STMICROELECTRONICS STGIPN3H60

STGIPN3H60
SLLIMM™-nano (small low-loss intelligent molded module)
IPM, 3 A - 600 V 3-phase IGBT inverter bridge
Datasheet − production data
Features
■
IPM 3 A, 600 V, 3-phase IGBT inverter bridge
including control ICs for gate driving and
freewheeling diodes
■
Optimized for low electromagnetic interference
■
VCE(sat) negative temperature coefficient
■
3.3 V, 5 V, 15 V CMOS/TTL inputs
comparators with hysteresis and pull down/pull
up resistors
■
Undervoltage lockout
■
Internal bootstrap diode
■
Interlocking function
■
Smart shutdown function
■
Comparator for fault protection against
overtemperature and overcurrent
■
Op amp for advanced current sensing
■
Optimized pinout for easy board layout
NDIP-26L
Description
Applications
■
3-phase inverters for motor drives
■
Dish washers, refrigerator compressors,
heating systems, air-conditioning fans,
draining and recirculation pumps
Table 1.
This intelligent power module implements a
compact, high performance AC motor drive in a
simple, rugged design. It is composed of six
IGBTs with freewheeling diodes and three halfbridge HVICs for gate driving, providing low
electromagnetic interference (EMI) characteristics
with optimized switching speed. The package is
optimized for thermal performance and
compactness in built-in motor applications, or
other low power applications where assembly
space is limited. This IPM includes an operational
amplifier, completely uncommitted, and a
comparator that can be used to design a fast and
efficient protection circuit. SLLIMM™ is a
trademark of STMicroelectronics.
Device summary
Order code
Marking
Package
Packaging
STGIPN3H60
GIPN3H60
NDIP-26L
Tube
May 2012
This is information on a product in full production.
Doc ID 018957 Rev 3
1/21
www.st.com
21
Contents
STGIPN3H60
Contents
1
Internal schematic diagram and pin configuration . . . . . . . . . . . . . . . . 3
2
Electrical ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1
Control part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2
Waveform definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4
Smart shutdown function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1
Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2/21
Doc ID 018957 Rev 3
STGIPN3H60
1
Internal schematic diagram and pin configuration
Internal schematic diagram and pin configuration
Figure 1.
Internal schematic diagram
PIN 1
PIN 26
GND
NW
GND
SD-OD
HVG
Vcc W
VCC
OUT
W, OUT W
LVG
HIN W
HIN
SD-OD
LIN W
VBOOT
LIN
Vboot W
OP+
GND
OPOUT
OP+
OPOUT
NV
OPVcc V
OP-
HVG
VCC
OUT
V, OUT V
LVG
HIN V
HIN
SD-OD
LIN V
VBOOT
LIN
Vboot V
CIN
GND
CIN
NU
HVG
Vcc U
VCC
OUT
U,OUT U
LVG
HIN U
SD-OD
LIN U
P
HIN
SD-OD
VBOOT
LIN
Vboot U
PIN 16
PIN 17
AM09916v1
Doc ID 018957 Rev 3
3/21
Internal schematic diagram and pin configuration
Table 2.
4/21
STGIPN3H60
Pin description
Pin
Symbol
Description
1
GND
2
SD / OD
3
VCC W
Low voltage power supply W phase
4
HIN W
High side logic input for W phase
5
LIN W
Low side logic input for W phase
6
OP+
7
OPOUT
8
OP-
9
VCC V
Low voltage power supply V phase
10
HIN V
High side logic input for V phase
11
LIN V
Low side logic input for V phase
12
CIN
13
VCC U
Low voltage power supply for U phase
14
HIN U
High side logic input for U phase
15
SD / OD
16
LIN U
17
VBOOT U
18
P
19
U, OUTU
20
NU
Negative DC input for U phase
21
VBOOT V
Bootstrap voltage for V phase
22
V, OUTV
V phase output
23
NV
Negative DC input for V phase
24
VBOOT W
Bootstrap voltage for W phase
25
W, OUTW
W phase output
26
NW
Ground
Shut down logic input (active low) / open drain (comparator output)
Op amp non inverting input
Op amp output
Op amp inverting input
Comparator input
Shut down logic input (active low) / open drain (comparator output)
Low side logic input for U phase
Bootstrap voltage for U phase
Positive DC input
U phase output
Negative DC input for W phase
Doc ID 018957 Rev 3
STGIPN3H60
Figure 2.
