PHILIPS PCF8577CT

INTEGRATED CIRCUITS
DATA SHEET
PCF8577C
LCD direct/duplex driver with
I2C-bus interface
Product specification
Supersedes data of 1997 Mar 28
File under Integrated Circuits, IC12
1998 Jul 30
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
CONTENTS
1
FEATURES
2
GENERAL DESCRIPTION
3
ORDERING INFORMATION
4
BLOCK DIAGRAM
5
PINNING
6
FUNCTIONAL DESCRIPTION
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
Hardware subaddress A0, A1, A2
Oscillator A0/OSC
User-accessible registers
Auto-incremented loading
Direct drive mode
Duplex mode
Power-on reset
Slave address
I2C-bus protocol
Display memory mapping
7
CHARACTERISTICS OF THE I2C-BUS
7.1
7.2
7.3
7.4
Bit transfer
Start and stop conditions
System configuration
Acknowledge
8
LIMITING VALUES
9
HANDLING
10
DC CHARACTERISTICS
11
AC CHARACTERISTICS
12
APPLICATION INFORMATION
13
CHIP DIMENSIONS AND BONDING PAD
LOCATIONS
14
PACKAGE OUTLINES
15
SOLDERING
15.1
15.1.1
15.1.2
15.2
15.2.1
15.2.2
15.2.3
Plastic dual in-line packages
By dip or wave
Repairing soldered joints
Plastic small outline packages
By wave
By solder paste reflow
Repairing soldered joints (by hand-held
soldering iron or pulse-heated solder tool)
16
DEFINITIONS
17
LIFE SUPPORT APPLICATIONS
18
PURCHASE OF PHILIPS I2C COMPONENTS
1998 Jul 30
2
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
1
PCF8577C
FEATURES
• Direct/duplex drive modes with up to
32/64 LCD-segment drive capability per device
• Operating supply voltage: 2.5 to 6 V
• Low power consumption
• I2C-bus interface
2
• Optimized pinning for single plane wiring
The PCF8577C is a single chip, silicon gate CMOS circuit.
It is designed to drive liquid crystal displays with up to
32 segments directly, or 64 segments in a duplex
configuration.
• Single-pin built-in oscillator
• Auto-incremented loading across device subaddress
boundaries
• Display memory switching in direct drive mode
The two-line I2C-bus interface substantially reduces wiring
overheads in remote display applications. I2C-bus traffic is
minimized in multiple IC applications by automatic address
incrementing, hardware subaddressing and display
memory switching (direct drive mode).To allow partial VDD
shutdown the ESD protection system of the SCL and SDA
pins does not use a diode connected to VDD.
• May be used as I2C-bus output expander
• System expansion up to 256 segments
• Power-on reset blanks display
• I2C-bus address: 0111 0100.
3
GENERAL DESCRIPTION
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
DESCRIPTION
VERSION
PCF8577CP
DIP40
plastic dual in-line package; 40 leads (600 mil)
SOT129-1
PCF8577CT
VSO40
plastic very small outline package; 40 leads
SOT158A
PCF8577CT
−
VS040 in blister tape
−
PCF8577CU/10
−
chip on film-frame-carrier (FFC)
−
4
BLOCK DIAGRAM
1
SCL
39
INPUT
FILTERS
I 2C - BUS
I 2C - BUS
CONTROLLER
40
SDA
SEGMENT BYTE
REGISTERS
AND
MULTIPLEX
LOGIC
BACKPLANE
AND
SEGMENT
DRIVERS
32
33
34
36
37
V DD
35
POWER ON
RESET
VSS
PCF8577C
CONTROL REGISTER
AND
COMPARATOR
OSCILLATOR
AND
DIVIDER
38
MGA727
Fig.1 Block diagram.
1998 Jul 30
3
S32
S1
BP1
A2/BP2
A1
A0/OSC
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
5
PCF8577C
PINNING
SYMBOL
S32 to S1
BP1
A2/BP2
PIN
1 to 32
33
34
DESCRIPTION
segments outputs
cascade sync input/backplane
output
hardware address line and
cascade sync input/backplane
output
S32
1
40
SDA
S31
2
39
SCL
S30
3
38
VSS
S29
4
37
A0/OSC
S28
5
36
A1
VDD
35
positive supply voltage
A1
36
hardware address line input
S27
6
35
VDD
A0/OSC
37
hardware address line and
oscillator pin input
S26
7
34
A2/BP2
S25
8
33
BP1
VSS
38
negative supply voltage
9
32
S1
39
I2C-bus clock line input
S24
SCL
SDA
40
I2C-bus data line input/output
S23
10
31
S2
PCF8577C
S22
11
30
S3
S21
12
29
S4
S20
13
28
S5
S19
14
27
S6
S18
15
26
S7
S17
16
25
S8
S16
17
24
S9
S15
18
23
S10
S14
19
22
S11
S13
20
21
S12
MGA725
Fig.2 Pin configuration.
