SILICONIMAGE SI826X

Si826x
5 KV LED EMULATOR INPUT, 4.0 A ISOLATED GATE DRIVERS
Features





Pin-compatible, drop-in upgrades for 
popular high speed opto-coupled
gate drivers
Low power diode emulator simplifies 
design-in process
0.6 and 4.0 Amp peak output drive 
current

Rail-to-rail output voltage
Performance and reliability

advantages vs. opto-drivers

Resistant to temperature and age
10x lower FIT rate for longer

service life
14x tighter part-to-part matching
Higher common-mode transient
immunity: >50 kV/µs typical
Robust protection features
Multiple UVLO ordering options
(5, 8, and 12 V) with hysteresis
60 ns propagation delay,
independent of input drive current
Wide VDD range: 5 to 30 V
3.75 and 5 kV reinforced isolation
UL, CSA, VDE
AEC-Q100 qualified
Wide operating temperature range
–40 to +125 °C
RoHS-compliant packages
SOIC-8 (Narrow body)
DIP8 (Gull-wing)
SDIP6 (Stretched SO-6)
LGA8
Pin Assignments:
See page 24
1
ANODE
2
7
VO
CATHODE
3
6
VO
NC
4
5
GND
SOIC-8, DIP8, LGA8
Industry Standard Pinout
ANODE 1
IGBT/ MOSFET gate drives
 Industrial, HEV and renewable
energy inverters
 AC, Brushless and DC motor
controls and drives
VDD
e
6
VDD
5
VO
4
GND
UVLO
Applications

8
UVLO

Variable speed motor control in
consumer white goods
 Isolated switch mode and UPS
power supplies
NC 2
e
CATHODE 3
SDIP6
Industry Standard Pinout
Safety Regulatory Approvals (Pending)

UL 1577 recognized
 VDE certification conformity
Up to 5000 Vrms for 1 minute
IEC60747-5-2/VDE0884 Part 10
(basic/reinforced insulation)
 CSA component notice 5A approval
 CQC certification approval
IEC 60950-1, 61010-1, 60601-1
(reinforced insulation)
GB4943.1
Patent pending
Description
The Si826x isolators are pin-compatible, drop-in upgrades for popular optocoupled gate drivers, such as 0.6 A ACPL-0302/3020, 2.5 A HCPL-3120/ACPL3130, HCNW3120/3130, and similar opto-drivers. The devices are ideal for driving
power MOSFETs and IGBTs used in a wide variety of inverter and motor control
applications. The Si826x isolated gate drivers utilize Silicon Laboratories'
proprietary silicon isolation technology, supporting up to 5.0 kVRMS withstand
voltage per UL1577. This technology enables higher-performance, reduced
variation with temperature and age, tighter part-to-part matching, and superior
common-mode rejection compared to opto-coupled gate drivers. While the input
circuit mimics the characteristics of an LED, less drive current is required,
resulting in higher efficiency. Propagation delay time is independent of input drive
current, resulting in consistently short propagation times, tighter unit-to-unit
variation, and greater input circuit design flexibility. As a result, the Si826x series
offers longer service life and dramatically higher reliability compared to optocoupled gate drivers.
Preliminary Rev. 0.9 4/13
Copyright © 2013 by Silicon Laboratories
Si826x
This information applies to a product under development. Its characteristics and specifications are subject to change without notice.
Si826x
Functional Block Diagram
Diode
Emulator
VDD
A1
REC
XMIT
OUT
Output Driver
IF
C1
GND
Diode Emulator Model and I-V Curve
3.0
2.5
10 
2.0
V[V]
Anode
2.2 V
700 
Cathode
1.5
1.0
0.5
0.0
0
5
10
15
I[mA]
2
Preliminary Rev. 0.9
20
25
30
Si826x
TABLE O F C ONTENTS
Section
Page
1. Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4
2. Regulatory Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
3. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1. Theory of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4. Technical Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.1. Device Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.2. Device Startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
4.3. Under Voltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5. Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.1. Input Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2. Output Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3. Layout Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.4. Power Dissipation Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
5.5. Parametric Differences between Si826x and HCPL-0302 and HCPL-3120
Opto Drivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6. Pin Descriptions (SOIC-8, DIP8, LGA8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
7. Pin Descriptions (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
8. Ordering Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9. Package Outline: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
10. Land Pattern: 8-Pin Narrow Body SOIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
11. Package Outline: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
12. Land Pattern: DIP8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
13. Package Outline: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
14. Land Pattern: SDIP6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
15. Package Outline: LGA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
16. Land Pattern: LGA8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
17. Top Markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
17.1. Si826x Top Marking (Narrow Body SOIC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
17.2. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
17.3. Si826x Top Marking (DIP8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17.4. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
17.5. Si826x Top Marking (SDIP6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
17.6. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
17.7. Si826x Top Marking (LGA8) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
17.8. Top Marking Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Contact Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Preliminary Rev. 0.9
3
Si826x
1. Electrical Specifications
Table 1. Recommended Operating Conditions
Parameter
Supply Voltage
Input Current
Operating Temperature (Ambient)
Symbol
Min
Typ
Max
Unit
VDD
5
—
30
V
IF(ON)
6
—
30
mA
TA
–40
—
125
°C
Table 2. Electrical Characteristics 1
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
VDD
(VDD – GND)
5
—
30
V
Supply Current (Output High)
IDD
IF = 10 mA
VDD = 15 V
VDD = 30 V
—
—
1.8
2.0
2.4
2.7
mA
mA
Supply Current (Output Low)
IDD
VF = –0.3 to +1.5 V
VDD = 15 V
VDD = 30 V
—
—
1.5
1.7
2.1
2.4
mA
mA
DC Parameters
Supply Voltage2
Input Current Threshold
IF(TH)
6
—
—
mA
Input Current Hysteresis
IHYS
—
0.34
—
mA
Input Forward Voltage (OFF)
VF(OFF)
Measured at ANODE with
respect to CATHODE.
—
—
1
V
Input Forward Voltage (ON)
VF(ON)
Measured at ANODE with
respect to CATHODE.
