLK frequency (0 wait states from 0 to 24 MHz,
1 wait state above)

Prefetch is ON when the peripherals are enabled, otherwise it is OFF

When the peripherals are enabled, fPCLK = fHCLK

PLL is used for frequencies greater than 8 MHz

AHB prescaler of 2, 4, 8 and 16 is used for the frequencies 4 MHz, 2 MHz, 1 MHz and
500 kHz respectively

A development tool is connected to the board and the parasitic pull-up current is
around 30 µA
Table 26. Typical current consumption in Run mode, code with data processing
running from Flash
Typ
Symbol
Parameter
IDD
Supply current in Run
mode from VDD supply
IDDA
Conditions
Running from
HSE crystal clock
8 MHz, code
Supply current in Run
executing from
mode from VDDA supply Flash
DocID024849 Rev 1
fHCLK
Peripherals
enabled
Peripherals
disabled
48 MHz
23.3
11.5
8 MHz
4.5
3.0
48 MHz
158
158
8 MHz
2.43
2.43
Unit
mA
µA
45/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 44: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution:
Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 26: Typical current consumption in Run mode, code with data processing running
from Flash), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
I SW = V DD  f SW  C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
46/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Table 27. Switching output I/O current consumption
Symbol
Parameter
Conditions(1)
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT+ CS
ISW
I/O current
consumption
I/O toggling
frequency
(fSW)
Typ
4 MHz
0.18
8 MHz
0.37
16 MHz
0.76
24 MHz
1.39
48 MHz
2.188
4 MHz
0.49
8 MHz
0.94
16 MHz
2.38
24 MHz
3.99
4 MHz
0.81
8 MHz
1.7
16 MHz
3.67
Unit
mA
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT+ CS
VDD = 3.3 V
CEXT = 47 pF
C = CINT + CEXT+ CS
C = Cint
1. CS = 7 pF (estimated value)
6.3.6
Wakeup time from low-power mode
The wakeup times given in Table 28 is measured on a wakeup phase with a 8-MHz HSI RC
oscillator. The event used to wake up the device depends from the current operating mode:

Stop or sleep mode: the wakeup event is WFE.

