STMICROELECTRONICS STB4395A

STB4395
CT2 RECEIVER/TRANSMITTER
.
..
..
..
..
..
.
ADVANCE DATA
FULLY INTEGRATED DOUBLE SUPERHETERODYNE RECEIVER
OPERATION FROM 800MHz TO 1000MHz
RECEIVER OUTPUT AS BITSTREAM
FULLY INTEGRATED TRANSMITTER
TRANSMITTER INPUT I/Q/REFIQ
OR I/I, Q/Q
INTEGRATED POWER AMPLIFIER
CT2 PA SWITCH-ON PROFILE INTEGRATED
VCO’s INTEGRATED
SYNTHESIZERS INTEGRATED
CHANNEL SELECT LOGIC ON CHIP
INTEGRATED VOLTAGE REGULATION
SUPPLY VOLTAGES FROM 3.0V TO 5.5V
DESCRIPTION
The STB4395(A) is a fully integrated receivertransmitter designed for CT2 applications, and incorporates all the VCO’s, synthesizers, PLLs, and
channel select logic, to make a fully functional
”single chip” radio.
The receiver is of the double superhet architecture
and operates from an aerial input (via a SAW filter)
to bitstream output to CT2 format, whilst the transmitter operates from I/Q inputs to +13dBm at the
final frequency. A single (external) frequency reference is all that is required to give full coverage
over the range of 800 to 1000MHz.The on-off slope
of the Transmit PAis governed internally to give the
required switch-on ramp, whilst the output can be
swiched from low to high power by means of an
external digital control signal.
The channelselect is controlled from a digital serial
input, and allows continuous channel control from
800 to 1000MHz.
T h e S TB 4 3 9 5 e x is t s in t wo v ersio n s:
the STB4395, which has I/I, Q/Q transmit data
input/outputs, is designed to operate with the
SGS-THOMSON baseband companion part, the
ST5095. The STB4395A has a 3 wire I/Q interface
and is compatible with commercially available I/Q
transmit data baseband IC’s.
TQFP64
(Plastic Package)
ORDER CODE : STB4395 or STB4395A
April 1996
This is advance information on a new product now in development or undergoing evaluation. Details are subject to change without no tice.
1/16
STB4395
CONTENT
Page
1
PIN DESCRIPTION. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3
1.1
1.2
1.3
1.4
1.5
PIN CONNECTIONS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
PIN LIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ANALOG AND FILTER PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIGITAL, SIGNAL AND CONTROL PINS. . . . . . . . . . . . . . . . . . . .
POWER SUPPLY PINS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
................
... ... .... . .. ...
................
.. .. . .. . .. . . . . . .
.. .. . .. . .. .. .. . .
4
5
5
6
6
2
BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
7
3
3.1
3.2
3.3
FUNCTIONAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RECEIVER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRANSMITTER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHANNEL SELECT CONTROL LOGIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
8
8
8
4
ABSOLUTE MAXIMUM RATINGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
5
POWER SUPPLIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
5.1
5.2
SUPPLIES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
GROUND PLANE CONNECTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
9
6
ELECTRICAL CHARACTERISTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
7
TIMING INFORMATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
7.1
7.2
TURN ON-OFF TIMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
CHANNEL SELECT TIMING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
9
8
8.1
8.2
TRANSCEIVER SECTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RECEIVER-INPUT SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TRANSMITTER OUTPUT SPECIFICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
10
10
11
8.3
8.3.1
8.3.2
8.3.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
SYNTHESIZER/MODULATOR/CHANNEL SELECT LOOP . . . . . . . . . . . . . . . . . . . . . .
