AD ADP2120ACPZ-1.0-R7

2 A/1.25 A, 1.2 MHz, Synchronous,
Step-Down DC-to-DC Regulators
ADP2119/ADP2120
FEATURES
TYPICAL APPLICATION CIRCUIT
C1
0.1µF
VIN
5V
CIN
22µF
X5R
6.3V
R1
10Ω
ADP2119/ADP2120
1 VIN
2 PVIN
EN 10
SYNC/MODE 9
R2
10kΩ
VOUT
3.3V
L
1.5µH
COUT
22µF
X5R
6.3V
3 SW
PGOOD 8
4 PGND
RTOP
10kΩ
RBOT
2.21kΩ
5 GND
TRK 7
FB 6
08716-001
Continuous output current
ADP2119: 2 A
ADP2120: 1.25 A
145 mΩ and 70 mΩ integrated MOSFETs
Input voltage range from 2.3 V to 5.5 V
Output voltage from 0.6 V to VIN
±1.5% output accuracy
1.2 MHz fixed switching frequency
Synchronizable between 1 MHz and 2 MHz
Selectable PWM or PFM mode operation
Current mode architecture
Precision threshold enable input
Power-good flag
Voltage tracking
Integrated soft start
Internal compensation
Startup with precharged output
UVLO, OVP, OCP, and thermal shutdown
10-lead, 3 mm × 3 mm LFCSP_WD package
Figure 1.
APPLICATIONS
Point of load conversion
Communications and networking equipment
Industrial and instrumentation
Consumer electronics
Medical applications
GENERAL DESCRIPTION
VIN = 5V
90 VOUT = 1.8V
80
70
PFM
60
50
40
FPWM
30
20
10
0
0.01
0.1
1
OUTPUT CURRENT (A)
08716-002
The ADP2119/ADP2120 support input voltages from 2.3 V to
5.5 V. The output voltage can be adjusted from 0.6 V up to the
input voltage (VIN) for the adjustable version, whereas the fixed
output version is available in preset output voltage options of 3.3 V,
2.5 V, 1.8 V, 1.5 V, 1.2 V, and 1.0 V. The ADP2119/ADP2120 require
minimal external parts and provide a high efficiency solution with
their integrated power switches, synchronous rectifiers, and internal
compensation. Each IC draws less than 2 μA current from the input
source when it is disabled. Other key features include undervoltage
lockout (UVLO), integrated soft start to limit inrush current at
startup, overvoltage protection (OVP), overcurrent protection
(OCP), and thermal shutdown (TSD).
100
EFFICIENCY (%)
The ADP2119/ADP2120 are low quiescent current, synchronous,
step-down dc-to-dc regulators in a compact 3 mm × 3 mm
LFCSP_WD package. Both devices use a current mode, constant
frequency pulse-width modulation (PWM) control scheme for
excellent stability and transient response. Under light load conditions,
they can be configured to operate in a pulse frequency modulation
(PFM) mode, which reduces switching frequency to save power.
Figure 2. ADP2119 Efficiency vs. Output Current
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2010 Analog Devices, Inc. All rights reserved.
ADP2119/ADP2120
TABLE OF CONTENTS
Features .............................................................................................. 1
Enable/Shutdown ....................................................................... 16
Applications ....................................................................................... 1
Integrated Soft Start ................................................................... 16
Typical Application Circuit ............................................................. 1
Tracking ....................................................................................... 17
General Description ......................................................................... 1
Oscillator and Synchronization ................................................ 17
Revision History ............................................................................... 2
Current Limit and Short-Circuit Protection .............................. 17
Specifications..................................................................................... 3
Overvoltage Protection (OVP) ................................................. 17
Absolute Maximum Ratings............................................................ 5
Undervoltage Lockout (UVLO) ............................................... 17
Thermal Resistance ...................................................................... 5
Thermal Shutdown .................................................................... 17
Boundary Condition .................................................................... 5
Power Good (PGOOD) ............................................................. 17
ESD Caution .................................................................................. 5
Applications Information .............................................................. 18
Pin Configuration and Function Descriptions ............................. 6
Output Voltage Selection........................................................... 18
Typical Performance Characteristics ............................................. 7
Inductor Selection ...................................................................... 18
Functional Block Diagram ............................................................ 15
Output Capacitor Selection....................................................... 18
Theory of Operation ...................................................................... 16
Input Capacitor Selection .......................................................... 19
Control Scheme .......................................................................... 16
Voltage Tracking ......................................................................... 19
PWM Mode Operation.............................................................. 16
Typical Application Circuits ......................................................... 20
PFM Mode Operation................................................................ 16
Outline Dimensions ....................................................................... 22
Slope Compensation .................................................................. 16
Ordering Guide .......................................................................... 22
REVISION HISTORY
6/10—Revision 0: Initial Version
Rev. 0 | Page 2 of 24
ADP2119/ADP2120
SPECIFICATIONS
VIN = VPVIN = 3.3 V, EN = VIN, SYNC/MODE = VIN at TJ = −40°C to +125°C, unless otherwise noted.
Table 1.
