AD ADR365AUJZ-R2

Low Power, Low Noise Voltage References
with Sink/Source Capability
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
FEATURES
APPLICATIONS
Battery-powered instruments
Portable medical instruments
Data acquisition systems
Industrial process controls
Automotive
NC 1
ADR36x
5
TRIM
4
VOUT
TOP VIEW
GND 2
(Not to Scale)
VIN 3
NC = NO CONNECT
05467-001
Compact TSOT packages
Low temperature coefficient
B grade: 9 ppm/°C
A grade: 25 ppm/°C
Initial accuracy
B grade: ±3 mV maximum
A grade: ±6 mV maximum
Ultralow output noise: 6.8 μV p-p (0.1 Hz to 10 Hz)
Low dropout: 300 mV
Low supply current: 190 μA maximum
No external capacitor required
Output current: +5 mA/−1 mA
Wide temperature range: −40°C to +125°C
Qualified for automotive applications
PIN CONFIGURATION
Figure 1. 5-Lead TSOT (UJ)
Table 1. ADR36x Family of Devices
Model
ADR360B
ADR360A
ADR361B
ADR361A
ADR363B
ADR363A
ADR364B
ADR364A
ADR365B
ADR365A
ADR366B
ADR366A
1
VOUT (V) 1
2.048
2.048
2.5
2.5
3.0
3.0
4.096
4.096
5.0
5.0
3.3
3.3
Temperature
Coefficient (ppm/°C)
9
25
9
25
9
25
9
25
9
25
9
25
Accuracy (mV)
±3
±6
±3
±6
±3
±6
±4
±8
±4
±8
±4
±8
Contact Analog Devices for other voltage options.
GENERAL DESCRIPTION
The ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
are precision 2.048 V, 2.5 V, 3.0 V, 4.096 V, 5.0 V, and 3.3 V band
gap voltage references that offer low power and high precision
in tiny footprints. Using patented temperature drift curvature
correction techniques from Analog Devices, Inc., the ADR36x
references achieve a low temperature drift of 9 ppm/°C in a
TSOT package.
supply of 300 mV above the output. Their advanced design
eliminates the need for external capacitors, which further
reduces board space and system cost. The combination of low
power operation, small size, and ease of use makes the ADR36x
precision voltage references ideally suited for battery-operated
applications.
See the Ordering Guide for automotive grades.
The ADR36x family of micropower, low dropout voltage
references provides a stable output voltage from a minimum
Rev. D
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113 ©2005–2010 Analog Devices, Inc. All rights reserved.
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TABLE OF CONTENTS
Features .............................................................................................. 1
Thermal Resistance .......................................................................9
Applications....................................................................................... 1
ESD Caution...................................................................................9
Pin Configuration............................................................................. 1
Typical Performance Characteristics ........................................... 10
General Description ......................................................................... 1
Terminology .................................................................................... 15
Revision History ............................................................................... 2
Theory of Operation ...................................................................... 16
Specifications..................................................................................... 3
Device Power Dissipation Considerations.............................. 16
ADR360 Electrical Characteristics............................................. 3
Input Capacitor........................................................................... 16
ADR361 Electrical Characteristics............................................. 4
Output Capacitor........................................................................ 16
ADR363 Electrical Characteristics............................................. 5
Applications Information .............................................................. 17
ADR364 Electrical Characteristics............................................. 6
Basic Voltage Reference Connection ....................................... 17
ADR365 Electrical Characteristics............................................. 7
Outline Dimensions ....................................................................... 19
ADR366 Electrical Characteristics............................................. 8
Ordering Guide .......................................................................... 20
Absolute Maximum Ratings............................................................ 9
Automotive Products ................................................................. 20
REVISION HISTORY
10/10—Rev. C to Rev. D
Changes to Features Section and General Description Section . 1
Changed Supply Voltage Headroom to Dropout Voltage
Throughout ....................................................................................... 3
Changed 0.1 Hz to 10 Hz to f = 0.1 Hz to 10 Hz Throughout.... 3
Change to Table 8 ............................................................................. 9
Changes to Figure 13...................................................................... 11
Changes to Figure 14...................................................................... 12