Synthesizer phase noise and spurious . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Channel select loop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Channel frequency setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
SYSTEM CLOCK INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RECEIVER -RF INPUT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIGITAL INPUT BUFFERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
DIGITAL OUTPUT BUFFERS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RECEIVER- FSH TRI STATE INPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
RECEIVER- RSSI OUTPUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
POWER DOWN BUFFER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
11
11
12
13
13
13
13
13
14
14
8.11
8.11.1
8.11.2
TRANSMITTER - DATA INPUTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STB4395A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
STB4395 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
14
14
14
9
9.1
9.1.1
9.1.2
9.2
9.2.1
9.2.2
APPLICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
TYPICAL DC CONNECTION SCHEMES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Internal regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
External regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
APPLICATION CIRCUIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15
15
15
15
15
15
15
10
PACKAGE MECHANICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
2/16
STB4395
1 - PIN DESCRIPTION
1.1 - Pin Connections
VNRF
SAWI
NSAWI
VRRF
VNPA
VPRF1
NRF
RF
VPRF2
ADJPWR
SHAPE
TXFLT
NTXFLT
VPD
VRD
VND
STB4395
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NPRGEN
1
48
VNIF
P RGCLK
2
47
SAWO
P RGD
3
46
NSAWO
NTXEN
4
45
VPIF
LOCK
5
44
NIF2O
I
6
43
IF2O
NI
7
42
DEC
NQ
8
TQFP64
41
IF2I
Q
9
(from above )
40
NIF2I
EN
10
39
NDEC
VNOSC
11
38
VRIF
S YNCLK
12
37
RSSI
VRO
13
36
VRI
VCOO
14
35
VCOI
NVCOO
15
34
NVCOI
FLTRO
16
33
FLTRI
BRF3
BRF1
DISCI
DISCO
BRF2
VPI
VPRF1
VNPA
VRRF
NSAWI
SAWI
VNRF
4395-01.EPS
VPS2
NVCOS
VPRF2
NRF
VPS1
ADJPWR
VCOS
VRS
SHAPE
RF
FLTRS
SLTC
VPD
TXFLT
DO
VRD
FSH
VPO
VND
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
NTXFLT
STB4395A
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
NPRGEN
1
48
VNIF
P RGCLK
2
47
SAWO
P RGD
3
46
NSAWO
NTXEN
4
45
VPIF
LOCK
5
44
NIF2O
I
6
43
IF2O
REFIQ
7
42
DEC
Q
8
TQFP64
41
IF2I
FN
9
(from above )
40
NIF2I
EN
10
39
NDEC
VNOSC
11
38
VRIF
S YNCLK
12
37
RSSI
VRO
13
36
VRI
VCOO
14
35
VCOI
NVCOO
15
34
NVCOI
FLTRO
16
33
FLTRI
4395-02.EPS
VPI
BRF2
DISCO
DISCI
BRF1
BRF3
VPS2
VCOS
NVCOS
VPS1
VRS
FLTRS
FSH
SLTC
DO
VPO
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
3/16
STB4395
1 - PIN DESCRIPTION (continued)
1.2 - Pin List
Pin
Name
Description
1
2
3
4
5
6
7
8
9
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
NPRGEN
PRGCLK
PRGD
NTXEN
LOCK
I
NI
NQ
Q
REFIQ
Q
FN
EN
VNOSC
SYNCLK
VRO
VCOO
NVCOO
FLTRO
VPO
DO
SLTC
FSH
FLTRS
VRS
VPS1
NVCOS
VCOS
VPS2
BRF3
BRF1
DISCI
DISCO
BRF2
VPI
FLTRI
NVCOI
VCOI
VRI
RSSI
VRIF
NDEC
NIF2I
IF2I
DEC
IF2O
NIF2O
VPIF
Serial Data Enable
Serial Data Clock
Serial Data Input
Receive-Transmit Switch
VCO Lock Detect-all 3 PLL
I - Transmit Quadrature Input
I - Transmit Quadrature Input
Q-Transmit Quadrature Input
Q-Transmit Quadrature Input
IQ Reference Quadrature Transmit Input
Q-Transmit Quadrature Input
Forces Data Slicer Reference Time Constant To fast
Power Down all functions except buffer
Negative Power Supply all VCO ’s
Synthesizer Clock Input
PSU Regulated Negative Input for TX IF oscillator and pump circuit
TX oscillator tank circuit
TX Oscillator Tank Circuit
Loop Filter for TX PLL
Positive Battery Supply for TX oscillator
Receive Data Output
Slicer Time Constant Capacitor
Data Slicer Time Constant Setting
Loop Filter for channel PLL
Regulated Negative Supply for channel oscillator and pump circuit
Positive Battery Input for channel oscillator and pump circuit
Channel Oscillator Tank Input
Channel Oscillator Tank Input
Positive Battery Supply Input for channel oscillator and pump circuit
Bit Rate Filter3
Bit Rate Filter1
FM Discriminator Tank Circuit
FM Discriminator Tank Circuit
Bit Rate Filter 2
Positive Battery Supply for RXoscillator and pump circuit
Loop Filter for RX oscillator
RX Oscillator Tank Circuit
RX Oscillator Tank Circuit
Regulated Negative Supply for RX oscillator and pump circuit
RSSI OUTPUT
Regulated Negative Supply Output for RX sections
RX IF2 Decoupling
RX IF2 Filter Input
RX IF2 Filter Input
RX IF2 Decoupling
RX IF2 Filter Output
RX IF2 Filter Output
Positive Battery Supply Input for RX sections
4/16
Ext. Connection and
Suppl. Information
STB4395 only
STB4395 only
STB4395 only
STB4395A only
STB4395A only
STB4395A only
f = 14.4MHz A.C. coupled
C= 33nF
650 to 850MHz
650 to 850MHz
STB4395
1 - PIN DESCRIPTION (continued)
1.2 - Pin List (continued)
Pin
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
Name
NSAWO
SAWO
VNIF
VNRF
SAWI
NSAWI
VRRF
VNPA
VPRF1
NRF
RF
VPRF2
ADJPWR
SHAPE
TXFLT
NTXFLT
VPD
VRD
VND
Description
