AD ADR130

Precision Series Sub-Band Gap
Voltage Reference
ADR130
Initial accuracy
A grade: +0.70% (maximum)
B grade: +0.35% (maximum)
Maximum temperature coefficient
A grade: 50 ppm/°C
B grade: 25 ppm/°C
CLOAD = 50 nF to 10 μF
Output current: +4 mA/−2 mA
Low operating current: 80 μA (typical)
Output noise: 6 μV p-p @ 1.0 V output
Input range: 2.0 V to 18 V
Temperature range: −40°C to +125°C
Tiny, Pb-free TSOT package
PIN CONFIGURATION
NC 1
ADR130
6
NC
TOP VIEW
5 SET
(Not to Scale)
4 VOUT
VIN 3
GND 2
NC = NO CONNECT
06322-001
FEATURES
Figure 1. 6-Lead TSOT (UJ-6)
APPLICATIONS
Battery-powered instrumentation
Portable medical equipment
Communication infrastructure equipment
GENERAL DESCRIPTION
The ADR130 is the industry’s first family of tiny, micropower,
low voltage, high precision voltage references. Featuring 0.35%
initial accuracy and 25 ppm/°C of temperature drift in the tiny
TSOT-23 package, the ADR130 voltage reference only requires
80 μA for typical operation. The ADR130 design includes a
patented temperature drift curvature correction technique that
minimizes the nonlinearities in the output voltage vs. temperature characteristics.
Available in the industrial temperature range of −40°C to
+125°C, the ADR130 is housed in a tiny TSOT package.
For 0.5 V output, tie SET (Pin 5) to VOUT (Pin 4). For 1.0 V
output, tie SET (Pin 5) to GND (Pin 2).
Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No
license is granted by implication or otherwise under any patent or patent rights of Analog Devices.
Trademarks and registered trademarks are the property of their respective owners.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781.329.4700
www.analog.com
Fax: 781.461.3113
©2006 Analog Devices, Inc. All rights reserved.
ADR130
TABLE OF CONTENTS
Features .............................................................................................. 1
Theory of Operation ...................................................................... 12
Applications....................................................................................... 1
Power Dissipation Considerations........................................... 12
Pin Configuration............................................................................. 1
Input Capacitor........................................................................... 12
General Description ......................................................................... 1
Output Capacitor........................................................................ 12
Revision History ............................................................................... 2
Application Notes ........................................................................... 13
Specifications..................................................................................... 3
Basic Voltage Reference Connection ....................................... 13
Electrical Characteristics............................................................. 3
Stacking Reference ICs for Arbitrary Outputs ....................... 13
Absolute Maximum Ratings............................................................ 5
Negative Precision Reference Without Precision Resistors.. 14
Thermal Resistance ...................................................................... 5
Precision Current Source .......................................................... 14
ESD Caution.................................................................................. 5
Outline Dimensions ....................................................................... 15
Typical Performance Characteristics ............................................. 6
Ordering Guide .......................................................................... 15
Terminology .................................................................................... 11
REVISION HISTORY
10/06—Revision 0: Initial Version
Rev. 0 | Page 2 of 16
ADR130
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to VOUT (Pin 4).
Table 1.
Parameter
OUTPUT VOLTAGE
A Grade
B Grade
INITIAL ACCURACY ERROR
A Grade
B Grade
TEMPERATURE COEFFICIENT
A Grade
B Grade
LOAD REGULATION
LINE REGULATION
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY
OUTPUT VOLTAGE HYSTERESIS
Symbol
VO
Conditions
Min
Typ
Max
Unit
0.49650
0.49825
0.5
0.5
0.50350
0.50175
V
V
+3.50
+1.75
mV
mV
−0.13
50
25
+0.13
ppm/°C
ppm/°C
mV/mA
−1.0
+1.0
mV/mA
+40
150
ppm/V
μA
mA
mA
μV p-p
μs
ppm/1000 hours
ppm
VOERR
−3.50
−1.75
TCVO
−40°C < TA < +125°C
15
5
IQ
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
0 mA < IOUT < 4 mA
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
−2 mA < IOUT < 0 mA
2.0 V to 18 V, IOUT = 0 mA
−40°C < TA < +125°C, no load
VIN = 2.0 V
VIN = 18.0 V
0.1 Hz to 10 Hz
To 0.1%, CL = 0.1 μF
1000 hours @ 25°C
Rev. 0 | Page 3 of 16
−40
+10
75
15
50
3
80
100
150
ADR130
TA = 25°C, VIN = 2.0 V to 18 V, unless otherwise noted. SET (Pin 5) tied to GND (Pin 2).
Table 2.