Internal schematic diagram and pin configuration
Pin layout (top view)
(*) Dummy pin internally connected to P (positive DC input).
Doc ID 018957 Rev 3
5/21
Electrical ratings
STGIPN3H60
2
Electrical ratings
2.1
Absolute maximum ratings
Table 3.
Inverter part
Symbol
Parameter
(1)
Unit
600
V
VCES
Each IGBT collector emitter voltage (VIN
± IC (2)
Each IGBT continuous collector current
at TC = 25°C
3
A
± ICP (3)
Each IGBT pulsed collector current
18
A
Each IGBT total dissipation at TC = 25°C
8
W
PTOT
= 0)
Value
1. Applied between HINi, LINi and GND for i = U, V, W
2. Calculated according to the iterative formula:
Tj ( max ) – TC
IC ( T C ) = ------------------------------------------------------------------------------------------------------R thj – c × V CE ( sat ) ( max ) ( T j ( max ), I C ( T C ) )
3. Pulse width limited by max junction temperature
Table 4.
Control part
Symbol
Min.
Max.
Unit
Vboot - 21
Vboot + 0.3
V
VOUT
Output voltage applied between OUTU, OUTV,
OUTW - GND
VCC
Low voltage power supply
- 0.3
21
V
VCIN
Comparator input voltage
- 0.3
VCC +0.3
V
Vop+
OPAMP non-inverting input
- 0.3
VCC +0.3
V
Vop-
OPAMP inverting input
- 0.3
VCC +0.3
V
Vboot
Bootstrap voltage
- 0.3
620
V
Logic input voltage applied between HIN, LIN
and GND
- 0.3
15
V
Open drain voltage
- 0.3
15
V
50
V/ns
VIN
VSD/OD
ΔVOUT/dT
Table 5.
Symbol
VISO
6/21
Parameter
Allowed output slew rate
Total system
Parameter
Isolation withstand voltage applied between each
pin and heatsink plate (AC voltage, t = 60 sec.)
Value
Unit
1000
V
Tj
Power chips operating junction temperature
-40 to 150
°C
TC
Module case operation temperature
-40 to 125
°C
Doc ID 018957 Rev 3
STGIPN3H60
2.2
Electrical ratings
Thermal data
Table 6.
Symbol
RthJA
Thermal data
Parameter
Thermal resistance junction-ambient
Doc ID 018957 Rev 3
Value
Unit
50
°C/W
7/21
Electrical characteristics
3
STGIPN3H60
Electrical characteristics
TJ = 25 °C unless otherwise specified.
Table 7.
Symbol
VCE(sat)
ICES
VF
Inverter part
Parameter
Collector-emitter
saturation voltage
Test conditions
VCC = Vboot = 15 V,
IC = 1 A
VIN(1)=
0 - 5 V,
Min.
Typ.
Max.
-
2.15
2.6
Unit
V
VCC = Vboot = 15 V, VIN(1)= 0 - 5 V,
IC = 1 A, TJ = 125 °C
-
Collector-cut off current
(VIN(1)= 0 “logic state”)
VCE = 550 V, VCC = VBoot = 15 V
-
250
µA
Diode forward voltage
VIN(1) = 0 “logic state”, IC = 1 A
-
1.7
V
1.65
Inductive load switching time and energy
ton
tc(on)
toff
tc(off)
trr
Turn-on time
Crossover time (on)
Turn-off time
Crossover time (off)
Reverse recovery time
Eon
Turn-on switching losses
Eoff
Turn-off switching losses
VDD = 300 V,
VCC = Vboot = 15 V,
VIN(1) = 0 - 5 V,
IC = 1 A
(see Figure 4)
-
275
-
90
-
890
-
125
-
50
-
18
-
13
ns
µJ
1. Applied between HINi, LINi and GND for i = U, V, W (LIN inputs are active-low).
Note:
tON and tOFF include the propagation delay time of the internal drive. tC(ON) and tC(OFF) are
the switching time of IGBT itself under the internally given gate driving condition.
