Low Power, Low Noise Voltage References with Sink/Source Capability ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 FEATURES APPLICATIONS Battery-powered instruments Portable medical instruments Data acquisition systems Industrial process controls Automotive NC 1 ADR36x 5 TRIM 4 VOUT TOP VIEW GND 2 (Not to Scale) VIN 3 NC = NO CONNECT 05467-001 Compact TSOT packages Low temperature coefficient B grade: 9 ppm/°C A grade: 25 ppm/°C Initial accuracy B grade: ±3 mV maximum A grade: ±6 mV maximum Ultralow output noise: 6.8 μV p-p (0.1 Hz to 10 Hz) Low dropout: 300 mV Low supply current: 190 μA maximum No external capacitor required Output current: +5 mA/−1 mA Wide temperature range: −40°C to +125°C Qualified for automotive applications PIN CONFIGURATION Figure 1. 5-Lead TSOT (UJ) Table 1. ADR36x Family of Devices Model ADR360B ADR360A ADR361B ADR361A ADR363B ADR363A ADR364B ADR364A ADR365B ADR365A ADR366B ADR366A 1 VOUT (V) 1 2.048 2.048 2.5 2.5 3.0 3.0 4.096 4.096 5.0 5.0 3.3 3.3 Temperature Coefficient (ppm/°C) 9 25 9 25 9 25 9 25 9 25 9 25 Accuracy (mV) ±3 ±6 ±3 ±6 ±3 ±6 ±4 ±8 ±4 ±8 ±4 ±8 Contact Analog Devices for other voltage options. GENERAL DESCRIPTION The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band gap voltage references that offer low power and high precision in tiny footprints. Using patented temperature drift curvature correction techniques from Analog Devices, Inc., the ADR36x references achieve a low temperature drift of 9 ppm/°C in a TSOT package. supply of 300 mV above the output. Their advanced design eliminates the need for external capacitors, which further reduces board space and system cost. The combination of low power operation, small size, and ease of use makes the ADR36x precision voltage references ideally suited for battery-operated applications. See the Ordering Guide for automotive grades. The ADR36x family of micropower, low dropout voltage references provides a stable output voltage from a minimum Rev. D Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 www.analog.com Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved. ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TABLE OF CONTENTS Features .............................................................................................. 1 Thermal Resistance .......................................................................9 Applications....................................................................................... 1 ESD Caution...................................................................................9 Pin Configuration............................................................................. 1 Typical Performance Characteristics ........................................... 10 General Description ......................................................................... 1 Terminology .................................................................................... 15 Revision History ............................................................................... 2 Theory of Operation ...................................................................... 16 Specifications..................................................................................... 3 Device Power Dissipation Considerations.............................. 16 ADR360 Electrical Characteristics............................................. 3 Input Capacitor........................................................................... 16 ADR361 Electrical Characteristics............................................. 4 Output Capacitor........................................................................ 16 ADR363 Electrical Characteristics............................................. 5 Applications Information .............................................................. 17 ADR364 Electrical Characteristics............................................. 6 Basic Voltage Reference Connection ....................................... 17 ADR365 Electrical Characteristics............................................. 7 Outline Dimensions ....................................................................... 