1998 Jul 30
4
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
6
6.1
PCF8577C
6.3
FUNCTIONAL DESCRIPTION
There are nine user-accessible 1-byte registers. The first
is a control register which is used to control the loading of
data into the segment byte registers and to select display
options. The other eight are segment byte registers, split
into two banks of storage, which store the segment data.
The set of even numbered segment byte registers is called
BANK A. Odd numbered segment byte registers are called
BANK B.
Hardware subaddress A0, A1, A2
The hardware subaddress lines A0, A1 and A2 are used to
program the device subaddress for each PCF8577C
connected to the I2C-bus. Lines A0 and A2 are shared with
OSC and BP2 respectively to reduce pin-out
requirements.
1. Line A0 is defined as LOW (logic 0) when this pin is
used for the local oscillator or when connected to VSS.
Line A0 is defined as HIGH (logic 1) when connected
to VDD.
There is one slave address for the PCF8577C (see Fig.6).
All addressed devices load the second byte into the control
register and each device maintains an identical copy of the
control byte in the control register at all times (see I2C-bus
protocol, Fig.7), i.e. all addressed devices respond to
control commands sent on the I2C-bus.
2. Line A1 must be defined as LOW (logic 0) or as HIGH
(logic 1) by connection to VSS or VDD respectively.
3. In the direct drive mode the second backplane signal
BP2 is not used and the A2/BP2 pin is exclusively the
A2 input. Line A2 is defined as LOW (logic 0) when
connected to VSS or, if this is not possible, by leaving
it unconnected (internal pull-down). Line A2 is defined
as HIGH (logic 1) when connected to VDD.
The control register is shown in more detail in Fig.3.
The least-significant bits select which device and which
segment byte register is loaded next. This part of the
register is therefore called the Segment Byte Vector
(SBV).
4. In the duplex drive mode the second backplane signal
BP2 is required and the A2 signal is undefined. In this
mode device selection is made exclusively from
lines A0 and A1.
6.2
User-accessible registers
The upper three bits of the SBV (V5 to V3) are compared
with the hardware subaddress input signals A2, A1
and A0. If they are the same then the device is enabled for
loading, if not the device ignores incoming data but
remains active.
Oscillator A0/OSC
The three least-significant bits of the SBV (V2 to V0)
address one of the segment byte registers within the
enabled chip for loading segment data.
The PCF8577C has a single-pin built-in oscillator which
provides the modulation for the LCD segment driver
outputs. One external resistor and one external capacitor
are connected to the A0/OSC pin to form the oscillator (see
Figs 15 and 16). For correct start-up of the oscillator after
power on, the resistor and capacitor must be connected to
the same VSS/VDD as the chip. In an expanded system
containing more than one PCF8577C the backplane
signals are usually common to all devices and only one
oscillator is required. The devices which are not used for
the oscillator are put into the cascade mode by connecting
the A0/OSC pin to either VDD or VSS depending on the
required state for A0. In the cascade mode each
PCF8577C is synchronized from the backplane signal(s).
The control register also has two display control bits.
These bits are named MODE and BANK. The MODE bit
selects whether the display outputs are configured for
direct or duplex drive displays. The BANK bit allows the
user to display BANK A or BANK B.
6.4
Auto-incremented loading
After each segment byte is loaded the SBV is incremented
automatically. Thus auto-incremented loading occurs if
more than one segment byte is received in a data transfer.
Since the SBV addresses both device and segment
registers in all addressed chips, auto-incremented loading
may proceed across device boundaries provided that the
hardware subaddresses are arranged contiguously.
1998 Jul 30
5
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
CONTROL REGISTER
SEGMENT BYTE REGISTERS
DISPLAY SEGMENT BYTE VECTOR
CONTROL
(SBV)
msb
lsb
V5
(1)
V4
V3
V0
segment byte
register
address
2
V2
(1)
msb
0
V1
lsb
BANK 'A'
4
comparison
6
A2
A1
A0
1
device
subaddress
3
0
BANK 'A'
5
1
BANK 'B'
BANK 'B'
BANK
7
0
DIRECT DRIVE
1
DUPLEX DRIVE
DISPLAY
MODE
MGA733
(1) Bits ignored in duplex mode.
Fig.3 PCF8577C register organization.
OFF
ON
VDD
BP1
VSS
VDD
Segment x
(Sx)
VSS
VDD
VSS
0
(VDD
BP1
Sx
VSS )
1
f
MGA737
LCD
Von(rms) = VDD − VSS; Voff(rms) = 0.
Fig.4 Direct drive mode display output waveforms.
1998 Jul 30
6
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
6.5
PCF8577C
Direct drive mode
6.6
The PCF8577C is set to the direct drive mode by loading
the MODE control bit with logic 0. In this mode only four
bytes are required to store the data for the 32 segment
drivers. Setting the BANK bit to logic 0 selects even bytes
(BANK A), setting the BANK bit to logic 1 selects odd bytes
(BANK B).