Changes to Ordering Guide .......................................................... 20
Added Automotive Products Section .......................................... 20
7/07—Rev. B to Rev. C
Changes to Ripple Rejection Ratio in Table 2............................... 3
Changes to Ripple Rejection Ratio in Table 3............................... 4
Changes to Ripple Rejection Ratio in Table 4............................... 5
Changes to Ripple Rejection Ratio in Table 5............................... 6
Changes to Ripple Rejection Ratio in Table 6............................... 7
Changes to Ripple Rejection Ratio in Table 7............................... 8
2/07—Rev. A to Rev. B
Changes to Table 7.............................................................................8
Changes to Figure 6........................................................................ 11
Changes to Figure 13, Figure 14, Figure 17,
and Figure 27 Captions.................................................................. 12
Changes to Ordering Guide .......................................................... 19
3/06—Rev. 0 to Rev. A
Changes to Figure 15 Caption ...................................................... 13
Changes to Figure 21 Caption ...................................................... 14
Changes to Theory of Operation Section.................................... 16
Changes to Figure 36...................................................................... 18
4/05—Revision 0: Initial Version
Rev. D | Page 2 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
SPECIFICATIONS
ADR360 ELECTRICAL CHARACTERISTICS
VIN = 2.35 V to 15 V, TA = 25°C, unless otherwise noted.
Table 2.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.042
2.045
Typ
2.048
2.048
Max
2.054
2.051
±6
±0.29
±3
±0.15
25
9
300
VIN = 2.45 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
6.8
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 3 of 20
0.105
0.37
0.82
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR361 ELECTRICAL CHARACTERISTICS
VIN = 2.8 V to 15 V, TA = 25°C, unless otherwise noted.
Table 3.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.494
2.497
Typ
2.500
2.500
Max
2.506
2.503
±6
±0.24
±3
±0.12
25
9
300
VIN = 2.8 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 3.5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 3.5 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
8.25
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 4 of 20
0.125
0.45
1
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR363 ELECTRICAL CHARACTERISTICS
VIN = 3.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 4.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
2.994
2.997
Typ
3.000
3.000
Max
3.006
3.003
±6
±0.2
±3
±0.1
25
9
300
VIN = 3.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
8.7
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 5 of 20
0.15
0.54
1.2
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR364 ELECTRICAL CHARACTERISTICS
VIN = 4.4 V to 15 V, TA = 25°C, unless otherwise noted.
Table 5.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
4.088
4.092
Typ
4.096
4.096
Max
4.104
4.100
±8
±0.2
±4
±0.1
25
9
300
VIN = 4.4 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 5 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 5 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
11
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 6 of 20
0.205
0.735
1.75
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR365 ELECTRICAL CHARACTERISTICS
VIN = 5.3 V to 15 V, TA = 25°C, unless otherwise noted.
Table 6.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
4.992
4.996
Typ
5.000
5.000
Max
5.008
5.004
±8
±0.16
±4
±0.08
25
9
300
VIN = 5.3 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 6V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 6 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
12.8
20
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 7 of 20
0.25
0.9
2
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ADR366 ELECTRICAL CHARACTERISTICS
VIN = 3.6 V to 15 V, TA = 25°C, unless otherwise noted.
Table 7.
Parameter
OUTPUT VOLTAGE
Symbol
VOUT
INITIAL ACCURACY
VOUTERR
TEMPERATURE COEFFICIENT
TCVOUT
DROPOUT VOLTAGE
LINE REGULATION
LOAD REGULATION
VIN − VOUT
∆VOUT/∆VIN
∆VOUT/∆ILOAD
QUIESCENT CURRENT
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY 1
OUTPUT VOLTAGE HYSTERESIS
RIPPLE REJECTION RATIO
SHORT CIRCUIT TO GND
IIN
eN p-p
tR
∆VOUT
∆VOUT_HYS
RRR
ISC
1
Conditions
A grade
B grade
A grade
A grade
B grade
B grade
A grade, −40°C < TA < +125°C
B grade, −40°C < TA < +125°C
Min
3.292
3.296
Typ
3.300
3.300
Max
3.308
3.304
±8
±0.25
±4
±0.125
25
9
300
VIN = 3.6 V to 15 V, −40°C < TA < +125°C
ILOAD = 0 mA to 5 mA, −40°C < TA < +125°C, VIN = 4.2 V
ILOAD = 0 mA to 8 mA, −40°C < TA < +125°C, VIN ≥ 4.75 V
ILOAD = −1 mA to 0 mA, −40°C < TA < +125°C, VIN = 4.2 V
−40°C < TA < +125°C
f = 0.1 Hz to 10 Hz
1000 hours
fIN = 60 Hz
VIN = 5 V
VIN = 15 V
150
9.3
25
50
100
−70
25
30
The long-term stability specification is noncumulative. The drift after the first 1000 hours is significantly lower than it is in the first 1000 hours.
