ANPEC APW7181KI-TRG

APW7181
Full-Bridge Inverter Gate Driver
Features
General Description
•
Wide Input Voltage Range: 4.5V to 13.2V
•
Drives a Full-Bridge Inverter(High-Side P-
The APW7181 is designed to drive two high-side P-channel MOSFETs and two low-side N-channel MOSFETs in a
full-bridge configuration. The outputs are independently
controlled by PWM1 and PWM2 input signals.
Channel MOSFETs and Low-Side N-Channel
MOSFETs)
•
Thermal Shutdown Protection
•
VCC Power-On-Reset
•
SOP-8 Package
•
Lead Free and Green Devices Available
The other features include VCC power-on-reset and thermal shutdown.
Simplified Application Circuit
VIN
(RoHS Compliant)
PGATE1
Applications
•
NGATE1
LCD Monitor and LCD TV
PWM2
PWM2
PGATE2 1
8 PGATE1
PWM1 2
7 NGATE1
VIN
PGATE2
PWM CONTROLLER
APW7181
GND 3
PWM1
LAMP
Pin Configuration
PWM1
NGATE2
6 VCC
PWM2 4
5 NGATE2
APW7181
SOP-8
TOP VIEW
Ordering and Marking Information
Package Code
K: SOP-8
Operating Ambient Temperature Range
I : -40 to 85 oC
Handling Code
TR : Tape & Reel
Assembly Material
G : Halogen and Lead Free Device
APW7181
Assembly Material
Handling Code
Temperature Range
Package Code
APW7181
K:
APW7181
XXXXX
XXXXX - Date Code
Note: ANPEC lead-free products contain molding compounds/die attach materials and 100% matte tin plate termination finish; which
are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD-020C for
MSL classification at lead-free peak reflow temperature. ANPEC defines “Green” to mean lead-free (RoHS compliant) and halogen
free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by
weight).
ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and
advise customers to obtain the latest version of relevant information to verify before placing orders.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
1
www.anpec.com.tw
APW7181
Absolute Maximum Ratings
Symbol
VCC
(Note 1)
Parameter
Rating
Unit
-0.3 to 16
V
-0.3 to VCC+0.3
V
VCC Pin to GND
PGATEs, NGATEs Pins to GND
PWM1, PWM2 Pins to GND
TJ
-0.3 to 16
Maximum Junction Temperature
TSTG
Storage Temperature Range
TSDR
Maximum Lead Soldering Temperature, 10 Seconds
V
150
o
-65 to 150
o
260
o
C
C
C
Note 1 : Stresses beyond the absolute maximum rating may damage the device and exposure to absolute maximum rating conditions
for extended periods may affect device reliability.
Thermal Characteristics
(Note 2)
Symbol
θJA
Parameter
Typical Value
Unit
150
°C/W
Junction to Ambient Thermal Resistance
SOP-8
Note 2 :θJA is measured with the component mounted on a high effective thermal conductivity test board in free air.
Recommended Operating Conditions
Symbol
VCC
VPWM1, VPWM2
CVCC
Parameter
VCC to GND
PWM1, PWM2 Pins to GND
VCC Pin Input Capacitor (MLCC)
Range
Unit
4.5 to 13.2
V
0 to 13.2
V
1 to 10
µF
TJ
Junction Temperature
-40 to 125
°C
TA
Ambient Temperature
-40 to 85
°C
Electrical Characteristics
Refer to the typical application circuit. These specifications apply over VCC=12V, TA= -40~85°C, unless otherwise specified.
Typical values are at TA=25°C.
Symbol
Parameter
Test Conditions
Min.
APW7181
Typ.
Max.
Unit
POWER SUPPLY
VPWM1=VPWM2=0V
-
400
600
µA
VPWM1=VPWM2=VCC
-
550
750
µA
VCC POR Threshold
VCC rising
2
3
4.1
V
VIH
PWMs Logic High Threshold
VCC=4.5V to 13.2V
3.2
-
-
V
VIL
PWMs Logic Low Threshold
VCC=4.5V to 13.2V
-
-
1.2
V
PWMs Input Current
VPWMs=13.2V
-
13.2
-
µA
IQ
VCC Quiescent Current
LOGIC INPUT
IPWMs
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
2
www.anpec.com.tw
APW7181
Electrical Characteristics (Cont.)