The PCF8577C is set to the duplex mode by loading the
MODE bit with logic 1. In this mode a second backplane
signal (BP2) is needed and pin A2/BP2 is used for this;
therefore A2 and its equivalent SBV bit V5 are undefined.
The SBV auto-increments by one between loaded bytes.
All of the segment bytes are required to store data for the
32 segment drivers and the BANK bit is ignored.
In the direct drive mode the SBV is auto-incremented by
two after the loading of each segment byte register. This
means that auto-incremented loading of BANK A or
BANK B is possible. Either bank may be completely or
partially loaded irrespective of which bank is being
displayed. Direct drive output waveforms are shown in
Fig.4.
OFF / OFF
Duplex mode
Duplex mode output waveforms are shown in Fig.5.
ON / OFF
OFF / ON
ON / ON
VDD
0.5 (VDD
VSS )
BP1
VSS )
BP2
VSS
VDD
0.5 (VDD
VSS
VDD
Segment x
(Sx)
VSS
VDD VSS
0.5 (VDD VSS )
0
0.5 (VDD
(VDD
VSS )
VSS )
BP1
Sx
BP2
Sx
VDD VSS
0.5 (VDD VSS )
0
0.5 (VDD
(VDD
VSS )
VSS )
1
f
Von(rms) = 0.791 (VDD − VSS); Voff(rms) = 0.354 (VDD − VSS).
V on ( rms )
----------------------- = 2.236
V off ( rms )
Fig.5 Duplex mode display output waveforms.
1998 Jul 30
7
LCD
MGA738
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
6.7
PCF8577C
Power-on reset
The PCF8577C I2C-bus protocol is shown in Fig.7.
At power-on reset the PCF8577C resets to a defined
starting condition as follows:
The PCF8577C is a slave receiver and has a fixed slave
address (see Fig.6). All PCF8577Cs with the same slave
address acknowledge the slave address in parallel.
The second byte is always the control byte and is loaded
into the control register of each PCF8577C connected to
the I2C-bus. All addressed devices acknowledge the
control byte. Subsequent data bytes are loaded into the
segment registers of the selected device. Any number of
data bytes may be loaded in one transfer and in an
expanded system rollover of the SBV from 111 111 to
000 000 is allowed. If a stop (P) condition is given after the
control byte acknowledge the segment data will remain
unchanged. This allows the BANK bit to be toggled without
changing the segment register contents. During loading of
segment data only the selected PCF8577C gives an
acknowledge. Loading is terminated by generating a stop
(P) condition.
1. Both backplane outputs are set to VSS in master mode;
to 3-state in cascade mode
2. All segment outputs are set to VSS
3. The segment byte registers and control register are
cleared
4. The I2C-bus interface is initialized.
6.8
Slave address
The PCF8577C slave address is shown in Fig.6.
Before any data is transmitted on the I2C-bus, the device
which should respond is addressed first. The addressing is
always done with the first byte transmitted after the start
procedure.
S
I2C-bus protocol
6.9
0 1 1 1 0 1 0 0
A
SLAVE ADDRESS
MGA731
Fig.6 PCF8577C slave address.
acknowledge by
all PCF8577C
acknowledge by
all PCF8577C
acknowledge by
selected PCF8577C only
SLAVE ADDRESS
0 A
BANK
S
MODE
msb
SEGMENT
BYTE VECTOR
A
lsb
SEGMENT DATA
control byte
A
P
n bytes
R/W
auto increment
segment byte vector
MGA732
Fig.7 I2C-bus protocol.
1998 Jul 30
8
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
6.10
PCF8577C
Display memory mapping
The mapping between the eight segment registers and the segment outputs S1 to S32 is given in Tables 1 and 2.
Since only one register bit per segment is needed in the direct drive mode, the BANK bit allows swapping of display
information. If BANK is set to logic 0 even bytes (BANK A) are displayed; if BANK is set to logic 1 odd bytes (BANK B)
are displayed. BP1 is always used for the backplane output in the direct drive mode. In duplex mode even bytes
(BANK A) correspond to backplane 1 (BP1) and odd bytes (BANK B) correspond to backplane 2 (BP2).
Table 1
Segment byte-segment driver mapping in direct drive mode
MODE
BANK
V
2
V
1
V
0
SEGMENT/
BIT/
REGISTER
MSB
7
6
5
4
3
2
1
LSB
0
BACKPLANE
0
0
0
0
0
0
S8
S7
S6
S5
S4
S3
S2
S1
BP1
0
1
0
0
1
1
S8
S7
S6
S5
S4
S3
S2
S1
BP1
0
0
0
1
0
2
S16
S15
S14
S13
S12
S11
S10
S9
BP1
0
1
0
1
1
3
S16
S15
S14
S13
S12
S11
S10
S9
BP1
0
0
1
0
0
4
S24
S23
S22
S21
S20
S19
S18
S17
BP1
0
1
1
0
1
5
S24
S23
S22
S21
S20
S19
S18
S17
BP1
0
0
1
1
0
6
S32
S31
S30
S29
S28
S27
S26
S25
BP1
0
1
1
1
1
7
S32
S31
S30
S29
S28
S27
S26
S25
BP1
Mapping example: bit 0 of register 7 controls the LCD segment S25 if BANK bit is a logic 1.