1.6
—
2.8
V
CI
f = 100 kHz,
VF = 0 V,
VF = 2 V
—
—
15
15
—
—
pF
Si826xAxx devices
—
15
—
Si826xBxx devices (IOH = -1 A)
—
2.6
5.1
Si826xAxx devices
—
5.0
—
Si826xBxx devices (IOL = 2 A)
—
0.8
2.0
Input Capacitance
Output Resistance High
(Source)3
Output Resistance Low (Sink)3
ROH
ROL

Notes:
1. See "8.Ordering Guide" on page 25 for more information.
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.
3. Both VO pins are required to be shorted together for 4.0 A compliance.
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause
over-stress conditions.
4
Preliminary Rev. 0.9
Si826x
Table 2. Electrical Characteristics (Continued)1
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C
Parameter
Output High Current (Source)3,4
Symbol
IOH
Test Conditions
Min
Typ
Max
Si826xAxx devices (IF = 0),
(tPW_IOH < 250 ns)
(see Figure 2)
—
0.4
—
Si826xBxx devices (IF = 0),
(tPW_IOH < 250 ns),
(VDD – VO = 4 V)
(see Figure 2)
Si826xAxx devices
(IF = 10 mA),
(tPW_IOL < 250 ns)
(see Figure 1)
Output Low Current (Sink)3,4
High-Level Output Voltage
Low-Level Output Voltage
IOL
VOH
VOL
Si826xBxx devices
(IF = 10 mA),
(tPW_IOL < 250 ns),
(VO - GND = 2.5 V)
(see Figure 1)
Units
A
0.5
1.8
—
—
0.6
—
A
1.2
4.0
—
Si826xAxx devices
(I OUT = –100 mA)
—
VDD–
0.4
—
Si826xBxx devices
(I OUT = –100 mA)
VDD–
0.5
VDD–
0.25
—
Si826xBxx devices
(I OUT = 0 mA),
(IF = 0 mA)
—
VDD
—
Si826xAxx devices
(I OUT = 100 mA),
(IF = 10 mA)
—
320
—
Si826xBxx devices
(I OUT = 100 mA),
(IF = 10 mA)
—
80
200
V
mV
UVLO Threshold +
(Si826xxAx mode)
VDDUV+
See Figure 10 on page 17.
VDD rising
5
5.6
6.3
V
UVLO Threshold –
(Si826xxAx mode)
VDDUV–
See Figure 10 on page 17.
VDD falling
4.7
5.3
6.0
V
—
300
—
mV
UVLO lockout hysteresis
(Si826xxAx mode)
VDDHYS
Notes:
1. See "8.Ordering Guide" on page 25 for more information.
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.
3. Both VO pins are required to be shorted together for 4.0 A compliance.
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause
over-stress conditions.
Preliminary Rev. 0.9
5
Si826x
Table 2. Electrical Characteristics (Continued)1
VDD = 15 V or 30 V, GND = 0 V, IF = 6 mA, TA = –40 to +125 °C; typical specs at 25 °C
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
UVLO Threshold +
(Si826xxBx mode)
VDDUV+
See Figure 11 on page 17.
VDD rising
7.5
8.4
9.4
V
UVLO Threshold –
(Si826xxBx mode)
VDDUV–
See Figure 11 on page 17.
VDD falling
6.9
7.9
8.9
V
—
500
—
mV
UVLO lockout hysteresis
(Si826xxBx mode)
VDDHYS
UVLO Threshold +
(Si826xxCx mode)
VDDUV+
See Figure 12 on page 17.
VDD rising
10.5
12
13.5
V
UVLO Threshold –
(Si826xxCx mode)
VDDUV–
See Figure 12 on page 17.
VDD falling
9.4
10.7
12.2
V
UVLO lockout hysteresis
(Si826xxCx mode)
VDDHYS
—
1.3
—
V
AC Switching Parameters
Propagation delay (Low-to-High)
tPLH
CL = 200 pF
20
40
60
ns
Propagation delay (High-to-Low)
tPHL
CL = 200 pF
10
30
50
ns
Pulse Width Distortion
PWD
|tPLH – tPHL|
—
10
—
ns
Propagation Delay Difference
PDD
|tPHLMAX – tPLHMIN|
—
—
20
ns
Rise time
tR
CL = 200 pF
—
5.5
15
ns
Fall time
tF
CL = 200 pF
—
8.5
20
ns
—
16
30
µs
Device Startup Time
tSTART
Common Mode
Transient Immunity
CMTI
Output = low or high
(VCM = 1500 V), (IF > 6 mA)
(See Figure 3)
kV/µs
35
50
—
Notes:
1. See "8.Ordering Guide" on page 25 for more information.
2. Minimum value of (VDD - GND) decoupling capacitor is 1 µF.
3. Both VO pins are required to be shorted together for 4.0 A compliance.
4. When performing this test, it is recommended that the DUT be soldered to avoid trace inductances, which may cause
over-stress conditions.
6
Preliminary Rev. 0.9
Si826x
VDD = 15 V
VDD
IN
Si826x
10
OUT
SCHOTTKY
VSS
1 µF
9V
100 µF
+
_
INPUT
1 µF
CER
Measure
10 µF
EL
RSNS
0.1
50 ns
IF
GND
200 ns
INPUT WAVEFORM
Figure 1. IOL Sink Current Test Circuit
VDD = 15 V
VDD
IN
Si826x
10
OUT
SCHOTTKY
VSS
1 µF
100 µF
5.5 V
+
_
INPUT
1 µF
CER
Measure
10 µF
EL
RSNS
0.1
50 ns
IF
GND
200 ns
INPUT WAVEFORM
Figure 2. IOH Source Current Test Circuit
Preliminary Rev. 0.9
7
Si826x
15 V
Supply
267
Input Signal
Switch
Si826x
VDD
ANODE
5V
Isolated Supply
VO
Oscilloscope
GND
CATHODE
Isolated Ground
Input
High Voltage
Differential Probe
Output
Vcm Surge
Output
High Voltage
Surge Generator
Figure 3. Common Mode Transient Immunity Characterization Circuit
8
Preliminary Rev. 0.9
Si826x
2. Regulatory Information
Table 3. Regulatory Information (Pending)*
CSA
The Si826x is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.