Rev. D | Page 8 of 20
0.165
0.6
0.6
1.35
190
Unit
V
V
mV
%
mV
%
ppm/°C
ppm/°C
mV
mV/V
mV/mA
mV/mA
mV/mA
μA
μV p-p
μs
ppm
ppm
dB
mA
mA
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ABSOLUTE MAXIMUM RATINGS
TA = 25°C, unless otherwise noted.
THERMAL RESISTANCE
Table 8.
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Parameter
Supply Voltage
Output Short-Circuit Duration to GND
VIN < 15 V
VIN > 15 V
Storage Temperature Range
Operating Temperature Range
Junction Temperature Range
Lead Temperature (Soldering, 60 sec)
Rating
18 V
Table 9. Thermal Resistance
Indefinite
10 sec
−65°C to +125°C
−40°C to +125°C
−65°C to +150°C
300°C
Package Type
5-Lead TSOT (UJ)
ESD CAUTION
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
Rev. D | Page 9 of 20
θJA
230
θJC
146
Unit
°C/W
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TYPICAL PERFORMANCE CHARACTERISTICS
2.052
4.998
4.997
4.996
2.050
VOUT (V)
VOUT (V)
4.995
2.048
4.994
4.993
4.992
2.046
–20
0
20
40
60
80
100
4.990
–40
120
05467-005
05467-002
2.044
–40
4.991
–25
–10
5
20
TEMPERATURE (°C)
Figure 2. ADR360 Output Voltage vs. Temperature
50
65
80
95
110
125
Figure 5. ADR365 Output Voltage vs. Temperature
2.504
0.165
2.502
0.155
2.500
0.145
IDD (mA)
VOUT (V)
35
TEMPERATURE (°C)
+125°C
+25°C
0.135
2.498
–40°C
05467-003
2.494
–40
–25
–10
5
20
35
50
65
80
95
110
0.115
2.8
125
05467-006
0.125
2.496
4.1
5.4
6.7
8.0
9.3
10.6
11.9
13.2
14.5
VIN (V)
TEMPERATURE (°C)
Figure 3. ADR361 Output Voltage vs. Temperature
Figure 6. ADR361 Supply Current vs. Input Voltage
0.17
3.003
3.002
+125°C
IDD (mA)
0.16
3.000
2.999
+25°C
–40°C
0.15
2.997
2.996
–40
–20
0
20
40
60
80
100
120
0.14
5.3
05467-007
2.998
05467-004
VOUT (V)
3.001
6.3
7.3
8.3
9.3
10.3
11.3
12.3
13.3
VIN (V)
TEMPERATURE (°C)
Figure 4. ADR363 Output Voltage vs. Temperature
Figure 7. ADR365 Supply Current vs. Input Voltage
Rev. D | Page 10 of 20
14.3
9
0.16
8
0.14
7
0.12
VIN = 9V
0.10
0.08
VIN = 3.5V
0.06
0.04
0.02
0
–40
–25
–10
5
20
35
50
65
80
95
110
6
5
4
3
2
05467-009
LINE REGULATION (ppm/V)
0.18
05467-036
LOAD REGULATION (mV/mA)
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
1
0
–40
125
–25
–10
5
TEMPERATURE (°C)
Figure 8. ADR361 Load Regulation vs. Temperature
35
50
65
80
95
110
125
Figure 11. ADR361 Line Regulation vs. Temperature, VIN = 2.8 V to 15 V
0.14
12
0.12
10
0.10
LINE REGULATION (ppm/V)
VIN = 9V
0.08
0.06
VIN = 6V
0.04
8
6
4
2
0
–40
05467-037
0.02
–25
–10
5
20
35
50
65
80
95
110
0
–40
125
05467-010
LOAD REGULATION (mV/mA)
20
TEMPERATURE (°C)
–20
0
TEMPERATURE (°C)
20
40
60
80
100
120
TEMPERATURE (°C)
Figure 9. ADR365 Load Regulation vs. Temperature
Figure 12. ADR365 Line Regulation vs. Temperature, VIN = 5.3 V to 15 V
1.6
25
1.4
+125°C
DROPOUT VOLTAGE (V)
LINE REGULATION (ppm/V)
20
15
10
1.2
1.0