Table 2
Segment byte-segment driver mapping in duplex mode
MODE
BANK(1)
V
2
V
1
V
0
SEGMENT/
BIT/
REGISTER
MSB
7
6
5
4
3
2
1
LSB
0
BACKPLANE
1
X
0
0
0
0
S8
S7
S6
S5
S4
S3
S2
S1
BP1
1
X
0
0
1
1
S8
S7
S6
S5
S4
S3
S2
S1
BP2
1
X
0
1
0
2
S16
S15
S14
S13
S12
S11
S10
S9
BP1
1
X
0
1
1
3
S16
S15
S14
S13
S12
S11
S10
S9
BP2
1
X
1
0
0
4
S24
S23
S22
S21
S20
S19
S18
S17
BP1
1
X
1
0
1
5
S24
S23
S22
S21
S20
S19
S18
S17
BP2
1
X
1
1
0
6
S32
S31
S30
S29
S28
S27
S26
S25
BP1
1
X
1
1
1
7
S32
S31
S30
S29
S28
S27
S26
S25
BP2
Note
1. Where X = don’t care.
Mapping example: bit 7 of register 5 controls the LCD segment S24/BP2.
1998 Jul 30
9
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
7
PCF8577C
CHARACTERISTICS OF THE I2C-BUS
7.4
The I2C-bus is for 2-way, 2-line communication between
different ICs or modules. The two lines are a serial data
line (SDA) and a serial clock line (SCL). Both lines must be
connected to a positive supply via a pull-up resistor when
connected to the output stages of a device. Data transfer
may be initiated only when the I2C-bus is not busy.
7.1
The number of data bytes transferred between the start
and stop conditions from transmitter to receiver is not
limited. Each byte is followed by one acknowledge bit.
The acknowledge bit is a HIGH level put on the I2C-bus by
the transmitter whereas the master generates an extra
acknowledge related clock pulse. A slave receiver which is
addressed must generate an acknowledge after the
reception of each byte. Also a master must generate an
acknowledge after the reception of each byte that has
been clocked out of the slave transmitter. The device that
acknowledges has to pull down the SDA line during the
acknowledge clock pulse, set-up and hold times must be
taken into account. A master receiver must signal an end
of data to the transmitter by not generating an
acknowledge on the last byte that has been clocked out of
the slave. In this event the transmitter must leave the data
line HIGH to enable the master to generate a stop
condition.
Bit transfer
One data bit is transferred during each clock pulse.
The data on the SDA line must remain stable during the
HIGH period of the clock pulse as changes in the data line
at this time will be interpreted as control signals.
7.2
Start and stop conditions
Both data and clock lines remain HIGH when the I2C-bus
is not busy. A HIGH-to-LOW transition of the data line,
while the clock is HIGH is defined as the start condition (S).
A LOW-to-HIGH transition of the data line while the clock
is HIGH is defined as the stop condition (P).
7.3
Acknowledge
System configuration
A device generating a message is a ‘transmitter’, a device
receiving a message is the ‘receiver’. The device that
controls the message is the ‘master’ and the devices which
are controlled by the master are the ‘slaves’.
SDA
SCL
data line
stable;
data valid
change
of data
allowed
Fig.8 Bit transfer.
1998 Jul 30
10
MBA607
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
SDA
SDA
SCL
SCL
S
P
START condition
STOP condition
MBA608
Fig.9 Definition of the start and stop conditions.
SDA
SCL
MASTER
TRANSMITTER /
RECEIVER
SLAVE
RECEIVER
SLAVE
TRANSMITTER /
RECEIVER
MASTER
TRANSMITTER /
RECEIVER
MASTER
TRANSMITTER
MBA605
Fig.10 System configuration.
clock pulse for
acknowledgement
START
condition
handbook, full pagewidth
SCL FROM
MASTER
1
2
8
DATA OUTPUT
BY TRANSMITTER
S
DATA OUTPUT
BY RECEIVER
MBA606 - 1
Fig.11 Acknowledgement on the I2C-bus.
1998 Jul 30
11
9
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
8 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 134).
SYMBOL
PARAMETER
CONDITIONS
MIN.
MAX.