Refer to the typical application circuit. These specifications apply over VCC=12V, TA= -40~85°C, unless otherwise specified.
Typical values are at TA=25°C.
Symbol
Parameter
Test Conditions
APW7181
Min.
Typ.
Max.
Source Current=0.1A, VCC=12V
-
3.1
4.9
Source Current =0.1A, VCC=5V
-
5
8
Sink Current=0.1A, VCC=12V
-
5.3
9.1
Sink Current =0.1A, VCC=5V
-
8.5
14.6
Unit
TOP DRIVER
Gate Source Resistance
Gate Sink Resistance
Ω
BOTTOM DRIVER
Gate Source Resistance
Gate Sink Resistance
Source Current =0.1A, VCC =12V
-
6.2
10
Source Current =0.1A, VCC =5V
-
10
16
Sink Current =0.1A, VCC =12V
-
2.4
4
Sink Current =0.1A, VCC =5V
-
3.9
7
PWMs rising to PGATEs rising, VCC=5~12V
-
50
100
PWMs falling to NGATEs falling, VCC=5~12V
-
50
100
250
350
450
225
375
525
250
350
450
225
375
525
-
150
-
°C
-
40
-
°C
Ω
TIMING
tp
Propagation Delay
td1_12V
Delay Time1
td1_5V
td2_12V
Delay Time2
td2_5V
PGATEs rising to NGATEs rising, VCC=12V,
TA= -40°C ~85°C
PGATEs rising to NGATEs rising, VCC=5V,
TA= -40°C ~85°C
NGATEs falling to PGATEs falling, VCC=12V,
TA=-40°C ~85°C
NGATEs falling to PGATEs falling, VCC=5V,
TA=-40°C ~85°C
ns
ns
ns
THERMAL SHUTDOWN
Thermal Shutdown Threshold
TJ rising
Thermal Shutdown Hysteresis
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
3
www.anpec.com.tw
APW7181
Typical Operating Characteristics
Delay Time vs. Junction Temperature
Delay Time vs. VCC Supply Voltage
500
400
TA=25oC
Vcc=12V
450
Delay Time (ns)
Delay Time (ns)
Delay Time2 (td2)
380
360
Delay Time1 (td1)
340
400
Delay Time1 (td1)
350
Delay Time2 (td2)
300
320
250
200
-50
300
4
6
10
8
12
14
500
VCC Quiescent current, IQ (µA)
Delay Time (ns)
450
400
Delay Time2
(td2)
Delay Time1 (td1)
300
250
50
75
100
125
150
TA=25oC
VPWM=0V
450
400
350
300
250
200
-25
0
25
50
75
100
125
4
150
6
10
8
12
(oC)
VCC Supply Voltage, VCC (V)
VCC Supply Current vs.
Junction Temperature
VCC Supply Current vs.
PWM Frequency
Junction Temperature, TJ
700
100000
PWM1=PWM2
Frequency=60kHz
VCC Supply Current (µA)
VCC=12V
VCC Supply Current (µA)
25
500
Vcc=5V
200
-50
0
VCC Quiescent Current
vs. VCC Supply Voltage
Delay Time vs. Junction Temperature
350
-25
Junction Temperature, TJ (oC)
VCC Supply Voltage, VCC (V)
650
600
550
500
14
VCC=12V
CL = 4700pF
TA=25oC
Both Inputs Enable
CL = 2200pF
10000
1000
CL = 0F
100
-50
-25
0
25
50
75
100
125
150
10
Junction Temperature, TJ (oC)
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
100
1000
PWM Frequency (kHz)
4
www.anpec.com.tw
APW7181
Typical Operating Characteristics (Cont.)
NGATE Source/Sink Resistance
vs. Junction Temperature
PGATE Source/Sink Resistance vs.
Junction Temperature
8
Source/Sink Resistance (Ω)
7
6
Source/Sink Resistance (Ω)
8
IPGATE source current=0.1A
IPGATE sink current=0.1A
VCC=12V
Sink
5
4
Source
3
2
1
INGATE source current=0.1A
INGATE sink current=0.1A
7
Source
VCC=12V
6
5
4
3
Sink
2
1
0
0
-50
-25
0
25
50
75
100
125
-50
150
-25
Junction Temperature, TJ (oC)
0
25
50
75
100
125
150
Junction Temperature, TJ (oC)
Pin Description
PIN
FUNCTION
NO.