61010-1: Up to 600 VRMS reinforced insulation working voltage; up to 600 VRMS basic insulation working voltage.
60950-1: Up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
60601-1: Up to 250 VRMS reinforced insulation working voltage; up to 500 VRMS basic insulation working voltage.
VDE
The Si826x is certified according to IEC 60747-5-2. For more details, see File 5006301-4880-0001.
60747-5-2: Up to 1414 Vpeak for reinforced insulation working voltage.
UL
The Si826x is certified under UL1577 component recognition program. For more details, see File E257455.
Rated up to 5000 VRMS isolation voltage for basic protection.
CQC
The Si826x is certified under GB4943.1-2011. For more details, see File number pending.
Rated up to 1000 VRMS reinforced insulation working voltage; up to 1000 VRMS basic insulation working voltage.
*Note: Regulatory Certifications apply to 3.75 kVRMS rated devices which are production tested to 4.5 kVRMS for 1 sec.
Regulatory Certifications apply to 5.0 kVRMS rated devices which are production tested to 6.0 kVRMS for 1 sec.
For more information, see "8.Ordering Guide" on page 25.
Table 4. Insulation and Safety-Related Specifications
Parameter
Symbol
Test Condition
Value
SOIC-8
DIP8
SDIP6
LGA8
Unit
Nominal Air Gap (Clearance)
L(IO1)
4.7 min
7.2 min
9.6 min
10.0 min
mm
Nominal External Tracking
(Creepage)
L(IO2)
3.9 min
7.0 min
8.3 min
10.0 min
mm
0.016
0.016
0.016
0.016
mm
600
600
600
600
V
0.031
0.031
0.057
0.021
mm
Minimum Internal Gap
(Internal Clearance)
Tracking Resistance
(Proof Tracking Index)
PTI
Erosion Depth
ED
Resistance (Input-Output)*
RIO
Capacitance (Input-Output)*
CIO
IEC60112
12
f = 1 MHz
12
10
10
1
1
10
12
1
10

1
pF
12
*Note: To determine resistance and capacitance, the Si826x is converted into a 2-terminal device. Pins 1–4 (1–3, SDIP6) are
shorted together to form the first terminal, and pins 5–8 (4–6, SDIP6) are shorted together to form the second terminal.
The parameters are then measured between these two terminals.
Preliminary Rev. 0.9
9
Si826x
Table 5. IEC 60664-1 (VDE 0844 Part 2) Ratings
Parameter
Basic Isolation Group
Installation
Classification
Test Conditions
Specification
SOIC-8
DIP8
SDIP6
LGA8
I
I
I
I
Rated Mains Voltages <
150 VRMS
I-IV
I-IV
I-IV
I-IV
Rated Mains Voltages <
300 VRMS
I-IV
I-IV
I-IV
I-IV
Rated Mains Voltages <
450 VRMS
I-III
I-III
I-IV
I-IV
Rated Mains Voltages <
600 VRMS
I-III
I-III
I-IV
I-IV
Rated Mains Voltages <
1000 VRMS
—
—
—
I-III
Material Group
Table 6. IEC 60747-5-2 Insulation Characteristics*
Parameter
Symbol
Test Condition
Characteristic
Unit
SOIC-8
DIP8
SDIP6
LGA8
630
891
1140
1414
V peak
VPR
Method b1
(VIORM x 1.875 = VPR,
100%
Production Test, tm = 1 sec,
Partial Discharge < 5 pC)
1181
1671
2138
2652
V peak
Transient Overvoltage
VIOTM
t = 60 sec
6000
6000
8000
8000
V peak
Surge Voltage
VIOSM
1.2 s rise, 50 s fall 50%
10
10
10
10
kV peak
2
2
2
2
>109
>109
>109
>109
Maximum Working
Insulation Voltage
Input to Output Test
Voltage
VIORM
Pollution Degree
(DIN VDE 0110, Table 1)
Insulation Resistance at
TS, VIO = 500 V
RS

*Note: This isolator is suitable for reinforced electrical isolation only within the safety limit data. Maintenance of the safety
data is ensured by protective circuits. The Si826x provides a climate classification of 40/125/21.
10
Preliminary Rev. 0.9
Si826x
Table 7. IEC Safety Limiting Values*
Parameter
Symbol
Case Temperature
TS
Input Current
IS
Output Power
PS
Test Condition
JA = 110 °C/W (SOIC-8),
110 °C/W (DIP8),
105 °C/W (SDIP6),
220 °C (LGA8),
VF = 2.8 V, TJ = 140 °C,
TA = 25 °C
Max
Unit
SOIC-8
DIP8
SDIP6
LGA8
140
140
140
140
°C
370
370
390
185
mA
1
1
1
0.5
W
*Note: Maximum value allowed in the event of a failure; also see the thermal derating curve in Figures 4, 5, 6, and 7.