UNIT
VDD
supply voltage
−0.5
+8.0
V
VI
input voltage on pin
−0.5
VDD + 0.5
V
IDD; ISS
VDD or VSS current
−50
+50
mA
II
DC input current
−20
+20
mA
IO
DC output current
−25
+25
mA
Ptot
power dissipation per package
−
500
mW
PO
power dissipation per output
−
100
mW
Tstg
storage temperature
−65
+150
°C
note 1
Note
1. Reduce by 7.7 mW/K when Tamb > 60 °C.
9
HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe it is
desirable to take normal precautions appropriate to handling MOS devices. Advice can be found in Data Handbook IC12
under “Handling MOS Devices”.
10 DC CHARACTERISTICS
VDD = 2.5 to 6 V; VSS = 0 V; Tamb = −40 to 85 °C; unless otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.(1)
MAX.
UNIT
Supply
VDD
supply voltage
IDD
supply current for
non-specified inputs at VDD or
VSS
VPOR
power-on reset level
2.5
no load; fSCL = 100 kHz;
Rosc = 1 MΩ;
Cosc = 680 pF
−
6
V
50
125
µA
no load; fSCL = 0;
Rosc = 1 MΩ;
Cosc = 680 pF
−
25
75
µA
no load; fSCL = 0;
Rosc = 1 MΩ;
Cosc = 680 pF; VDD = 5 V;
Tamb = 25 °C
−
25
40
µA
no load; fSCL = 0; direct
mode; A0/OSC = VDD;
VDD = 5 V; Tamb = 25 °C
−
10
20
µA
note 2
−
1.1
2.0
V
Input A0
VIL(A0)
LOW-level input voltage
0
−
0.05
V
VIH(A0)
HIGH-level input voltage
VDD − 0.05
−
VDD
V
1998 Jul 30
12
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
SYMBOL
PCF8577C
PARAMETER
CONDITIONS
MIN.
TYP.(1)
MAX.
UNIT
Input A1
VIL(A1)
LOW-level input voltage
0
−
0.3VDD
V
VIH(A1)
HIGH-level input voltage
0.7VDD
−
VDD
V
VIL(A2)
LOW-level input voltage
0
−
0.10
V
VIH(A2)
HIGH-level input voltage
VDD − 0.10
−
VDD
V
Input A2
Input SCL; SDA
VIL(SCL; SDA)
LOW-level input voltage
VIH(SCL; SDA) HIGH-level input voltage
Ci
0
−
0.3VDD
V
0.7VDD
−
6
V
input capacitance
note 3
−
−
7
pF
LOW-level output current
VOL = 0.4 V; VDD = 5 V
3
−
−
mA
leakage current
VI = VDD or VSS
−1
−
+1
µA
leakage current
VI = VDD or VSS
−5
−
+5
µA
pull-down current
VI = VDD
−5
−1.5
−
µA
leakage current
VI = VDD
−1
−
−
µA
start-up current
VI = VSS
−
1.2
5
µA
−
±20
−
mV
Output SDA
IOL
A1; SCL; SDA
IL1
A2/BP2; BP1
IL2
A2/BP2
Ipd
A0/OSC
IL3
Oscillator
IOSC
LCD outputs
VDC
DC component of LCD driver
IOL1
LOW-level segment output
current
VDD = 5 V; VOL = 0.8 V;
note 4
0.3
−
−
mA
IOH1
HIGH-level segment output
current
VDD = 5 V;
VOH = VDD − 0.8 V; note 4
−
−
−0.3
mA
RBP
backplane output resistance
(BP1; BP2)
VO = VSS or VDD or
1⁄ (V
2 SS + VDD); note 5
−
0.4
5
kΩ
Notes
1. Typical conditions: VDD = 5 V; Tamb = 25 °C.
2. Resets all logic when VDD < VPOR.
3. Periodically sampled, not 100% tested.
4. Outputs measured one at a time.
5. Outputs measured one at a time; VDD = 5 V; Iload = 100 µA.
1998 Jul 30
13
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
11 AC CHARACTERISTICS
VDD = 2.5 to 6 V; Tamb = −40 to 85 °C; unless otherwise specified. All the timing values are valid within the operating
supply voltage and ambient temperature range and refer to VIL and VIH with an input voltage swing of VSS to VDD.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.(1)
MAX.
UNIT
fLCD
display frequency
Cosc = 680 pF; Rosc = 1 MΩ
65
90
120
Hz
tBS
driver delays with test loads
VDD = 5 V
−
20
100
µs
I2C-bus
fSCL
SCL clock frequency
−
−
100
kHz
tSW
tolerable spike width on I2C-bus Tamb = 25 °C
−
−
100
ns
tBUF
I2C-bus free time
4.7
−
−
µs
tSU;STA
START condition set-up time
4.0
−
−
µs
tHD;STA
START condition hold time
4.0
−
−
µs
tLOW
SCL LOW time
4.7
−
−
µs
tHIGH
SCL HIGH time
4.0
−
−
µs
tr
SCL and SDA rise time
−
−
1.0
µs
tf
SCL and SDA fall time
−
−
0.3
µs
tSU;DAT
data set-up time
250
−
−
ns
tHD;DAT
data hold time
0
−
−
ns
tSU;STO
STOP condition set-up time
4.0
−
−
µs
Note
1. Typical conditions: VDD = 5 V; Tamb = 25 °C.
SCL, SDA
(pins 39, 40)
1.5 k Ω
VDD
S32 to S1
(pins 1 to 32)
6.8 k Ω
(VDD
VSS ) / 2
MGA730
Fig.12 Test loads.