Figure 3.
8/21
Switching time test circuit
Doc ID 018957 Rev 3
STGIPN3H60
Electrical characteristics
Figure 4.
Switching time definition
100% IC 100% IC
t rr
IC
VCE
VCE
IC
VIN
VIN
t ON
t OFF
t C(OFF)
t C(ON)
VIN(ON)
VIN(OFF)
10% IC 90% IC 10% VCE
10% VCE
(a) turn-on
10% IC
(b) turn-off
AM09223V1
Note:
Figure 4 “Switching time definition” refers to HIN inputs (active high). For LIN inputs (active
low), VIN polarity must be inverted for turn-on and turn-off.
3.1
Control part
Table 8.
Low voltage power supply (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VCC UV hysteresis
1.2
1.5
1.8
V
VCC_thON
VCC UV turn ON threshold
11.5
12
12.5
V
VCC_thOFF
VCC UV turn OFF threshold
10
10.5
11
V
VCC_hys
Parameter
Test conditions
Iqccu
Undervoltage quiescent
supply current
VCC = 10 V
SD/OD = 5 V; LIN = 5 V;
HIN = 0, CIN = 0
150
µA
Iqcc
Quiescent current
Vcc = 15 V
SD/OD = 5 V; LIN = 5 V
HIN = 0, CIN = 0
1
mA
Vref
Internal comparator (CIN)
reference voltage
0.58
V
0.5
Doc ID 018957 Rev 3
0.54
9/21
Electrical characteristics
Table 9.
STGIPN3H60
Bootstrapped voltage (VCC = 15 V unless otherwise specified)
Symbol
Min.
Typ.
Max.
Unit
VBS UV hysteresis
1.2
1.5
1.8
V
VBS_thON
VBS UV turn ON threshold
10.6
11.5
12.4
V
VBS_thOFF
VBS UV turn OFF threshold
9.1
10
10.9
V
IQBSU
Undervoltage VBS quiescent
current
VBS < 9 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
70
110
µA
IQBS
VBS quiescent current
VBS = 15 V
SD/OD = 5 V; LIN and
HIN = 5 V; CIN = 0
150
210
µA
Bootstrap driver on resistance
LVG ON
120
VBS_hys
RDS(on)
Table 10.
Parameter
Test conditions
Logic inputs (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Vil
Low logic level voltage
Vih
High logic level voltage
Test conditions
Min.
Typ.
Max.
Unit
0.8
V
2.25
IHINh
HIN logic “1” input bias current
HIN = 15 V
IHINl
HIN logic “0” input bias current
HIN = 0 V
ILINl
LIN logic “1” input bias current
LIN = 0 V
ILINh
LIN logic “0” input bias current
LIN = 15 V
ISDh
SD logic “0” input bias current
SD = 15 V
ISDl
SD logic “1” input bias current
SD = 0 V
Dt
Dead time
see Figure 5
10/21
Ω
Doc ID 018957 Rev 3
110
3
30
V
175
6
120
180
260
µA
1
µA
20
µA
1
µA
300
µA
3
µA
ns
STGIPN3H60
Table 11.
Electrical characteristics
OPAMP characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Vio
Input offset voltage
Iio
Input offset current
Iib
Input bias current
(1)
Test condition
Min.
Typ.
Max.
Unit
6
mV
4
40
nA
100
200
nA
Vic = 0 V, Vo = 7.5 V
Vic = 0 V, Vo = 7.5 V
Vicm
Input common mode voltage
range
VOL
Low level output voltage
RL = 10 kΩ to VCC
VOH
High level output voltage
RL = 10 kΩ to GND
14
14.7
V
Source,
Vid = +1; Vo = 0 V
16
30
mA
Sink,
Vid = -1; Vo = VCC
50
80
mA
Slew rate
Vi = 1 - 4 V; CL = 100 pF;
unity gain
2.5
3.8
V/μs
GBWP
Gain bandwidth product
Vo = 7.5 V
8
12
MHz
Avd
Large signal voltage gain
RL = 2 kΩ
70
85
dB
SVR
Supply voltage rejection ratio
vs. VCC
60
75
dB
CMRR
Common mode rejection ratio
55
70
dB
Io
SR
Output short circuit current
0
V
75
150
mV
1. The direction of input current is out of the IC.
Table 12.