The wakeup pin used in stop and sleep mode is PA0 and in standby mode is PA1.
All timings are derived from tests performed under ambient temperature and VDD supply
voltage conditions summarized in Table 18: General operating conditions.
Table 28. Low-power mode wakeup timings
Symbol
Parameter
tWUSTOP
Wakeup from Stop mode
tWUSTANDBY
Wakeup from Standby mode
tWUSLEEP
Wakeup from Sleep mode
Conditions
Regulator in run mode
DocID024849 Rev 1
Typ @VDD
= 3.3 V
Max
4.2
5
50.96
-
1.1
-
Unit
µs
47/88
73
Electrical characteristics
6.3.7
STM32F030x4 STM32F030x6 STM32F030x8
External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 12: High-speed external clock
source AC timing diagram.
Table 29. High-speed external user clock characteristics
Parameter(1)
Symbol
Conditions
Min
Typ
Max
Unit
1
8
32
MHz
fHSE_ext
User external clock source
frequency
VHSEH
OSC_IN input pin high level voltage
0.7VDD
-
VDD
VHSEL
OSC_IN input pin low level voltage
VSS
-
0.3VDD
tw(HSEH)
tw(HSEL)
OSC_IN high or low time
15
-
-
tr(HSE)
tf(HSE)
OSC_IN rise or fall time
-
-
20
V
ns
1. Guaranteed by design, not tested in production.
Figure 12. High-speed external clock source AC timing diagram
tW(HSEH)
VHSEH
90%
VHSEL
10%
tr(HSE)
tf(HSE)
tW(HSEL)
t
THSE
MS19214V2
48/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics in Section 6.3.14. However,
the recommended clock input waveform is shown in Figure 13.
Table 30. Low-speed external user clock characteristics
Parameter(1)
Symbol
Conditions
Min
Typ
Max
Unit
-
32.768
1000
kHz
0.7VDD
-
VDD
fLSE_ext
User External clock source
frequency
VLSEH
OSC32_IN input pin high level
voltage
VLSEL
OSC32_IN input pin low level
voltage
VSS
-
0.3VDD
tw(LSEH)
tw(LSEL)
OSC32_IN high or low time
450
-
-
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time
V
ns
-
-
50
1. Guaranteed by design, not tested in production.
Figure 13. Low-speed external clock source AC timing diagram
tW(LSEH)
VLSEH
90%
VLSEL
10%
tr(LSE)
tf(LSE)
t
tW(LSEL)
TLSE
MS19215V2
DocID024849 Rev 1
49/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on design
simulation results obtained with typical external components specified in Table 31. In the
application, the resonator and the load capacitors have to be placed as close as possible to
the oscillator pins in order to minimize output distortion and startup stabilization time. Refer
to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Table 31. HSE oscillator characteristics
Symbol
fOSC_IN
RF
IDD
Typ
Max(2)
Unit
Oscillator frequency
4
8
32
MHz
Feedback resistor
-
200
-
k
HSE current consumption
gm
tSU(HSE)
Min(2)
Parameter
Conditions(1)
During startup(3)
-
VDD=3.3 V, Rm= 45,
CL=10 [email protected] MHz
-
0.5
-
VDD=3.3 V, Rm= 30,
CL=20 [email protected] MHz
-
1.5
-
Startup
10
-
-
mA/V
VDD is stabilized
-
2
-
ms
Oscillator transconductance
(4)
Startup time
8.5
mA
1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.
2. Guaranteed by design, not tested in production.
3. This consumption level occurs during the first 2/3 of the tSU(HSE) startup time
4. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a
stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator
and it can vary significantly with the crystal manufacturer
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 14). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note:
50/88
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Figure 14. Typical application with an 8 MHz crystal
Resonator with
integrated capacitors
CL1
fHSE
OSC_IN
8 MH z
resonator
CL2
REXT(1)
RF
Bias
controlled
gain
OSC_OU T
MS19876V1
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. All the information given in this paragraph are based on design simulation results
obtained with typical external components specified in Table 32. In the application, the
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins in order to minimize output distortion and startup stabilization time. Refer to the crystal
resonator manufacturer for more details on the resonator characteristics (frequency,
package, accuracy).
Table 32. LSE oscillator characteristics (fLSE = 32.768 kHz)
Symbol
IDD
gm
Conditions(1)
Min(2)
Typ
LSEDRV[1:0]=00
lower driving capability
-
0.5
-
LSEDRV[1:0]= 01
medium low driving capability
-
0.8
-
Parameter
Max(2) Unit
LSE current consumption
Oscillator
transconductance
µA
LSEDRV[1:0] = 10
medium high driving capability
-
1.1
-
LSEDRV[1:0]=11
higher driving capability
-
1.4
-
LSEDRV[1:0]=00
lower driving capability
5
-
-
LSEDRV[1:0]= 01
medium low driving capability
8
-
µA/V
LSEDRV[1:0] = 10
medium high driving capability
15
-
-
LSEDRV[1:0]=11
higher driving capability
25
-
-
VDD is stabilized
-
2
-
tSU(LSE)(3) Startup time
s
1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
2. Guaranteed by design, not tested in production.
3.
tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz
oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the
crystal manufacturer
DocID024849 Rev 1
51/88
73
Electrical characteristics
Note:
STM32F030x4 STM32F030x6 STM32F030x8
For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 15. Typical application with a 32.768 kHz crystal
Resonator with
integrated capacitors
CL1
fLSE
OSC32_IN
Drive
programmable
amplifier
32.768 kH z
resonator
OSC32_OU T
CL2
MS30253V1
Note:
An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
6.3.8
Internal clock source characteristics
The parameters given in Table 33 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions. The provided curves are characterization results, not tested in production.
High-speed internal (HSI) RC oscillator
Table 33. HSI oscillator characteristics(1)
Symbol
fHSI
TRIM
DuCy(HSI)
Parameter
Conditions
Frequency
Typ
-
8
Max
Unit
MHz
-
1(2)
45(2)
-
55(2)
%
TA = –40 to 85 °C
-
±5
-
%
TA = 25 °C
-
±1
-
%
HSI user trimming step
-
Duty cycle
%
ACCHSI
Accuracy of the HSI
oscillator (factory
calibrated)(3)
tsu(HSI)
HSI oscillator startup
time
1(2)
-
2(2)
µs
IDDA(HSI)
HSI oscillator power
consumption
-
80
-
µA
1. VDDA = 3.3 V, TA = –40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
3. With user calibration.
52/88
Min
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)
Table 34. HSI14 oscillator characteristics(1)
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
fHSI14
Frequency
-
14
TRIM
HSI14 user-trimming step
-
-
1(2)
%
45(2)
-
55(2)
%
-
±5
-
%
1(2)
-
2(2)
µs
-
100
-
µA
DuCy(HSI14) Duty cycle
ACCHSI14
Accuracy of the HSI14
oscillator (factory calibrated)
tsu(HSI14)
HSI14 oscillator startup time
IDDA(HSI14)
TA = –40 to 85 °C
HSI14 oscillator power
consumption
MHz
1. VDDA = 3.3 V, TA = –40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
Low-speed internal (LSI) RC oscillator
Table 35. LSI oscillator characteristics(1)
Symbol
fLSI
tsu(LSI)(2)
IDDA(LSI)(2)
Parameter
Min
Typ
Max
Unit
30
40
50
kHz
LSI oscillator startup time
-
-
85
µs
LSI oscillator power consumption
-
0.75
-
µA
Frequency
1. VDDA = 3.3 V, TA = –40 to 85 °C unless otherwise specified.
2. Guaranteed by design, not tested in production.
6.3.9
PLL characteristics
The parameters given in Table 36 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 18: General operating
conditions.
DocID024849 Rev 1
53/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 36. PLL characteristics
Value
Symbol
Parameter
Unit
Min
Typ
Max
PLL input clock(1)
1(2)
-
24(2)
PLL input clock duty cycle
40(2)
-
(2)
fPLL_OUT
PLL multiplier output clock
(2)
-
48
MHz
tLOCK
PLL lock time
-
-
200(2)
µs
-
(2)
ps
fPLL_IN
JitterPLL
16
Cycle-to-cycle jitter
-
MHz
60
300
%
1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible
with the range defined by fPLL_OUT.
2. Guaranteed by design, not tested in production.
6.3.10
Memory characteristics
Flash memory
The characteristics are given at TA = –40 to 85 °C unless otherwise specified.
Table 37. Flash memory characteristics
Min
Typ
Max(1)
Unit
16-bit programming time TA–40 to +85 °C
-
53.5
-
µs
Page (1 KB) erase time
TA –40 to +85 °C
-
30
-
ms
tME
Mass erase time
TA –40 to +85 °C
-
30
-
ms
Write mode
-
-
10
mA
IDD
Supply current
Erase mode
-
-
12
mA
2.4
-
3.6
V
Symbol
tprog
tERASE
Vprog
Parameter
Conditions
Programming voltage
1. Guaranteed by design, not tested in production.
Table 38. Flash memory endurance and data retention
Symbol
NEND
tRET
Parameter
Endurance
Data retention
Conditions
TA = –40 to +85 °C (6 suffix versions)
(2)
1 kcycle
at TA = 85 °C
Min(1)
Unit
1
kcycles
20
Years
1. Data based on characterization results, not tested in production.
2. Cycling performed over the whole temperature range.
6.3.11
EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
54/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:

Electrostatic discharge (ESD) (positive and negative) is applied to all device pins
until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2
standard.

FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 39. They are based on the EMS levels and classes
defined in application note AN1709.
Table 39. EMS characteristics
Symbol
Parameter
Conditions
Level/
Class
VFESD
VDD 3.3 V, LQFP64, TA +25 °C,
Voltage limits to be applied on any I/O pin to
fHCLK 48 MHz
induce a functional disturbance
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD3.3 V, LQFP64, TA +25 °C,
fHCLK 48 MHz
conforms to IEC 61000-4-4
3B
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:

Corrupted program counter

Unexpected reset

Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
DocID024849 Rev 1
55/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with
IEC 61967-2 standard which specifies the test board and the pin loading.
Table 40. EMI characteristics
Symbol Parameter
SEMI
6.3.12
Monitored
frequency band
Conditions
Max vs. [fHSE/fHCLK]
Unit
8/48 MHz
0.1 to 30 MHz
VDD 3.6 V, TA 25 °C,
30 to 130 MHz
LQFP64 package
Peak level
compliant with IEC
130 MHz to 1GHz
61967-2
SAE EMI Level
-3
28
dBµV
23
4
-
Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 41. ESD absolute maximum ratings
Symbol
Conditions
Class
Electrostatic discharge voltage
(human body model)
TA +25 °C, conforming
to JESD22-A114
2
Electrostatic discharge voltage
VESD(CDM)
(charge device model)
TA +25 °C, conforming
to JESD22-C101
VESD(HBM)
Ratings
Maximum
Unit
value(1)
2000
V
II
500
1. Data based on characterization results, not tested in production.
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:

A supply overvoltage is applied to each power supply pin

A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latch-up standard.
Table 42. Electrical sensitivities
Symbol
LU
56/88
Parameter
Static latch-up class
Conditions
TA +105 °C conforming to JESD78A
DocID024849 Rev 1
Class
II level A
STM32F030x4 STM32F030x6 STM32F030x8
6.3.13
Electrical characteristics
I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (more
than 5 LSB TUE), out of conventional limits of current injection on adjacent pins (more than
–5 µA) or other functional failure (reset occurrence or oscillator frequency deviation, for
example).
The characterization results are given in Table 43.
Table 43. I/O current injection susceptibility
Functional
susceptibility
Symbol
IINJ
6.3.14
Description
Unit
Negative
injection
Positive
injection
Injected current on BOOT0
–0
NA
Injected current on all FT and FTf pins with induced
leakage current on adjacent pins less than –5 µA
–5
NA
Injected current on all TTa pins with induced leakage
current on adjacent pins less than –5 µA
–5
+5
Injected current on all TC and RESET pins with induced
leakage current on adjacent pins less than –5 µA
–5
+5
mA
I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 44 are derived from tests
performed under the conditions summarized in Table 18: General operating conditions. All
I/Os are designed as CMOS and TTL compliant.
Table 44. I/O static characteristics
Symbol
VIL
Parameter
Low level input
voltage
Conditions
Min
Typ
Max
TC and TTa I/O
-
-
0.3 VDD+0.07(1)
FT and FTf I/O
-
-
0.475 VDD–0.2(1)
BOOT0
-
-
0.3 VDD–0.3(1)
All I/Os except BOOT0 pin
-
-
0.3 VDD
DocID024849 Rev 1
Unit
V
57/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 44. I/O static characteristics (continued)
Symbol
Parameter
Conditions
TC and TTa I/O
VIH
High level input
voltage
Min
Typ
Max
0.445 VDD+0.398(1)
-
-
FT and FTf I/O
0.5
VDD+0.2(1)
-
-
BOOT0
0.2 VDD+0.95(1)
-
-
0.7 VDD
-
All I/Os except BOOT0 pin
Vhys
Ilkg
Input leakage
current (2)
V
-
-
(1)
200
-
FT and FTf I/O
-
100(1)
-
BOOT0
-
300(1)
-
TC, FT and FTf I/O
TTa in digital mode
VSS  VIN  VDD
-
-
 0.1
TTa in digital mode
VDD  VIN  VDDA
-
-
1
TTa in analog mode
VSS  VIN  VDDA
-
-
 0.2
FT and FTf I/O (3)
VDD  VIN  5 V
-
-
10
TC and TTa I/O
Schmitt trigger
hysteresis
Unit
mV
µA
RPU
Weak pull-up
equivalent
resistor (4)
VIN VSS
25
40
55
k
RPD
Weak pull-down
equivalent
resistor (4)
VIN VDD
25
40
55
k
CIO
I/O pin
capacitance
-
5
-
pF
1. Data based on design simulation only. Not tested in production.
2. Leakage could be higher than maximum value, if negative current is injected on adjacent pins. Refer to
Table 43: I/O current injection susceptibility.
3. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled.
4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS.
This MOS/NMOS contribution to the series resistance is minimum (~10% order).
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 16 for standard I/Os, and in Figure 17 for
5 V tolerant I/Os.
58/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Figure 16. TC and TTa I/O input characteristics
3
VIN (V)
2.5
Tested range
V IHmin
2
ents
V DD
TTL standard requirement
uirem
req
ndard
= 0.7
S sta
CMO
1.5
+ 0.398
Undefined input range
0.445 V DD
V IHmin =
1
3 VDD
VILmax = 0.
3 VDD + 0.07
VILmax = 0.
TTL standard requirement
irements
ndard requ
CMOS sta
0.5
Tested range
0
2
2.2
2.4
2.6
2.8
3
3.2
3.4 V (V) 3.6
DD
MS32130V1
Figure 17. Five volt tolerant (FT and FTf) I/O input characteristics
3
VIN (V)
2.5
V IHmin
Tested range
V D
= 0.7 D
TTL standard requirement
2
S
CMO
1.5
ard
stand
=
V IHmin
1
V ILmax
ts
emen
requir
0.5 V DD
+ 0.2
Undefined input range
.2
-0
V
= 0.475 DD
3 VDD
VILmax = 0.
TTL standard requirement
irements
ndard requ
CMOS sta
0.5
Tested range
0
2
2.2
2.4
2.6
2.8
3
3.2
3.4
VDD (V)
3.6
MS32131V1
DocID024849 Rev 1
59/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or
source up to +/- 20 mA (with a relaxed VOL/VOH).
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2:

The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 16: Current characteristics).