Preliminary Rev. 0.9
11
Si826x
Table 8. Thermal Characteristics
Parameter
JA
IC Junction-to-Air Thermal
Resistance
OutputPo
owerͲ Ps,InputCurrentͲ Is
Typ
Symbol
SOIC-8
DIP8
SDIP6
LGA8
110
110
105
220
1200
1000
Ps(mW)
800
600
Is(mA)
400
200
0
0
20
40
60
80
100
120
140
TsͲ CaseTemperature(°C)
OutputPo
owerͲ Ps,InputCurrentͲ Is
Figure 4. (SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
1200
1000
Ps(mW)
800
600
Is(mA)
400
200
0
0
20
40
60
80
100
120
140
TsͲ CaseTemperature(°C)
Figure 5. (DIP8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
12
Preliminary Rev. 0.9
Unit
ºC/W
OutputPo
owerͲ Ps,InputCurrentͲ Is
Si826x
1200
1000
Ps(mW)
800
600
Is(mA)
400
200
0
0
20
40
60
80
100
120
140
TsͲ CaseTemperature(°C)
OutputPo
owerͲ Ps,InputCurrentͲ Is
Figure 6. (SDIP6) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
600
500
Ps(mW)
400
300
Is(mA)
200
100
0
0
20
40
60
80
100
120
140
TsͲ CaseTemperature(°C)
Figure 7. (LGA8) Thermal Derating Curve, Dependence of Safety Limiting Values
with Case Temperature per DIN EN 60747-5-2
Preliminary Rev. 0.9
13
Si826x
Table 9. Absolute Maximum Ratings*
Parameter
Symbol
Min
Max
Units
TSTG
–65
+150
°C
Operating Temperature
TA
–40
+125
°C
Junction Temperature
TJ
—
+140
°C
IF(AVG)
—
30
mA
Peak Transient Input Current
(< 1 µs pulse width, 300 ps)
IFTR
—
1
A
Peak Output Current (tPW = 10 µs) (Si826xA)
IOPK
—
0.6
A
Peak Output Current (tPW = 10 µs) (Si826xB)
IOPK
—
4.0
A
VR
—
0.3
V
Supply Voltage
VDD
–0.5
36
V
Output Voltage
VOUT
–0.5
36
V
Output Current
IO(AVG)
—
10
mA
Input Power Dissipation
PI
—
75
mW
Output Power Dissipation
PO
—
225
mW
Total Power Dissipation
(all packages limited by thermal derating curve)
PT
—
300
mW
Lead Solder Temperature (10 s)
—
260
°C
HBM Rating ESD
4
—
kV
Machine Model ESD
300
—
V
CDM
2000
—
V
Maximum Isolation Voltage (1 s) SOIC-8
—
4500
VRMS
Maximum Isolation Voltage (1 s) DIP8
—
6500
VRMS
Maximum Isolation Voltage (1 s) SDIP6
—
6500
VRMS
Maximum Isolation Voltage (1 s) LGA8
—
6500
VRMS
Storage Temperature
Average Forward Input Current
Reverse Input Voltage
*Note: Permanent device damage may occur if the absolute maximum ratings are exceeded. Functional operation should be
restricted to the conditions specified in the operational sections of this data sheet.
14
Preliminary Rev. 0.9
Si826x
3. Functional Description
3.1. Theory of Operation
The Si826x is a functional upgrade for popular opto-isolated drivers, such as the Avago HPCL-3120, HPCL-0302,
Toshiba TLP350, and others. The operation of an Si826x channel is analogous to that of an opto coupler, except an
RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires
no special considerations or initialization at start-up. A simplified block diagram for the Si826x is shown in Figure 8.
Transmitter
Receiver
RF
OSCILLATOR
VDD
A
LED
Emulator
MODULATOR
SemiconductorBased Isolation
Barrier
B
DEMODULATOR
0.6 to 4.0 A
peak
Gnd
Figure 8. Simplified Channel Diagram
Preliminary Rev. 0.9
15
Si826x
4. Technical Description
4.1. Device Behavior
Truth tables for the Si826x are summarized in Table 10.
Table 10. Si826x Truth Table Summary*
Input
VDD
VO
OFF
> UVLO
LOW
OFF
< UVLO
LOW
ON
> UVLO
HIGH
ON
< UVLO
LOW
*Note: This truth table assumes VDD is powered. If VDD is below UVLO, see "4.3.Under Voltage
Lockout (UVLO)" on page 17 for more information.
4.2. Device Startup
Output VO is held low during power-up until VDD rises above the UVLO+ threshold for a minimum time period of
tSTART. Following this, the output is high when the current flowing from anode to cathode is > IF(ON). Device startup,
normal operation, and shutdown behavior is shown in Figure 9.
UVLO+
UVLO-
VDDHYS
VDD
IF(ON)
IHYS
IF
tSTART
tPHL
tPLH
tSTART
VO
Figure 9. Si826x Operating Behavior (IF > IF(MIN) when VF > VF(MIN))
16
Preliminary Rev. 0.9
Si826x
4.3. Under Voltage Lockout (UVLO)
The UVLO circuit unconditionally drives VO low when VDD is below the lockout threshold. Referring to Figures 10
through 12, upon power up, the Si826x is maintained in UVLO until VDD rises above VDDUV+. During power down,
the Si826x enters UVLO when VDD falls below the UVLO threshold plus hysteresis (i.e., VDD < VDDUV+ –
VDDHYS).
V DDUV+ (Typ)
3.5
Output Voltage (VO)
Output Voltage (VO)
V DDUV+ (Typ)
4.0
4.5
5.0
5.5
6.0
6.5
7.0
7.5
9.5
Supply Voltage (V DD - GND) (V)
10.0
10.5 11.0 11.5
12.0
12.5 13.0
Supply Voltage (V DD - GND) (V)
Figure 10. Si826xxAx UVLO Response (5 V)
Figure 12. Si826xxCx UVLO Response (12 V)
Output Voltage (VO)
V DDUV+ (Typ)
6.0
6.5
7.0
7.5
8.0
8.5
9.0
9.5 10.0
Supply Voltage (V DD - GND) (V)
Figure 11. Si826xxBX UVLO Response (8 V)
Preliminary Rev. 0.9
17
Si826x
5. Applications
The following sections detail the input and output circuits necessary for proper operation. Power dissipation and
layout considerations are also discussed.
5.1. Input Circuit Design
Opto driver manufacturers typically recommend the circuits shown in Figures 13 and 14. These circuits are
specifically designed to improve opto-coupler input common-mode rejection and increase noise immunity.
Si826x
Vdd
1 N/C
R1
2 ANODE
3 CATHODE
Control
Input
Open Drain or
Collector
4 N/C
Figure 13. Si826x Input Circuit
Vdd
Si826x
1 N/C
2 ANODE
Control
Input
Q1
3 CATHODE
R1
4 N/C
Figure 14. High CMR Si826x Input Circuit
The optically-coupled driver circuit of Figure 13 turns the LED on when the control input is high. However, internal
capacitive coupling from the LED to the power and ground conductors can momentarily force the LED into its off
state when the anode and cathode inputs are subjected to a high common-mode transient. The circuit shown in
Figure 14 addresses this issue by using a value of R1 sufficiently low to overdrive the LED, ensuring it remains on
during an input common-mode transient. Q1 shorts the LED off in the low output state, again increasing commonmode transient immunity.