Sense comparator characteristics (VCC = 15 V unless otherwise specified)
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
Iib
Input bias current
VCP+ = 1 V
3
µA
Vol
Open drain low level output
voltage
Iod = 3 mA
0.5
V
Comparator delay
SD/OD pulled to 5 V through
100 kΩ resistor
90
130
ns
SR
Slew rate
CL = 180 pF; Rpu = 5 kΩ
60
tsd
Shutdown to high / low side
driver propagation delay
VOUT = 0, Vboot = VCC,
VIN = 0 to 3.3 V
tisd
Comparator triggering to high /
low side driver turn-off
propagation delay
Measured applying a voltage
step from 0 V to 3.3 V to pin
CINi
td_comp
Doc ID 018957 Rev 3
50
125
V/µsec
200
ns
50
200
250
11/21
Electrical characteristics
Table 13.
STGIPN3H60
Truth table
Logic input (VI)
Output
Condition
SD/OD
LIN
HIN
LVG
HVG
Shutdown enable
half-bridge tri-state
L
X
X
L
L
Interlocking
half-bridge tri-state
H
L
H
L
L
0 “logic state”
half-bridge tri-state
H
H
L
L
L
1 “logic state”
low side direct driving
H
L
L
H
L
1 “logic state”
high side direct driving
H
H
H
L
H
Note:
12/21
X: don’t care
Doc ID 018957 Rev 3
STGIPN3H60
Waveform definitions
Figure 5.
Dead time and interlocking waveform definitions
HIN
INTE
RLO
CK
ING
CONTROL SIGNAL EDGES
OVERLAPPED:
INTERLOCKING + DEAD TIME
ING
LIN
INTE
RLO
CK
3.2
Electrical characteristics
LVG
DTHL
DTLH
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
SYNCHRONOUS (*):
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
BUT INSIDE THE DEAD TIME:
DEAD TIME
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
LIN
CONTROL SIGNALS EDGES
NOT OVERLAPPED,
OUTSIDE THE DEAD TIME:
DIRECT DRIVING
HIN
LVG
DTLH
DTHL
HVG
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
gate driver outputs OFF
(HALF-BRIDGE TRI-STATE)
(*) HIN and LIN can be connected together and driven by just one control signal
Doc ID 018957 Rev 3
13/21
Smart shutdown function
4
STGIPN3H60
Smart shutdown function
The STGIPN3H60 integrates a comparator for fault sensing purposes. The comparator noninverting input (CIN) can be connected to an external shunt resistor in order to implement a
simple overcurrent protection function. When the comparator triggers, the device is set in
shutdown state and both its outputs are set to low-level leading the half bridge in 3-state. In
the common overcurrent protection architectures the comparator output is usually
connected to the shutdown input through a RC network, in order to provide a mono-stable
circuit, which implements a protection time that follows the fault condition. Our smart
shutdown architecture allows to immediately turn-off the output gate driver in case of
overcurrent, the fault signal has a preferential path which directly switches off the outputs.
The time delay between the fault and the outputs turn-off is no more dependent on the RC
values of the external network connected to the shutdown pin. At the same time the internal
logic turns on the open-drain output and holds it on until the shutdown voltage goes below
the logic input lower threshold. Finally the smart shutdown function provides the possibility
to increase the real disable time without increasing the constant time of the external RC
network.
Figure 6.
Smart shutdown timing waveforms
comp
Vref
CP+
PROTECTION
HIN/LIN
HVG/LVG
SD/OD
upper
threshold
lower
threshold
1
2
open drain gate
(internal)
real disable time
Fast shut down:
the driver outputs are set in SD state
immediately after the comparator
triggering even if the SD signal
has not yet reach
the lower input threshold
TIME CONSTANTS
1
= (RON_OD // RSD) CSD
2
= RSD CSD
SHUT DOWN CIRCUIT
VBIAS
RSD
FROM/TO
CONTROLLER
SD/OD
CSD
Please refer to Table 12 for internal propagation delay time details.
