IRF IRG6S320UPBF

PD -96218A
PDP TRENCH IGBT
IRG6S320UPbF
Features
l Advanced Trench IGBT Technology
l Optimized for Sustain and Energy Recovery
circuits in PDP applications
TM)
l Low VCE(on) and Energy per Pulse (E PULSE
for improved panel efficiency
l High repetitive peak current capability
l Lead Free package
Key Parameters
VCE min
VCE(ON) typ. @ IC = 24A
IRP max @ TC= 25°C
TJ max
330
1.45
160
150
C
V
V
A
°C
C
E
G
G
D2Pak
E
IRG6S320UPbF
n-channel
G
Gate
C
Collector
E
Emitter
Description
This IGBT is specifically designed for applications in Plasma Display Panels. This device utilizes advanced
trench IGBT technology to achieve low VCE(on) and low EPULSETM rating per silicon area which improve panel
efficiency. Additional features are 150°C operating junction temperature and high repetitive peak current
capability. These features combine to make this IGBT a highly efficient, robust and reliable device for PDP
applications.
Absolute Maximum Ratings
Parameter
VGE
IC @ TC = 25°C
IC @ TC = 100°C
IRP @ TC = 25°C
PD @TC = 25°C
PD @TC = 100°C
TJ
TSTG
Gate-to-Emitter Voltage
Continuous Collector Current, VGE @ 15V
Continuous Collector, VGE @ 15V
Repetitive Peak Current
Power Dissipation
Power Dissipation
Max.
Units
±30
50
V
25
160
A
114
45
W
0.91
-40 to + 150
W/°C
f
c
Linear Derating Factor
Operating Junction and
Storage Temperature Range
Soldering Temperature for 10 seconds
°C
300
Thermal Resistance
Parameter
RθJC
www.irf.com
Junction-to-Case
d
Typ.
Max.
Units
–––
1.1
°C/W
1
09/11/09
IRG6S320UPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
BVCES
Collector-to-Emitter Breakdown Voltage
V(BR)ECS
Emitter-to-Collector Breakdown Voltage
Breakdown Voltage Temp. Coefficient
∆ΒVCES/∆TJ
VCE(on)
e
330
–––
–––
30
–––
–––
0.30
–––
–––
–––
–––
1.20
1.45
–––
1.65
1.95
–––
–––
–––
2.20
2.26
–––
–––
Static Collector-to-Emitter Voltage
VGE(th)
Gate Threshold Voltage
2.6
–––
5.0
∆VGE(th)/∆TJ
ICES
Gate Threshold Voltage Coefficient
Collector-to-Emitter Leakage Current
–––
–––
-10
1.0
–––
5.0
–––
20
75
IGES
gfe
Qg
Qgc
td(on)
tr
td(off)
tf
td(on)
e
e
= 48A e
= 60A e
VGE = 15V, ICE = 24A
V
VGE = 15V, ICE
VGE = 15V, ICE
VGE = 15V, ICE = 48A, TJ = 150°C
V
VCE = VGE, ICE = 250µA
–––
–––
–––
–––
–––
28
-100
–––
S
Total Gate Charge
–––
46
–––
nC
Gate-to-Collector Charge
Turn-On delay time
–––
–––
7.7
24
–––
–––
Rise time
Turn-Off delay time
–––
–––
20
89
–––
–––
–––
70
–––
23
52
–––
–––
Turn-Off delay time
–––
130
–––
tst
Fall time
Shoot Through Blocking Time
–––
100
140
–––
–––
–––
EPULSE
Energy per Pulse
–––
240
–––
–––
280
–––
Human Body Model
ESD
Machine Model
VGE = -30V
VCE = 25V, ICE = 12A
VCE = 200V, IC = 12A, VGE = 15V
e
IC = 12A, VCC = 196V
ns
RG = 10Ω, L=210µH, LS= 150nH
TJ = 25°C
IC = 12A, VCC = 196V
ns
RG = 10Ω, L=200µH, LS= 150nH
TJ = 150°C
ns
VCC = 240V, VGE = 15V, RG= 5.1Ω
L = 220nH, C= 0.10µF, VGE = 15V
µJ
VCC = 240V, RG= 5.1Ω, TJ = 25°C
L = 220nH, C= 0.10µF, VGE = 15V
VCC = 240V, RG= 5.1Ω, TJ = 100°C
Class 2
(Per JEDEC standard JESD22-A114)
Class B
(Per EIA/JEDEC standard EIA/JESD22-A115)
VGE = 0V
1160 –––
61
–––
pF VCE = 30V
Input Capacitance
–––
Cres
Output Capacitance
Reverse Transfer Capacitance
–––
–––
38
–––
ƒ = 1.0MHz,
LC
Internal Collector Inductance
–––
5.0
–––
Between lead,
LE
Internal Emitter Inductance
–––
13
–––
nH
Notes:
 Half sine wave with duty cycle <= 0.05, ton=2µsec.