RX First IF Amplifier Input
RX First IF Amplifier Input
Negative Battery Supply Input for RX sections
Negative Battery Supply Input for RF front end
RX First Mixer Output
RX First Mixer Output
Regulated Negative Supply for RF front end
Negative Supply for power amplifier
Positive Battery Supply for RF front end
Input LNA/Output PA
Input LNA/Ouput PA
Positive Battery Supply for RF front end
Transmit Power Adjust
Time Constant for PA on-off ramp
Bandpass Filter for TX RF
Bandpass Filter for TX RF
Positive Battery Supply for digital circuitry
Regulated Negative Supply for digital circuitry
Negative Battery Supply for digital circuitry
Ext. Connection and Suppl. Information
R = 8.5kΩ to VRRF
C = 560pF
1.3 - Analog and Filter Pins
Pin
58
28
31
27
42, 39
29
30
33
16
21
6, 7
40, 41
43, 44
8, 9
7
56, 55
37
50, 51
47, 46
59
19
12
60, 61
35, 34
14, 15
25, 24
Symbol
ADJPWR
BRF1
BRF2
BRF3
DEC, NDEC
DISCI
DISCO
FLTRI
FLTRO
FLTRS
I, NI(1)
IF2I, NIF2I
IF2O, NIF2O
Q, NQ(1)
REFIQ
RF, NRF
RSSI
SAWI, NSAWI
SAWO, NSAWO
SHAPE
SLTC
SYNCLK
TXFLT/ NTXFLT
VCOI, NVCOI
VCOO, NVCOO
VCOS, NVCOS
Description
Transmitter Output Power Adjust
Bit Rate Filter1
Bit Rate Filter 2
Bit Rate Filter 3
RX IF2 Amplifier Decoupling
FM Discriminator Tank Circuit
FM Discriminator Tank Circuit
Loop Filter for RX PLL
Loop Filter for TX PLL
Loop Filter for Channel PLL
Transmit Quadrature Inputs ((1)STB4395 only)
Inputs from 2nd IF Filter
Outputs to 2nd IF Filter
Q-Transmit Quadrature Input ((1)STB4395 only)
IQ Reference Quadrature Transmit Input (STB4395A only)
Input RX LNA/Ouput TX PA
Received Signal Strength Indicator Output
First Mixer Output
First IF Amplifier Input
Time Constant for PA on-off Ramp
Slicer Time Constant Capacitor
Synthesizer Clock Input 14.4MHz
Bandpass Filter for TX RF
Tank Circuit for 152.1MHz RX Oscillator
Tank Circuit for 300.8MHz TX Oscillator
Tank Circuit for 650 to 850MHz Channel Oscillator
5/16
STB4395
1 - PIN DESCRIPTION (continued)
1.4- Digital, Signal and Control Pins
Pin
Symbol
Description
Polarity
18
DO
Receive Data Output
20
FSH
Data Slicer Time Constant Setting
(Fast/Slow/Hold)
High: slow, tri-state: fast,
low: hold DO goes high on hold (see next table)
9
FN
Forces Data Slicer Reference Time Constant
to fast (STB4395A only)
low: fast (overides FSH)
high: fast, slow or hold (set by FSH)
5
LOCK
VCO lock detect-all 3 PLL
high for LOCK (all three PLL’s)
3
PRGD
Serial Synthesizer Data Input, 16 bits word
high for logic 1. Input sequence:
LO, D14, D13,...,D0. D14 is the MSB.
LO: logic 1 is low transmit power.
1
NPRGEN
Serial Synthesizer Data Enable
low to enable PRGD buffer
2
PRGCLK
Serial Data Clock
held high when no clocking,
clocks in data on positive edge
10
EN
4
NTXEN
Power Down all functions except Enable Buffer
high for power up, low for standby
Receive-Transmit Switch
high for receive, low for transmit
The time constant of the data slicer is set through the pins FSH and FN for the STB4395A and through
FSH only for the STB4395(FN internally connected to High), as listed in the following table :
FN
PIN
FSH
High
Low
High
Slow, DO active
Fast, DO active
TriState
Fast, DO active
Fast, DO active
Low
Hold, DO high
Fast, DO high
1.5 - Power Supply Pins
Pin
Symbol
64
VND
Negative supply for digital regulators, digital input and output buffers
Description
48
VNIF
Negative supply for IF regulators, data output buffer
11
VNOSC
49
VNRF
Negative supply RF regulators, quadrature input buffers
53
VNPA
Negative supply for PA
62
VPD
Positive supply for digital circuitry
Negative supply for the oscillator regulators + substrate
32
VPI
Positive supply for receive oscillator + charge pump
45
VPIF
Positive supply for RX IF + baseband sections
17
VPO
Positive supply for transmit oscillator + charge pump
54, 57
VPRF1 / VPRF2
23, 26
VPS1/ VPS2
63
VRD
Regulated negative supply for digital circuitry
36
VRI
Regulated negative supply for receive oscillator + charge pump
38
VRIF
Regulated negative supply for RX IF + baseband sections
13
VRO
Regulated negative supply for transmit oscillator + charge pump
52
VRRF
22
VRS
6/16
Positive supplies for RF front end
Positive supplies for ch. select oscillator + charge pump
Regulated negative supply for RF front end
Regulated negative supply ch. select oscillator + charge pump
STB4395
2 - BLOCK DIAGRAM
Figure 1
RF S AW
866.05MHz
61
56
55
51
1
S yn the s ize r
P RGCLK
Contro l
2
P RGD
3
1
1
1
1
47
46
CONTROL
DECODER
2nd Mixe r
15
IQ Modu lator
I
IQ Inp ut
Da ta
Tx
Mixe r
÷2
44
43
41
40
Q
15
Tra ns mit
VCO
300.8MHz
CHARGE
P UMP
CHARGE
P UMP
34
CHARGE
P UMP
33
16
Re ce ive
VCO
152.1MHz
FM
Modulator
Cha nne l
VCO
71 6.45 MHz
NSAWO
NIF2O
IF2O
1.7MHz
LC
IF2I
NIF2I
2nd IF Amplifier
37
P HASE
DETECTOR
35
RS S I
VCOI
NVCOI
FLTRI
VCO
TANK
P LL
FILTER
DATA
S LICER
STB439 5
VCO
TANK
P LL
FILTER
27
28
31
Da ta
Out
29
DISCI
20
30
DISCO
19
BRF2
18
BRF1
21
BRF3
25
FSH
24
SLTC
FLTRO
14
PHASE
DETE CTOR
DO
PLL
FILTER
NVCOO
FLTRS
VCO
TANK
P HASE
DETE CTOR
VCOS
VCOO
12
NVCOS
S YNCLK
14.4MHz
Rx
DIVIDER
REFERENCE
DIVIDERS
Tx
DIVIDER
SAWO
DEMOD.