Some opto driver applications recommend reverse-biasing the LED when the control input is off to prevent coupled
noise from energizing the LED. The Si826x input circuit requires less current and has twice the off-state noise
margin compared to opto couplers. However, high CMR opto coupler designs that overdrive the LED (see
Figure 14) may require increasing the value of R1 to limit input current IF to its maximum rating when using the
Si826x. In addition, there is no benefit in driving the Si826x input diode into reverse bias when in the off state.
Consequently, opto coupler circuits using this technique should either leave the negative bias circuitry unpopulated
18
Preliminary Rev. 0.9
Si826x
or modify the circuitry (e.g., add a clamp diode or current limiting resistor) to ensure that the anode pin of the
Si826x is no more than –0.3 V with respect to the cathode when reverse-biased.
New designs should consider the input circuit configurations of Figure 15, which are more efficient than those of
Figures 13 and 14. As shown, S1 and S2 represent any suitable switch, such as a BJT or MOSFET, analog
transmission gate, processor I/O, etc. Also, note that the Si826x input can be driven from the I/O port of any MCU
or FPGA capable of sourcing a minimum of 6 mA (see Figure 15B). Additionally, note that the Si826x propagation
delay and output drive do not significantly change for values of IF between IF(MIN) and IF(MAX).
Control
Input
Si826x
Si826x
+5V
S1
R1
1
N/C
2
ANODE
S2
3
4
1
N/C
2
ANODE
CATHODE
3
CATHODE
N/C
4
N/C
MCU I/O
Port pin
A
R1
B
Figure 15. Si826x Other Input Circuit Configurations
5.2. Output Circuit Design
GND can be biased at, above, or below ground as long as the voltage on VDD with respect to GND is a maximum
of 30 V. VDD decoupling capacitors should be placed as close to the package pins as possible. The optimum
values for these capacitors depend on load current and the distance between the chip and its power source. It is
recommended that 0.1 and 10 µF bypass capacitors be used to reduce high-frequency noise and maximize
performance.
5.3. Layout Considerations
It is most important to minimize ringing in the drive path and noise on the VDD lines. Care must be taken to
minimize parasitic inductance in these paths by locating the Si826x as close as possible to the device it is driving.
In addition, the VDD supply and ground trace paths must be kept short. For this reason, the use of power and
ground planes is highly recommended. A split ground plane system having separate ground and VDD planes for
power devices and small signal components provides the best overall noise performance.
Preliminary Rev. 0.9
19
Si826x
5.4. Power Dissipation Considerations
Proper system design must assure that the Si826x operates within safe thermal limits across the entire load range.
The Si826x total power dissipation is the sum of the power dissipated by bias supply current, internal switching
losses, and power delivered to the load, as shown in Equation 1.
P D = I F  V F  DC + V DD   I DDQ +  Q d + C L  V DD   f 
where: P D is the total device power dissipation (W)
I F is the diode current (30 mA max)
V F is the diode anode to cathode voltage (2.8 V max)
DC is duty cycle (0.5 typical)
V DD is the driver-side supply voltage (30 V max)
I DDQ is the driver maximum bias current (2.5 mA)
Q d is 3 nC
C L is the load capacitance
f is the switching frequency (Hz)
Equation 1.
The maximum allowable power dissipation for the Si826x is a function of the package thermal resistance, ambient
temperature, and maximum allowable junction temperature, as shown in Equation 2.
T jmax – T A
P Dmax  -------------------------- ja
where:
P Dmax is the maximum allowable power dissipation (W)
T jmax is the maximum junction temperature (140 °C)
T A is the ambient temperature (°C)
 ja is the package junction-to-air thermal resistance (110 °C/W)
Equation 2.
Substituting values for PDmax Tjmax, TA, and ja into Equation 2 results in a maximum allowable total power
dissipation of 1.0 W. Note that the maximum allowable load is found by substituting this limit and the appropriate
datasheet values from Table 2 on page 4 into Equation 1 and simplifying. Graphs are shown in Figures 16 and 17.
All points along the load lines in these graphs represent the package dissipation-limited value of CL for the
corresponding switching frequency.
20
Preliminary Rev. 0.9
Si826x
10000.0
1000.0
7V
12V
18V
100.0
MaxLoad(nF)
30V
10.0
1.0
0.1
10
100
1000
Frequency(kHz)
Figure 16. (SOIC-8, DIP8, SDIP6) Maximum Load vs. Switching Frequency (25 °C)
10000.0
1000.0
7V
12V
18V
100.0
MaxLoad(nF)
30V
10.0
1.0
0.1
10
100
1000
Frequency(kHz)
Figure 17. (LGA8) Maximum Load vs. Switching Frequency (25 °C)
Preliminary Rev. 0.9
21
Si826x
5.5. Parametric Differences between Si826x and HCPL-0302 and HCPL-3120
Opto Drivers
The Si826x is designed to directly replace HCPL-3120 and similar opto drivers. Parametric differences are
summarized in Tables 11 and 12 below.
Table 11. Parametric Differences of Si8261 vs. HCPL-3120
Parameter
Si8261
HCPL-3120
Units
30
30
V
6 to 30
7 to 16
mA
–0.6 to +1.6
–0.3 to +0.8
V
–0.3
–5
V
UVLO threshold (rising)
5 to 10.5
11.0 to 13.5
V
UVLO threshold (falling)
4.7 to 9.4
9.7 to 12.0
V
UVLO hysteresis
0.3 to 1.3
1.6
V
100
100
ns
Max supply voltage
ON state forward input current
OFF state input voltage
Max reverse input voltage
Rise/fall time into 10  in series with 10 nF
Table 12. Parametric Differences of Si8261 vs. HCPL-0302
Parameter
Si8261
HCPL-0302
Units
30
30
V
6 to 30
7 to 16
mA
–0.6 to +1.6
–0.3 to +0.8
V
–0.3
–5
V
UVLO threshold (rising)
5 to 10.5
11.0 to 13.5
V
UVLO threshold (falling)
4.7 to 9.4
9.7 to 12.0
V
UVLO hysteresis
0.3 to 1.3
1.6
V
100
100
ns
Max supply voltage
ON state forward input current
OFF state input voltage
Max reverse input voltage
Rise/fall time into 10  in series with 10 nF
5.5.1. Input Diode Differences
The Si826x input circuit requires less current and has twice the off-state noise margin compared to opto drivers.