‚ Rθ is measured at TJ of approximately 90°C.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
2
e
Gate-to-Emitter Reverse Leakage
Forward Transconductance
–––
–––
Cies
Coes
VGE = 0V, ICE = 500µA
V VGE = 0V, ICE = 1 A
V/°C Reference to 25°C, ICE = 1mA
VGE = 15V, ICE = 12A
Gate-to-Emitter Forward Leakage
Turn-On delay time
Rise time
td(off)
tf
V
––– mV/°C
VCE = 330V, VGE = 0V
10
VCE = 330V, VGE = 0V, TJ = 100°C
–––
µA
VCE = 330V, VGE = 0V, TJ = 125°C
100
VCE = 330V, VGE = 0V, TJ = 150°C
–––
100
nA VGE = 30V
Fall time
tr
Conditions
Min. Typ. Max. Units
See Fig.13
6mm (0.25in.)
from package
and center of die contact
„ Packaging limitation for this device is 42A.
www.irf.com
IRG6S320UPbF
200
180
160
160
ICE (A)
100
VGE = 12V
VGE = 10V
140
VGE = 8.0V
VGE = 6.0V
120
VGE = 18V
VGE = 15V
180
VGE = 12V
VGE = 10V
140
ICE (A)
200
VGE = 18V
VGE = 15V
80
VGE = 8.0V
VGE = 6.0V
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
0
10
1
2
3
Fig 1. Typical Output Characteristics @ 25°C
160
160
100
9
10
80
VGE = 8.0V
VGE = 6.0V
120
100
80
60
60
40
40
20
20
0
0
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
VCE (V)
4
5
6
7
8
9
10
VCE (V)
Fig 3. Typical Output Characteristics @ 125°C
Fig 4. Typical Output Characteristics @ 150°C
25
VCE, Voltage Collector-to-Emitter (V)
160
ICE, Collector-to-Emitter Current (A)
8
VGE = 12V
VGE = 10V
140
VGE = 8.0V
VGE = 6.0V
120
7
VGE = 18V
VGE = 15V
180
ICE (A)
ICE (A)
200
VGE = 12V
VGE = 10V
140
6
Fig 2. Typical Output Characteristics @ 75°C
VGE = 18V
VGE = 15V
180
5
VCE (V)
VCE (V)
200
4
T J = 25°C
140
T J = 150°C
120
100
80
60
40
20
IC = 12A
20
15
T J = 25°C
T J = 150°C
10
5
0
0
2
4
6
8
10
12
VGE , Gate-to-Emitter Voltage (V)
Fig 5. Typical Transfer Characteristics
www.irf.com
14
0
5
10
15
20
VGE , Voltage Gate-to-Emitter (V)
Fig 6. VCE(ON) vs. Gate Voltage
3
IRG6S320UPbF
55
160
50
Repetitive Peak Current (A)
45
IC, Collector Current (A)
PW= 2µs
Duty cycle <= 0.05
Half Sine Wave
140
40
35
30
25
20
15
10
120
100
80
60
40
20
5
0
25
50
75
100
125
0
150
25
50
T C, Case Temperature (°C)
150
3000
V CC = 240V
L = 220nH
C = variable
L = 220nH
C = 0.4µF
2500
100°C
Energy per Pulse (µJ)
2500
Energy per Pulse (µJ)
125
Fig 8. Typical Repetitive Peak Current vs. Case Temperature
3000
2000
1500
25°C
1000
2000
100°C
1500
25°C
1000
500
0
500
100
120
140
160
180
200
220
180
IC, Peak Collector Current (A)
190
200
210
220
230
240
VCC, Collector-to-Supply Voltage (V)
Fig 9. Typical EPULSE vs. Collector Current
Fig 10. Typical EPULSE vs. Collector-to-Supply Voltage
4000
1000
V CC = 240V
3500
L = 220nH
t = 1µs half sine
3000
C= 0.4µF
100
10µsec
2500
100µsec
IC (A)
Energy per Pulse (µJ)
100
Case Temperature (°C)
Fig 7. Maximum Collector Current vs. Case Temperature
2000
10
1msec
1500
1000
C= 0.2µF
