ETC GMM27316233ENTG-7J

16Mx72 bits
PC100/PC133 SDRAM Unbuffered DIMM
based on 8Mx8 SDRAM with LVTTL, 4 banks & 4K Refresh
GMM27316233ENTG
Description
The GMM27316233ENTG is a 16M x 72bits
Synchronous Dynamic RAM MODULE
which is assembled 18 pieces of 8M x 8bits
Synchronous DRAMs in 54 pin TSOP II
package and one 2048 bit EEPROM in 8pin
TSSOP package mounted on a 168 pin
printed circuit board with decoupling
capacitors. The GMM27316233ENTG is
optimized for application to the systems which
are required high density and large capacity
such as main memory of the computers and an
image memory systems, and to the others
which are requested compact size.
The GMM27316233ENTG provides common
data inputs and outputs.
• GMM27316233ENTG (Double Side)
Features
* PC133/PC100/PC66 Compatible
-7(143MHz)/-75(133MHz)/-8(125MHz)
-7K(PC100,2-2-2),7J(PC100,3-2-2)
* 3.3V +/- 0.3V Power supply
* Maximum Clock frequency
100/125/133/143 MHz
* LVTTL Interface
* Burst read/write operation and burst read/
single write operation capability
* Programmable burst length ;
1, 2, 4, 8, Full page
* Programmable burst sequence
Sequential / Interleave
* Full Page burst length capability
Sequential burst
Burst stop capability
* Programmable CAS Latency ; 2, 3
* CKE power down mode
* Input / Output data masking
* 4096 Refresh Cycles / 64ms
* Auto refresh / Self refresh Capability
* Serial Presence Detect with EEPROM
Pin Name
CK0, 1, 2, 3
CKE0,1
S0,1,2,3
RAS
CAS
WE
A0 ~ A11
BA0,1
DQ0 ~ 63
CB0 ~ 7
DQMB0 ~ 7
V CC
V SS
NC
V REF
SDA
SCL
SA0 ~ 2
DU
Clock input
Clock Enable
Chip Select
Row Address Strobe
Column Address Strobe
Write Enable
Address input
Bank Address input
Data input / output
Check Bits
Data input / output Mask
Power for internal circuit
Ground for internal circuit
No Connect
Power Supply for Reference
Serial Data input/ output
Serial Clock
Address in EEPROM
Don't Use
This document is a general product description and is subject to change without notice. Hynix semiconductor does not assume any
responsibility for use of circuits described. No patent licenses are implied.
Rev. 1.1/Apr.01
-1-
GMM27316233ENTG
Pin Configuration
Pin
Symbol
Pin
Symbol
Pin
Symbol
Pin
Symbol
1
VSS
29
DQMB1
57
DQ18
85
VSS
2
DQ0
30
S0
58
DQ19
86
3
DQ1
31
DU
59
VCC
4
DQ2
32
VSS
60
DQ20
5
DQ3
33
A0
61
NC
6
VCC
34
A2
62 *VREF, NC 90
7
DQ4
35
A4
63
CKE1
8
DQ5
36
A6
64
VSS
9
DQ6
37
A8
65
10
DQ7
38
A10/AP
11
DQ8
39
12
VSS
40
13
DQ9
14
Pin
Symbol
Pin
Symbol
113 DQMB5 141
DQ50
DQ32
114
S1
142
DQ51
87
DQ33
115
RAS
143
VCC
88
DQ34
116
VSS
144
DQ52
89
DQ35
117
A1
145
NC
VCC
118
A3
146 *VREF, NC
91
DQ36
119
A5
147
NC
92
DQ37
120
A7
148
VSS
DQ21
93
DQ38
121
A9
149
DQ53
66
DQ22
94
DQ39
122
BA0
150
DQ54
BA1
67
DQ23
95
DQ40
123
A11
151
DQ55
VCC
68
VSS
96
VSS
124
VCC
152
VSS
41
VCC
69
DQ24
97
DQ41
125
CK1
153
DQ56
DQ10
42
CK0
70
DQ25
98
DQ42
126
*A12
154
DQ57
15
DQ11
43
VSS
71
DQ26
99
DQ43
127
VSS
155
DQ58
16
DQ12
44
DU
72
DQ27
100
DQ44
128
CKE0
156
DQ59
17
DQ13
45
S2
73
VCC
101
DQ45
129
S3
157
VCC
18
VCC
46
DQMB2
74
DQ28
102
VCC
130 DQMB6 158
DQ60
19
DQ14
47
DQMB3
75
DQ29
103
DQ46
131 DQMB7 159
DQ61
20
DQ15
48
DU
76
DQ30
104
DQ47
132
*A13
160
DQ62
21
CB0
49
VCC
77
DQ31
105
CB4
133
VCC
161
DQ63
22
CB1
50
NC
78
VSS
106
CB5
134
NC
162
VSS
23
VSS
51
NC
79
CK2
107
VSS
135
NC
163
CK3
24
NC
52
CB2
80
NC
108
NC
136
CB6
164
NC
25
NC
53
CB3
81
WP/NC 109
NC
137
CB7
165
SA0
26
VCC
54
VSS
82
SDA
110
VCC
138
VSS
166
SA1
27
WE
55
DQ16
83
SCL
111
CAS
139
DQ48
167
SA2
28
DQMB0
56
DQ17
84
VCC
112 DQMB4 140
DQ49
168
VCC
* These pins are not used in this module
Rev. 1.1/Apr.01
-2-
GMM27316233ENTG
Block Diagram (-7K/-7J)
S1
S0
DQMB4
DQMB0
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U0