However, high CMR opto driver designs that overdrive the LED (see Figure 14) may require increasing the value of
R1 to limit input current IF to its maximum rating when using the Si826x. In addition, there is no benefit in driving
the Si826x input diode into reverse bias when in the off state. Consequently, opto driver circuits using this
technique should either leave the negative bias circuitry unpopulated or modify the circuitry (e.g. add a clamp diode
or current limiting resistor) to ensure that the anode pin of the Si826x is no more than –0.3 V with respect to the
cathode when reverse-biased. For more information on configuring the input, see “AN677: Using the Si826x Family
of Isolated Gate Drivers”.
5.5.2. Supply Voltage and UVLO Considerations
The supply voltage of the Si826x is limited to 30 V, from which the UVLO voltage thresholds are scaled accordingly.
Opto replacement applications should limit their supply voltages to 30 V or less.
22
Preliminary Rev. 0.9
Si826x
6. Pin Descriptions (SOIC-8, DIP8, LGA8)
NC
1
8
VDD
7
VO
UVLO
ANODE
2
e
CATHODE
3
6
VO
NC
4
5
GND
SOIC-8, DIP8, LGA8
Industry Standard Pinout
Figure 18. Pin Configuration
Table 13. Pin Descriptions (SOIC-8, DIP8, LGA8)
Pin
Name
1
NC*
2
ANODE
3
Description
No connect.
Anode of LED emulator. VO follows the signal applied to this input with respect to the
CATHODE input.
CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input.
4
NC*
No connect.
5
GND
External MOSFET source connection and ground reference for VDD. This terminal is typically
connected to ground but may be tied to a negative or positive voltage.
6
VO
Output signal. Both VO pins are required to be shorted together for 4.0 A compliance.
7
VO
Output signal. Both VO pins are required to be shorted together for 4.0 A compliance.
8
VDD
Output-side power supply input referenced to GND (30 V max).
*Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be
connected to the ground plane.
Preliminary Rev. 0.9
23
Si826x
7. Pin Descriptions (SDIP6)
ANODE 1
6
VDD
5
VO
4
GND
UVLO
NC 2
e
CATHODE 3
SDIP6
Industry Standard Pinout
Figure 19. Pin Configuration
Table 14. Pin Descriptions (SDIP6)
Pin
Name
1
ANODE
2
NC*
3
Description
Anode of LED emulator. VO follows the signal applied to this input with respect to the
CATHODE input.
No connect.
CATHODE Cathode of LED emulator. VO follows the signal applied to ANODE with respect to this input.
External MOSFET source connection and ground reference for VDD. This terminal is typically
connected to ground but may be tied to a negative or positive voltage.
4
GND
5
VO
Output signal.
6
VDD
Output-side power supply input referenced to GND (30 V max).
*Note: No Connect. These pins are not internally connected. To maximize CMTI performance, these pins should be
connected to the ground plane.
24
Preliminary Rev. 0.9
Si826x
8. Ordering Guide
Table 15. Si826x Ordering Guide1,2,3
Ordering Options
New Ordering
Part Number
(OPN)
Output
Configuration
Cross
Reference
UVLO
Voltage
Insulation
Rating
Temp Range
Pkg Type
Si8261AAC-C-IS
(Sampling)
0.6 A driver
HCPL-0314
5V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261BAC-C-IS
(Sampling)
4.0 A driver
—
5V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261AAC-C-IP
(Sampling)
0.6 A driver
HCPL-3140
5V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261BAC-C-IP
(Sampling)
4.0 A driver
TLP 350
HCPL-3120
5V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261AAD-C-IS
(Sampling)
0.6 A driver
ACPL-W314
5V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261BAD-C-IS
(Sampling)
4.0 A driver
TLP 700F
5V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261AAD-C-IM
(Sampling)
0.6 A driver
—
5V
5.0 kVrms
–40 to +125 °C
LGA8
Si8261BAD-C-IM
(Sampling)
4.0 A driver
HCNW-3120
5V
5.0 kVrms
–40 to +125 °C
LGA8
Notes:
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according
to the JEDEC industry standard classifications and peak solder temperature.
2. “Si” and “SI” are used interchangeably.
3. AEC-Q100 qualified.
Preliminary Rev. 0.9
25
Si826x
Table 15. Si826x Ordering Guide1,2,3
Ordering Options
New Ordering
Part Number
(OPN)
Output
Configuration
Cross
Reference
UVLO
Voltage
Insulation
Rating
Temp Range
Pkg Type
Si8261ABC-C-IS
(Sampling)
0.6 A driver
HCPL-0314
8V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261BBC-C-IS
(Sampling)
4.0 A driver
—
8V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261ABC-C-IP
(Sampling)
0.6 A driver
HCPL-3140
8V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261BBC-C-IP
(Sampling)
4.0 A driver
TLP 350
HCPL-3120
8V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261ABD-C-IS
(Sampling)
0.6 A driver
ACPL-W314
8V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261BBD-C-IS
(Sampling)
4.0 A driver
TLP 700F
8V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261ABD-C-IM
(Sampling)
0.6 A driver
—
8V
5.0 kVrms
–40 to +125 °C
LGA8
Si8261BBD-C-IM
(Sampling)
4.0 A driver
HCNW-3120
8V
5.0 kVrms
–40 to +125 °C
LGA8
Notes:
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according
to the JEDEC industry standard classifications and peak solder temperature.
2. “Si” and “SI” are used interchangeably.