1998 Jul 30
14
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
0.5 V
(V DD = 5 V)
Sx
0.5 V
t BS
BP1, BP2
VDD
2
0.5 V
(V DD = 5 V)
0.5 V
MGA729
Fig.13 Driver timing waveforms.
handbook, full pagewidth
SDA
t BUF
tf
t LOW
SCL
t HD;STA
t HD;DAT
tr
t HIGH
t SU;DAT
SDA
MGA728
t SU;STA
Fig.14 I2C-bus timing diagram; rise and fall times refer to VIL and VIH.
1998 Jul 30
15
t SU;STO
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
16
Cosc
R osc
VSS
33
64
256
S2
S2
S1
S1
S1
BP1
BP1
BP1
BP2 A2
BP2 A2
BP2 A2
VDD
VDD
VDD
A1
A1
A1
A0 OSC
A0
VSS
SCL
SCL
SDA
SDA
S2
A0 OSC
OSC
VSS
PCF8577C
S31
SCL
S32
SDA
device subaddress
A2.A1.A0 = 000
Philips Semiconductors
VDD
32
LCD direct/duplex driver with
I2C-bus interface
1
backplane
12 APPLICATION INFORMATION
1998 Jul 30
DIRECT DRIVE LCD DISPLAY
VSS
PCF8577C
S31
SCL
S32
SDA
device subaddress
A2.A1.A0 = 001
S31
PCF8577C
S32
device subaddress
A2.A1.A0 = 111
MGA735
Product specification
PCF8577C
Fig.15 Direct display driver; expansion to 256 segments using eight PCF8577Cs.
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
17
Cosc
R osc
BP1
128
64
S2
S2
S1
S1
S1
BP1
BP1
BP1
BP2
VDD
33
A2
BP2
S2
A2
BP2
VDD
VDD
VDD
A1
A1
A1
A0 OSC
VSS
VSS
SCL
SCL
SDA
SDA
A0
A0
OSC
VSS
S31
PCF8577C
S32
device subaddress
A1.A0 = 00
SCL
SDA
Philips Semiconductors
32
1
LCD direct/duplex driver with
I2C-bus interface
1998 Jul 30
BP2
DUPLEX LCD DISPLAY
A2
OSC
VSS
S31
PCF8577C
S32
SCL
SDA
device subaddress
A1.A0 = 01
S31
PCF8577C
S32
device subaddress
A1.A0 = 11
MGA736
Product specification
PCF8577C
Fig.16 Duplex display; expansion to 2 × 128 segments using four PCF8577Cs.
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
32 output lines
S2
S1
BP1
BP2
VDD
A2
VDD
A1
A0
VSS
OSC
VSS
SCL
SCL
SDA
SDA
PCF8577C
S31
S32
device subaddress
A2, A1, A0 = 000
expansion
MGA734
MODE bit must always be set to logic 0 (direct drive).
BANK switching is permitted.
BP1 must always be connected to VSS and A0/OSC must be connected to either VDD or VSS (no LCD modulation).
Fig.17 Use of PCF8577C as a 32-bit output expander in I2C-bus application.
1998 Jul 30
18
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
S29
S30
S31
S32
SDA
SCL
VSS
A0/OSC
5
4
3
2
1
40
39
38
37
handbook, full pagewidth
36
S27
6
35
VDD
S26
7
34
A2/BP2
S25
8
33
BP1
S24
9
32
S1
S23
10
31
S2
S22
11
30
S3
S21
12
29
S4
S20
13
28
S5
27
S6
26
S7
21
22
23
24
25
S8
20
S9
19
S10
18
S11
17
S12
16
S13
PCF8577C
S14
S18
15
0
y
S15
14
0
S16
S19
x
S17
2.31
mm
A1
S28
13 CHIP DIMENSIONS AND BONDING PAD LOCATIONS
2 mm
Chip area = 4.62 mm2.
Thickness = 381 ±25 µm.
n-substrate (back) connected to VDD.
MGA726
Bonding pad dimensions = 110 µm × 110 µm.
Fig.18 Bonding pad locations.
handbook, halfpage
MBE924
Fig.19 Reference marks.
1998 Jul 30
19
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
Table 3 Bonding pad locations (dimensions in µm)
All x and y co-ordinates are referenced to the centre of the chip, see Fig.18.