TANK
4395-03.EPS
NP RGEN
P A/LNA
CONTROL
SYNTHESIZER
4
150.4MHz
50
1s t
Mixe r
LNA
PA
NTXEN
SAWI
NRF
RF
60
NSAWI
IF S AW
TXFLT
NTXFLT
LC
50kHz
Bit Ra te Filter
7/16
STB4395
3 - FUNCTIONAL DESCRIPTION
Figure 1 is a simplified block diagram of the circuit.
It shows the key on-chip and off-chip functional
blocks and signal paths. For illustration purposes
frequencies have been added representing the
situation when receiving or transmitting a particular
CT2 channel.
3.1 - Receiver
The receive signal enters the STB4395 via an input
SAW filter (866 MHZ for CT2 in Europe). The RF
filter changes the input signal from a single ended
to a balanced signal, after which the signal passes
through the LNA, first mixer, and mixer buffer. The
mixer is driven by the channel VCO, which is in turn
controlled by the synthesizer.
The signal path continues via the first IF SAW
(150.4MHz), IF amplifier to the second mixer. The
second mixer stage mixes down to 1.7MHz, and
via an external LC IF filter, is passed to the second
IF amplifier, where the main system gain takes
place. The RSSI output is available from this
point.The signal is then demodulated and sliced
into a data stream which is the binary digital output
available to the base band chip.
The channel selection is provided by the two external filters: the first IF SAW and a second IF 2-pole
LC filter.
3.2 - Transmitter
The chip accepts 72Kbits/s data in an I/Q format.
The I/Q inputs pass via the I/Q modulator to the
TX mixer. The TX mixer is driven by the same
channel VCO as the receive first mixer.
The on-off ramp of the transmit PA.is controlled via
an external capacitor to give minimum spurious
responses when switching on and off.
The PA output power can be switched from full
power to -3dBm by the channel select control
signal (bit LO of the 16bits serial word PRGD, see
table, paragraph 1.4).
3.3 - Channel Select Control Logic
All channel phase locked loops and oscillators are
included on chip. The channel control synthesizer
is controlled externally via a 3 wire interface.
The Reference clock input of 14.4 MHz is divided
using preset counters to set the phase detector
/charge pump loops for the synthesizer/channel
select VCO, the second receiver VCO, and the I/Q
transmit VCO. The phase detector inputs for the
fixed frequency VCO’s arevia pre set dividers also.
The channel select control and Transmit PA control
is via a 16 bit serial word, which is generated by the
system controller. 15 bits of this serial word are
used for the channel information, and 1 bit is used
to setthe output power of the transmit PA. Theword
length is sufficient to give full channel coverage
over the range from 800 to 1000MHz with integer
multiples of 50KHz. The section ”system clock
input” gives a detailed description.
Not shown in the diagram are the voltage regulators for the receive LNA/first mixer, Transmit PA, TX
mixer and the remainder of the circuit.There are 6
internal voltage regulators to ensure the minimum
of mutual interference.
4 - ABSOLUTE MAXIMUM RATINGS
Symbol
Value
Unit
Power Supply Voltage
7.0
V
VP - VIN
Voltages on Input (except SYNCLK)
5.9
V
VP - VIN
Voltage on Input (SYNCLK)
3.0
V
VP-VN
Parameter
VIN - VN
Voltages on Input
7.0
V
VP- VOUT
Voltages on Output
7.0
V
VN - VOUT
Voltages on Output
7.0
V
VPP
8/16
VRFO
Voltage Out of RF or NRF in TX
3.5
Tstg
Storage Temperature
125
o
C
Toper
Operating Temperature
40
o
C
STB4395
5 - POWER SUPPLIES
5.1 - Supplies
The chip operates from a power supply of 3.0 to
5.5 Volts. All interface circuits to the baseband
chips are operated between these supplies.