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U9
DQM
CS
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U5
CS
0
1
2
3
4
5
6
7
U14
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQMB1
32
33
34
35
36
37
38
39
DQMB5
DQ 8
DQ 9
DQ 10
DQ 11
DQ 12
DQ 13
DQ 14
DQ 15
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U1
CS
U2
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U10
CS
U6
DQM
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ 45
DQ 46
DQ 47
CS
U15
DQM
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ 45
DQ 46
DQ 47
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ45
DQ 46
DQ 47
CS
DQMB6
CS
U11
U7
S3
S2
DQMB2
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U16
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ 48
DQ 49
DQ 50
DQ 51
DQ 52
DQ53
DQ 54
DQ 55
DQMB7
CS
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
16
17
18
19
20
21
22
23
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
24
25
26
27
28
29
30
31
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U3
CS
U4
DQM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
DQM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
CS
U12
U8
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
RAS
CAS
CKE0
WE
V CC
VSS
Rev. 1.1/Apr.01
U0 - U17
U0 - U17
U0 - U17
U0 - U8
U0 - U17
U17
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
56
57
58
59
60
61
62
63
CS
U13
10ohm
10ohm
A0 ~ A11, BA0,1
CS
CK0,1
5 SDRAMS
CK2,3
4 SDRAMS
3.3 pF
CKE1
10kohm
Capacitor
one 0.33uF and one 0.1uF per each SDRAM
U9 - U17
SCL
U0 ~ U17
U0 ~ U17
Serial PD
A0
A1
WP
A2
SDA
Vss
47kohm
SA0 SA1 SA2
-3-
GMM27316233ENTG
Block Diagram (-10K)
S1
S0
DQMB4
DQMB0
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U0
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U9
DQM
CS
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
U5
CS
0
1
2
3
4
5
6
7
U14
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQMB1
32
33
34
35
36
37
38
39
DQMB5
DQ 8
DQ 9
DQ 10
DQ 11
DQ 12
DQ 13
DQ 14
DQ 15
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CB0
CB1
CB2
CB3
CB4
CB5
CB6
CB7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U1
CS
U2
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U10
CS
U6
DQM
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ 45
DQ 46
DQ 47
CS
U15
DQM
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ 45
DQ 46
DQ 47
DQ 40
DQ 41
DQ 42
DQ 43
DQ 44
DQ45
DQ 46
DQ 47
CS
DQMB6
CS
U11
U7
S3
S2
DQMB2
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U16
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ 48
DQ 49
DQ 50
DQ 51
DQ 52
DQ53
DQ 54
DQ 55
DQMB7
CS
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
16
17
18
19
20
21
22
23
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
24
25
26
27
28
29
30
31
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
CS
U3
CS
U4
CS
DQM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
U12
DQM
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
0
1
2
3
4
5
6
7
U8
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
RAS
CAS
CKE0
WE
V CC
VSS
Rev. 1.1/Apr.01
U0 - U17
U0 - U17
U0 - U17
U0 - U8
U0 - U17
U17
DQM
DQ 0
DQ 1
DQ 2
DQ 3
DQ 4
DQ 5
DQ 6
DQ 7
DQ
DQ
DQ
DQ
DQ
DQ
DQ
DQ
56
57
58
59
60
61
62
63
CS
U13
10ohm
10ohm
A0 ~ A11, BA0,1
CS
CK0,1
5 SDRAMS
CKE1
U9 - U17
10kohm
Capacitor
two 0.33uF per each SDRAM
CK2,3
SCL
U0 ~ U17
U0 ~ U17
4 SDRAMS
Serial PD
A0
A1
SDA
A2
SA0 SA1 SA2
-4-
GMM27316233ENTG
Pin Description
Pin Name
CK0, 1, 2, 3
(input pins)
CKE0,1
(input pin)
S0,1,2,3
(input pins)
RAS, CAS and WE
(input pins)
A0 ~ A11
(input pins)
DESCRIPTION
CK is the master clock input to this pin. The other input signals are
referred at CK rising edge.