Parameter
VIN and PVIN
VIN Voltage Range
PVIN Voltage Range
Quiescent Current
Shutdown Current
VIN Undervoltage Lockout Threshold
OUTPUT CHARACTERISTICS
Load Regulation 1
Load Regulation 2
Line Regulation1
Line Regulation2
FB
FB Regulation Voltage
FB Bias Current
SW
High-Side On Resistance 3
Low-Side On Resistance3
SW Peak Current Limit
SW Maximum Duty Cycle
SW Minimum On Time 4
TRK
TRK Input Voltage Range
TRK-to-FB Offset Voltage
TRK Input Bias Current
FREQUENCY
Oscillator Frequency
SYNC/MODE
Synchronization Range
SYNC Minimum Pulse Width
SYNC Minimum Off Time
SYNC Input High Voltage
SYNC Input Low Voltage
INTEGRATED SOFT START
Soft Start Time
PGOOD
Power-Good Range
Symbol
VIN
VPVIN
IVIN
ISHDN
UVLO
Test Conditions/Comments
Min
2.3
2.3
No switching, SYNC/MODE = GND
Switching, no load, SYNC/MODE = VIN
VIN = VPVIN = 5.5 V, EN = GND
VIN rising
VIN falling
2
ADP2119, IO = 0 A to 2 A
ADP2120, IO = 0 A to 1.25 A
ADP2119, IO = 1 A
ADP2120, IO = 1 A
VFB
IFB
Typ
VIN = 2.3 V to 5.5 V
VIN = 2.3 V to 5.5 V
VIN = VPVIN = 3.3 V, ISW = 200 mA
VIN = VPVIN = 3.3 V, ISW = 200 mA
High-side switch, VIN = VPVIN = 3.3 V (ADP2119)
High-side switch, VIN = VPVIN = 3.3 V (ADP2120)
VIN = VPVIN = 5.5 V, full frequency
VIN = VPVIN = 5.5 V, full frequency
TRK = 0 mV to 500 mV
fS
150
680
0.3
2.2
2.1
Max
Unit
5.5
5.5
200
900
2
2.3
V
V
μA
μA
μA
V
V
0.08
0.08
0.05
0.05
0.591
2.5
1.6
%/A
%/A
%/V
%/V
0.6
0.01
0.609
0.1
V
μA
145
70
3
2
190
100
3.5
2.4
100
mΩ
mΩ
A
A
%
ns
600
+15
100
mV
mV
nA
1.38
MHz
2
MHz
ns
ns
V
V
100
0
−15
1.02
1.2
1
100
100
1.3
0.4
All switching frequencies
1024
fS = 1.2 MHz
853
Power-Good Deglitch Time
FB rising threshold
FB rising hysteresis
FB falling threshold
FB falling hysteresis
From FB to PGOOD
PGOOD Leakage Current
PGOOD Output Low Voltage
PGOOD Output Low Resistor
VPGOOD = 5 V
IPGOOD = 1 mA
IPGOOD = 1 mA
Rev. 0 | Page 3 of 24
105
85
Clock
cycles
μs
110
2.5
90
2.5
16
115
95
0.1
150
150
1
200
200
%
%
%
%
Clock
cycles
μA
mV
Ω
ADP2119/ADP2120
Parameter
EN
EN Input Rising Threshold
EN Input Hysteresis
EN Pull-Down Resistor
THERMAL
Thermal Shutdown Threshold
Thermal Shutdown Hysteresis
Symbol
Test Conditions/Comments
Min
Typ
Max
Unit
VIN = 2.3 V to 5.5 V
VIN = 2.3 V to 5.5 V
1.12
1.2
100
1
1.28
V
mV
MΩ
150
25
1
Specified by the circuit in Figure 54.
Specified by the circuit in Figure 58.
3
Pin-to-pin measurements.
4
Guaranteed by design.
2
Rev. 0 | Page 4 of 24
°C
°C
ADP2119/ADP2120
ABSOLUTE MAXIMUM RATINGS
THERMAL RESISTANCE
Table 2.
Parameter
VIN, PVIN
SW
FB, SYNC/MODE, EN, TRK, PGOOD
PGND to GND
Operating Junction Temperature Range
Storage Temperature Range
Soldering Conditions
Rating
−0.3 V to +6 V
−0.3 V to +6 V
−0.3 V to +6 V
−0.3 V to +0.3 V
−40°C to +125°C
−65°C to +150°C
JEDEC J-STD-020
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance
Package Type
10-Lead LFCSP_WD
θJA
40
Unit
°C/W
BOUNDARY CONDITION
θJA is measured using natural convection on a JEDEC 4-layer
board, and the exposed pad is soldered to the printed circuit
board (PCB) with thermal vias.
ESD CAUTION
Rev. 0 | Page 5 of 24
ADP2119/ADP2120
PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
VIN
1
10
EN
PVIN
2
9
SYNC/MODE
SW
3
8
PGOOD
PGND
4
7
TRK
GND
5
6
FB
EXPOSED
PAD
NOTES
1. THE EXPOSED PAD SHOULD BE SOLDERED TO
AN EXTERNAL GROUND PLANE UNDERNEATH
THE IC FOR THERMAL DISSIPATION.
08716-003
ADP2119/ADP2120
Figure 3. Pin Configuration (Top View)
Table 4. Pin Function Descriptions
Pin No.
1
Mnemonic
VIN
2
3
4
5
6
PVIN
SW
PGND
GND
FB
7
TRK
8
9
PGOOD
SYNC/MODE
10
EN
EPAD
Exposed Pad
Description
Bias Voltage Input Pin. Connect a bypass capacitor (0.1 μF minimum) between this pin and GND and a
small (10 Ω) resistor between this pin and PVIN.
Power Input Pin. Connect this pin to the input power source. Connect a bypass capacitor between this pin and PGND.
Switch Node Output. Connect this pin to the output inductor.
Power Ground. Connect this pin to the power ground plane and to the high current return for the power MOSFET.
Analog Ground. Connect this pin to the ground plane.
Feedback Voltage Sense Input. Connect this pin to a resistor divider from VOUT. For the fixed output version,
connect to VOUT directly.
Tracking Input. To track a master voltage, drive TRK from a resistor divider from the master voltage. If the
tracking function is not used, connect TRK to VIN.
Power-Good Output (Open Drain). Connect this pin to a resistor to any pull-up voltage < 5.5 V.
Synchronization Input (SYNC). Connect this pin to an external clock between 1 MHz and 2 MHz to synchronize
the switching frequency to the external clock (see the Oscillator and Synchronization section for details).
FPWM/PFM Selection (MODE). When this pin is connected to VIN, the PFM mode is disabled and the part works
in continuous conduction mode (CCM) only. When this pin is connected to ground, the PFM mode is enabled
and becomes active at light loads.
Precision Threshold Enable Input Pin. An external resistor divider can be used to set the turn-on threshold. To
enable the part automatically, connect the EN pin to VIN. This pin has a 1 MΩ pull-down resistor to GND.
The exposed pad should be soldered to an external ground plane underneath the IC for thermal dissipation.