0.8
0.6
–40°C
+25°C
0.4
–20
0
20
40
60
80
100
120
TEMPERATURE (°C)
0.2
0
–2
05467-011
0
–40
05467-008
5
0
2
4
6
8
LOAD CURRENT (mA)
Figure 10. ADR360 Line Regulation vs. Temperature, VIN = 2.45 V to 15 V
Rev. D | Page 11 of 20
Figure 13. ADR361 Dropout Voltage vs. Load Current
10
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
1.8
1.6
+125°C
1.2
1.0
0.8
+25°C
0.6
0.4
0
–2
0
2
4
TIME = 1s/DIV
05467-012
–40°C
6
8
05467-015
2µV/DIV
0.2
10
LOAD CURRENT (mA)
Figure 17. ADR363 0.1 Hz to 10 Hz Noise
Figure 14. ADR365 Dropout Voltage vs. Load Current
2µV/DIV
05467-013
TIME = 1s/DIV
05467-016
50µV/DIV
TIME = 1s/DIV
Figure 18. ADR363 10 Hz to 10 kHz Noise
Figure 15. ADR361 0.1 Hz to 10 Hz Noise
TIME = 1s/DIV
TIME = 1s/DIV
Figure 19. ADR365 0.1 Hz to 10 Hz Noise
Figure 16. ADR361 10 Hz to 10 kHz Noise
Rev. D | Page 12 of 20
05467-017
2µV/DIV
50µV/DIV
05467-014
DROPOUT VOLTAGE (V)
1.4
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
500mV/DIV
VIN
VOUT
500mV/DIV
4µs/DIV
Figure 20. ADR365 10 Hz to 10 kHz Noise
05467-019
TIME = 1s/DIV
05467-018
100µV/DIV
Figure 23. ADR361 Line Transient Response (Increasing), No Capacitors
50
45
VIN
35
500mV/DIV
30
25
20
15
10
VOUT
05467-031
5
0
100
1k
10k
500mV/DIV
100k
10µs/DIV
FREQUENCY (Hz)
Figure 21. Output Impedance vs. Frequency
05467-020
OUTPUT IMPEDANCE (Ω)
40
Figure 24. ADR361 Line Transient Response (Decreasing), No Capacitors
10
500mV/DIV
–20
VIN
–30
–40
–50
–60
–70
–80
–90
100
1k
10k
100k
VOUT
20mV/DIV
1M
100µs/DIV
FREQUENCY (Hz)
Figure 22. Ripple Rejection Ratio vs. Frequency
05467-021
05467-030
RIPPLE REJECTION RATIO (dB)
0
–10
Figure 25. ADR361 Line Transient Response, 0.1 μF Input Capacitor
Rev. D | Page 13 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
5V/DIV
LOAD ON
LOAD OFF
INPUT
VOUT
100mV/DIV
2ms/DIV
OUTPUT
400ns/DIV
05467-023
05467-032
2.5V/DIV
Figure 29. ADR361 Turn-Off Response Time at 5 V
Figure 26. ADR361 Load Transient Response
VIN
LOAD ON
5V/DIV
VOUT
100mV/DIV
05467-033
2V/DIV
100µs/DIV
Figure 27. ADR361 Load Transient Response
with 0.1 μF Output Capacitor
05467-034
VOUT
100µs/DIV
Figure 30. ADR361 Turn-On Response Time, 0.1 μF Output Capacitor
VIN
5V/DIV
INPUT
5V/DIV
VOUT
2V/DIV
10µs/DIV
Figure 28. ADR361 Turn-On Response Time at 5 V
2ms/DIV
05467-035
OUTPUT
05467-022
2.5V/DIV
Figure 31. ADR361 Turn-Off Response Time, 0.1 μF Output Capacitor
Rev. D | Page 14 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
TERMINOLOGY
Temperature Coefficient
The change of output voltage with respect to operating temperature changes normalized by the output voltage at 25°C. This
parameter is expressed in ppm/°C and can be determined by
Long-Term Stability
The typical shift of output voltage at 25°C on a sample of parts
subjected to a test of 1000 hours at 25°C.