This pin determines whether or not the next CK is valid. If CKE is
High, the next CK rising edge is valid. If CKE is Low, the next CK
rising edge is invalid. This pin is used for power-down and clock
suspend modes.
When S is Low, the command input cycle becomes valid. When S is
high, all inputs are ignored. However, internal operations (bank active,
burst operations, etc.) are held.
Although these pin names are the same as those of conventional
DRAMs, they function in a different way. These pins define operation
commands (read, write, etc.) depending on the combination of their
voltage levels. For details, refer to the command operation section.
Row address (AX0 to AX11) is determined by A0 to A11 level at the
bank active command cycle CK rising edge. Column address is
determined by A0 to A8 level at the read or write command cycle CK
rising edge. And this column address becomes burst access start
address. A10 defines the precharge mode. When A10 = High at the
precharge command cycle, both banks are precharged. But when A10 =
Low at the precharge command cycle, only the bank that is selected by
BA0 is precharged.
BA0,1
(input pin)
BA0,1 are bank select signal. If BA0 is Low and BA1 is High, bank 0 is
selected. If BA0 is High and BA1 is Low, bank 1 is selected. If BA0 is
Low and BA1 is High, bank 2 is selected. If BA0 is High and BA1 is
High, bank 3 is selected.
DQ0 ~ DQ63
CB0 ~ CB7
(I/O pins)
Data is input and output from these pins. These pins are the same as
those of a conventional DRAMs.
DQMB0 ~ DQMB7
(input pins)
DQMB controls input/output buffers.
Read operation: If DQMB is High, The output buffer becomes High-Z.
If the DQMB is Low, the output buffer becomes Low-Z.
Write operation: If DQMB is High, the previous data is held (the new data
is not written). If DQMB is Low, the data is written.
V CC
(power supply pins)
3.3 V is applied. (VCC is for the internal circuit)
V SS
(power supply pins)
Ground is connected. (VSS is for the internal circuit)
NC
Rev. 1.1/Apr.01
No Connection pins.
-5-
GMM27316233ENTG
Absolute Maximum Ratings
Parameter
Symbol
Value
Unit
Note
Voltage on any pin relative to VSS
VT
-0.5 to Vcc+0.5
(<= 4.6 (max))
V
1
Supply voltage relative to V SS
V CC
-0.5 to +4.6
V
1
Short circuit output current
I OUT
50
mA
PT
1.0
W
Operating temperature
Topr
0 to +70
C
Storage temperature
Tstg
-55 to +125
C
Power dissipation
Notes : 1. Respect to VS S
Recommended DC Operating Conditions (Ta = 0 to + 70C)
Parameter
Symbol
Min
Max
Unit
Note
V CC, VCCQ
3.0
3.6
V
1
V SS, VSSQ
0
0
V
Input high voltage
V IH
2.0
Vcc+0.3
V
1, 2
Input low voltage
V IL
-0.3
0.8
V
1,3
Supply voltage
Notes : 1. All voltage referred to V SS.