The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
IVSS (see Table 16: Current characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 18: General operating conditions. All I/Os are CMOS and TTL compliant (FT, TTa or
TC unless otherwise specified).
Table 45. Output voltage characteristics
Symbol
Parameter
VOL(1)
Output low level voltage for an I/O pin when 8
pins are sunk at the same time
(2)
Output high level voltage for an I/O pin when 8
pins are sourced at the same time
VOH
Conditions
VOL(1)(3)
Output low level voltage for an I/O pin when 5
pins are sunk at the same time
(2)(3)
Output high level voltage for an I/O pin when 5
pins are sourced at the same time
VOL(1)(3)
Output low level voltage for an I/O pin when 8
pins are sunk at the same time
(2)(3)
Output high level voltage for an I/O pin when 8
pins are sourced at the same time
VOH
VOH
VOLFM+(1)
IIO = +8 mA
2.7 V < VDD < 3.6 V
IIO = +20 mA
2.7 V < VDD < 3.6 V
IIO = +6 mA
2.4 V < VDD < 2.7 V
Output low level voltage for an FTf I/O pin in
FM+ mode
IIO = +20 mA
Min
Max
-
0.4
Unit
V
VDD–0.4
-
-
1.3
V
VDD–1.3
-
-
0.4
V
VDD–0.4
-
-
0.4
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 16:
Current characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
2. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 16: Current characteristics and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
3. Data based on characterization results. Not tested in production.
60/88
DocID024849 Rev 1
V
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 18 and
Table 46, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 18: General
operating conditions.
Table 46. I/O AC characteristics(1)
OSPEEDRy
[1:0] value(1)
Symbol
Parameter
fmax(IO)out Maximum frequency(2)
x0
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out Maximum frequency(2)
01
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out Maximum
11
frequency(2)
tf(IO)out
Output high to low level
fall time
tr(IO)out
Output low to high level
rise time
fmax(IO)out Maximum frequency(2)
FM+
configuration
Conditions
Min
Max
Unit
-
2
MHz
-
125(3)
-
(3)
125
-
10
-
25(3)
-
25(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
50
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
30
CL = 50 pF, VDD = 2.4 V to 2.7 V
-
20
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 30 pF, VDD = 2.7 V to 3.6 V
-
5(3)
CL = 50 pF, VDD = 2.7 V to 3.6 V
-
8(3)
CL = 50 pF, VDD = 2.4 V to 3.6 V
-
2(3)
CL = 50 pF, VDD = 2.4 V to 3.6 V
CL = 50 pF, VDD = 2.4 V to 3.6 V
CL = 50 pF, VDD = 2.4 V to 3.6 V
ns
CL = 50 pF, VDD = 2.4 V to 3.6 V
MHz
ns
tf(IO)out
Output high to low level
fall time
CL = 50 pF, VDD = 2.4 V to 3.6 V
-
12(3)
tr(IO)out
Output low to high level
rise time
CL = 50 pF, VDD = 2.4 V to 3.6 V
-
34(3)
tEXTIpw
Pulse width of external
signals detected by the
EXTI controller
10
-
MHz
ns
MHz
ns
(4)
ns
1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0091 reference manual for a
description of GPIO Port configuration register.
2. The maximum frequency is defined in Figure 18.
3. Guaranteed by design, not tested in production.
4. When FM+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xx reference
manual RM0091 for a detailed description of FM+ I/O configuration.
DocID024849 Rev 1
61/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 18. I/O AC characteristics definition
90%
10%
50%
50%
10%
EXTERNAL
OUTPUT
ON 50 pF
90%
t f(IO)out
t r(IO)out
T
Maximum frequency is achieved if (t r + t f (≤ 2/3)T and if the duty cycle is (45-55%)
when loaded by 50 pF
MS32132V1
6.3.15
NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent pullup resistor, RPU (see Table 44: I/O static characteristics).
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 18: General operating conditions.
Table 47. NRST pin characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
–0.3
-
0.8(1)
Unit
VIL(NRST)
NRST input low level voltage
VIH(NRST)
NRST input high level
voltage
2
-
VDD+0.3(1)
Vhys(NRST)
NRST Schmitt trigger
voltage hysteresis
-
200
-
mV
30
40
50
k
-
-
100(1)
ns
300(1)
-
-
ns
RPU
Weak pull-up equivalent
resistor(2)
VF(NRST)
NRST input filtered pulse
VNF(NRST)
VIN VSS
NRST input not filtered pulse
V
1. Guaranteed by design, not tested in production.
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance must be minimum (~10% order).
62/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Figure 19. Recommended NRST pin protection
VDD
External
reset circuit(1)
NRST(2)
RPU
Internal Reset
Filter
0.1 μF
MS19878V1
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 47: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.
DocID024849 Rev 1
63/88
73
Electrical characteristics
6.3.16
STM32F030x4 STM32F030x6 STM32F030x8
12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 48 are preliminary values derived
from tests performed under ambient temperature, fPCLK2 frequency and VDDA supply
voltage conditions summarized in Table 18: General operating conditions.
Note:
It is recommended to perform a calibration after each power-up.
Table 48. ADC characteristics
Symbol
Parameter
Conditions
Min
Typ
Max
Unit
VDDA
Analog supply voltage for
ADC ON
2.4
-
3.6
V
fADC
ADC clock frequency
0.6
-
14
MHz
fS(1)
Sampling rate
0.05
-
1
MHz
-
-
823
kHz
-
-
17
1/fADC
0
-
VDDA
V
-
-
50
k
fADC = 14 MHz
fTRIG(1)
External trigger frequency
VAIN
Conversion voltage range
RAIN(1)
External input impedance
RADC(1)
Sampling switch resistance
-
-
1
k
CADC(1)
Internal sample and hold
capacitor
-
-
8
pF
tCAL(1)
Calibration time
tlatr(1)
JitterADC
Trigger conversion latency
ADC jitter on trigger
conversion
tS(1)
Sampling time
tSTAB(1)
Power-up time
tCONV(1)
Total conversion time
(including sampling time)
See Equation 1 and
Table 49 for details
fADC = 14 MHz
5.9
µs
83
1/fADC
fADC = fPCLK/2 = 14 MHz
0.196
µs
fADC = fPCLK/2
5.5
1/fPCLK
fADC = fPCLK/4 = 12 MHz
0.219
µs
fADC = fPCLK/4
10.5
1/fPCLK
fADC = fHSI14 = 14 MHz
0.188
-
0.259
µs
fADC = fHSI14
-
1
-
1/fHSI14
fADC = 14 MHz
0.107
-
17.1
µs
1.5
-
239.5
1/fADC
0
0
1
µs
1
-
18
µs
fADC = 14 MHz
14 to 252 (tS for sampling +12.5 for
successive approximation)
1. Guaranteed by design, not tested in production.
64/88
DocID024849 Rev 1
1/fADC
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Equation 1: RAIN max formula
TS
R AIN  ------------------------------------------------------------- – R ADC
N+2
f ADC  C ADC  ln  2