ΔVOUT = VOUT (t 0 ) − VOUT (t 1 )
V (T ) − VOUT (T1 )
× 106
TCVOUT [ppm/°C] = OUT 2
VOUT (25°C ) × (T2 − T1 )
⎛ V (t 0 ) –VOUT (t 1 )
⎞
ΔVOUT [ppm ] = ⎜⎜ OUT
× 10 6 ⎟⎟
V
(
t
)
OUT 0
⎝
⎠
where:
VOUT (25°C) = VOUT at 25°C.
VOUT (T1) = VOUT at Temperature 1.
VOUT (T2) = VOUT at Temperature 2.
where:
VOUT (t0) = VOUT at 25°C at Time 0.
VOUT (t1) = VOUT at 25°C after 1000 hours operation at 25°C.
Line Regulation
The change in output voltage due to a specified change in input
voltage. This parameter accounts for the effects of self-heating.
Line regulation is expressed in either percent per volt, parts per
million per volt, or microvolts per volt change in input voltage.
Load Regulation
The change in output voltage due to a specified change in load
current. This parameter accounts for the effects of self-heating.
Load regulation is expressed in either microvolts per milliampere,
parts per million per milliampere, or ohms of dc output resistance.
Thermal Hysteresis
The change of output voltage after the device is cycled from
+25°C to −40°C to +125°C and back to +25°C. This is a typical
value from a sample of parts put through such a cycle.
VOUT _ HYS = VOUT (25°C ) − VOUT _ TC
VOUT _ HYS [ppm ] =
VOUT (25°C ) − VOUT _ TC
VOUT (25°C )
× 10 6
where:
VOUT (25°C) = VOUT at 25°C.
VOUT_TC = VOUT at 25°C after temperature cycle at +25°C to
−40°C to +125°C and back to +25°C.
Rev. D | Page 15 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
THEORY OF OPERATION
Band gap references are the high performance solution for low
supply voltage and low power voltage reference applications,
and the ADR36x family is no exception. The uniqueness of
these products lies in their architecture. The ideal zero TC band
gap voltage is referenced to the output, not to ground (see
Figure 32). Therefore, if noise exists on the ground line, it is
greatly attenuated on VOUT. The band gap cell consists of the
PNP pair Q53 and Q52 running at unequal current densities.
The difference in VBE results in a voltage with a positive TC,
which is amplified by a ratio of
DEVICE POWER DISSIPATION CONSIDERATIONS
The ADR36x family is capable of delivering load currents to
5 mA with an input voltage ranging from 2.348 V (ADR360
only) to 18 V. When this device is used in applications with
large input voltages, care should be taken to avoid exceeding the
specified maximum power dissipation or junction temperature
because it may result in premature device failure. Use the
following formula to calculate a device’s maximum junction
temperature or dissipation:
PD =
R59
2×
R54
This PTAT voltage, combined with the VBE of Q53 and Q52,
produces the stable band gap voltage.
Reduction in the band gap curvature is performed by the ratio
of Resistor R44 and Resistor R59, one of which is linearly
temperature dependent. Precision laser trimming and other
patented circuit techniques are used to further enhance the drift
performance.
Q2
Q1
VOUT (FORCE)
R54
Q53
R53
R44
R58
Q61
R49
62kΩ
Q60
R50
30kΩ
Q52
TRIM
R101
R60
VOUT (SENSE)
R100
R48
R61
Figure 32. Simplified Schematic
05467-024
R59
TJ − TA
θ JA
where:
TJ and TA are the junction and ambient temperatures, respectively.