Rev. 0 | Page 6 of 24
ADP2119/ADP2120
TYPICAL PERFORMANCE CHARACTERISTICS
100
100
90
90
80
80
70
70
EFFICIENCY (%)
60
50
40
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
OUTPUT CURRENT (A)
10
0
90
80
80
70
70
EFFICIENCY (%)
100
90
60
50
40
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
OUTPUT CURRENT (A)
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
60
50
40
30
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
VOUT = 3.3V
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
VOUT = 3.3V
20
10
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
08716-005
10
0.4
Figure 7. Efficiency (ADP2119, VIN = 3.3 V, PFM) vs. Output Current
100
20
0.2
OUTPUT CURRENT (A)
Figure 4. Efficiency (ADP2119, VIN = 3.3 V, FPWM) vs. Output Current
30
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
OUTPUT CURRENT (A)
Figure 5. Efficiency (ADP2119, VIN = 5 V, FPWM) vs. Output Current
08716-008
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
20
08716-004
10
EFFICIENCY (%)
40
30
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
20
Figure 8. Efficiency (ADP2119, VIN = 5 V, PFM) vs. Output Current
100
100
90
90
80
80
70
70
EFFICIENCY (%)
EFFICIENCY (%)
50
08716-007
30
60
60
50
40
30
60
50
40
30
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
10
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
0
0.2
0.4
0.6
0.8
OUTPUT CURRENT (A)
1.0
1.2
1.4
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
20
10
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
08716-006
20
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
OUTPUT CURRENT (A)
Figure 6. Efficiency (ADP2120, VIN = 3.3 V, FPWM) vs. Output Current
Figure 9. Efficiency (ADP2120, VIN = 3.3 V, PFM) vs. Output Current
Rev. 0 | Page 7 of 24
08716-009
EFFICIENCY (%)
TA = 25°C, VIN = VPVIN = 5 V, VOUT = 1.2 V, L = 1.5 μH, CIN = 22 μF, COUT = 2 × 22 μF, unless otherwise noted.
100
90
90
80
80
70
70
EFFICIENCY (%)
100
50
40
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0.2
0.4
0.6
0.8
1.0
1.2
1.4
OUTPUT CURRENT (A)
20
10
0
604
800
603
FEEDBACK VOLTAGE (mV)
QUIESCENT CURRENT (µA)
605
850
750
700
650
600
550
3.5
3.9
4.3
4.7
5.1
5.5
VIN (V)
1.0
1.2
1.4
602
601
600
599
598
597
594
–40
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 14. Feedback Voltage vs. Temperature (VIN = 3.3 V)
Figure 11. Quiescent Current vs. VIN (Switching)
120
275
TJ = +125°C
TJ = +25°C
TJ = –40°C
250
TJ = +125°C
TJ = +25°C
TJ = –40°C
110
100
NFET RESISTOR (mΩ)
225
200
175
150
125
90
80
70
60
100
50
75
40
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VIN (V)
30
2.3
08716-012
50
2.3
0.8
595
08716-011
3.1
0.6
596
TJ = +125°C
TJ = +25°C
TJ = –40°C
2.7
0.4
Figure 13. Efficiency (ADP2120, VIN = 5 V, PFM) vs. Output Current
900
400
2.3
0.2
OUTPUT CURRENT (A)
500
PFET RESISTOR (mΩ)
INDUCTOR SUMIDA
CDRH5D18BHPNP-1R5M
0
Figure 10. Efficiency (ADP2120, VIN = 5 V, FPWM) vs. Output Current
450
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
VOUT = 3.3V
30
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
VIN (V)
Figure 15. NFET Resistor vs. VIN (Pin-to-Pin Measurements)
Figure 12. PFET Resistor vs. VIN (Pin-to-Pin Measurements)
Rev. 0 | Page 8 of 24
08716-015
0
40
08716-014
20
0
50
VOUT = 1.0V
VOUT = 1.2V
VOUT = 1.5V
VOUT = 1.8V
VOUT = 2.5V
VOUT = 3.3V
30
10
60
08716-013
60
08716-010
EFFICIENCY (%)
ADP2119/ADP2120
ADP2119/ADP2120
1.30
2.30
1.25
2.25
UVLO THRESHOLD (V)
1.15
FALLING
1.10
FALLING
2.10
2.05
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
2.00
–40
08716-016
60
80
100
120
TJ = +125°C
TJ = +25°C
TJ = –40°C
3.3
PEAK CURRENT LIMIT (A)
PEAK CURRENT LIMIT (A)
40
3.5
3.0
2.9
2.8
2.7
2.6
3.1
2.9
2.7
2.5
2.3
0
20
40
60
80
100
120
2.1
2.3
08716-017
–20
TEMPERATURE (°C)
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
5.5
VIN (V)
Figure 17. Peak Current Limit vs. Temperature (ADP2119, VIN = 3.3 V)
Figure 20. Peak Current Limit vs. VIN (ADP2119)
2.10
2.2
2.05
TJ = +125°C
TJ = +25°C
TJ = –40°C
2.1
PEAK CURRENT LIMIT (A)
PEAK CURRENT LIMIT (A)
20
Figure 19. UVLO Threshold vs. Temperature (VIN = 3.3 V)
3.1
2.00
1.95
1.90
1.85
2.0
1.9
1.8
1.7
1.80
–20
0
20
40
60
TEMPERATURE (°C)
80
100
120
1.6
2.3
08716-018
1.75
–40
0
TEMPERATURE (°C)
Figure 16. EN Threshold vs. Temperature
2.5
–40
–20
08716-020
1.00
–40
2.15
08716-019
1.05