19 ADR366 Electrical Characteristics............................................. 8 Ordering Guide .......................................................................... 20 Absolute Maximum Ratings............................................................ 9 Automotive Products ................................................................. 20 REVISION HISTORY 10/10—Rev. C to Rev. D Changes to Features Section and General Description Section . 1 Changed Supply Voltage Headroom to Dropout Voltage Throughout ....................................................................................... 3 Changed 0.1 Hz to 10 Hz to f = 0.1 Hz to 10 Hz Throughout.... 3 Change to Table 8 ............................................................................. 9 Changes to Figure 13...................................................................... 11 Changes to Figure 14...................................................................... 12 Changes to Ordering Guide .......................................................... 20 Added Automotive Products Section .......................................... 20 7/07—Rev. B to Rev. C Changes to Ripple Rejection Ratio in Table 2............................... 3 Changes to Ripple Rejection Ratio in Table 3............................... 4 Changes to Ripple Rejection Ratio in Table 4............................... 5 Changes to Ripple Rejection Ratio in Table 5............................... 6 Changes to Ripple Rejection Ratio in Table 6............................... 7 Changes to Ripple Rejection Ratio in Table 7............................... 8 2/07—Rev. A to Rev. B Changes to Table 7.............................................................................8 Changes to Figure 6........................................................................ 11 Changes to Figure 13, Figure 14, Figure 17, and Figure 27 Captions.................................................................. 12 Changes to Ordering Guide .......................................................... 19 3/06—Rev. 0 to Rev. A Changes to Figure 15 Caption ...................................................... 13 Changes to Figure 21 Caption ...................................................... 14 Changes to Theory of Operation Section.................................... 16 Changes to Figure 36...................................................................... 18 4/05—Revision 0: Initial Version Rev. D | Page 2 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 SPECIFICATIONS ADR360 ELECTRICAL CHARACTERISTICS VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted. Table 2. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.042 2.045 Typ 2.048 2.048 Max 2.054 2.051 ±6 ±0.29 ±3 ±0.15 25 9 300 VIN = 2.45 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 6.8 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 3 of 20 0.105 0.37 0.82 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR361 ELECTRICAL CHARACTERISTICS VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted. Table 3. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.494 2.497 Typ 2.500 2.500 Max 2.506 2.503 ±6 ±0.24 ±3 ±0.12 25 9 300 VIN = 2.8 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 8.25 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 4 of 20 0.125 0.45 1 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR363 ELECTRICAL CHARACTERISTICS VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 4. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 2.994 2.997 Typ 3.000 3.000 Max 3.006 3.003 ±6 ±0.2 ±3 ±0.1 25 9 300 VIN = 3.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 8.7 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 5 of 20 0.15 0.54 1.2 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR364 ELECTRICAL CHARACTERISTICS VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted. Table 5. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 4.088 4.092 Typ 4.096 4.096 Max 4.104 4.100 ±8 ±0.2 ±4 ±0.1 25 9 300 VIN = 4.4 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 11 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 6 of 20 0.205 0.735 1.75 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR365 ELECTRICAL CHARACTERISTICS VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted. Table 6. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 4.992 4.996 Typ 5.000 5.000 Max 5.008 5.004 ±8 ±0.16 ±4 ±0.08 25 9 300 VIN = 5.3 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 12.8 20 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 7 of 20 0.25 0.9 2 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ADR366 ELECTRICAL CHARACTERISTICS VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted. Table 7. Parameter OUTPUT VOLTAGE Symbol VOUT INITIAL ACCURACY VOUTERR TEMPERATURE COEFFICIENT TCVOUT DROPOUT VOLTAGE LINE REGULATION LOAD REGULATION VIN − VOUT ∆VOUT/∆VIN ∆VOUT/∆ILOAD QUIESCENT CURRENT VOLTAGE NOISE TURN-ON SETTLING TIME LONG-TERM STABILITY 1 OUTPUT VOLTAGE HYSTERESIS RIPPLE REJECTION RATIO SHORT CIRCUIT TO GND IIN eN p-p tR ∆VOUT ∆VOUT_HYS RRR ISC 1 Conditions A grade B grade A grade A grade B grade B grade A grade, −40°C < TA < +125°C B grade, −40°C < TA < +125°C Min 3.292 3.296 Typ 3.300 3.300 Max 3.308 3.304 ±8 ±0.25 ±4 ±0.125 25 9 300 VIN = 3.6 V to 15 V, −40°C < TA < +125°C ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V ILOAD = 0 mA to 8 mA, −40°C < TA < +125°C, VIN ≥ 4.75 V ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V −40°C < TA < +125°C f = 0.1 Hz to 10 Hz 1000 hours fIN = 60 Hz VIN = 5 V VIN = 15 V 150 9.3 25 50 100 −70 25 30 The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours. Rev. D | Page 8 of 20 0.165 0.6 0.6 1.35 190 Unit V V mV % mV % ppm/°C ppm/°C mV mV/V mV/mA mV/mA mV/mA μA μV p-p μs ppm ppm dB mA mA ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ABSOLUTE MAXIMUM RATINGS TA = 25°C, unless otherwise noted. THERMAL RESISTANCE Table 8. θJA is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages. Parameter Supply Voltage Output Short-Circuit Duration to GND VIN < 15 V VIN > 15 V Storage Temperature Range Operating Temperature Range Junction Temperature Range Lead Temperature (Soldering, 60 sec) Rating 18 V Table 9. Thermal Resistance Indefinite 10 sec −65°C to +125°C −40°C to +125°C −65°C to +150°C 300°C Package Type 5-Lead TSOT (UJ) ESD CAUTION Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Rev. D | Page 9 of 20 θJA 230 θJC 146 Unit °C/W ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TYPICAL PERFORMANCE CHARACTERISTICS 2.052 4.998 4.997 4.996 2.050 VOUT (V) VOUT (V) 4.995 2.048 4.994 4.993 4.992 2.046 –20 0 20 40 60 80 100 4.990 –40 120 05467-005 05467-002 2.044 –40 4.991 –25 –10 5 20 TEMPERATURE (°C) Figure 2. ADR360 Output Voltage vs. Temperature 50 65 80 95 110 125 Figure 5. ADR365 Output Voltage vs. Temperature 2.504 0.165 2.502 0.155 2.500 0.145 IDD (mA) VOUT (V) 35 TEMPERATURE (°C) +125°C +25°C 0.135 2.498 –40°C 05467-003 2.494 –40 –25 –10 5 20 35 50 65 80 95 110 0.115 2.8 125 05467-006 0.125 2.496 4.1 5.4 6.7 8.0 9.3 10.6 11.9 13.2 14.5 VIN (V) TEMPERATURE (°C) Figure 3. ADR361 Output Voltage vs. Temperature Figure 6. ADR361 Supply Current vs. Input Voltage 0.17 3.003 3.002 +125°C IDD (mA) 0.16 3.000 2.999 +25°C –40°C 0.15 2.997 2.996 –40 –20 0 20 40 60 80 100 120 0.14 5.3 05467-007 2.998 05467-004 VOUT (V) 3.001 6.3 7.3 8.3 9.3 10.3 11.3 12.3 13.3 VIN (V) TEMPERATURE (°C) Figure 4. ADR363 Output Voltage vs. Temperature Figure 7. ADR365 Supply Current vs. Input Voltage Rev. D | Page 10 of 20 14.3 9 0.16 8 0.14 7 0.12 VIN = 9V 0.10 0.08 VIN = 3.5V 0.06 0.04 0.02 0 –40 –25 –10 5 20 35 50 65 80 95 110 6 5 4 3 2 05467-009 LINE REGULATION (ppm/V) 0.18 05467-036 LOAD REGULATION (mV/mA) ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 1 0 –40 125 –25 –10 5 TEMPERATURE (°C) Figure 8. ADR361 Load Regulation vs. Temperature 35 50 65 80 95 110 125 Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V 0.14 12 0.12 10 0.10 LINE REGULATION (ppm/V) VIN = 9V 0.08 0.06 VIN = 6V 0.04 8 6 4 2 0 –40 05467-037 0.02 –25 –10 5 20 35 50 65 80 95 110 0 –40 125 05467-010 LOAD REGULATION (mV/mA) 20 TEMPERATURE (°C) –20 0 TEMPERATURE (°C) 20 40 60 80 100 120 TEMPERATURE (°C) Figure 9. ADR365 Load Regulation