2. V IH (max) = 5.6V for pulse width <= 3ns
3. V IL (min) = -2.0V for pulse width <= 3ns
Rev. 1.1/Apr.01
-6-
GMM27316233ENTG
DC Characteristics (Ta = 0 to 70C, VCC , VCCQ = 3.3 V +/- 0.3 V, VSS, VSSQ= 0 V)
Parameter
-7
- 75
-8
-7K
-7J
Max
Max
Max
Max
Max
Symbol
Unit Test conditions
Notes
Burst length= 1
t RC = min
CKE = V IL,
t CK = 12 ns
Operating
current
I CC1
Standby current in
power down
I CC2P
25
mA
I CC2PS
25
mA
CKE=V IL,
t CK= infinity
6
I CC2N
250
mA
CKE,CS = V IH,
t CK = 12ns
4
I CC2NS
80
mA
CKE = V IH,
t CK = infinity
4
1,2,5
2,6
Standby current in
power down
(input signal stable)
Standby current in
non power down
(CAS Latency=2)
Standby current in
non power down
(input signal stable)
900
850
mA
Active standby current
in power down
I CC3P
90
mA
CKE = V IL,
t CK = 12 ns,
DQ = High-Z
Active standby current
in power down
(input signal stable)
I CC3PS
55
mA
CKE = V IL,
t CK = infinity
I CC3N
400
mA
CKE,CS = V IH,
t CK = 12 ns,
DQ = High-Z
Active standby current
in non power down
I CC3NS
(input signal stable)
250
mA
CKE = V IH,
t CK = infinity
1200
mA
t CK = min
Active standby current
in non power down
Burst
operating
current
1, 2, 3
5
1,2,4
2,8
( CL= 2 )
I CC4
( CL= 3 )
I CC4
1500
1500
1500
1200
1200
mA
Refresh current
I CC5
1200
1200
1100
1100
1100
mA
t RC = min
3
Self refresh current
I CC6
mA
V IH >=VCC - 0.2
V IL <=0.2V
7
Rev. 1.1/Apr.01
18
1,2,3
BL = 4
-7-
GMM27316233ENTG
- 7, - 75, - 8, - 7K, - 7J
Parameter
Symbol
Unit Test conditions
Min
Max
Input leakage current
I LI
-1
1
uA
0 <=Vin <=VCC
Output leakage current
I LO
-1.5
1.5
uA
0<=Vout<=VCC
DQ = disable
Output high voltage
V OH
2.4
-
V
I OH = -2 mA
Output low voltage
V OL
-
0.4
V
I OL =2 mA
Notes
Notes : 1. ICC depends on output load condition when the device is selected. I CC ( max) is specified at the
output open condition.
2. One bank operation.
3. Addresses are changed once per one cycle.
4. Addresses are changed once per two cycles.
5. After Power down mode, CLK operating current.
6. After Power down mode, no CLK operating current.
7. After self refresh mode set, self refresh current.
8. Input signals are VI H or V IL fixed.
Capacitance (Ta = 25C, VCC, VCCQ = 3.3V +/- 0.3V)
Symbol
Parameter
Min
Max
Unit
Notes
90
110
pF
1, 3
CI1
Input capacitance (A0 ~ A11, BA0,1)
CI2
Input capacitance (RAS, CAS, WE, CKE)
160
180
pF
1, 3
CI3
Input capacitance (CK0, CK1, CK2, CK3)
44
48
pF
1, 3
CI4
Input capacitance (S0 ~ S3)
30
40
pF
1, 3
CI5
Input capacitance (DQMB1, DQMB5)
17
25
pF
1, 3
CI6
Input capacitance (DQMB0, 2, 3, 4, 6, 7)
-
20
pF
1, 3
CI/O
I/O capacitance (DQ0 ~ 63, CB0 ~ 7)
17
20
pF
1, 2, 3
Note : 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.