Parameter
OUTPUT VOLTAGE
A Grade
B Grade
INITIAL ACCURACY ERROR
A Grade
B Grade
TEMPERATURE COEFFICIENT
A Grade
B Grade
LOAD REGULATION
LINE REGULATION
QUIESCENT CURRENT
SHORT-CIRCUIT CURRENT TO GROUND
VOLTAGE NOISE
TURN-ON SETTLING TIME
LONG-TERM STABILITY
OUTPUT VOLTAGE HYSTERESIS
Symbol
VO
Conditions
Min
Typ
Max
Unit
0.9930
0.9965
1.0
1.0
1.0070
1.0035
V
V
+7.0
+3.5
mV
mV
−0.25
50
25
+0.25
ppm/°C
ppm/°C
mV/mA
−2.0
+2.0
mV/mA
+40
150
ppm/V
μA
mA
mA
μV p-p
μs
ppm/1000 hours
ppm
VOERR
−7.0
−3.5
TCVO
−40°C < TA < +125°C
15
5
IQ
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
0 mA < IOUT < 4 mA
−40°C < TA < +125°C; 3 V ≤ VIN ≤ 18 V;
−2 mA < IOUT < 0 mA
2.0 V to 18 V, IOUT = 0 mA
−40°C < TA < +125°C, no load
VIN = 2.0 V
VIN = 18.0 V
0.1 Hz to 10 Hz
To 0.1%, CL = 0.1 μF
1000 hours @ 25°C
Rev. 0 | Page 4 of 16
−40
+10
85
15
50
6
80
100
150
ADR130
ABSOLUTE MAXIMUM RATINGS
Table 3.
Parameter
VIN to GND
Internal Power Dissipation
Storage Temperature Range
Specified Temperature Range
Lead Temperature, Soldering
Vapor Phase (60 sec)
Infrared (15 sec)
THERMAL RESISTANCE
Ratings
20 V
40 mW
−65°C to +150°C
−40°C to +120°C
θJA is specified for the worst-case conditions, that is, a device
soldered in a circuit board for surface-mount packages.
Table 4. Thermal Resistance
Package Type
TSOT (UJ-6)
215°C
220°C
Stresses above those listed under Absolute Maximum Ratings
may cause permanent damage to the device. This is a stress
rating only; functional operation of the device at these or any
other conditions above those indicated in the operational
section of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods may affect
device reliability.
ESD CAUTION
Rev. 0 | Page 5 of 16
θJA
186
θJC
67
Unit
°C/W
ADR130
1.004
0.5015
1.003
0.5010
1.002
0.5005
1.001
0.5000
1.000
0.4995
0.999
0.4990
0.998
0.4985
0.997
0.4980
–40
–25
–10
5
20
35
50
65
80
95
110
0.996
–40
125
06322-005
VOUT (V)
0.5020
06322-002
VOUT (V)
TYPICAL PERFORMANCE CHARACTERISTICS
–25
–10
5
Figure 2. VOUT vs. Temperature, VOUT = 0.5 V
35
10
10
9
9
8
8
7
7
6
5
4
3
2
80
95
110
125
6
5
4
3
–50 –45 –40 –35 –30 –25 –20 –15 –10 –5
0
06322-006
06322-003
0
1
0
5 10 15 20 25 30 35 40 45 50
–50 –45 –40 –35 –30 –25 –20 –15 –10 –5
TEMPERATURE COEFFICIENT (ppm/°C)
0
5 10 15 20 25 30 35 40 45 50
TEMPERATURE COEFFICIENT (ppm/°C)
Figure 3. Temperature Coefficient, VOUT = 0.5 V
Figure 6. Temperature Coefficient, VOUT = 1 V
2.0
2.0
–40°C
–40°C
+25°C
1.8
1.8
+125°C
+25°C
VIN_MIN (V)
1.6
1.4
1.6
+125°C
1.4
–1
0
1
2
3
4
1.0
–2
5
06322-007
1.2
1.2
06322-004
VIN_MIN (V)
65
2
1
1.0
–2
50
Figure 5. VOUT vs. Temperature, VOUT = 1 V
NUMBER OF PARTS
NUMBER OF PARTS
20
TEMPERATURE (°C)
TEMPERATURE (°C)
–1
0
1
2
3
4
LOAD CURRENT (mA)
LOAD CURRENT (mA)
Figure 4. Minimum Input Voltage vs. Load Current, VOUT = 0.5 V
Figure 7. Minimum Input Voltage vs. Load Current, VOUT = 1 V
Rev. 0 | Page 6 of 16
5
ADR130
160
160
120
+25°C
100
–40°C
80
60
40
2
3
4
5
6
7
8
120
+25°C
100
–40°C
80
60
40
0
9 10 11 12 13 14 15 16 17 18
06322-011
20
06322-008
20
0
+125°C
140
+125°C
SUPPLY CURRENT (µA)
SUPPLY CURRENT (µA)
140
2
3
4
5
6
7
Figure 11. Supply Current vs. Input Voltage, VOUT = 1 V
6
6
TA = –40°C, +25°C, +125°C
5
5
SUPPLY CURRENT (mA)
4
3
2
1
3
2
1
06322-009
0
–2
4