PD is the device power dissipation.
θJA is the device package thermal resistance.
INPUT CAPACITOR
Input capacitors are not required on the ADR36x. There is no
limit for the value of the capacitor used on the input, but a 1 μF
to 10 μF capacitor on the input improves transient response in
applications where the supply suddenly changes. An additional
0.1 μF capacitor in parallel also helps reduce noise from the supply.
OUTPUT CAPACITOR
The ADR36x does not require output capacitors for stability under
any load condition. An output capacitor, typically 0.1 μF, filters
out low level noise voltage and does not affect the operation of
the part. On the other hand, the load transient response can
improve with an additional 1 μF to 10 μF output capacitor placed
in parallel with the 0.1 μF capacitor. The additional capacitor
acts as a source of stored energy for a sudden increase in load
current, and the only parameter that degrades is the turn-on
time. The amount of degradation depends on the size of the
capacitor chosen.
Rev. D | Page 16 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
APPLICATIONS INFORMATION
BASIC VOLTAGE REFERENCE CONNECTION
Two reference ICs are used and fed from an unregulated input,
VIN. The outputs of the individual ICs are connected in series,
which provides two output voltages, VOUT1 and VOUT2. VOUT1 is
the terminal voltage of U1, and VOUT2 is the sum of this voltage
and the terminal voltage of U2. U1 and U2 are chosen for the
two voltages that supply the required outputs (see Table 10). For
example, if both U1 and U2 are ADR361s, VOUT1 is 2.5 V and
VOUT2 is 5.0 V.
The circuit in Figure 33 illustrates the basic configuration for
the ADR36x family. Decoupling capacitors are not required for
circuit stability. The ADR36x family is capable of driving
capacitive loads from 0 μF to 10 μF. However, a 0.1 μF ceramic
output capacitor is recommended to absorb and deliver the
charge, as is required by a dynamic load.
1
Table 10. Output
TRIM 5
NC
U1/U2
ADR361/ADR365
ADR361/ADR361
ADR365/ADR361
ADR36x
GND
3
VIN
VOUT 4
OUTPUT
0.1µF
0.1µF
05467-025
Negative Precision Reference Without Precision
Resistors
Figure 33. Basic Configuration for the ADR36x Family
A negative reference is easily generated by adding an op amp,
A1 (see Figure 35). VOUTF and VOUTS are at virtual ground and
therefore the negative reference can be taken directly from the
output of the op amp. The op amp must be dual-supply, low
offset, and rail-to-rail if the negative supply voltage is close to
the reference output.
Stacking Reference ICs for Arbitrary Outputs
Some applications require two reference voltage sources, which
are a combined sum of standard outputs. Figure 34 shows how
this stacked output reference can be implemented.
1
NC
2
GND
3
VIN
VOUT2 (V)
7.5
5.0
7.5
TRIM 5
ADR36x
VIN
1
NC
2
GND
3
VIN
TRIM 5
ADR36x
VOUT2
VOUT 4
C2
0.1µF
+VDD
1
NC
2
GND
3
VIN
C1
0.1µF
VOUT 4
TRIM 5
ADR36x
–
–VREF
A1
VOUT1
+
05467-026
VOUT 4
–VDD
Figure 34. Stacking Voltage References with the ADR36x
Figure 35. Negative Reference
Rev. D | Page 17 of 20
05467-027
INPUT
2
VOUT1 (V)
2.5
2.5
5
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
General-Purpose Current Source
Trim Terminal
Often in low power applications, the need arises for a precision
current source that can operate on low supply voltages. The
ADR36x can be configured as a precision current source (see
Figure 36). The circuit configuration illustrated is a floating
current source with a grounded load. The output voltage of the
reference is bootstrapped across RSET, which sets the output
current of the load. With this configuration, circuit precision is
maintained for load currents ranging from the reference’s
supply current, typically 150 μA, up to approximately 5 mA.