2.20
08716-021
EN THRESHOLD (V)
RISING
RISING
1.20
2.7
3.1
3.5
3.9
4.3
4.7
5.1
VIN (V)
Figure 21. Peak Current Limit vs. VIN (ADP2120)
Figure 18. Peak Current Limit vs. Temperature (ADP2120, VIN = 3.3 V)
Rev. 0 | Page 9 of 24
ADP2119/ADP2120
T
T
EN
EN
3
3
VOUT
VOUT
1
1
PGOOD
PGOOD
2
2
IL
IL
CH1 500mV CH2 5.00V
CH3 5.00V CH4 2.00A Ω
M400µs
T 30.4%
A CH3
3.60V
CH1 500mV CH2 5.00V
CH3 5.00V CH4 2.00A Ω
Figure 22. Soft Start with Full Load (ADP2119, VIN = 5 V)
M400µs
T
784.0µs
A CH3
3.50V
08716-025
4
08716-022
4
Figure 25. Soft Start with Precharged Output (ADP2119, VIN = 5 V)
T
T
VOUT (AC)
VOUT (AC)
1
1
IO
IO
CH1 50.0mV
CH4 1.00A Ω
M200µs
A CH4
T
596.0µs
880mA
CH1 50.0mV
CH4 1.00A Ω
Figure 23. Load Transient (ADP2119, PFM, VIN = 5 V)
M200µs
A CH4
T
596.0µs
880mA
08716-026
4
08716-023
4
Figure 26. Load Transient (ADP2119, FPWM, VIN = 5 V)
T
T
VOUT (AC)
VOUT (AC)
1
1
IO
IO
CH1 50.0mV
CH4 1.00A Ω
M200µs
A CH4
T
396.0µs
960mA
CH1 50.0mV
CH4 1.00A Ω
Figure 24. Load Transient (ADP2120, PFM, VIN = 5 V)
M200µs
A CH4
T
396.0µs
960mA
Figure 27. Load Transient (ADP2120, FPWM, VIN = 5 V)
Rev. 0 | Page 10 of 24
08716-027
4
08716-024
4
ADP2119/ADP2120
T
T
VOUT
VOUT
1
1
SW
SW
2
2
IL
IL
CH1 500mV CH2 5.00V
CH4 2.00A Ω
M2.0ms
A CH1
T
3.92ms
480mV
CH1 500mV CH2 5.00V
CH4 2.00A Ω
Figure 28. Output Short (ADP2119)
M2.0ms
A CH1
T
–2.08ms
560mV
08716-031
4
08716-028
4
Figure 31. Output Short Recovery (ADP2119)
T
T
VOUT
VOUT
1
1
SW
SW
2
2
IL
IL
M2.0ms
A CH1
T
3.96ms
200mV
CH1 500mV CH2 5.00V
CH4 2.00A Ω
Figure 29. Output Short (ADP2120)
M2.0ms
A CH1
T
–2.12ms
560mV
08716-032
CH1 500mV CH2 5.00V
CH4 2.00A Ω
4.12V
08716-033
4
08716-029
4
Figure 32. Output Short Recovery (ADP2120)
T
T
TRK
SYNC
1
FB
1
2
CH1 500mV CH2 500mV
M2.0ms
T 44.4%
A CH2
730mV
08716-030
SW
CH1 2.0V
Figure 30. Tracking Function
CH2 2.0V
M400ns
T
0.0s
A CH1
Figure 33. Synchronized to 1 MHz
Rev. 0 | Page 11 of 24
T
VOUT (AC)
MAGNITUDE (dB)
1
SW
2
IL
80
200
64
160
48
120
32
80
16
40
0
0
–16
–40
–32
–80
–48
–120
–64
–160
PHASE (Degrees)
ADP2119/ADP2120
4
820mA
–200
100k
08716-037
M4.0µs
A CH4
T
–40.0ns
08716-034
CH1 20.0mV CH2 5.00V
CH4 500mA Ω
CROSS FREQUENCY: 124kHz
PHASE MARGIN: 46°
–80
1k
10k
1M
FREQUENCY (Hz)
Figure 34. PFM Mode
Figure 37. ADP2119 Bode Plot at VIN = 5 V, VOUT = 1.0 V, IO = 2 A,
L = 1 μH, COUT = 2 × 22 μF
T
80
200
64
160
48
120
32
80
16
40
0
0
MAGNITUDE (dB)
SW
2
IL
–16
–40
–32
–80
–48
–120
–64
–160
PHASE (Degrees)
VOUT (AC)
1
4
A CH2
4.3V
–200
100k
08716-038
M1.0µs
T
–40.0ns
08716-035
CH1 5.0mV CH2 5.00V
CH4 500mA Ω
CROSS FREQUENCY: 105kHz
PHASE MARGIN: 47°
–80
1k
10k
1M
FREQUENCY (Hz)
Figure 35. Discontinuous Conduction Mode (DCM)
Figure 38. ADP2119 Bode Plot at VIN = 5 V, VOUT = 1.2 V, IO = 2 A,
L = 1.5 μH, COUT = 2 × 22 μF
T
80
200
64
160
48
120
32
80
16
40
0
0
MAGNITUDE (dB)
SW
2
IL
–16
–40
–32
–80
–48
–120
PHASE (Degrees)
VOUT (AC)
1
4
M1.0µs
T
–40.0ns
A CH2
4.3V
–160
CROSS FREQUENCY: 112kHz
PHASE MARGIN: 48°
–80
1k
10k
–200
100k
1M
FREQUENCY (Hz)
Figure 36. Continuous Conduction Mode (CCM)
Figure 39. ADP2119 Bode Plot at VIN = 5 V, VOUT = 1.5 V, IO = 2 A,
L = 1.5 μH, COUT = 22 μF +10 μF
Rev. 0 | Page 12 of 24
08716-039
CH1 5.0mV CH2 5.00V
CH4 1.0A Ω
08716-036
–64
80
200
64
160
64
160
48
120
48
120
32
80
32
80
16
40
16
40
0
0
0
0
–40
–16
–40
–32
–80
–32
–80
–48
–120
–48
–120
–64
–160
–64
–160
–200
1M
FREQUENCY (Hz)
200
80
200
64
160
64
160
48
120
48
120
32
80
32
80
16
40
16
40
0
0
0
0
–32
–48
–64
CROSS FREQUENCY: 107kHz
PHASE MARGIN: 49°
–80
1k
10k
–16
–40
–80
–32
–80
–120
–48
–120
–160
–64
–160
–200
100k
CROSS FREQUENCY: 80kHz
PHASE MARGIN: 54°
–80
1k
10k
1M
FREQUENCY (Hz)
–200
100k
1M
FREQUENCY (Hz)
Figure 41. ADP2119 Bode Plot at VIN = 5 V, VOUT = 2.5 V, IO = 2 A,
L = 1.5 μH, COUT = 22 μF
Figure 44. ADP2120 Bode Plot at VIN = 5 V, VOUT = 1.2 V, IO = 1.25 A,
L = 1.5 μH, COUT = 22 μF + 10 μF
200
80
200
64
160
64
160
48
120
48
120
32
80
32
80
16
40
16
40
0
0
0
0
–32
PHASE (Degrees)
–16
–40
–80
–32
–80
–48
–120
–48
–120
–64
–160
–64
–200
–80
1k
CROSS FREQUENCY: 89kHz
PHASE MARGIN: 58°
–80
1k
10k
100k
1M
FREQUENCY (Hz)
08716-042
–40
MAGNITUDE (dB)
80
–16
08716-044
–40
PHASE (Degrees)
–16
MAGNITUDE (dB)
80
PHASE (Degrees)
Figure 43. ADP2120 Bode Plot at VIN = 5 V, VOUT = 1.0 V, IO = 1.25 A,
L = 1.5 μH, COUT = 22 μF + 10 μF