Six on-chip regulators are included on-chip which
provide to all parts of the circuit separate regulated
voltage supplies of -2.85 ±0.15 Volts relative to the
top rail for the RF circuitry, the IF circuitry, the digital
circuitry and for the three VCO’s.
The chip can be operated in 3 modes, power down,
receive and transmit. Power down is activated taking the Pin EN to VN . To transfer to the receive
mode, NTXEN is taken to VP.
The built-in regulators can be by-passed ,if so
required.
5.2 - Ground Plane Connections
The chip has been designed to be decoupled to the
positive supply, VP , at many points. Therefore it is
strongly recommended that the chip be mounted
on a board with a ground plane connected to VP.
Because the base band chip is specified relative to
a negative ground, it is further recommended that
the board used is a 4 layer board with both a
positive, VP , and negative ground plane VN . This
has the additional advantage of providing good
high frequency decoupling between supplies.
The question as to whether to call VP or VN ground
depends on which external equipment is connected. For testing the baseband section, this is
VN ; for testing the radio chip, this is VP. In a
product, this will depend on the application.
For clarity all voltages specified in this document
will be specified with respect to the supply, VP or
VN , that the voltage normally tracks with when the
supply is varied.
6 - ELECTRICAL CHARACTERISTICS
Symbol
VN
VREG
IRX
ITX
IQ
Parameter
Power Supply Voltage (unregulated)
Power Supply bypassing Internal Regulators (this is also interface supply)
Receive Mode
Transmit Mode
Standby/Power Down
Min.
-3
-2.7
Typ.
32
68
Max.
-5.5
-3
40
80
20
Unit
V
V
mA
mA
µA
7 - TIMING INFORMATION
7.1 - Turn on-off Times
Times are relative to the NTXEN transition (high to low for receive to transmit and low to high for transmit
to receive).
Symbol
tON
tRAMPON
tTXRX
Parameter
Turn-on Time From standby to receive
PA Power Ramp up to reach -3dB of final power
Switchover Time Transmit to Receive (LNA/first mixer active)
Min.
Typ.
Max.
10
27.78
27.78
Unit
µs
µs
µs
7.2 - Channel Select Timing
PRGCLK must be high before NPRGEN goes low to programme the synthesizer.
Figure 2 : Timing of Serial Programming Data
Orde r of NPRGEN &PRGD unimportant
NPRGEN
PRGCLK
4395-04.EPS
PRGD
PROGRAM
CODE
Code changes on Rising Edge ofNPRGEN
Note that although a new program code is implemented on the rising edge of the NPRGEN, the transmitted
power level is delayed until at the start of the next burst of transmission. In order to change transmit power
during a conversation, the required power code must be serially loaded with the power change instruction.
9/16
STB4395
8 - TRANSCEIVER SECTION
Symbol
fOP
Description
Min.
Frequency Range
Typ.
800
Channel Frequency Accuracy
-1
0
Modulation Deviation (synchronised with72 Kbits/s data rate)
POUTTX
Max.
Unit
1000
MHz
1
kHz
18
Output Power (300Ω balanced) high power mode
13
Sensitivity (source 300Ω balanced) for 1E-3 BER
-103
kHz
dBm
-105
Signal max. for 1E-3 BER
dBm
0
dBm
Max.
Unit
8.1 - Receiver-Input Specification
LNA, first mixer and buffer
Symbol
Parameter
Min.
Typ.
Conversion voltage gain
33.7 ± 1.5
dB
Available conversion power gain
21.5 ± 1.5
dB
Input impedance
300Ω // 3pF
-
Output impedance
5kΩ // 3pF
-
Source impedance
300Ω // -3pF
-
Load impedance
5kΩ // -3pF
-
3.5
dB
Noise figure
1dB compression point (input)
-24
dBm
Third order intercept (input)
-14
dBm
First IF amplifier, second mixer and buffer
Symbol
Parameter
Min.
Conversion Voltage Gain
Available Conversion Power Gain
Typ.
Max.
Units
22.0 ± 1.5
dB
16.3 ± 1.5
dB
Input Impedance
700Ω // 2pF
-
Output Impedance
2kΩ // 2pF
-
Source Impedance
700Ω // -2pF
-
Load Impedance
2.8kΩ // -2pF
-
6
dB
1dB Compression Point (input)
-32
dBm
Third Order Intercept (input)
-22
dBm
Noise Figure
Second IF amplifier
Symbol
Parameter
Typ.
Max.
Unit
Conversion Voltage Gain
82 ± 3
Available Power Gain (to DISCO)
86 ± 3
dB
3
MHz
Input Impedance
10kΩ // pF
-
Output Impedance (to DISCO)
1.1kΩ // 2F
-
2.2kΩ // -2pF
-
Bandwith (3dB)
Source Impedance
Load Impedance (at DISCO)
Noise Figure
1dB Compression Point (input)
10/16
Min.
dB
see App. Diag.