The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).
Table 49. RAIN max for fADC = 14 MHz
Ts (cycles)
tS (µs)
RAIN max (k)(1)
1.5
0.11
0.4
7.5
0.54
5.9
13.5
0.96
11.4
28.5
2.04
25.2
41.5
2.96
37.2
55.5
3.96
50
71.5
5.11
NA
239.5
17.1
NA
1. Guaranteed by design, not tested in production.
Table 50. ADC accuracy(1)(2)(3)
Symbol
Parameter
Test conditions
ET
Total unadjusted error
EO
Offset error
EG
Gain error
ED
Differential linearity error
EL
Integral linearity error
fPCLK = 48 MHz,
fADC = 14 MHz, RAIN < 10 k,
VDDA = 2.7 V to 3.6 V
TA = 40 to 85 °C
Typ
Max(4)
±3.3
±4
±1.9
±2.8
±2.8
±3
±0.7
±1.3
±1.2
±1.7
Unit
LSB
1. ADC DC accuracy values are measured after internal calibration.
2. ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard
(non-robust) analog input pins should be avoided as this significantly reduces the accuracy of
the conversion being performed on another analog input. It is recommended to add a Schottky
diode (pin to ground) to standard analog pins which may potentially inject negative current.
Any positive injection current within the limits specified for IINJ(PIN) and IINJ(PIN) in
Section 6.3.14 does not affect the ADC accuracy.
3. Better performance may be achieved in restricted VDDA, frequency and temperature ranges.
4. Data based on characterization results, not tested in production.
DocID024849 Rev 1
65/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 20. ADC accuracy characteristics
VDDA
1 LSBIDEAL 4096
EG
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
(2)
ET
(3)
7
(1)
6
5
4
ET=Total Unadjusted Error: maximum deviation
between the actual and the ideal transfer curves.
EO=Offset Error: deviation between the first actual
transition and the first ideal one.
EG=Gain Error: deviation between the last ideal
transition and the last actual one.
ED=Differential Linearity Error: maximum deviation
between actual steps and the ideal one.
EL=Integral Linearity Error: maximum deviation
between any actual transition and the end point
correlation line.
EO
EL
3
ED
2
1 LSBIDEAL
1
0
1
VSSA
2
3
4
5
6
7
4093 4094 4095 4096
VDDA
MS19880V1
Figure 21. Typical connection diagram using the ADC
VDDA
RAIN(1)
VAIN
Sample and hold ADC
converter
VT
0.6 V
RADC
AINx
Cparasitic
VT
0.6 V
IL±1 μA
12-bit
converter
CADC
MS19881V2
1. Refer to Table 48: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy
this, fADC should be reduced.
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 10: Power supply
scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as
close as possible to the chip.
66/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
6.3.17
Electrical characteristics
Temperature sensor characteristics
Table 51. TS characteristics
Symbol
Parameter
Min
Typ
Max
Unit
-
1
2
°C
TL(1)
VSENSE linearity with temperature
Avg_Slope(1)
Average slope
4.0
4.3
4.6
mV/°C
V25
Voltage at 25 °C
1.34
1.43
1.52
V
tSTART(1)
Startup time
4
-
10
µs
TS_temp(1)(2)
ADC sampling time when reading the
temperature
17.1
-
-
µs
1. Guaranteed by design, not tested in production.
2. Shortest sampling time can be determined in the application by multiple iterations.
6.3.18
Timer characteristics
The parameters given in Table 52 are guaranteed by design.
Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
Table 52. TIMx(1) characteristics
Symbol
tres(TIM)
fEXT
ResTIM
tCOUNTER
tMAX_COUNT
Parameter
Conditions
Min
Max
Unit
1
-
tTIMxCLK
20.8
-
ns
Timer resolution time
fTIMxCLK = 48 MHz
Timer external clock
frequency on CH1 to CH4 f
TIMxCLK = 48 MHz
0
fTIMxCLK/2
MHz
0
24
MHz
Timer resolution
-
16
bit
1
65536
tTIMxCLK
0.0208
1365
µs
-
65536 × 65536
tTIMxCLK
-
89.48
s
TIMx
16-bit counter clock period
fTIMxCLK = 48 MHz
Maximum possible count
with 32-bit counter
fTIMxCLK = 48 MHz
1. TIMx is used as a general term to refer to the TIM1, TIM3, TIM6, TIM14, TIM15, TIM16 and
TIM17 timers.
DocID024849 Rev 1
67/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 53. IWDG min/max timeout period at 40 kHz (LSI) (1)
Prescaler divider
PR[2:0] bits
Min timeout RL[11:0]=
0x000
Max timeout RL[11:0]=
0xFFF
/4
0
0.1
409.6
/8
1
0.2
819.2
/16
2
0.4
1638.4
/32
3
0.8
3276.8
/64
4
1.6
6553.6
/128
5
3.2
13107.2
/256
6 or 7
6.4
26214.4
Unit
ms
1. These timings are given for a 40 kHz clock but the microcontroller’s internal RC frequency can
vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still
depend on the phasing of the APB interface clock versus the LSI clock so that there is always
a full RC period of uncertainty.
Table 54. WWDG min-max timeout value @48 MHz (PCLK)
Prescaler
WDGTB
Min timeout value
Max timeout value
1
0
0.0853
5.4613
2
1
0.1706
10.9226
4
2
0.3413
21.8453
8
3
0.6826
43.6906
Unit
ms