NAME
1
PGATE2
2
PWM1
3
GND
4
PWM2
5
NGATE2
6
VCC
7
NGATE1
Low-Side Gate Driver Output for N-channel MOSFET of Channel 1.
8
PGATE1
High-Side Gate Driver Output for P-channel MOSFET of Channel 1.
High-Side Gate Driver Output for P-channel MOSFET of Channel 2.
Input PWM Signal for Channel 1.
Ground.
Input PWM Signal for Channel 2.
Low-Side Gate Driver Output for N-channel MOSFET of Channel 2.
Power Supply Input.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
5
www.anpec.com.tw
APW7181
Block Diagram
VCC
PGATE1
Driver
NGATE1
Driver
PGATE2
Driver
Hysteresis
Driver
PWM1
POR
NGATE2
Delay
Time
Control
Thermal
Shutdown
PWM2
Hysteresis
Delay
Time
Control
GND
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
6
www.anpec.com.tw
APW7181
Typical Application Circuit
F1
VIN
10µFx4
R1
10k
Fuse
R2
10k
D2
D1
5V or 12V
C5
6
PGATE1
VCC
C7
PGATE2
C4
Q3
8
2.2µF
2
Q1
C1 C2 C3
1
T1
0.047µF
C6
CCFL
0.047µF
PWM1
7
Q2
Q4
NGATE1
4
PWM2
NGATE2
5
GND
Q1, Q3 : APM4015P
3
Q2, Q4 : APM4010N
Timing Diagram
PWM
PGATE
NGATE
tp
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
td1
tp
7
td2
www.anpec.com.tw
APW7181
Function Description
Application Information
Thermal Shutdown
Layout Consideration
ο
If the junction temperature exceeds 150 C, the thermal
shutdown circuit will pull PGATE outputs high and NGATE
In any high switching frequency application, a correct layout is important to ensure proper operation of the device.
outputs low thus turning high-side and low-side MOSFET
off. When the driver cools down below 110οC after a ther-
With power devices switching at high frequency, the resulting current transient will cause voltage spike across
mal shutdown, it resumes normal operation and follows
the PWM input signals.
the interconnecting impedance and parasitic circuit
elements. As an example, consider the turn-off transition
Power-On-Reset (POR)
of the PWM MOSFET. Before turn-off, the MOSFET is carrying the full load current. During turn-off, current stops
The APW7181 provides the power-on-reset function that
keeps the driver disable when the VCC voltage is insuffi-
flowing in the MOSFET and is free-wheeling by the lower
MOSFET and parasitic diode. Any parasitic inductance of
cient to driver external MOSFETs reliably. The PGATE outputs remain high and the NGATE outputs remain low
the circuit generates a large voltage spike during the
switching interval. In general, using short and wide printed
until the VCC voltage exceeds POR threshold. Once the
POR threshold is reached, the condition of gate driver
circuit traces should minimize interconnecting impedances and the magnitude of voltage spike. Below is a
outputs is defined by the PWM signals.
checklist for your layout :
- Keep the switching nodes (PGATE, NGATE and the
State
PGATE
NGATE
PWM
L
L
L
Signal
H
H
H
H
L
Thermal Shutdown
drain of the MOSFETs) away from sensitive small signal nodes (PWM1, PWM2, MS, and DTC ) since these
nodes are fast moving signals. Therefore, keep traces
to these nodes as short as possible.
- Place the drain of the P-MOSFET and the drain of the NMOSFET as close as possible to minimize the imped
ance with wide layout plane between the two pads and
Table 1. Truth Table
reduce the voltage bounce of the node.
- The traces from the gate drivers to the MOSFETs
(PGATE and NGATE) should be short and wide.
- The VCC decoupling capacitor (C7), C5, C6, and RDTC
should be close to their pins.
- The input capacitor should be near the source of the
P-MOSFET.
- The drain of the MOSFETs should be a large plane
for heat sinking.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
8
www.anpec.com.tw
APW7181
Package Information
SOP-8
D
E
E1
SEE VIEW A
h X 45
°
c
A
0.25
b
GAUGE PLANE
SEATING PLANE
A1
A2
e
L
VIEW A
S
Y
M
B
O
L
SOP-8
MILLIMETERS
MIN.
INCHES
MAX.
A
MIN.
MAX.