6
dB
-108
dBm
STB4395
8 - TRANSCEIVER SECTION (continued)
Dataslicer time constants
Symbol
Parameter
Min.
Typ.
Max.
Unit
Slow
3*
Fast
130*
µs
1
mV/ms
Hold Drift Rate 60mV < signal < 100mV
ms
For 33nF capacitor at SLTC
8.2 - Transmitter-Output Specification
Symbol
POUT
Parameter
Min.
Typ.
Max.
Unit
Output Power into 300Ω balanced, high power mode
13
dBm
LO Rejection
25
dBC
Output Control Switch
14
dB
TXFLT/NTXFLT output
Symbol
Parameter
Min.
Typ.
Output Impedance
Max.
2
Units
kΩ
Load Impedance (external)
1.2
kΩ
Voltage Out (channel frequency, application circuit of this D/S)
200
mVPP
Voltage Out (channel frequency-300.8MHz, app. cct of this D/S)
80
mVPP
8.3 - Synthesizer/Modulator/Channel Select Loop
8.3.1 - Synthesizer Phase Noise and Spurious
Phase noise and spurious are measured at the RF outputs RF / NRF in transmit mode, no RF SAW filter.
Phase Noise (Average)
Offset Frequency from carrier
Min.
Typ.
Max.
Unit
±100kHz
-106
dBc/Hz
±500kHz
-121
dBc/Hz
±1MHz
-127
dBc/Hz
±10MHz
-145
dBc/Hz
Spurious
Offset Frequency from carrier
Min.
Typ.
Max.
Unit
±50kHz
-55
dBc
±100kHz
-63
dBc
±200kHz
-70
dBc
±200kHz to ±10MHz
-75
dBc
±10MHz to ±100MHz
-40
dBc
8.3.2 - Channel Select Loop
Symbol
Parameter
Frequency
Frequency Steps
Min.
Typ.
Max.
Unit
channel - 150.4
MHz
50
kHz
11/16
STB4395
8 - TRANSCEIVER SECTION (continued)
8.3.3 - Channel Frequency Setting
8.3.3.1 - General Case
Using, from the divider ratios :
and from the mixers :
FCH = CH*FX/288
FIF2= FRX - FIF1
FRX = RX *FX/16
FIF1= FRF - FCH
FIFT X = 0.5 *FTX
FRF = FCH+FIFTX
FTX = TX*FSYN/18
the RF frequency is related to the other frequencies by :
= CH * FSYN/288 + TX * FSYN/18 * 0.5
FRF = FCH + FIFTX
= FCH + FRX - FIF2 = CH * FSYN/288 + RX * FSYN/16 - FIF2
Hence the channel select input (15 of the 16 digits, see pin table, paragraph 1.4) serial data stream :
CH = (FRF - TX*FSYN/18*0.5 ) * 288/FSYN = 288* F RF /FSYN - 3008 and CH = 288 (FRF + FIF2)/FSYN - 3042
where :
FCH is the channel PLL synthesizer frequency
FIF1 is the first if frequency (receive)
FIF2 is the second if frequency (receive)
FIFT X is the transmit if frequency
FRF is the desired rf frequency
FRX is the receive offset PLL frequency
FSYN is the reference input frequency (on SYNCLK)
FTX is the transmit offset PLL frequency
RX is the fixed receive divide ratio of 169
TX is the fixed transmit divide ratio of 376
CH is the channel synthesizer divide ratio defined by the binary channel number,
e.g. D14,D13,...........D0
The channel synthesizer provides integral division for all numbers between 3968 and 32764 (binary
000111110000000 to 111111111111100).Binary numbers outside this range will cause division ratios not
directly related to binary code.
8.3.3.2 - Particular Case. with FSYN = 14.4MHz :
FRX = 152.1MHz
FTX = 300.8MHz
FIFT X = 150.4MHz
FIF1 = 150.4MHz
FIF2 = 1.7MHz
Then CH = 20 * FRF - 3008
Example : desired RF frequency, FRF = 866.05MHz
Then substituting in : CH = 20*866.05-3008 = 14313 (binary 011011111101001)
12/16
STB4395
8 - TRANSCEIVER SECTION (continued)
8.4 - System Clock Input
Symbol
fREF (*1)
Description
Min.
Typ.
Reference Frequency
Max.
14.4
VS
Input Voltage Swing, AC Coupled, referenced to VP
0.4
IIH
Input Current-High (with respect to VN)
-40
IIL
Input Current-low (with respect to VN)
Unit
MHz
0.8
V
µA
40
µA
Max.
Unit
(*1) limits according to ETSI specification
8.5 - RF/NRF Receive/Transmit Pins
Symbol
ZIN
VSWR
Description
Min.
Input Impedance (balanced, RX)
Typ.
300Ω // 3.5pF
1.5:1
-
VIN DC Max.
DC Input Voltage
0
V
PIN AC Max.
AC Input Power
0
dBm
ZOUT
VSWR
-
Output Impedance (balanced, TX)
300Ω // 3pF
-
8.6 - Digital Input Buffers NTXEN, PRGD, NPRGEN, PRGCLK, FN
Symbol
Description
Min.