2. DQMB = VIH to disable Dout.
3. This parameter is sampled and not 100% tested.
Rev. 1.1/Apr.01
-8-
GMM27316233ENTG
AC Characteristics (Ta = 0 to 70C, VCC, VCCQ = 3.3 V +/- 0.3 V, VSS, VSSQ = 0 V)
-7
Parameter
- 75
-8
- 7K
- 7J
Symbol
Unit Notes
Min Max Min Max Min Max Min Max Min Max
(CL=2)
t CK
t CK
t CKH
t CKL
t AC
t AC
t OH
10
-
10
-
10
-
10
-
15
-
7
-
7.5
-
8
-
10
-
10
-
2.5
-
2.5
-
3
-
3
-
3
2.5
-
2.5
-
3
-
3
-
-
6
-
6
-
6
-
-
5.4
-
5.4
-
6
2.7
-
2.7
-
3
t LZ
1.5
-
1.5
-
t HZ
-
5.4
-
1.5
-
0.8
CKE setup time
t DS
t DH
t AS
t AH
t CES
CKE setup time for
power down exit
System clock
cycle time
ns
1
-
ns
1
3
-
ns
1
6
-
8
ns
1, 2
-
6
-
6
-
3
-
3
-
ns
1, 2
2
-
2
-
2
-
ns
1, 2, 3
5.4
-
6
-
6
-
6
ns
1, 4
1.5
-
2
-
2
-
2
-
ns
1
-
0.8
-
1
-
1
-
1
-
ns
1
1.5
-
1.5
-
2
-
2
-
2
-
ns
1
0.8
-
0.8
-
1
-
1
-
1
-
ns
1
1.5
-
1.5
-
2
-
2
-
2
-
ns
1, 5
t CESP
1.5
-
1.5
-
2
-
2
-
2
-
ns
1
CKE hold time
t CEH
0.8
-
0.8
-
1
-
1
-
1
-
ns
1
Command (CS, RAS,
CAS, WE, DQM)
setup time
t CS
1.5
-
1.5
-
2
-
2
-
2
-
ns
1
Command (CS, RAS,
CAS, WE, DQM)
hold time
t CH
0.8
-
0.8
-
1
-
1
-
1
-
ns
1
t RC
62
-
65
-
68
-
70
-
70
-
ns
1
t RAS
42
120000
45
120000
48
120000
50
120000
50
120000
ns
1
t RCD
20
-
20
-
20
-
20
-
20
-
ns
1
t RP
20
-
20
-
20
-
20
-
20
-
ns
1
(CL=3)
CLK high pulse width
CLK low pulse width
Access time
from CLK
(CL=2)
(CL=3)
Data-out hold time
CLK to Data-out low
impedance
CLK to Data-out
high impedance
( CL = 2,3 )
Data-in setup time
Data-in hold time
Address setup time
Address hold time
Ref/Active to Ref/Active
command period
Active to Precharge
command period
Active command to
column command
(same bank)
Precharge to active
command period
Rev. 1.1/Apr.01
-9-
GMM27316233ENTG
AC Characteristics (Ta = 0 to 70C, VCC, VCCQ = 3.3 V +/-0.3 V, VSS, VSSQ = 0 V)
(Continued)
-7
Parameter
- 75
-8
- 7K
- 7J
Symbol
Unit Notes
Min Max Min Max Min Max Min Max Min Max
Write recovery or data-in
to precharge lead time
Active (a) to Active (b)
command period
Refresh period
t RWL
7
-
7.5
-
8
-
10
-
10
-
ns
1
t RRD
14
-
15
-
16
-
20
-
20
-
ns
1
t REF
-
64
-
64
-
64
-
64
-
64
ms
Notes : 1. AC measurement assumes t T = 1ns. Reference level for timing of input signals is 1.40V.
If tT is longer than 1ns,transition time compensation should be considered.
2. Access time is measured at 1.40V. Load condition is C L = 50pF without termination.
3. t LZ (min)defines the time at which the outputs achieves the low impedance state.
4. t HZ (max)defines the time at which the outputs achieves the high impedance state.
5. t CES define CKE setup time to CKE rising edge except Power down exit command.