–1
0
1
2
3
4
06322-012
SUPPLY CURRENT (mA)
9 10 11 12 13 14 15 16 17 18
Figure 8. Supply Current vs. Input Voltage, VOUT = 0.5 V
TA = –40°C, +25°C, +125°C
0
–2
5
–1
0
LOAD CURRENT (mA)
2
3
4
5
Figure 12. Supply Current vs. Load Current, VOUT = 1 V
10
10
VIN = 2V TO 18V
VIN = 2V TO 18V
LINE REGULATION (ppm/V)
8
6
4
2
8
6
4
–25
–10
5
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
0
–40
06322-013
2
06322-010
0
–40
1
LOAD CURRENT (mA)
Figure 9. Supply Current vs. Load Current, VOUT = 0.5 V
LINE REGULATION (ppm/V)
8
INPUT VOLTAGE (V)
INPUT VOLTAGE (V)
–25
–10
5
20
35
50
65
80
95
110
TEMPERATURE (°C)
Figure 10. Line Regulation vs. Temperature, VOUT = 0.5 V
Figure 13. Line Regulation vs. Temperature, VOUT = 1 V
Rev. 0 | Page 7 of 16
125
ADR130
0.08
0.03
0.02
0
–40
06322-014
0.01
–25
–10
5
20
35
50
65
80
95
110
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0
–40
125
06322-017
0.04
LOAD REGULATION–SOURCE (mV/mA)
LOAD REGULATION–SOURCE (mV/mA)
0.05
–25
–10
5
TEMPERATURE (°C)
1.0
2.0
0.9
1.8
0.7
0.6
0.5
0.4
0.3
0.1
5
20
35
50
65
65
80
95
110
125
1.6
1.4
1.2
1.0
0.8
0.6
0.4
06322-015
0.2
–10
50
80
95
110
06322-018
0.8
–25
35
Figure 17. Load Regulation (Source) vs. Temperature, VOUT = 1 V
LOAD REGULATION–SINK (mV/mA)
LOAD REGULATION–SINK (mV/mA)
Figure 14. Load Regulation (Source) vs. Temperature, VOUT = 0.5 V
0
–40
20
TEMPERATURE (°C)
0.2
0
–40
125
–25
–10
5
TEMPERATURE (°C)
20
35
50
65
80
95
110
125
TEMPERATURE (°C)
Figure 15. Load Regulation (Sink) vs. Temperature, VOUT = 0.5 V
Figure 18. Load Regulation (Sink) vs. Temperature, VOUT = 1 V
CIN = COUT = 0.1µF
CIN = COUT = 0.1µF
CH1 PEAK-TO-PEAK 5.72µV
06322-019
06322-016
2µV/DIV
2µV/DIV
CH1 PEAK-TO-PEAK 3.16µV
TIME (1s/DIV)
TIME (1s/DIV)
Figure 16. 0.1 Hz to 10 Hz Noise, VOUT = 0.5 V
Figure 19. 0.1 Hz to 10 Hz Noise, VOUT = 1 V
Rev. 0 | Page 8 of 16
ADR130
PEAK-TO-PEAK
291µV
CIN = COUT = 0.1µF
CIN = COUT = 0.1µF
06322-020
06322-023
50µV/DIV
50µV/DIV
CH1 PEAK-TO-PEAK 172µV
TIME (1s/DIV)
TIME (1s/DIV)
Figure 23. 10 Hz to 10 kHz Noise, VOUT = 1 V
Figure 20. 10 Hz to 10 kHz Noise, VOUT = 0.5 V
CIN = COUT = 0.1µF
CIN = COUT = 0.1µF
VIN = 1V/DIV
VIN = 1V/DIV
06322-021
VOUT = 500mV/DIV
06322-024
VOUT 200mV/DIV
TIME (40µs/DIV)
TIME (40µs/DIV)
Figure 24. Turn-On Response, VOUT = 1 V
Figure 21. Turn-On Response, VOUT = 0.5 V
VIN = 1V/DIV
CIN = COUT = 0.1µF
CIN = COUT = 0.1µF
VOUT = 500mV/DIV
06322-022
VOUT = 200mV/DIV
TIME (10ms/DIV)
TIME (400µs/DIV)
Figure 22. Turn-Off Response, VOUT = 0.5 V
Figure 25. Turn-Off Response, VOUT = 1 V
Rev. 0 | Page 9 of 16
06322-025
VIN = 1V/DIV
ADR130
VIN = 1V/DIV
CIN = COUT = 0.1µF
CIN = COUT = 0.1µF
VIN = 1V/DIV
TIME (100µs/DIV)
06322-029
VOUT = 20mV/DIV
06322-026
VOUT = 20mV/DIV
TIME (100µs/DIV)
Figure 26. Line Transient Response, VOUT = 0.5 V
Figure 29. Line Transient Response, VOUT = 1 V
VLOAD = 1V/DIV
CIN = COUT = 0.1µF
RLOAD = 250Ω
VLOAD = 0.5V/DIV
CIN = COUT = 0.1µF
RLOAD = 125Ω
ILOAD = 0mA
ILOAD = 0mA
ILOAD = 4mA
TIME (40µs/DIV)
TIME (40µs/DIV)
Figure 30. Load Transient Response (Source), VOUT = 1 V
Figure 27. Load Transient Response (Source), VOUT = 0.5 V
VLOAD = 200mV/DIV
CIN = COUT = 0.1µF
RLOAD = 125Ω
06322-030
VOUT = 20mV/DIV
06322-027
VOUT = 20mV/DIV
ILOAD = 4mA
VLOAD = 500mV/DIV