14/21
Doc ID 018957 Rev 3
RON_OD
SMART
SD
LOGIC
STGIPN3H60
5
Application information
Application information
Figure 7.
Typical application circuit
Doc ID 018957 Rev 3
15/21
Application information
5.1
Recommendations
●
Input signal HIN is active high logic. An 85 kΩ (typ.) pull-down resistor is built-in for
each high side input. If an external RC filter is used for noise immunity, attention should
be given to the variation of the input signal level.
●
Input signal LIN is active low logic. A 720 kΩ (typ.) pull-up resistor, connected to an
internal 5 V regulator through a diode, is built-in for each low side input.
●
To prevent input signal oscillation, the wiring of each input should be as short as
possible.
●
By integrating an application-specific type HVIC inside the module, direct coupling to
the MCU terminals without an opto-coupler is possible.
●
Each capacitor should be located as close as possible to the pins of the IPM.
●
Low inductance shunt resistors should be used for phase leg current sensing.
●
Electrolytic bus capacitors should be mounted as close to the module bus terminals as
possible. Additional high frequency ceramic capacitors mounted close to the module
pins will further improve performance.
●
The SD/OD signal should be pulled up to 5 V / 3.3 V with an external resistor (see
Section 4: Smart shutdown function for detailed info).
Table 14.
Symbol
16/21
Recommended operating conditions
Parameter
Test conditions
Min.
VPN
Supply voltage
Applied between P-Nu,
Nv, Nw
VCC
Control supply voltage
Applied between VCCGND
VBS
High side bias voltage
Applied between VBOOTiOUTi for i = U, V, W
13
tdead
Blanking time to prevent
Arm-short
For each input signal
1.5
fPWM
PWM input signal
-40°C < Tc < 100°C
-40°C < Tj < 125°C
TC
Note:
STGIPN3H60
Case operation temperature
For further details refer to AN4043.
Doc ID 018957 Rev 3
13.5
Typ.
Max.
Unit
300
500
V
15
18
V
18
V
µs
25
kHz
100
°C
STGIPN3H60
6
Package mechanical data
Package mechanical data
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Table 15.
NDIP-26L mechanical data
mm.
Dim.
Min.
Typ.
A
Max.
4.40
A1
0.80
1.00
1.20
A2
3.00
3.10
3.20
A3
1.70
1.80
1.90
A4
5.70
5.90
6.10
b
0.53
b1
0.52
b2
0.83
b3
0.82
c
0.46
c1
0.45
0.50
0.55
D
29.05
29.15
29.25
D1
0.50
D2
0.35
0.72
0.60
0.68
1.02
0.90
0.98
0.59
D3
29.55
E
12.35
12.45
12.55
e
1.70
1.80
1.90
e1
2.40
2.50
2.60
eB1
16.10
16.40
16.70
eB2
21.18
21.48
21.78
L
1.24
1.39
1.54
Doc ID 018957 Rev 3
17/21
Package mechanical data
NDIP-26L package dimensions
D3
b,b2
0.075
b
D1
A3
A1
A4
c
c1
A2
b1,b3
A
Figure 8.
STGIPN3H60
e
E
eB2
eB1
0.075
L
D
D2
b2
e1
8278949_A
18/21
Doc ID 018957 Rev 3
STGIPN3H60
NDIP-26L tube dimensions (dimensions are in mm.)
AN T IS T AT IC
S
03 P VC
AM10474v1
Figure 9.
Package mechanical data
8313150_A
Note:
Base quantity 17 pcs, bulk quantity 476 pcs.
Doc ID 018957 Rev 3
19/21
Revision history
7
STGIPN3H60
Revision history
Table 16.
20/21
Document revision history
Date
Revision
Changes
23-Jun-2011
1
Initial release.
23-Dec-2011
2
Document status promoted from preliminary data to datasheet.
Added Figure 9 on page 19.
02-May-2012
3
Modified: Min. and Max. value Table 4 on page 6.
Added: Table 14 on page 16.
Doc ID 018957 Rev 3
STGIPN3H60
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
Doc ID 018957 Rev 3
21/21