Test Condition
• Input and output-timing reference levels: 1.4V
• Input waveform and output load: See following figures
I/O
input
2.4V
80%
0.4V
20%
OPEN
CL
tT
Rev. 1.1/Apr.01
tT
-10-
GMM27316233ENTG
Relationship Between Frequency and Minimum Latency
-7
Parameter
frequency(MHz)
Symbol
tCK (ns)
-75
-8
-7K
-7J
143 100 133 100 125 100 100 100 100
66
Notes
7
10
7.5
10
8
10
10
10
10
15
l RCD
3
2
3
2
3
2
2
2
2
2
1
l RC
9
7
9
7
9
7
7
7
7
6
= [l RAS
+ lRP ], 1
l RAS
6
5
6
5
6
5
5
5
5
4
1
l RP
3
2
3
2
3
2
2
2
2
2
1
l RWL
1
1
1
1
1
1
1
1
1
1
1
l RRD
2
2
2
2
2
2
2
2
2
2
1
l SREX
1
1
1
1
1
2
1
1
1
2
l APW
4
3
4
3
4
3
3
3
3
3
= [l RWL
+ lRP ], 1
l SEC
9
7
9
7
9
7
7
7
7
6
= [l RC ]
l HZP
l HZP
-
2
-
2
-
2
2
2
-
2
3
3
3
3
3
3
3
3
3
3
l APR
1
1
1
1
1
1
1
1
1
1
l EP
l EP
-
-1
-
-1
-
-1
-1
-1
-
-1
-2
-2
-2
-2
-2
-2
-2
-2
-2
-2
l CCD
1
1
1
1
1
1
1
1
1
1
l WCD
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
CS to command disable
l DID
l DOD
l CLE
l RSA
l CDD
0
0
0
0
0
0
0
0
0
0
Power down exit to command
input
l PEC
1
1
1
1
1
1
1
1
1
1
Active command to column
command (same bank)
Active command to active
command (same bank)
Active command to Precharge
command (same bank)
Precharge command to active
command (same bank)
Write recovery or last data-in to
Precharge command (same bank)
Active command to active
command (different bank)
Self refresh exit time
Last data in to active command
(Auto Precharge, same bank)
Self refresh exit to command
input
Precharge
(CL=2)
command to
(CL=3)
high impedance
Last data out to active
command
(auto Precharge) (same bank)
Last data out to
(CL=2)
Precharge
(CL=3)
(early Precharge)
Column command to column
command
Write command to data in
latency
DQM to data in
DQM to data out
CKE to CLK disable
Register set to active command
Rev. 1.1/Apr.01
-11-
GMM27316233ENTG
Relationship Between Frequency and Minimum Latency
Parameter
-7
-8
- 7K
- 7J
Symbol 143 100 133 100 125 100 100 100 100
frequency(MHz)
tCK (ns)
Burst stop to
output valid
data hold
Burst stop to
output high
impedance
-75
(CL=2)
(CL=3)
(CL=2)
(CL=3)
Burst stop to write data ignore
l BSR
l BSR
l BSH
l BSH
l BSW
66
7
10
7.5
10
8
10
10
10
10
15
-
1
-
1
-
1
1
1
-
1
2
2
2
2
2
2
2
2
2
2
-
2
-
2
-
2
2
2
-
2
3
3
3
3
3
3
3
3
3
3
0
0
0
0
0
0
0
0
0
0
Notes
Notes : 1. l RCD to l RRD are recommended value.
Rev. 1.1/Apr.01
-12-
GMM27316233ENTG
Unit: mil (mm)
* (1 mil = 1/1000 inches)
Package Dimension
700(17.78)
1250(31.75)
157.48(4.0)
5250(133.35)
1
84
"C"1450(36.83)
450(11.43)
"B"
2150(54.61)
"A"
250(6.35)
1700(43.18)
4550(115.57)
157.48(4.0) max.
5013.78(127.35)
157.48(4.0) min.
(Front Side)
168
85
(Rear Side)
39.37(1.0)
39.37(1.0)
R78.74
(2.0)
125(3.175)
50(1.27)
125(3.175)
39.37(1.0)
DETAIL "C"
78.74(2.0)
DETAIL "B"
100(2.54) min.
R78.74
(2.0)
5.9(0.15)
122.83(3.12)
78.74(2.0)
50(1.27)
DETAIL "A"
NOTE : 1. Tolerances on all dimensions ±5 (0.127) unless otherwise specified.
2. Thickness includes Plating and / or Metallization.
Rev. 1.1/Apr.01
-13-