vs. Temperature Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V 1.6 25 1.4 +125°C DROPOUT VOLTAGE (V) LINE REGULATION (ppm/V) 20 15 10 1.2 1.0 0.8 0.6 –40°C +25°C 0.4 –20 0 20 40 60 80 100 120 TEMPERATURE (°C) 0.2 0 –2 05467-011 0 –40 05467-008 5 0 2 4 6 8 LOAD CURRENT (mA) Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V Rev. D | Page 11 of 20 Figure 13. ADR361 Dropout Voltage vs. Load Current 10 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 1.8 1.6 +125°C 1.2 1.0 0.8 +25°C 0.6 0.4 0 –2 0 2 4 TIME = 1s/DIV 05467-012 –40°C 6 8 05467-015 2µV/DIV 0.2 10 LOAD CURRENT (mA) Figure 17. ADR363 0.1 Hz to 10 Hz Noise Figure 14. ADR365 Dropout Voltage vs. Load Current 2µV/DIV 05467-013 TIME = 1s/DIV 05467-016 50µV/DIV TIME = 1s/DIV Figure 18. ADR363 10 Hz to 10 kHz Noise Figure 15. ADR361 0.1 Hz to 10 Hz Noise TIME = 1s/DIV TIME = 1s/DIV Figure 19. ADR365 0.1 Hz to 10 Hz Noise Figure 16. ADR361 10 Hz to 10 kHz Noise Rev. D | Page 12 of 20 05467-017 2µV/DIV 50µV/DIV 05467-014 DROPOUT VOLTAGE (V) 1.4 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 500mV/DIV VIN VOUT 500mV/DIV 4µs/DIV Figure 20. ADR365 10 Hz to 10 kHz Noise 05467-019 TIME = 1s/DIV 05467-018 100µV/DIV Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors 50 45 VIN 35 500mV/DIV 30 25 20 15 10 VOUT 05467-031 5 0 100 1k 10k 500mV/DIV 100k 10µs/DIV FREQUENCY (Hz) Figure 21. Output Impedance vs. Frequency 05467-020 OUTPUT IMPEDANCE (Ω) 40 Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors 10 500mV/DIV –20 VIN –30 –40 –50 –60 –70 –80 –90 100 1k 10k 100k VOUT 20mV/DIV 1M 100µs/DIV FREQUENCY (Hz) Figure 22. Ripple Rejection Ratio vs. Frequency 05467-021 05467-030 RIPPLE REJECTION RATIO (dB) 0 –10 Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor Rev. D | Page 13 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 5V/DIV LOAD ON LOAD OFF INPUT VOUT 100mV/DIV 2ms/DIV OUTPUT 400ns/DIV 05467-023 05467-032 2.5V/DIV Figure 29. ADR361 Turn-Off Response Time at 5 V Figure 26. ADR361 Load Transient Response VIN LOAD ON 5V/DIV VOUT 100mV/DIV 05467-033 2V/DIV 100µs/DIV Figure 27. ADR361 Load Transient Response with 0.1 μF Output Capacitor 05467-034 VOUT 100µs/DIV Figure 30. ADR361 Turn-On Response Time, 0.1 μF Output Capacitor VIN 5V/DIV INPUT 5V/DIV VOUT 2V/DIV 10µs/DIV Figure 28. ADR361 Turn-On Response Time at 5 V 2ms/DIV 05467-035 OUTPUT 05467-022 2.5V/DIV Figure 31. ADR361 Turn-Off Response Time, 0.1 μF Output Capacitor Rev. D | Page 14 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 TERMINOLOGY Temperature Coefficient The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This parameter is expressed in ppm/°C and can be determined by Long-Term Stability The typical shift of output voltage at 25°C on a sample of parts subjected to a test of 1000 hours at 25°C. ΔVOUT = VOUT (t 0 ) − VOUT (t 1 ) V (T ) − VOUT (T1 ) × 106 TCVOUT [ppm/°C] = OUT 2 VOUT (25°C ) × (T2 − T1 ) ⎛ V (t 0 ) –VOUT (t 1 ) ⎞ ΔVOUT [ppm ] = ⎜⎜ OUT × 10 6 ⎟⎟ V ( t ) OUT 0 ⎝ ⎠ where: VOUT (25°C) = VOUT at 25°C. VOUT (T1) = VOUT at Temperature 1. VOUT (T2) = VOUT at Temperature 2. where: VOUT (t0) = VOUT at 25°C at Time 0. VOUT (t1) = VOUT at 25°C after 1000 hours operation at 25°C. Line Regulation The change in output voltage due to a specified change in input voltage. This parameter accounts for the effects of self-heating. Line regulation is expressed in either percent per volt, parts per million per volt, or microvolts per volt change in input voltage. Load Regulation The change in output voltage due to a specified change in load current. This parameter accounts for the effects of self-heating. Load regulation is expressed in either microvolts per milliampere, parts per million per milliampere, or ohms of dc output resistance. Thermal Hysteresis The change of output voltage after the device is cycled from +25°C to −40°C to +125°C and back to +25°C. This is a typical value from a sample of parts put through such a cycle. VOUT _ HYS = VOUT (25°C ) − VOUT _ TC VOUT _ HYS [ppm ] = VOUT (25°C ) − VOUT _ TC VOUT (25°C ) × 10 6 where: VOUT (25°C) = VOUT at 25°C. VOUT_TC = VOUT at 25°C after temperature cycle at +25°C to −40°C to +125°C and back to +25°C. Rev. D | Page 15 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 THEORY OF OPERATION Band gap references are the high performance solution for low supply voltage and low power voltage reference applications, and the ADR36x family is no exception. The uniqueness of these products lies in their architecture. The ideal zero TC band gap voltage is referenced to the output, not to ground (see Figure 32). Therefore, if noise exists on the ground line, it is greatly attenuated on VOUT. The band gap cell consists of the PNP pair Q53 and Q52 running at unequal current densities. The difference in VBE results in a voltage with a positive TC, which is amplified by a ratio of DEVICE POWER DISSIPATION CONSIDERATIONS The ADR36x family is capable of delivering load currents to 5 mA with an input voltage ranging from 2.348 V (ADR360 only) to 18 V. When this device is used in applications with large input voltages, care should be taken to avoid exceeding the specified maximum power dissipation or junction temperature because it may result in premature device failure. Use the following formula to calculate a device’s maximum junction temperature or dissipation: PD = R59 2× R54 This PTAT voltage, combined with the VBE of Q53 and Q52, produces the stable band gap voltage. Reduction in the band gap curvature is performed by the ratio of Resistor R44 and Resistor R59, one of which is linearly temperature dependent. Precision laser trimming and other patented circuit techniques are used to further enhance the drift performance. Q2 Q1 VOUT (FORCE) R54 Q53 R53 R44 R58 Q61 R49 62kΩ Q60 R50 30kΩ Q52 TRIM R101 R60 VOUT (SENSE) R100 R48 R61 Figure 32. Simplified Schematic 05467-024 R59 TJ − TA θ JA where: TJ and TA are the junction and ambient temperatures, respectively. PD is the device power dissipation. θJA is the device package thermal resistance. INPUT CAPACITOR Input capacitors are not required on the ADR36x. There is no limit for the value of the capacitor used on the input, but a 1 μF to 10 μF capacitor on the input improves transient response in applications where the supply suddenly changes. An additional 0.1 μF capacitor in parallel also helps reduce noise from the supply. OUTPUT CAPACITOR The ADR36x does not require output capacitors for stability under any load condition. An output capacitor, typically 0.1 μF, filters out low level noise voltage and does not affect the operation of the part. On the other hand, the load transient response can improve with an additional 1 μF to 10 μF output capacitor placed in parallel with the 0.1 μF capacitor. The additional capacitor acts as a source of stored energy for a sudden increase in load current, and the only parameter that degrades is the turn-on time. The amount of degradation depends on the size of the capacitor chosen. Rev. D | Page 16 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 APPLICATIONS INFORMATION BASIC VOLTAGE REFERENCE CONNECTION Two reference ICs are used and fed from an unregulated input, VIN. The outputs of the individual ICs are connected in series, which provides two output voltages, VOUT1 and VOUT2. VOUT1 is the terminal voltage of U1, and VOUT2 is the sum of this voltage and the terminal voltage of U2. U1 and U2 are chosen for the two voltages that supply the required outputs (see Table 10). For example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and VOUT2 is 5.0 V. The circuit in Figure 33 illustrates the basic configuration for the ADR36x family. Decoupling capacitors are not required for circuit stability. The ADR36x family is capable of driving capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic output capacitor is recommended to absorb and deliver the charge, as is required by a dynamic load. 1 Table 10. Output TRIM 5 NC U1/U2 ADR361/ADR365 ADR361/ADR361 ADR365/ADR361 ADR36x GND 3 VIN VOUT 4 OUTPUT 0.1µF 0.1µF 05467-025 Negative Precision Reference Without Precision Resistors Figure 33. Basic Configuration for the ADR36x Family A negative reference is easily generated by adding an op amp, A1 (see Figure 35). VOUTF and VOUTS are at virtual ground and therefore the negative reference can be taken directly from the output of the op amp. The op amp must be dual-supply, low offset, and rail-to-rail if the negative supply voltage is close to the reference output. Stacking Reference ICs for Arbitrary Outputs Some applications require two reference voltage sources, which are a combined sum of standard outputs. Figure 34 shows how this stacked output reference can be implemented. 