3. AEC-Q100 qualified.
26
Preliminary Rev. 0.9
Si826x
Table 15. Si826x Ordering Guide1,2,3
Ordering Options
New Ordering
Part Number
(OPN)
Output
Configuration
Cross
Reference
UVLO
Voltage
Insulation
Rating
Temp Range
Pkg Type
Si8261ACC-C-IS
(Sampling)
0.6 A driver
HCPL-0314
12 V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261BCC-C-IS
(Sampling)
4.0 A driver
—
12 V
3.75 kVrms
–40 to +125 °C
SOIC-8
Si8261ACC-C-IP
(Sampling)
0.6 A driver
HCPL-3140
12 V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261BCC-C-IP
(Sampling)
4.0 A driver
TLP 350
HCPL-3120
12 V
3.75 kVrms
–40 to +125 °C
DIP8/GW
Si8261ACD-C-IS
(Sampling)
0.6 A driver
ACPL-W314
12 V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261BCD-C-IS
(Sampling)
4.0 A driver
TLP 700F
12 V
5.0 kVrms
–40 to +125 °C
SDIP6
Si8261ACD-C-IM
(Sampling)
0.6 A driver
—
12 V
5.0 kVrms
–40 to +125 °C
LGA8
Si8261BCD-C-IM
(Sampling)
4.0 A driver
HCNW-3120
12 V
5.0 kVrms
–40 to +125 °C
LGA8
Notes:
1. All packages are RoHS-compliant. Moisture sensitivity level is MSL3 with peak reflow temperature of 260 °C according
to the JEDEC industry standard classifications and peak solder temperature.
2. “Si” and “SI” are used interchangeably.
3. AEC-Q100 qualified.
Preliminary Rev. 0.9
27
Si826x
9. Package Outline: 8-Pin Narrow Body SOIC
Figure 20 illustrates the package details for the Si826x in an 8-pin narrow-body SOIC package. Table 16 lists the
values for the dimensions shown in the illustration.

Figure 20. 8-Pin Narrow Body SOIC Package
Table 16. 8-Pin Narrow Body SOIC Package Diagram Dimensions
Symbol
Millimeters
Min
Max
A
1.35
1.75
A1
0.10
0.25
A2
1.40 REF
1.55 REF
B
0.33
0.51
C
0.19
0.25
D
4.80
5.00
E
3.80
4.00
e
28
1.27 BSC
H
5.80
6.20
h
0.25
0.50
L
0.40
1.27

0
8
Preliminary Rev. 0.9
Si826x
10. Land Pattern: 8-Pin Narrow Body SOIC
Figure 21 illustrates the recommended land pattern details for the Si826x in an 8-pin narrow-body SOIC. Table 17
lists the values for the dimensions shown in the illustration.
Figure 21. 8-Pin Narrow Body SOIC Land Pattern
Table 17. 8-Pin Narrow Body SOIC Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
5.40
E
Pad Row Pitch
1.27
X1
Pad Width
0.60
Y1
Pad Length
1.55
Notes:
1. This Land Pattern Design is based on IPC-7351 pattern SOIC127P600X173-8N for
Density Level B (Median Land Protrusion).
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
Preliminary Rev. 0.9
29
Si826x
11. Package Outline: DIP8
Figure 22 illustrates the package details for the Si826x in a DIP8 package. Table 18 lists the values for the
dimensions shown in the illustration.
Figure 22. DIP8 Package
Table 18. DIP8 Package Diagram Dimensions
Dimension
Min
Max
A
—
4.19
A1
0.55
0.75
A2
3.17
3.43
b
0.35
0.55
b2
1.14
1.78
b3
0.76
1.14
c
0.20
0.33
D
9.40
9.90
E
7.37
7.87
E1
6.10
6.60
E2
9.40
9.90
e
2.54 BSC.
L
0.38
0.89
aaa
—
0.25
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
30
Preliminary Rev. 0.9
Si826x
12. Land Pattern: DIP8
Figure 23 illustrates the recommended land pattern details for the Si826x in a DIP8 package. Table 19 lists the
values for the dimensions shown in the illustration.
Figure 23. DIP8 Land Pattern
Table 19. DIP8 Land Pattern Dimensions*
Dimension
Min
Max
C
8.85
8.90
E
2.54 BSC
X
0.60
0.65
Y
1.65
1.70
*Note: This Land Pattern Design is based on the IPC-7351 specification.
Preliminary Rev. 0.9
31
Si826x
13. Package Outline: SDIP6
Figure 24 illustrates the package details for the Si826x in an SDIP6 package. Table 20 lists the values for the
dimensions shown in the illustration.
Figure 24. SDIP6 Package
Table 20. SDIP6 Package Diagram Dimensions
Dimension
Min
Max
A
—
2.65
A1
0.10
0.30
A2
2.05
—
b
0.31
0.51
c
0.20
0.33
D
4.58 BSC
E
11.50 BSC
E1
7.50 BSC
e
1.27 BSC
L
0.40
1.27
h
0.25
0.75
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
32
Preliminary Rev. 0.9
Si826x
Table 20. SDIP6 Package Diagram Dimensions (Continued)
Dimension
Min
Max
θ
0°
8°
aaa
—
0.10
bbb
—
0.33
ccc
—
0.10
ddd
—
0.25
eee
—
0.10
fff
—
0.20
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
Preliminary Rev. 0.9
33
Si826x
14. Land Pattern: SDIP6
Figure 25 illustrates the recommended land pattern details for the Si826x in an SDIP6 package. Table 21 lists the
values for the dimensions shown in the illustration.
Figure 25. SDIP6 Land Pattern
Table 21. SDIP6 Land Pattern Dimensions*
Dimension
Min
Max
C
10.45
10.50
E
1.27 BSC
X
0.55
0.60
Y
2.00
2.05
*Note: This Land Pattern Design is based on the IPC-7351 specification.
34
Preliminary Rev. 0.9
Si826x
15. Package Outline: LGA8
Figure 26 illustrates the package details for the Si826x in an LGA8 package. Table 22 lists the values for the
dimensions shown in the illustration.