08716-041
MAGNITUDE (dB)
1M
FREQUENCY (Hz)
Figure 40. ADP2119 Bode Plot at VIN = 5 V, VOUT = 1.8 V, IO = 2 A,
L = 1.5 μH, COUT = 22 μF + 10 μF
MAGNITUDE (dB)
–200
100k
Figure 42. ADP2119 Bode Plot at VIN = 5 V, VOUT = 3.3 V, IO = 2 A,
L = 1.5 μH, COUT = 22 μF
–160
CROSS FREQUENCY: 67kHz
PHASE MARGIN: 51°
10k
PHASE (Degrees)
100k
CROSS FREQUENCY: 87kHz
PHASE MARGIN: 48°
–80
1k
10k
–200
100k
1M
FREQUENCY (Hz)
Figure 45. ADP2120 Bode Plot at VIN = 5 V, VOUT = 1.5 V, IO = 1.25 A,
L = 2.2 μH, COUT = 22 μF + 10 μF
Rev. 0 | Page 13 of 24
08716-045
CROSS FREQUENCY: 99kHz
PHASE MARGIN: 52°
–80
1k
10k
08716-043
PHASE (Degrees)
–16
PHASE (Degrees)
200
MAGNITUDE (dB)
80
08716-040
MAGNITUDE (dB)
ADP2119/ADP2120
200
64
160
64
160
48
120
48
120
32
80
32
80
16
40
16
40
0
0
0
0
PHASE (Degrees)
–16
–40
–16
–40
–32
–80
–32
–80
–48
–120
–48
–120
–64
–160
–64
–160
CROSS FREQUENCY: 78kHz
PHASE MARGIN: 50°
–80
1k
10k
–200
100k
1M
FREQUENCY (Hz)
CROSS FREQUENCY: 48kHz
PHASE MARGIN: 60°
–80
1k
10k
200
64
160
48
120
32
80
16
40
0
0
–16
–40
–32
–80
–48
–120
–64
–160
CROSS FREQUENCY: 61kHz
PHASE MARGIN: 54°
–80
1k
10k
PHASE (Degrees)
80
–200
100k
1M
FREQUENCY (Hz)
–200
100k
1M
FREQUENCY (Hz)
Figure 48. ADP2120 Bode Plot at VIN = 5 V, VOUT = 3.3 V, IO = 1.25 A,
L = 2.2 μH, COUT = 2 ×10 μF
08716-047
MAGNITUDE (dB)
Figure 46. ADP2120 Bode Plot at VIN = 5 V, VOUT = 1.8 V, IO = 1.25 A,
L = 2.2 μH, COUT = 2 ×10 μF
PHASE (Degrees)
80
Figure 47. ADP2120 Bode Plot at VIN = 5 V, VOUT = 2.5 V, IO = 1.25 A,
L = 2.2 μH, COUT = 2 ×10 μF
Rev. 0 | Page 14 of 24
08716-048
200
MAGNITUDE (dB)
80
08716-046
MAGNITUDE (dB)
ADP2119/ADP2120
ADP2119/ADP2120
FUNCTIONAL BLOCK DIAGRAM
VIN
EN
PVIN
ADP2119/
ADP2120
PMOS CURRENT
SENSE AMPLIFIER
ZCOMP
TRK
0.6V
SOFT
START
UVLO
ERROR
AMPLIFIER
SKIP
COMPARATOR
Gm
PWM AND
PROTECTION
LOGIC
CONTROL
PFET
SW
SKIP MODE
THRESHOLD
FB
NFET
0.66V
SLOPE
COMPENSATION
CLK
NMOS
CURRENT
SENSE
AMPLIFIER
0.54V
PGOOD
ZERO-CROSSING
COMPARATOR
SYNC/MODE
Figure 49. Functional Block Diagram
Rev. 0 | Page 15 of 24
PGND
08716-049
OSCILLATOR
GND
ADP2119/ADP2120
THEORY OF OPERATION
The ADP2119/ADP2120 are step-down, dc-to-dc regulators
that use a fixed frequency, peak current mode architecture with
integrated high-side switch and low-side synchronous rectifier.
The high switching frequency and tiny 10-lead, 3 mm × 3 mm
LFCSP_WD package provide a small step-down dc-to-dc regulator
solution. The integrated high-side switch (P-channel MOSFET)
and synchronous rectifier (N-channel MOSFET) yield high
efficiency at medium-to-full loads while light load efficiency
is improved using the PFM mode.
The ADP2119/ADP2120 support input voltages from 2.3 V
to 5.5 V and regulate the output voltage down to 0.6 V. The
ADP2119/ADP2120 are also available with preset output
voltage options of 3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V, and 1.0 V.
PFM MODE OPERATION
When PFM mode is enabled, the regulator smoothly transitions
to the variable frequency PFM mode of operation when the load
current decreases below the pulse-skipping threshold current.
Switching continues only as necessary to maintain the output
voltage within regulation. When the output voltage drops below
regulation, the part enters PWM mode for a few oscillator cycles to
increase the output voltage back to regulation. During the wait
time between bursts, both power switches are off, and the output
capacitor supplies the load current. Because the output voltage
dips and recovers occasionally, the output voltage ripple in this
mode is larger than the ripple in the PWM mode of operation.
SLOPE COMPENSATION
CONTROL SCHEME
The ADP2119/ADP2120 use a fixed frequency, peak current
mode PWM control architecture and operate in PWM mode
for medium-to-full loads but shift to PFM mode (if enabled) at
light loads to maintain high efficiency. When operating in fixed
frequency PWM mode, the duty cycle of the integrated switches
is adjusted to regulate the output voltage. When operating in
PFM mode at light loads, the switching frequency is adjusted
to regulate the output voltage.
The ADP2119/ADP2120 operate in PWM mode when the load
current is greater than the pulse-skipping threshold current. At
load currents below this value, the regulator smoothly transitions
to the PFM mode of operation.