1 NC 2 GND 3 VIN VOUT2 (V) 7.5 5.0 7.5 TRIM 5 ADR36x VIN 1 NC 2 GND 3 VIN TRIM 5 ADR36x VOUT2 VOUT 4 C2 0.1µF +VDD 1 NC 2 GND 3 VIN C1 0.1µF VOUT 4 TRIM 5 ADR36x – –VREF A1 VOUT1 + 05467-026 VOUT 4 –VDD Figure 34. Stacking Voltage References with the ADR36x Figure 35. Negative Reference Rev. D | Page 17 of 20 05467-027 INPUT 2 VOUT1 (V) 2.5 2.5 5 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 General-Purpose Current Source Trim Terminal Often in low power applications, the need arises for a precision current source that can operate on low supply voltages. The ADR36x can be configured as a precision current source (see Figure 36). The circuit configuration illustrated is a floating current source with a grounded load. The output voltage of the reference is bootstrapped across RSET, which sets the output current of the load. With this configuration, circuit precision is maintained for load currents ranging from the reference’s supply current, typically 150 μA, up to approximately 5 mA. The ADR36x trim terminal can be used to adjust the output voltage over a nominal voltage. This feature allows a system designer to trim system errors by setting the reference to a voltage other than the standard voltage option. Resistor R1 is used for fine adjustments and can be omitted if desired. The resistor values should be carefully chosen to ensure that the maximum current drive of the part is not exceeded. NC R1 100kΩ TRIM 5 TRIM 5 1 NC 2 GND 3 VIN ADR36x 2 ADR36x GND +VDD 3 VIN VOUT 4 R1 VOUT +VDD ISET VOUT 4 RSET P1 RL Figure 37. ADR36x Trim Configuration ISET + ISY 05467-028 ISY POT 10kΩ Figure 36. Precision Current Source Rev. D | Page 18 of 20 05467-029 1 R2 1kΩ ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 OUTLINE DIMENSIONS 2.90 BSC 5 4 2.80 BSC 1.60 BSC 1 2 3 PIN 1 0.95 BSC 1.90 BSC *0.90 0.87 0.84 *1.00 MAX 0.10 MAX 0.50 0.30 0.20 0.08 SEATING PLANE 8° 4° 0° 0.60 0.45 0.30 *COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS. Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT] (UJ-5) Dimensions shown in millimeters Rev. D | Page 19 of 20 ADR360/ADR361/ADR363/ADR364/ADR365/ADR366 ORDERING GUIDE Model 1 , 2 ADR360AUJZ-REEL7 ADR360AUJZ-R2 ADR360BUJZ-REEL7 ADR360BUJZ-R2 ADR361AUJZ-REEL7 ADR361AUJZ-R2 ADR361BUJZ-REEL7 ADR361BUJZ-R2 ADR363AUJZ-REEL7 ADR363AUJZ-R2 ADR363BUJZ-REEL7 ADR363BUJZ-R2 ADR364AUJZ-REEL7 ADR364AUJZ-R2 ADR364BUJZ-REEL7 ADR364BUJZ-R2 ADR365AUJZ-REEL7 ADR365AUJZ-R2 ADR365BUJZ-REEL7 ADR365BUJZ-R2 ADR365WAUJZ-R7 ADR365WAUJZ-RL ADR366AUJZ-REEL7 ADR366AUJZ-R2 ADR366BUJZ-REEL7 ADR366BUJZ-R2 ADR366WAUJZ-REEL7 1 2 Output Voltage (VOUT) 2.048 2.048 2.048 2.048 2.5 2.5 2.5 2.5 3.0 3.0 3.0 3.0 4.096 4.096 4.096 4.096 5.0 5.0 5.0 5.0 5.0 5.0 3.3 3.3 3.3 3.3 3.3 Initial Accuracy, ± (mV) (%) 6 0.29 6 0.29 3 0.15 3 0.15 6 0.24 6 0.24 3 0.12 3 0.12 6 0.2 6 0.2 3 0.1 3 0.1 8 0.2 8 0.2 4 0.1 4 0.1 8 0.16 8 0.16 4 0.08 4 0.08 8 0.16 8 0.16 8 0.25 8 0.25 4 0.125 4 0.125 8 0.25 Temperature Coefficient (ppm/°C) 25 25 9 9 25 25 9 9 25 25 9 9 25 25 9 9 25 25 9 9 25 25 25 25 9 9 25 Package Description 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT 5-Lead TSOT Package Option UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 UJ-5 Temperature Range −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C −40°C to +125°C Ordering Quantity 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 250 3,000 10,000 3,000 250 3,000 250 3,000 Branding R0C R0C R0D R0D R0E R0E R0F R0F R0G R0G R0H R0H R0J R0J R0K R0K R0L R0L R0M R0M R0L R0L R08 R08 R09 R09 R08 Z = RoHS Compliant Part. W = Qualified for Automotive Applications. AUTOMOTIVE PRODUCTS The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models. ©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D05467-0-10/10(D) Rev. D | Page 20 of 20