PAD POSITION CENTRED
PAD POSITION CENTRED
SIGNAL
SIGNAL
x
y
x
y
S32
−86
941
S10
427
−941
S31
−257
941
S9
598
−941
S30
−428
941
S8
836
−941
S29
−599
941
S7
836
−770
S28
−836
941
S6
836
−599
S27
−836
769
S5
836
−428
S26
−836
598
S4
836
−257
S25
−836
427
S3
836
−86
S24
−836
256
S2
836
85
S23
−836
85
S1
836
256
S22
−836
−86
BP1
836
427
S21
−836
−257
A2/BP2
836
598
S20
−836
−428
VDD
836
769
S19
−836
−599
A1
836
941
S18
−836
−770
A0/OSC
598
941
S17
−836
−941
VSS
427
941
S16
−599
−941
SCL
256
941
S15
−428
−941
SDA
85
941
S14
−257
−941
Recpats
S13
−86
−941
−586
−699
85
−941
C
S12
−580
663
S11
256
−941
F
1998 Jul 30
20
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
14 PACKAGE OUTLINES
seating plane
DIP40: plastic dual in-line package; 40 leads (600 mil)
SOT129-1
ME
D
A2
L
A
A1
c
e
Z
w M
b1
(e 1)
b
MH
21
40
pin 1 index
E
1
20
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
min.
A2
max.
b
b1
c
mm
4.7
0.51
4.0
1.70
1.14
0.53
0.38
0.36
0.23
52.50
51.50
inches
0.19
0.020
0.16
0.067
0.045
0.021
0.015
0.014
0.009
2.067
2.028
D
(1)
e
e1
L
ME
MH
w
Z (1)
max.
14.1
13.7
2.54
15.24
3.60
3.05
15.80
15.24
17.42
15.90
0.254
2.25
0.56
0.54
0.10
0.60
0.14
0.12
0.62
0.60
0.69
0.63
0.01
0.089
E
(1)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
REFERENCES
OUTLINE
VERSION
IEC
JEDEC
SOT129-1
051G08
MO-015AJ
1998 Jul 30
EIAJ
EUROPEAN
PROJECTION
ISSUE DATE
92-11-17
95-01-14
21
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
VSO40: plastic very small outline package; 40 leads
SOT158-1
D
E
A
X
c
y
HE
v M A
Z
40
21
Q
A2
A
(A 3)
A1
θ
pin 1 index
Lp
L
1
detail X
20
w M
bp
e
0
5
10 mm
scale
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
UNIT
A
max.
A1
A2
A3
bp
c
D (1)
E (2)
e
HE
L
Lp
Q
v
w
y
Z (1)
mm
2.70
0.3
0.1
2.45
2.25
0.25
0.42
0.30
0.22
0.14
15.6
15.2
7.6
7.5
0.762
12.3
11.8
2.25
1.7
1.5
1.15
1.05
0.2
0.1
0.1
0.6
0.3
0.012 0.096
0.017 0.0087 0.61
0.010
0.004 0.089
0.012 0.0055 0.60
0.30
0.29
0.03
0.48
0.46
0.067
0.089
0.059
inches
0.11
0.045
0.024
0.008 0.004 0.004
0.041
0.012
θ
7o
0o
Notes
1. Plastic or metal protrusions of 0.4 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.
OUTLINE
VERSION
REFERENCES
IEC
JEDEC
EIAJ
ISSUE DATE
92-11-17
95-01-24
SOT158-1
1998 Jul 30
EUROPEAN
PROJECTION
22
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
Several techniques exist for reflowing; for example,
thermal conduction by heated belt. Dwell times vary
between 50 and 300 seconds depending on heating
method. Typical reflow temperatures range from
215 to 250 °C.
15 SOLDERING
15.1
Introduction
There is no soldering method that is ideal for all IC
packages. Wave soldering is often preferred when
through-hole and surface mounted components are mixed
on one printed-circuit board. However, wave soldering is
not always suitable for surface mounted ICs, or for
printed-circuits with high population densities. In these
situations reflow soldering is often used.
Preheating is necessary to dry the paste and evaporate
the binding agent. Preheating duration: 45 minutes at
45 °C.
15.3.2
This text gives a very brief insight to a complex technology.
A more in-depth account of soldering ICs can be found in
our “Data Handbook IC26; Integrated Circuit Packages”
(order code 9398 652 90011).
15.2
15.2.1
Wave soldering techniques can be used for all VSO
packages if the following conditions are observed:
• A double-wave (a turbulent wave with high upward
pressure followed by a smooth laminar wave) soldering
technique should be used.
DIP
• The longitudinal axis of the package footprint must be
parallel to the solder flow.
SOLDERING BY DIPPING OR BY WAVE
The maximum permissible temperature of the solder is
260 °C; solder at this temperature must not be in contact
with the joint for more than 5 seconds. The total contact
time of successive solder waves must not exceed
5 seconds.