Typ.
Max.
Unit
VIH
Upper Level Input Voltage
VP -1
VP +0.4
V
VIL
Lower Level Input Voltage
VN -0.4
VN + 1
V
IIH
Input Current High
IIL
Input Current Low
Tt
Input Edge Transition
µA
-10
0.1
40
µA
1
µs/V
Max.
Unit
8.7 - Digital Output Buffers xLOCK, DO
Symbol
Description
Min.
Typ.
VOH
Upper Level Output Voltage
VP -0.3
VP
V
VOL
Lower Level Output Voltage
VN
VN + 1
V
tR
Rise Time (load of 5pF)
0.3
µs/V
tF
Fall Time (load of 5pF)
0.4
µs/V
8.8 - Receiver - FSH Tri State Input
Symbol
Description
Min.
Typ.
Max.
Units
VIH
Upper Level Input Voltage
VP -0.3
VP +0.4
V
VIL
Lower Level Input Voltage
VN-0.4
VN + 1
V
ITR
Tri State Current
-10
10
µA
IIH
Input Current High
-100
IIL
Input Current Low
Tt
Input Edge Transition
0.1
µA
100
µA
1
µs/V
13/16
STB4395
8 - TRANSCEIVER SECTION (continued)
8.9 - Receiver-RSSI Output
The receiver output swings between VP and VN.The buffer output supplies a current to an on-chip resistor
connected to VN . The output has to be smoothed externally with a capacitor to VN.
Symbol
Description
PMIN
Min RF Input Power Registered
PMAX
Max RF Input Power Registered
R OUT
Output Resistance (internally connected to VN)
VMIN
Voltage for PMIN
VMAX
Voltage for PMAX
CF
conversion factor
Min.
Typ.
Max.
Unit
-90
dBm
-44
dBm
50
kΩ
VN+1.25
VN
VN+2
V
VN+0.25
V
-200
mV/decade
8.10 - Power Down Buffer, EN
Symbol
Max.
Unit
VIH
Upper Level Input Voltage
Description
VP -0.3
Min.
Typ.
VP +0.4
V
VIL
Lower Level Input Voltage
VN -0.4
VN +0.3
IIH
Input Current High
IIL
Input Current Low
10
µA
tON
Buffer Delay to LOCK HI (1)
10
ms
tOFF
Buffer Delay to min Supply Current (1)
10
ms
V
µA
-350
(1) assumes application circuit with 100nF on each regulator.
8.11 - Transmitter-Data Inputs
8.11.1 - I,Q,REFIQ (STB4395A)
Symbol
Description
Min.
Typ.
Max.
Units
REXT
External Input Resistance
6.5
6.8
7
kΩ
R INT
Internal Input Resistance
32
40
50
kΩ
R IM
RINT Matching Error
1
%
VDC
DC Bias to REXT
0.96VHS
VDC match
VDC Matching Error to REXT
VS
Peak Voltage Swing to REXT
VS match
V
5
mV
V
0.45
0.5
0.56
0.5
dB
88.5
90
91.5
degrees
Min.
Typ.
Max.
Unit
VS Matching Error to REXT
Phase(I-Q)
1.04VHS
VHS = (VP + VN)/2
8.11.2 - I,Q,NI,NQ (STB4395)
VHS = (VP+VN)/2 - VHR = (VP+VRD)/2
Symbol
Description
REXT
External Input Resistance
R INT
Internal Input Resistance
R IM
RINT Matching Error
VDC
DC bias to REXT
VDC match
VDC Matching Error to REXT
VS
Peak Voltage Swing to REXT
VS match
32
40
VHS-0.7
0.7
0.75
VS Matching Error to REXT
Phase (I/Ibar and Q/Qbar)
Phase I to Ibar or Q to Qbar
14/16
2
88.5
90
0
kΩ
50
kΩ
1
%
VHR+0.7
V
12
mV
0.85
V
20
mV
91.5
degrees
degrees
STB4395
9 - APPLICATIONS
9.1 - Typical DC connection schemes
9.1.1 - Internal Regulator
The STB4395 has built-in internal regulators which
allows 15mA to be used for external circuitry. The
output of this regulator is -2.85V with respect to the
positive supply rail.
configurations :
- The STB4395operatesfrom positive ground. The
decoupling of the supply lines should take into
account that the a.c. ground connections will be
reversed with respect to the baseband circuit
and/or the microcontroller. The use of multilayer
PCB is recommended.
- The filters have been adapted for the best performance of the IC, although standard configurations are also considered.
9.1.2 - External Regulator
The STB4395 will always generate its own supply
voltage(-2.85V with respect to VP), but the I/O
interfaces allow the STB4395 to swing its output
levels to the supply rails (VP to VN ). The system and
baseband controller can therefore be connected
from the same -unregulated- supply and be individually regulated, if required .
9.2.2 - Fully Configured Applications Example
Figure 3 is a typical application circuit for a complete system. It shows the typical external components to the circuit. As the reactance of the
components is critical in many locations, the use of
surface mounted componentsis essential. Atypical
component list is also attached. It also shows the
typical values for the the various VCO circuits.The
values are very dependenton layout.