68/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
6.3.19
Electrical characteristics
Communication interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table 55. Refer also to Section 6.3.14: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
Table 55. I2C characteristics(1)
Standard
Symbol
Fast mode
Fast mode +
Parameter
Unit
Min
Max
Min
Max
Min
Max
0
100
0
400
0
1000
KHz
-
1.3
-
0.5
-
µs
0.26
-
µs
fSCL
SCL clock frequency
tLOW
Low period of the SCL clock
4.7
tHIGH
High Period of the SCL clock
4
tr
Rise time of both SDA and SCL
signals
-
1000
-
300
-
120
ns
tf
Fall time of both SDA and SCL
signals
-
300
-
300
-
120
ns
Data hold time
0
-
0
-
0
-
µs
-
3.45(2)
-
0.9(2)
-
0.45(2)
µs
-
3.45(2)
-
0.9(2)
-
0.45(2)
µs
tHD;DAT
tVD;DAT
Data valid time
0.6
tVD;ACK
Data valid acknowledge time
tSU;DAT
Data setup time
250
-
100
-
50
-
ns
tHD;STA
Hold time (repeated) START
condition
4.0
-
0.6
-
0.26
-
µs
tSU;STA
Set-up time for a repeated
START
condition
4.7
-
0.6
-
0.26
tSU;STO
Set-up time for STOP condition
4.0
-
0.6
-
0.26
-
µs
Bus free time between a
STOP and START condition
4.7
-
1.3
-
0.5
-
µs
-
400
-
400
-
550
pF
tBUF
Cb
Capacitive load for each bus line
µs
1. The I2C characteristics are the requirements from the I2C bus specification rev03. They are guaranteed by
design when the I2Cx_TIMING register is correctly programmed (refer to reference manual). These
characteristics are not tested in production.
2. The maximum tHD;DAT could be 3.45 µs, 0.9 µs and 0.45 µs for standard mode, fast mode and fast mode
plus, but must be less than the maximum of tVD;DAT or tVD;ACK by a transition time.
DocID024849 Rev 1
69/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Table 56. I2C analog filter characteristics(1)
Symbol
tSP
Parameter
Pulse width of spikes that are
suppressed by the analog filter
Min
Max
Unit
50
260
ns
1. Guaranteed by design, not tested in production.
Figure 22. I2C bus AC waveforms and measurement circuit
VDD_I2C
Rp
VDD_I2C
MCU
Rp
Rs
SDA
I2C bus
Rs
SCL
MS19879V3
Legend: Rs: Series protection resistors. Rp: Pull-up resistors. VDD_I2C: I2C bus supply.
SPI characteristics
Unless otherwise specified, the parameters given in Table 57 are derived from tests
performed under ambient temperature, fPCLKx frequency and VDD supply voltage conditions
summarized in Table 18: General operating conditions.
Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK).
70/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Table 57. SPI characteristics
Symbol
fSCK
1/tc(SCK)
tr(SCK)
tf(SCK)
tsu(NSS)(1)
th(NSS)
(1)
tw(SCKH)(1)
tw(SCKL)(1)
tsu(MI) (1)
tsu(SI)(1)
th(MI)
(1)
th(SI)
(1)
Parameter
Conditions
Min
Max
Master mode
-
18
Slave mode
-
18
SPI clock rise and fall
time
Capacitive load: C = 15 pF
-
6
NSS setup time
Slave mode
4Tpclk
-
NSS hold time
Slave mode
2Tpclk + 10
-
SCK high and low time
Master mode, fPCLK = 36 MHz,
presc = 4
Tpclk/2 -2
Tpclk/2 + 1
Master mode
4
-
Slave mode
5
-
Master mode
4
-
Slave mode
5
-
SPI clock frequency
MHz
Data input hold time
Data output access time
Slave mode, fPCLK = 20 MHz
0
3Tpclk
tdis(SO)(1)(3)
Data output disable time
Slave mode
0
18
tv(SO)
(1)
Data output valid time
Slave mode (after enable edge)
-
22.5
tv(MO)
(1)
Data output valid time
Master mode (after enable edge)
-
6
Slave mode (after enable edge)
11.5
-
Master mode (after enable edge)
2
-
Slave mode
25
75
th(MO)
(1)
DuCy(SCK)
ns
Data input setup time
ta(SO)(1)(2)
th(SO)(1)
Unit
ns
Data output hold time
SPI slave input clock
duty cycle
%
1. Data based on characterization results, not tested in production.
2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the
data.
3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the
data in Hi-Z
DocID024849 Rev 1
71/88
73
Electrical characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 23. SPI timing diagram - slave mode and CPHA = 0
NSS input
tc(SCK)
th(NSS)
SCK Input
tSU(NSS)
CPHA= 0
CPOL=0
tw(SCKH)
tw(SCKL)
CPHA= 0
CPOL=1
tv(SO)
ta(SO)
MISO
OUT P UT
tr(SCK)
tf(SCK)
th(SO)
MS B O UT
BI T6 OUT
tdis(SO)
LSB OUT
tsu(SI)
MOSI
I NPUT
M SB IN
LSB IN
B I T1 IN
th(SI)
ai14134c
Figure 24. SPI timing diagram - slave mode and CPHA = 1
NSS input
SCK Input
tSU(NSS)
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tc(SCK)
tw(SCKH)
tw(SCKL)
tv(SO)
ta(SO)
MISO
OUT P UT
MS B O UT
tsu(SI)
MOSI
I NPUT
th(NSS)
th(SO)
BI T6 OUT
tr(SCK)
tf(SCK)
tdis(SO)
LSB OUT
th(SI)
B I T1 IN
M SB IN
LSB IN
ai14135
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
72/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Electrical characteristics
Figure 25. SPI timing diagram - master mode
High
NSS input
SCK Output
SCK Output
tc(SCK)