500
C= 0.1µF
1
Tc = 25°C
Tj = 150°C
Single Pulse
0
0.1
25
50
75
100
125
TJ, Temperature (ºC)
Fig 11. EPULSE vs. Temperature
4
75
150
1
10
100
1000
VCE (V)
Fig 12. Forrward Bias Safe Operating Area
www.irf.com
IRG6S320UPbF
10000
16
VGE , Gate-to-Emitter Voltage (V)
VGS = 0V,
f = 1 MHZ
Cies = C ge + Cgd, C ce SHORTED
Cres = Cgc
Capacitance (pF)
Coes = Cce + Cgc
Cies
1000
100
Coes
Cres
IC = 12A
14
V CES = 240V
12
V CES = 150V
10
V CES = 60V
8
6
4
2
0
10
0
50
100
150
0
200
10
VCE, Collector-toEmitter-Voltage(V)
20
30
40
50
Q G , Total Gate Charge (nC)
Fig 14. Typical Gate Charge vs. Gate-to-Emitter Voltage
Fig 13. Typical Capacitance vs. Collector-to-Emitter Voltage
Thermal Response ( Z thJC ) °C/W
10
1
0.1
0.01
0.001
0.0001
1E-006
D = 0.50
0.20
0.10
0.05
0.02
0.01
τJ
SINGLE PULSE
( THERMAL RESPONSE )
1E-005
0.0001
R1
R1
τJ
τ1
R2
R2
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ1
τ2
τ3
τ2
τ3
Ci= τi/Ri
Ci i/Ri
0.001
τ4
τ4
τi (sec)
0.04220
0.000027
0.30593
0.000129
0.50336
0.001257
0.25017
0.007858
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.01
0.1
1
10
t1 , Rectangular Pulse Duration (sec)
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case
www.irf.com
5
IRG6S320UPbF
A
RG
C
DRIVER
PULSE A
L
VCC
B
RG
PULSE B
Ipulse
DUT
tST
Fig 16b. tst Test Waveforms
Fig 16a. tst and EPULSE Test Circuit
VCE
Energy
L
IC Current
DUT
0
VCC
1K
Fig 16c. EPULSE Test Waveforms
6
Fig. 17 - Gate Charge Circuit (turn-off)
www.irf.com
IRG6S320UPbF
D2Pak (TO-263AB) Package Outline
Dimensions are shown in millimeters (inches)
D2Pak (TO-263AB) Part Marking Information
7+,6,6$1,5)6:,7+
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(/
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
)6
'$7(&2'(
<($5 :((.
/,1(/
$66(0%/<
/27&2'(
25
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
)6
'$7(&2'(
3 '(6,*1$7(6/($')5((
352'8&7237,21$/
<($5 :((.
$ $66(0%/<6,7(&2'(
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
www.irf.com
7
IRG6S320UPbF
D2Pak (TO-263AB) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TRR
1.60 (.063)
1.50 (.059)
4.10 (.161)
3.90 (.153)
FEED DIRECTION 1.85 (.073)
1.65 (.065)
1.60 (.063)
1.50 (.059)
11.60 (.457)
11.40 (.449)
0.368 (.0145)
0.342 (.0135)
15.42 (.609)
15.22 (.601)
24.30 (.957)
23.90 (.941)
TRL
10.90 (.429)
10.70 (.421)
1.75 (.069)
1.25 (.049)
4.72 (.136)
4.52 (.178)
16.10 (.634)
15.90 (.626)
FEED DIRECTION
13.50 (.532)
12.80 (.504)
27.40 (1.079)
23.90 (.941)
4
330.00
(14.173)
MAX.
NOTES :
1. COMFORMS TO EIA-418.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSION MEASURED @ HUB.
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.
60.00 (2.362)
MIN.
26.40 (1.039)
24.40 (.961)
3
30.40 (1.197)
MAX.
4
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/2009
8
www.irf.com