9.2 - Application Circuits
9.2.1 - Introduction
The STB4395 makes use of some unusual circuit
Figure 3
5 0Ω
SAW
8 66MHz
L14 7 50 nH
3 00Ω
R23
L7
10 nH
C24 0pF
VP
C3
10µF
C6
1 00 nF
C9
100 nF
NVBAT
VRD
C22
10 0n F
VN
L1 330 µH
C26
56 0pF
L5
8. 2nH
L8
8nH
L10
8n H
L11
10n H
R21
0 -10kΩ
20Ω
700 Ω and 2pF
R15 2kΩ
700 Ω and 2pF
L16 2 70 nH
R18
5Ω
SAW
15 0.4 MHz
L15 2 70 nH
C29
1 00 nF
R16 4 .7kΩ
L13 7 50 nH
VN
VN
VN
C1
56 pF
NPRGE N
C4
5 6pF
C7
56p F
L4
56µH
C10
56 pF
PRGCLK
64
63
62
61
60
59
58
57
56
55
54
53
VN
52
51
50
L21 3 90 nH
49
1
48
2
47
3
46
4
45
5
44
6
43
VN
L19
12 00n H
R1 2kΩ
PRGD
C43
1n F
R2 2kΩ
NTXEN
L20 3 90 nH
R4 2 kΩ
LOCK
R7 2 kΩ
R6 0Ω
R5 0Ω
7
R3 0Ω
42
STB4395A
R9 6.8 kΩ
C8
0pF
C12
30 0p F
C13
30 0p F
C14
30 0p F
41
TQFP 64
(from above)
9
C41
2-50 pF
40
C33
1kΩ
FN
10
39
10n F
EN
11
38
10n F
12
37
13
36
C11
C18 20 0nF
SYNCLK
R8
51Ω
R12 50Ω
L2 1 5n H
RSSI
R26
10 kΩ
L22
10µH
C47
100 nF
C38
L3 1 5n H 100 nF
FSH
C49
4 7p F
10 0nF
C16
2-6p F
14
35
15
34
16
33
L17 47 nH
C37
2-6p F
R25
100 Ω
L18 47 nH
R13
5 .1kΩ
C15
82n F
17
18
19
21
22
23
24
25
26
27
28
29
30
31
32
R24
5 .1kΩ
C20
C19
8.2 nF
3 3n F
R14
5 .1kΩ
C21
4 7n F
C16 , C15, C19, C21 , C23, C41, C45
provision for co nn ection to grou nd also
20
C36
5. 6nF
L6
8nH
C23
4.7 pF
C27
0 pF
C28
L9 68p F
8n H
R17
2 0Ω
C25
10 0nF
Approx value s of b uried trac k
indu ctanc es to grou nd
C40
5 6nF
C46
VN
R19
27kΩ
1 00 nF
C31
20 pF
R20
27kΩ
R22
1 0kΩ
L12
56µH
C35
1 00p F
C39
2-50 pF
4395-05.EPS
DO
C48
4 7p F
C32
C17
10n F
C44
82 0pF
1kΩ
1 0n F
8
Q
C5
0p F
L23
10µH
C45
82 0pF
C34
R10 6. 8kΩ
REFIQ
C2
0pF
C42
2 -50p F
R11 6. 8kΩ
I
C28
6 8p F
15/16
STB4395
PACKAGE MECHANICAL DATA
64 PINS - PLASTIC QUAD FLAT PACK (THIN)
D
D1
A
D3
A2
A1
48
33
49
32
0.10mm
E
E1
E3
B
B
Seating Plane
17
64
16
1
C
PMTQFP64.EPS
L
L1
e
K
TQFP6
4
A
A1
A2
B
C
D
D1
D3
e
E
E1
E3
K
L
L1
Min.
0.05
1.35
0.18
0.12
0.40
Millimeters
Typ.
1.40
0.23
0.16
12.00
10.00
7.50
0.50
12.00
10.00
7.50
0.60
1.00
Max.
1.60
0.15
1.45
0.28
0.20
Min.
0.002
0.053
0.007
0.0047
1
0o (Min.), 7o (Max.)
0.75
0.0157
Inches
Typ.
0.055
0.009
0.0063
0.472
0.394
0.295
0.0197
0.472
0.394
0.295
0.0236
0.0393
Max.
0.063
0.006
0.057
0.011
0.0079
0.0295
Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility
for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result
from its use. No licence is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics.
Specifications mentioned in this publication are subject to change without noti ce. This publication supersedes and replaces all
information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life
support devices or systems without express written approval of SGS-THOMSON Microelectronics.
 1996 SGS-THOMSON Microelectronics - All Rights Reserved
Purchase of I2C Components of SGS-THOMSON Microelectronics, conveys a license under the Philips
I2C Patent. Rights to use these components in a I2C system, is granted provided that the system confo rms to
the I2C Standard Specifications as defined by Philips.
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco
The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.
16/16
TQFP64.TBL
Dimensions