PWM MODE OPERATION
In PWM mode, the ADP2119/ADP2120 operate at a fixed
frequency. At the start of each oscillator cycle, the P-channel
MOSFET switch is turned on, putting a positive voltage across
the inductor. Current in the inductor increases until the current
sense signal crosses the peak inductor current level, turns off
the P-channel MOSFET switch, and turns on the N-channel
MOSFET synchronous rectifier. This puts a negative voltage
across the inductor, causing the inductor current to decrease.
The synchronous rectifier stays on for the rest of the cycle or
until the inductor current reaches zero, which causes the zerocrossing comparator to turn off the N-channel MOSFET as well.
The peak inductor current level is set by VCOMP. VCOMP is the output
of a transconductance error amplifier that compares the feedback
voltage with an internal 0.6 V reference.
Slope compensation stabilizes the internal current control loop
of the ADP2119/ADP2120 when operating close to and beyond
the 50% duty cycle to prevent subharmonic oscillations. Slope
compensation is implemented by summing an artificial voltage
ramp to the current sense signal during the on-time of the P-channel
MOSFET switch. This voltage ramp depends on the output voltage.
When operating at high output voltages, there is more slope
compensation. The slope compensation ramp value determines
the minimum inductor that can be used to prevent subharmonic
oscillations.
ENABLE/SHUTDOWN
The EN input pin has a precision analog threshold of 1.2 V (typical)
with 100 mV of hysteresis. When the enable voltage exceeds 1.2 V,
the regulator turns on, and when it falls below 1.1 V (typical),
the regulator turns off. To force the part to automatically start
when input power is applied, connect EN to VIN.
When the ADP2119/ADP2120 are shut down, the soft start
capacitor is discharged. This causes a new soft start cycle to
begin when the part is reenabled.
An internal pull-down resistor (1 MΩ) prevents an accidental
enable if EN is left floating.
INTEGRATED SOFT START
The ADP2119/ADP2120 include integrated soft start circuitry
to limit the output voltage rise time and reduce inrush current
at startup. The soft start time is fixed at 1024 clock cycles.
If the output voltage is precharged prior to turn-on, the part
prevents reverse inductor current (which would discharge the
output capacitor) by keeping both MOSFETs turned off until
the soft start voltage exceeds the voltage on the FB pin.
Rev. 0 | Page 16 of 24
ADP2119/ADP2120
TRACKING
OVERVOLTAGE PROTECTION (OVP)
The ADP2119/ADP2120 have a tracking input, TRK, that allows
the output voltage to track another voltage (master voltage).
The tracking input is especially useful in core and I/O voltage
tracking for FPGAs, DSPs, and ASICs.
The output voltage is continuously monitored by a comparator
through the FB pin, which is at 0.6 V (typical) under normal
operation. This comparator is set to activate when the FB voltage
exceeds 0.66 V (typical), thus indicating an output overvoltage
condition. If the voltage remains above this threshold for 16
clock cycles, the high-side MOSFET turns off and the low-side
MOSFET turns on until the current through the low-side MOSFET
reaches the limit (−0.6 A for forced continuous conduction mode
and 0 A for PFM mode). Thereafter, both the MOSFETs are
held in the off state until FB falls below 0.54 V (typical), at this
point, the part restarts. The behavior of PGOOD under this
condition is described in the Power Good section.
The internal error amplifier includes three positive inputs: the
internal reference voltage, the soft start voltage, and the TRK
voltage. The error amplifier regulates the FB voltage to the
lowest of the three voltages. To track a master voltage, tie the
TRK pin to a resistor divider from the master voltage. If the
tracking function is not used, connect the TRK pin to VIN.
OSCILLATOR AND SYNCHRONIZATION
To synchronize the ADP2119/ADP2120, drive an external clock
at the SYNC/MODE pin. The frequency of the external clock
can be in the 1 MHz to 2 MHz range. During synchronization,
the regulator operates in CCM mode only, and the switching
frequency is in phase with the external clock.
CURRENT LIMIT AND SHORT-CIRCUIT PROTECTION
The ADP2119/ADP2120 have a peak current limit protection
circuit to prevent current runaway. When the inductor peak
current reaches the current limit value, the high-side MOSFET
turns off and the low-side MOSFET turns on until the next cycle
starts. The overcurrent counter increments during this time. If
the overcurrent counter count exceeds 10, the part enters hiccup
mode and both the high-side MOSFET and low-side MOSFET
are turned off. The part remains in this mode for 4096 clock cycles
and then attempts to restart from soft start. If the current limit
fault has cleared, the part resumes normal operation. Otherwise,
it reenters hiccup mode again after counting 10 current limit
violations.
UNDERVOLTAGE LOCKOUT (UVLO)
Undervoltage lockout circuitry is integrated in the ADP2119/
ADP2120. If the input voltage drops below 2.1 V, the part shuts
down and both the power switch and synchronous rectifier turn
off. When the voltage rises again above 2.2 V, the soft start period is
initiated, and the part is enabled.
THERMAL SHUTDOWN
If the ADP2119/ADP2120 junction temperatures rise above 150°C,
the thermal shutdown circuit turns off the regulators. Extreme
junction temperatures can be the result of high current operation,
poor circuit board design, and/or high ambient temperature. A
25°C hysteresis is included so that if thermal shutdown occurs, the
part does not return to operation until the on-chip temperature
drops below 125°C. When coming out of thermal shutdown,
soft start is initiated.
POWER GOOD (PGOOD)
PGOOD is an active high, open-drain output and requires a
resistor to pull it up to a voltage. A high indicates that the voltage
on the FB pin (and therefore the output voltage) is within ±10%
of the desired value. A low on this pin indicates that the voltage
on the FB pin is not within ±10% of the desired value. There is a
16 cycle waiting period after FB is detected as being out of bounds.
Rev. 0 | Page 17 of 24
ADP2119/ADP2120
APPLICATIONS INFORMATION
This section describes the selection of the external components
for the ADP2119/ADP2120. The typical application circuit for
the ADP2119 is shown in Figure 50.
C1
0.1µF
VIN
5V
CIN
22µF
X5R
6.3V
The peak inductor current should be kept below the peak current
limit threshold value and can be calculated from
R1
10Ω
I PEAK = I O +
ADP2119
1 VIN
2 PVIN
VOUT
2.5V
2A
EN 10
L
1.5µH
3 SW
5 GND
TRK 7
The output voltage ripple, load step transient, and loop stability
determine the output capacitor selection.