The ADR36x trim terminal can be used to adjust the output
voltage over a nominal voltage. This feature allows a system
designer to trim system errors by setting the reference to a
voltage other than the standard voltage option. Resistor R1 is
used for fine adjustments and can be omitted if desired. The
resistor values should be carefully chosen to ensure that the
maximum current drive of the part is not exceeded.
NC
R1
100kΩ
TRIM 5
TRIM 5
1
NC
2
GND
3
VIN
ADR36x
2
ADR36x
GND
+VDD
3
VIN
VOUT 4
R1
VOUT
+VDD
ISET
VOUT 4
RSET
P1
RL
Figure 37. ADR36x Trim Configuration
ISET + ISY
05467-028
ISY
POT
10kΩ
Figure 36. Precision Current Source
Rev. D | Page 18 of 20
05467-029
1
R2
1kΩ
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
OUTLINE DIMENSIONS
2.90 BSC
5
4
2.80 BSC
1.60 BSC
1
2
3
PIN 1
0.95 BSC
1.90
BSC
*0.90
0.87
0.84
*1.00 MAX
0.10 MAX
0.50
0.30
0.20
0.08
SEATING
PLANE
8°
4°
0°
0.60
0.45
0.30
*COMPLIANT TO JEDEC STANDARDS MO-193-AB WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 38. 5-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-5)
Dimensions shown in millimeters
Rev. D | Page 19 of 20
ADR360/ADR361/ADR363/ADR364/ADR365/ADR366
ORDERING GUIDE
Model 1 , 2
ADR360AUJZ-REEL7
ADR360AUJZ-R2
ADR360BUJZ-REEL7
ADR360BUJZ-R2
ADR361AUJZ-REEL7
ADR361AUJZ-R2
ADR361BUJZ-REEL7
ADR361BUJZ-R2
ADR363AUJZ-REEL7
ADR363AUJZ-R2
ADR363BUJZ-REEL7
ADR363BUJZ-R2
ADR364AUJZ-REEL7
ADR364AUJZ-R2
ADR364BUJZ-REEL7
ADR364BUJZ-R2
ADR365AUJZ-REEL7
ADR365AUJZ-R2
ADR365BUJZ-REEL7
ADR365BUJZ-R2
ADR365WAUJZ-R7
ADR365WAUJZ-RL
ADR366AUJZ-REEL7
ADR366AUJZ-R2
ADR366BUJZ-REEL7
ADR366BUJZ-R2
ADR366WAUJZ-REEL7
1
2
Output
Voltage
(VOUT)
2.048
2.048
2.048
2.048
2.5
2.5
2.5
2.5
3.0
3.0
3.0
3.0
4.096
4.096
4.096
4.096
5.0
5.0
5.0
5.0
5.0
5.0
3.3
3.3
3.3
3.3
3.3
Initial
Accuracy, ±
(mV) (%)
6
0.29
6
0.29
3
0.15
3
0.15
6
0.24
6
0.24
3
0.12
3
0.12
6
0.2
6
0.2
3
0.1
3
0.1
8
0.2
8
0.2
4
0.1
4
0.1
8
0.16
8
0.16
4
0.08
4
0.08
8
0.16
8
0.16
8
0.25
8
0.25
4
0.125
4
0.125
8
0.25
Temperature
Coefficient
(ppm/°C)
25
25
9
9
25
25
9
9
25
25
9
9
25
25
9
9
25
25
9
9
25
25
25
25
9
9
25
Package
Description
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
5-Lead TSOT
Package
Option
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
UJ-5
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Ordering
Quantity
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
250
3,000
10,000
3,000
250
3,000
250
3,000
Branding
R0C
R0C
R0D
R0D
R0E
R0E
R0F
R0F
R0G
R0G
R0H
R0H
R0J
R0J
R0K
R0K
R0L
R0L
R0M
R0M
R0L
R0L
R08
R08
R09
R09
R08
Z = RoHS Compliant Part.
W = Qualified for Automotive Applications.
AUTOMOTIVE PRODUCTS
The ADR365W and ADR366W models are available with controlled manufacturing to support the quality and reliability requirements of
automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore,
designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for
use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and
to obtain the specific Automotive Reliability reports for these models.
©2005–2010 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D05467-0-10/10(D)
Rev. D | Page 20 of 20