1.75
0.069
0.004
0.25
0.010
A1
0.10
A2
1.25
b
0.31
0.51
0.012
0.020
c
0.17
0.25
0.007
0.010
D
4.80
5.00
0.189
0.197
E
5.80
6.20
0.228
0.244
E1
3.80
4.00
0.150
0.157
e
0.049
1.27 BSC
0.050 BSC
h
0.25
0.50
0.010
0.020
L
0.40
1.27
0.016
0.050
0
0°
8°
0°
8°
Note: 1. Follow JEDEC MS-012 AA.
2. Dimension “D” does not include mold flash, protrusions or gate burrs.
Mold flash, protrusion or gate burrs shall not exceed 6 mil per side.
3. Dimension “E” does not include inter-lead flash or protrusions.
Inter-lead flash and protrusions shall not exceed 10 mil per side.
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
9
www.anpec.com.tw
APW7181
Carrier Tape & Reel Dimensions
P0
P2
P1
A
B0
W
F
E1
OD0
K0
A0
A
OD1 B
B
T
SECTION A-A
SECTION B-B
H
A
d
T1
Application
SOP-8
A
H
T1
C
d
D
W
E1
F
330.0±2.00
50 MIN.
12.4+2.00
-0.00
13.0+0.50
-0.20
1.5 MIN.
20.2 MIN.
12.0±0.30
1.75±0.10
5.5±0.05
P0
P1
P2
D0
D1
T
A0
B0
K0
4.0±0.10
8.0±0.10
2.0±0.05
1.5+0.10
-0.00
1.5 MIN.
0.6+0.00
-0.40
6.40±0.20
5.20±0.20
2.10±0.20
(mm)
Devices Per Unit
Package Type
SOP-8
Unit
Tape & Reel
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
Quantity
2500
10
www.anpec.com.tw
APW7181
Taping Direction Information
SOP-8
USER DIRECTION OF FEED
Classification Profile
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
11
www.anpec.com.tw
APW7181
Classification Reflow Profiles
Profile Feature
Sn-Pb Eutectic Assembly
Pb-Free Assembly
100 °C
150 °C
60-120 seconds
150 °C
200 °C
60-120 seconds
3 °C/second max.
3°C/second max.
183 °C
60-150 seconds
217 °C
60-150 seconds
See Classification Temp in table 1
See Classification Temp in table 2
Time (tP)** within 5°C of the specified
classification temperature (Tc)
20** seconds
30** seconds
Average ramp-down rate (Tp to Tsmax)
6 °C/second max.
6 °C/second max.
6 minutes max.
8 minutes max.
Preheat & Soak
Temperature min (Tsmin)
Temperature max (Tsmax)
Time (Tsmin to Tsmax) (ts)
Average ramp-up rate
(Tsmax to TP)
Liquidous temperature (TL)
Time at liquidous (tL)
Peak
(Tp)*
package
body
Temperature
Time 25°C to peak temperature
* Tolerance for peak profile Temperature (Tp) is defined as a supplier minimum and a user maximum.
** Tolerance for time at peak profile temperature (tp) is defined as a supplier minimum and a user maximum.
Table 1. SnPb Eutectic Process – Classification Temperatures (Tc)
3
Package
Volume mm
Thickness
<350
<2.5 mm
235 °C
≥2.5 mm
220 °C
Volume mm
≥350
220 °C
220 °C
3
Table 2. Pb-free Process – Classification Temperatures (Tc)
Package
Thickness
<1.6 mm
1.6 mm – 2.5 mm
≥2.5 mm
Volume mm
<350
260 °C
260 °C
250 °C
3
3
Volume mm
350-2000
260 °C
250 °C
245 °C
Volume mm
>2000
260 °C
245 °C
245 °C
3
Reliability Test Program
Test item
Method
Description
SOLDERABILITY
JESD-22, B102
5 Sec, 245°C
HOLT
JESD-22, A108
1000 Hrs, Bias @ 125°C
PCT
JESD-22, A102
168 Hrs, 100%RH, 2atm, 121°C
TCT
JESD-22, A104
500 Cycles, -65°C~150°C
ESD
JESD-22, A114; A115
VHBM≧2KV, VMM≧200V
Latch-Up
JESD 78
10ms, 1tr≧100mA
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
12
www.anpec.com.tw
APW7181
Customer Service
Anpec Electronics Corp.
Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd.,
Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838
Copyright  ANPEC Electronics Corp.
Rev. A.2 - Jan., 2009
13
www.anpec.com.tw