FB 6
08716-050
RBOT
15kΩ
PGOOD 8
OUTPUT CAPACITOR SELECTION
4 PGND
RTOP
47.5kΩ
The ESR and the capacitance determine the output ripple.
⎛
⎞
1
⎟
ΔVOUT = ΔI L × ⎜⎜ ESR +
⎟
8
C
f
×
×
S ⎠
OUT
⎝
Figure 50. Typical Application Circuit
OUTPUT VOLTAGE SELECTION
The load transient response depends on the inductor, the output
capacitor, and the control loop.
The output voltage of the adjustable version can be set by an
external resistive voltage divider, and the following equation
calculates the output voltage.
VOUT = 0.6 × (1 +
The ADP2119/ADP2120 have integrated loop compensation to
provide a simple power solution design. Table 5 and Table 6 show
the typical recommended inductors and capacitors for the ADP2119/
ADP2120. X5R or X7R ceramic capacitors are highly recommended.
RTOP
)
RBOT
To limit the output voltage accuracy degradation due to FB bias
current (0.1 μA maximum) to less than 0.5% (maximum), ensure
that RBOT is less than 30 kΩ.
INDUCTOR SELECTION
The inductor value is determined by the operating frequency,
input voltage, output voltage, and ripple current. A small inductor
value leads to a larger inductor current ripple and provides a
faster transient response; however, it degrades efficiency. A
large inductor value leads to a smaller current ripple and good
efficiency but slows the transient response. As a guideline, the
inductor current ripple, ΔIL, is typically set to 1/3 of the maximum
load current trade-off between the transient response and efficiency.
The inductor value can be calculated using the following equation:
L=
ΔI L
2
Ensure that the rms current of the selected inductor is greater
than the maximum load current and that its saturation current
is greater than the peak current limit of the regulator.
SYNC/MODE 9
R2
10kΩ
COUT
22µF
X5R
6.3V
The negative current limit (−0.6 A) also limits the minimum
inductor value. The inductor current ripple (ΔIL) calculated
by the selected inductor should not exceed 1.2 A.
(VIN − VOUT )× D
Table 5. Recommended L and COUT Values for the ADP2119
VIN (V)
3.3
3.3
3.3
3.3
3.3
5
5
5
5
5
5
VOUT (V)
1.0
1.2
1.5
1.8
2.5
1.0
1.2
1.5
1.8
2.5
3.3
L (μH)
1
1
1
1
1
1
1.5
1.5
1.5
1.5
1.5
COUT (μF)
22 + 22
22 + 22
22 + 10
22
22
22 + 22
22 + 22
22 +10
22 +10
22
22
Table 6. Recommended L and COUT Values for the ADP2120
ΔI L × f S
where:
VIN is the input voltage.
VOUT is the output voltage.
ΔIL is the inductor current ripple.
D is the duty cycle. D = VOUT/VIN.
The regulator uses slope compensation in the current loop to
prevent subharmonic oscillations when the duty cycle is larger
than 50%. The internal slope compensation limits the minimum
inductor value.
VIN (V)
3.3
3.3
3.3
3.3
3.3
5
5
5
5
5
5
Rev. 0 | Page 18 of 24
VOUT (V)
1.0
1.2
1.5
1.8
2.5
1.0
1.2
1.5
1.8
2.5
3.3
L (μH)
1.5
1.5
1.5
1.5
1.5
1.5
1.5
2.2
2.2
2.2
2.2
COUT (μF)
22 + 10
22 + 10
22 + 10
10 + 10
10 + 10
22 + 10
22 + 10
22 + 10
10 + 10
10 + 10
10 + 10
ADP2119/ADP2120
Higher or lower inductor and output capacitor values can be
used in the regulator, but the system stability and load transient
performance need to be checked. The minimum output capacitor
is 22 μF for the ADP2119 and 10 μF for the ADP2120, and the
inductor range is 1 μH to 3.3 μH.
A common application is coincident tracking (see Figure 52).
Coincident tracking limits the slave output voltage to be the
same as the master voltage until it reaches regulation. Connect
the TRK pin to a resistor divider from the master voltage. For
coincident tracking, set RTRKT = RTOP and RTRKB = RBOT.
Table 7. Recommended Inductors
VMASTER
VSLAVE
Table 8. Recommended Capacitors
Part Number
GRM31CR60J226KE19
GRM319R60J106KE19
C3216X5R0J226M
C3216X5R0J106M
Description
22 μF, 6.3 V, X5R, 1206
10 μF, 6.3 V, X5R, 1206
22 μF, 6.3 V, X5R, 1206
10 μF, 6.3 V, X5R, 1206
INPUT CAPACITOR SELECTION
The input capacitor reduces the input voltage ripple caused by the
switch current on PVIN. Place the input capacitor as close as
possible to the PVIN pin. A 10 μF or 22 μF ceramic capacitor is
recommended. The rms current rating of the input capacitor
should be larger than calculated by the following equation:
TIME
Figure 52. Coincident Tracking
Ratiometric tracking is shown in Figure 53. The slave output is
limited to a fraction of the master voltage. In this application,
the slave and master voltages reach the final value at the same
time. The ratio of the slave output voltage to the master voltage
is a function of the two dividers (see the following equation).
VSLAVE
VMASTER
VMASTER
VOLTAGE TRACKING
The ADP2119/ADP2120 include a tracking feature that allows
the output (slave voltage) to be configured to track an external
voltage (master voltage), as shown in Figure 51.