• The package footprint must incorporate solder thieves at
the downstream end.
During placement and before soldering, the package must
be fixed with a droplet of adhesive. The adhesive can be
applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the
adhesive is cured.
The device may be mounted up to the seating plane, but
the temperature of the plastic body must not exceed the
specified maximum storage temperature (Tstg max). If the
printed-circuit board has been pre-heated, forced cooling
may be necessary immediately after soldering to keep the
temperature within the permissible limit.
15.2.2
Maximum permissible solder temperature is 260 °C, and
maximum duration of package immersion in solder is
10 seconds, if cooled to less than 150 °C within
6 seconds. Typical dwell time is 4 seconds at 250 °C.
REPAIRING SOLDERED JOINTS
A mildly-activated flux will eliminate the need for removal
of corrosive residues in most applications.
Apply a low voltage soldering iron (less than 24 V) to the
lead(s) of the package, below the seating plane or not
more than 2 mm above it. If the temperature of the
soldering iron bit is less than 300 °C it may remain in
contact for up to 10 seconds. If the bit temperature is
between 300 and 400 °C, contact may be up to 5 seconds.
15.3
15.3.1
15.3.3
REPAIRING SOLDERED JOINTS
Fix the component by first soldering two diagonallyopposite end leads. Use only a low voltage soldering iron
(less than 24 V) applied to the flat part of the lead. Contact
time must be limited to 10 seconds at up to 300 °C. When
using a dedicated tool, all other leads can be soldered in
one operation within 2 to 5 seconds between
270 and 320 °C.
VSO
REFLOW SOLDERING
Reflow soldering techniques are suitable for all VSO
packages.
Reflow soldering requires solder paste (a suspension of
fine solder particles, flux and binding agent) to be applied
to the printed-circuit board by screen printing, stencilling or
pressure-syringe dispensing before package placement.
1998 Jul 30
WAVE SOLDERING
23
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
16 DEFINITIONS
Data sheet status
Objective specification
This data sheet contains target or goal specifications for product development.
Preliminary specification
This data sheet contains preliminary data; supplementary data may be published later.
Product specification
This data sheet contains final product specifications.
Limiting values
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation
of the device at these or at any other conditions above those given in the Characteristics sections of the specification
is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
17 LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices, or systems where malfunction of these
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such
improper use or sale.
18 PURCHASE OF PHILIPS I2C COMPONENTS
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the
components in the I2C system provided the system conforms to the I2C specification defined by
Philips. This specification can be ordered using the code 9398 393 40011.
1998 Jul 30
24
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
NOTES
1998 Jul 30
25
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
NOTES
1998 Jul 30
26
Philips Semiconductors
Product specification
LCD direct/duplex driver with
I2C-bus interface
PCF8577C
NOTES
1998 Jul 30
27
Philips Semiconductors – a worldwide company
Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,
Fax. +43 160 101 1210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,
51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2 689 211, Fax. +359 2 689 102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,
Tel. +1 800 234 7381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 2319 7700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,
Tel. +45 32 88 2636, Fax. +45 31 57 0044
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580920
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240
Hungary: see Austria
India: Philips INDIA Ltd, Band Box Building, 2nd floor,
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,
Tel. +91 22 493 8541, Fax. +91 22 493 0966
Indonesia: PT Philips Development Corporation, Semiconductors Division,
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080
Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 1 7640 000, Fax. +353 1 7640 200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,
Tel. +82 2 709 1412, Fax. +82 2 709 1415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,
Tel. +60 3 750 5214, Fax. +60 3 757 4880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 800 234 7381
Middle East: see Italy
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31 40 27 82785, Fax. +31 40 27 88399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,
Tel. +64 9 849 4160, Fax. +64 9 849 7811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +47 22 74 8000, Fax. +47 22 74 8341
Pakistan: see Singapore
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22 612 2831, Fax. +48 22 612 2327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095 755 6918, Fax. +7 095 755 6919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,
Tel. +65 350 2538, Fax. +65 251 6500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,
Tel. +27 11 470 5911, Fax. +27 11 470 5494
South America: Al. Vicente Pinzon, 173, 6th floor,
04547-130 SÃO PAULO, SP, Brazil,
Tel. +55 11 821 2333, Fax. +55 11 821 2382
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 93 301 6312, Fax. +34 93 301 4107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1 488 2741 Fax. +41 1 488 3263
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +66 2 745 4090, Fax. +66 2 398 0793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,
Tel. +90 212 279 2770, Fax. +90 212 282 6707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,
Tel. +1 800 234 7381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11 625 344, Fax.+381 11 635 777
For all other countries apply to: Philips Semiconductors,
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825
Internet: http://www.semiconductors.philips.com
© Philips Electronics N.V. 1998
SCA60
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
415106/1200/04/pp28
Date of release: 1998 Jul 30
Document order number:
9397 750 04197