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tsu(MI)
MISO
INP UT
tw(SCKH)
tw(SCKL)
MS BIN
tr(SCK)
tf(SCK)
BI T6 IN
LSB IN
th(MI)
MOSI
OUTUT
M SB OUT
tv(MO)
B I T1 OUT
LSB OUT
th(MO)
ai14136
1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD.
DocID024849 Rev 1
73/88
73
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
7
Package characteristics
7.1
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
74/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics
Figure 26. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline
D
ccc C
D1
A
A2
D3
33
48
32
49
b
L1
E3 E1 E
A1
L
K
64
17
Pin 1
identification
16
1
c
5W_ME
1. Drawing is not to scale.
Table 58. LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
11.800
D1
9.800
D.
Max
0.0630
0.150
0.0020
0.0059
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
12.000
12.200
0.4646
0.4724
0.4803
10.000
10.200
0.3858
0.3937
0.4016
0.0079
7.500
E
11.800
12.000
12.200
0.4646
0.4724
0.4803
E1
9.800
10.00
10.200
0.3858
0.3937
0.4016
e
0.500
0.0197
k
0°
3.5°
7°
0°
3.5°
7°
L
0.450
0.600
0.75
0.0177
0.0236
0.0295
L1
1.000
0.0394
ccc
0.080
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024849 Rev 1
75/88
85
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 27. LQFP64 recommended footprint
48
33
0.3
49
12.7
32
0.5
10.3
10.3
64
17
1.2
1
16
7.8
12.7
ai14909
1. Drawing is not to scale.
2. Dimensions are in millimeters.
76/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics
Figure 28. LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline
D
ccc C
D1
D3
A
A2
25
36
24
37
L1
b
E3 E1 E
48
Pin 1
identification
13
1
L
A1
K
c
12
5B_ME
1. Drawing is not to scale.
Table 59. LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.170
c
0.090
D
8.800
D1
6.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.220
0.270
0.0067
0.0087
0.0106
0.200
0.0035
9.000
9.200
0.3465
0.3543
0.3622
7.000
7.200
0.2677
0.2756
0.2835
5.500
0.0059
0.0079
0.2165
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
5.500
0.2165
e
0.500
0.0197
L
0.450
L1
k
ccc
0.600
0.750
0.0177
1.000
0°
3.5°
0.0236
0.0295
0.0394
7°
0°
0.080
3.5°
7°
0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024849 Rev 1
77/88
85
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 29. LQFP48 recommended footprint
0.50
1.20
36
9.70
0.30
25
37
24
0.20
7.30
5.80
7.30
48
13
12
1
1.20
5.80
9.70
ai14911b
1. Drawing is not to scale.
2. Dimensions are in millimeters.
78/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics
Figure 30. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package outline
ccc C
D
D1
D3
24
A
A2
17
16
25
L1
b
E3 E1 E
32
Pin 1
identification
9
A1
1
8
L
K
c
5V_ME
1. Drawing is not to scale.
Table 60. LQFP32 – 7 x 7mm 32-pin low-profile quad flat package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.600
A1
0.050
A2
1.350
b
0.300
c
0.090
D
8.800
D1
6.800
D3
Max
0.0630
0.150
0.0020
1.400
1.450
0.0531
0.0551
0.0571
0.370
0.450
0.0118
0.0146
0.0177
0.200
0.0035
9.000
9.200
0.3465
0.3543
0.3622
7.000
7.200
0.2677
0.2756
0.2835
5.600
0.0059
0.0079
0.2205
E
8.800
9.000
9.200
0.3465
0.3543
0.3622
E1
6.800
7.000
7.200
0.2677
0.2756
0.2835
E3
5.600
0.2205
e
0.800
0.0315
L
0.450
L1
k
ccc
0.600
0.750
0.0177
1.000
0.0°
3.5°
0.0236
0.0295
0.0394
7.0°
0.100
0.0°
3.5°
7.0°
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024849 Rev 1
79/88
85
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 31. LQFP32 recommended footprint
9.40
7.70
0.54
9.40
0.80
5V_FP
1. Drawing is not to scale.
2. Dimensions are in millimeters.
80/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics
Figure 32. TSSOP20 - 20-pin thin shrink small outline
D
20
11
c
E1
1
E
10
k
aaa CP
A1
A
L
A2
L1
b
e
YA_ME
1. Drawing is not to scale.
Table 61. TSSOP20 – 20-pin thin shrink small outline package mechanical data
inches(1)
millimeters
Symbol
Min
Typ
A
Max
Min
Typ
1.2
A1
0.05
A2
0.8
b
0.0472
0.15
0.002
1.05
0.0315
0.19
0.3
0.0075
0.0118
c
0.09
0.2
0.0035
0.0079
D
6.4
6.5
6.6
0.252
0.2559
0.2598
E
6.2
6.4
6.6
0.2441
0.252
0.2598
E1
4.3
4.4
4.5
0.1693
0.1732
0.1772
e
L
0.65
0.45
L1
k
aaa
1
0.6
0.0394
0.0413
0.0256
0.75
0.0177
1
0.0°
0.0059
0.0236
0.0295
0.0394
8.0°
0.1
0.0°
8.0°
0.0039
1. Values in inches are converted from mm and rounded to 4 decimal digits.
DocID024849 Rev 1
81/88
85
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Figure 33. TSSOP20 recommended footprint
1. Dimensions are in millimeters
82/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
7.2
Package characteristics
Thermal characteristics
The maximum chip junction temperature (TJ max) must never exceed the values given in
Table 18: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x JA)
Where:

TA max is the maximum ambient temperature in °C,

JA is the package junction-to-ambient thermal resistance, in C/W,

PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),

PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Table 62. Package thermal characteristics
Symbol
JA
7.2.1
Parameter
Value
Thermal resistance junction-ambient
LQFP64 - 10 × 10 mm / 0.5 mm pitch
45
Thermal resistance junction-ambient
LQFP48 - 7 × 7 mm
55
Thermal resistance junction-ambient
LQFP32 - 7 × 7 mm
56
Thermal resistance junction-ambient
TSSOP20
110
Unit
°C/W
Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.2.2
Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8: Part numbering.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32F0xx at maximum dissipation, it is useful to
calculate the exact power consumption and junction temperature to determine which
temperature range will be best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
DocID024849 Rev 1
83/88
85
Package characteristics
STM32F030x4 STM32F030x6 STM32F030x8
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2),
IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output
at low level with IOL = 20 mA, VOL= 1.3 V
PINTmax = 50 mA × 3.5 V= 175 mW
PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINTmax = 175 mW and PIOmax = 272 mW:
PDmax = 175 + 272 = 447 mW
Using the values obtained in Table 62 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C) see Table 18:
General operating conditions.
In this case, parts must be ordered at least with the temperature range suffix 6 (see
Section 8: Part numbering).
Note:
With this given PDmax we can find the TAmax allowed for a given device temperature range
(order code suffix 6 or 7).
Suffix 6: TAmax = TJmax - (45°C/W × 447 mW) = 105-20.115 = 84.885 °C
Suffix 7: TAmax = TJmax - (45°C/W × 447 mW) = 125-20.115 = 104.885 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications that run at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 100 °C (measured according to JESD51-2),
IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low
level with IOL = 8 mA, VOL= 0.4 V
PINTmax = 20 mA × 3.5 V= 70 mW
PIOmax = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 70 mW and PIOmax = 64 mW:
PDmax = 70 + 64 = 134 mW
Thus: PDmax = 134 mW
Using the values obtained in Table 62 TJmax is calculated as follows:
–
For LQFP64, 45 °C/W
TJmax = 100 °C + (45 °C/W × 134 mW) = 100 °C + 6.03 °C = 106.03 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8: Part numbering) unless we reduce the power dissipation in order to be able to
use suffix 6 parts.
84/88
DocID024849 Rev 1
STM32F030x4 STM32F030x6 STM32F030x8
Package characteristics
Refer to Figure 34 to select the required temperature range (suffix 6 or 7) according to your
ambient temperature or power requirements. For suffix 7, refer to STM32F05x devices.
Figure 34. LQFP64 PD max vs. TA
700
PD (mW)
600
500
400
Suffix 6
300
Suffix 7
200
100
0
65
75
85
95
105
115
TA (°C)
DocID024849 Rev 1
125
135
MSv32143V1
85/88
85
Part numbering
8
STM32F030x4 STM32F030x6 STM32F030x8
Part numbering
For a list of available options (memory, package, and so on) or for further information on any
aspect of this device, please contact your nearest ST sales office.
Table 63. Ordering information scheme
Example:
STM32
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Sub-family
030 = STM32F030xx
Pin count
F = 20 pins
K = 32 pins
C = 48 pins
R = 64 pins
Code size
4 = 16 Kbytes of Flash memory
6 = 32 Kbytes of Flash memory
8 = 64 Kbytes of Flash memory
Package
P = TSSOP
T = LQFP
Temperature range
6 = –40 °C to +85 °C
Options
TR = tape and real
86/88
DocID024849 Rev 1
F
030
R
8
T
6
x
STM32F030x4 STM32F030x6 STM32F030x8
9
Revision history
Revision history
Table 64. Document revision history
Date
Revision
04-Jul-2013
1
Changes
Initial release
DocID024849 Rev 1
87/88
87
STM32F030x4 STM32F030x6 STM32F030x8
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
88/88
DocID024849 Rev 1