Figure 26. LGA8 Package
Table 22. Package Diagram Dimensions
Dimension
Min
Nom
Max
A
0.74
0.84
0.94
b
1.15
1.20
1.25
D
10.00 BSC.
e
2.54 BSC.
E
12.50 BSC.
L
1.05
1.10
1.15
L1
0.05
0.10
0.15
aaa
—
—
0.10
bbb
—
—
0.10
ccc
—
—
0.10
ddd
—
—
0.10
Notes:
1. All dimensions shown are in millimeters (mm) unless otherwise noted.
2. Dimensioning and Tolerancing per ANSI Y14.5M-1994.
3. Recommended card reflow profile is per the JEDEC/IPC J-STD-020
specification for Small Body Components.
Preliminary Rev. 0.9
35
Si826x
16. Land Pattern: LGA8
Figure 27 illustrates the recommended land pattern details for the Si826x in an LGA8 package. Table 23 lists the
values for the dimensions shown in the illustration.
Figure 27. LGA8 Land Pattern
Table 23. LGA8 Land Pattern Dimensions
Dimension
Feature
(mm)
C1
Pad Column Spacing
11.80
E
Pad Row Pitch
2.54
X1
Pad Width
1.30
Y1
Pad Length
1.80
Notes:
1. This Land Pattern Design is based on IPC-7351 specifications.
2. All feature sizes shown are at Maximum Material Condition (MMC) and a card
fabrication tolerance of 0.05 mm is assumed.
36
Preliminary Rev. 0.9
Si826x
17. Top Markings
17.1. Si826x Top Marking (Narrow Body SOIC)
17.2. Top Marking Explanation
Customer Part Number
826 = ISOdriver product series
C = Input configuration
1 = Opto input type
I = Peak output current
A = 0.6 A; B = 4.0 A
U = UVLO level
A = 5 V; B = 8 V; C = 12 V
V = Isolation rating
C = 3.75 kV; D = 5.0 kV
RTTTTT = Mfg Code
Manufacturing Code from the Assembly Purchase
Order form.
“R” indicates revision.
Circle = 43 mils Diameter
Left-Justified
“e4” Pb-Free Symbol
YY = Year
WW = Work Week
Assigned by the Assembly House. Corresponds to
the year and work week of the mold date.
Line 1 Marking:
Line 2 Marking:
Line 3 Marking:
Preliminary Rev. 0.9
37
Si826x
17.3. Si826x Top Marking (DIP8)
17.4. Top Marking Explanation
Customer Part Number
Si826 = ISOdriver product series
C = Input configuration
1 = Opto input type
I = Peak output current
A = 0.6 A; B = 4.0 A
U = UVLO level
A = 5 V; B = 8 V; C = 12 V
V = Isolation rating
C = 3.75 kV; D = 5.0 kV
YY = Year
WW = Work Week
Assigned by the Assembly House. Corresponds to
the year and work week of the mold date.
RTTTTT = Mfg Code
Manufacturing Code from the Assembly Purchase
Order form.
“R” indicates revision.
Circle = 51 mils Diameter
Center-Justified
“e4” Pb-Free Symbol
CO = Country of Origin
Country of Origin
ISO Code Abbreviation
Line 1 Marking:
Line 2 Marking:
Line 3 Marking:
38
Preliminary Rev. 0.9
Si826x
17.5. Si826x Top Marking (SDIP6)
17.6. Top Marking Explanation
Device
Si826 = ISOdriver product series
C = Input configuration
1 = Opto input type
Device Rating
I = Peak output current
A = 0.6 A; B = 4.0 A
U = UVLO level
A = 5 V; B = 8 V; C = 12 V
V = Isolation rating
C = 3.75 kV; D = 5.0 kV
RTTTTT = Mfg Code
Manufacturing Code from the Assembly Purchase
Order form.
“R” indicates revision.
YY = Year
WW = Work Week
Assigned by the Assembly House. Corresponds to the
year and work week of the mold date.
Line 1 Marking:
Line 2 Marking:
Line 3 Marking:
Line 4 Marking:
Preliminary Rev. 0.9
39
Si826x
17.7. Si826x Top Marking (LGA8)
17.8. Top Marking Explanation
Device Part Number
Si826 = ISOdriver product series
C = Input configuration
1 = Opto input type
I = Peak output current
A = 0.6 A; B = 4.0 A
U = UVLO level
A = 5 V; B = 8 V; C = 12 V
V = Isolation rating
C = 3.75 kV; D = 5.0 kV
YY = Year
WW = Work Week
Assigned by the Assembly House. Corresponds to the year and work week of the
assembly release.
RTTTTT = Mfg Code
Manufacturing Code from the Assembly Purchase Order form.
“R” indicates revision.
Circle = 1.6 mm Diameter
Center-Justified
“e4” Pb-Free Symbol
CO = Country of Origin
Country of Origin
ISO Code Abbreviation
Circle = 0.75 mm Diameter
Lower Left-Justified
Pin 1 Identifier
Line 1 Marking:
Line 2 Marking:
Line 3 Marking:
Line 4 Marking:
40
Preliminary Rev. 0.9
Si826x
NOTES:
Preliminary Rev. 0.9
41
Si826x
CONTACT INFORMATION
Silicon Laboratories Inc.
400 West Cesar Chavez
Austin, TX 78701
Tel: 1+(512) 416-8500
Fax: 1+(512) 416-9669
Toll Free: 1+(877) 444-3032
Please visit the Silicon Labs Technical Support web page:
https://www.silabs.com/support/pages/contacttechnicalsupport.aspx
and register to submit a technical support request.
Patent Notice
Silicon Labs invests in research and development to help our customers differentiate in the market with innovative low-power, small size, analogintensive mixed-signal solutions. Silicon Labs' extensive patent portfolio is a testament to our unique approach and world-class engineering team.
The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice.
Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from
the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any
liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where
personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized
application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.
Silicon Laboratories and Silicon Labs are trademarks of Silicon Laboratories Inc.
Other products or brandnames mentioned herein are trademarks or registered trademarks of their respective holders.
42
Preliminary Rev. 0.9