ADP2119/
ADP2120
TRK
Figure 53. Ratiometric Tracking
RTOP
08716-051
FB
RBOT
VSLAVE
TIME
VSLAVE
RTRKT
RTRKB
VOLTAGE
I RMS = IO × D × (1 − D)
VMASTER
RTOP
RBOT
=
RTRKT
1+
RTRKB
1+
Figure 51. Voltage Tracking
Rev. 0 | Page 19 of 24
08716-053
Manufacturer
Murata
Murata
TDK
TDK
08716-052
Part Number
CDRH5D18BHPNP, CDR6D23MNNP
DE4518C, D62LCB
LPS5030, LPS5015
VOLTAGE
Manufacturer
Sumida
TOKO
Coilcraft
ADP2119/ADP2120
TYPICAL APPLICATION CIRCUITS
C1
0.1µF
VIN
5V
R1
10Ω
ADP2119
1
VIN
EN 10
2
PVIN
3
SW
4
PGND
5
GND
SYNC/MODE 9
R2
10kΩ
COUT1
22µF
X5R
6.3V
L
1.5µH
COUT2
22µF
X5R
6.3V
RTOP
10kΩ
RBOT
10kΩ
PGOOD 8
TRK 7
FB 6
08716-054
VOUT
1.2V
2A
CIN
22µF
X5R
6.3V
L: CDRH5D18BHPNP-1R5M SUMIDA
CIN, COUT1, COUT2: GRM31CR60J226KE19 MURATA
Figure 54. 1.2 V, 2 A, Step-Down Regulator, Forced Continuous Conduction Mode (ADP2119)
C1
0.1µF
VOUT
1.8V
2A
CIN
22µF
X5R
6.3V
COUT1
10µF
X5R
6.3V
R1
10Ω
L
1.5µH
COUT2
22µF
X5R
6.3V
RTOP
20kΩ
RBOT
10kΩ
ADP2119
1
VIN
2
PVIN
3
SW
4
PGND
5
GND
EN 10
SYNC/MODE 9
PGOOD 8
R2
10kΩ
TRK 7
FB 6
L: CDRH5D18BHPNP-1R5M SUMIDA
CIN, COUT2: GRM31CR60J226KE19 MURATA
COUT1: GRM319R60J106KE19 MURATA
Figure 55. 1.8 V, 2 A, Step-Down Regulator, Enable PFM Mode (ADP2119)
Rev. 0 | Page 20 of 24
08716-055
VIN
5V
ADP2119/ADP2120
C1
0.1µF
VIN
5V
CIN
22µF
X5R
6.3V
R1
10Ω
ADP2119
1
VIN
2
PVIN
EN 10
EXTERNAL
CLOCK
SYNC/MODE 9
R2
10kΩ
L
1.5µH
COUT
22µF
X5R
6.3V
RTOP
47.5kΩ
3
SW
4
PGND
5
GND
RBOT
15kΩ
PGOOD 8
TRK 7
FB 6
08716-056
VOUT
2.5V
2A
L: CDRH5D18BHPNP-1R5M SUMIDA
CIN, COUT: GRM31CR60J226KE19 MURATA
Figure 56. 2.5 V, 2 A, Step-Down Regulator, Synchronized to External Clock (ADP2119)
C1
0.1µF
VIN
5V
CIN
22µF
X5R
6.3V
R1
10Ω
ADP2120
1 VIN
2 PVIN
VOUT
1.5V
1.25A
EN 10
SYNC/MODE 9
R2
10kΩ
COUT1
22µF
X5R
6.3V
3 SW
L
2.2µH
COUT2
10µF
X5R
6.3V
PGOOD 8
4 PGND
RTOP
15kΩ
VMASTER
TRK 7
5 GND
RBOT
10kΩ
RTRKT
15kΩ
RTRKB
10kΩ
FB 6
08716-057
L: LPS5030-222MLB COILCRAFT
CIN, COUT1: GRM31CR60J226KE19 MURATA
COUT2: GRM319R60J106KE19 MURATA
Figure 57. 1.5 V, 1.25 A, Step-Down Regulator, Tracking Mode (ADP2120)
C1
0.1µF
VIN
5V
CIN
22µF
X5R
6.3V
R1
10Ω
ADP2120
1 VIN
2 PVIN
SYNC/MODE 9
R2
10kΩ
COUT1
22µF
X5R
6.3V
L
1.5µH
COUT2
10µF
X5R
6.3V
3 SW
4 PGND
RTOP
10kΩ
RBOT
10kΩ
5 GND
L: CDRH5D18BHPNP-1R5M SUMIDA
CIN, COUT1: GRM31CR60J226KE19 MURATA
COUT2: GRM319R60J106KE19 MURATA
PGOOD 8
TRK 7
FB 6
08716-058
VOUT
1.2V
1.25A
EN 10
Figure 58. 1.2 V, 1.25 A, Step-Down Regulator, Forced Continuous Conduction Mode (ADP2120)
Rev. 0 | Page 21 of 24
ADP2119/ADP2120
OUTLINE DIMENSIONS
2.48
2.38
2.23
3.10
3.00 SQ
2.90
0.50 BSC
6
PIN 1 INDEX
AREA
0.50
0.40
0.30
5
TOP VIEW
1.74
1.64
1.49
0.05 MAX
0.02 NOM
PIN 1
INDICATOR
(R 0.15)
FOR PROPER CONNECTION OF
THE EXPOSED PAD, REFER TO
THE PIN CONFIGURATION AND
FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.
0.20 REF
121009-A
0.30
0.25
0.20
1
BOTTOM VIEW
0.80
0.75
0.70
SEATING
PLANE
10
EXPOSED
PAD
Figure 59. 10-Lead Lead Frame Chip Scale Package [LFCSP_WD]
3 mm × 3 mm Body, Very Very Thin, Dual Lead
(CP-10-9)
Dimensions shown in millimeters
ORDERING GUIDE
Model 1
ADP2119ACPZ-R7
ADP2119ACPZ-1.0-R7
ADP2119ACPZ-1.2-R7
ADP2119ACPZ-1.5-R7
ADP2119ACPZ-1.8-R7
ADP2119ACPZ-2.5-R7
ADP2119ACPZ-3.3-R7
ADP2120ACPZ-R7
ADP2120ACPZ-1.0-R7
ADP2120ACPZ-1.2-R7
ADP2120ACPZ-1.5-R7
ADP2120ACPZ-1.8-R7
ADP2120ACPZ-2.5-R7
ADP2120ACPZ-3.3-R7
1
Output Current
2A
2A
2A
2A
2A
2A
2A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
1.25 A
Temperature Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Output Voltage
ADJ
1.0 V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
ADJ
1.0 V
1.2 V
1.5 V
1.8 V
2.5 V
3.3 V
Z = RoHS Compliant Part.
Rev. 0 | Page 22 of 24
Package Description
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
10-Lead LFCSP_WD
Package
Option
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
CP-10-9
Branding
LFL
LEV
LFK
LFM
LFN
LFP
LFR
LEW
LFS
LFT
LFU
LFV
LFW
LFX
ADP2119/ADP2120
NOTES
Rev. 0 | Page 23 of 24
ADP2119/ADP2120
NOTES
©2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D08716-0-6/10(0)
Rev. 0 | Page 24 of 24