CIN = COUT = 0.1µF
RLOAD = 250Ω
ILOAD = 2mA
ILOAD = 2mA
ILOAD = 0mA
VOUT = 100mV/DIV
06322-028
VOUT = 100mV/DIV
TIME (40µs/DIV)
TIME (40µs/DIV)
Figure 31. Load Transient Response (Sink), VOUT = 1 V
Figure 28. Load Transient Response (Sink), VOUT = 0.5 V
Rev. 0 | Page 10 of 16
06322-031
ILOAD = 0mA
ADR130
TERMINOLOGY
Temperature Coefficient
Temperature coefficient is the change of output voltage with
respect to the operating temperature change normalized by the
output voltage at 25°C. This parameter is expressed in ppm/°C
and is determined by
TCVO [ppm/°C ] =
VO (T2 ) − VO (T1 )
VO (25°C ) × (T2 − T1 )
× 10
Long-Term Stability
Long-term stability is the typical shift of output voltage at 25°C
on a sample of parts subjected to a test of 1000 hours at 25°C.
ΔVO = VO (t 0 ) − VO (t1 )
ΔVO [ppm ] =
6
VO (t 0 ) − VO (t1 )
VO (t 0 )
× 106
where:
where:
VO(t0) = VO at 25°C at Time 0.
VO(t1) = VO at 25°C after 1000 hours operating at 25°C.
VO(25°C) = VO at 25°C.
VO(T1) = VO at Temperature 1.
VO(T2) = VO at Temperature 2.
Line Regulation
Line regulation is the change in the output due to a specified
change in input voltage. This parameter accounts for the effects
of self-heating. Line regulation is expressed in either %/V,
ppm/V, or μV/ΔVIN.
Load Regulation
Load regulation is the change in output voltage due to a
specified change in load current. This parameter accounts for
the effects of self-heating. Load regulation is expressed in either
mV/mA, ppm/mA, or dc output resistance (Ω).
Thermal Hysteresis
Thermal hysteresis is the change of output voltage after the
device is cycled through temperatures from +25°C to −40°C to
+125°C, then back to +25°C. This is a typical value from a
sample of parts put through such a cycle.
where:
VO(25°C) = VO at 25°C.
VOTC = VO at 25°C after temperature cycle from +25°C to −40°C
to +125°C, then back to +25°C.
Rev. 0 | Page 11 of 16
ADR130
THEORY OF OPERATION
The ADR130 sub-band gap reference is the high performance
solution for low supply voltage and low power applications. The
uniqueness of this product lies in its architecture.
POWER DISSIPATION CONSIDERATIONS
The ADR130 is capable of delivering load currents to 4 mA
with an input range from 3.0 V to 18 V. When this device is
used in applications with large input voltages, care must be
taken to avoid exceeding the specified maximum power
dissipation or junction temperature, because this results in
premature device failure.
TJ − TA
Input capacitors are not required on the ADR130. There is no
limit for the value of the capacitor used on the input, but a 1 μF
to 10 μF capacitor on the input improves transient response in
applications where there is a sudden supply change. An additional 0.1 μF capacitor in parallel also helps reduce noise from
the supply.
OUTPUT CAPACITOR
Use the following formula to calculate the maximum junction
temperature or dissipation:
PD =
INPUT CAPACITOR
The ADR130 requires a small 0.1 μF output capacitor for
stability. Additional 0.1 μF to 10 μF capacitance in parallel can
improve load transient response. This acts as a source of stored
energy for a sudden increase in load current. The only parameter affected by the additional capacitance is turn-on time.
θ JA
where:
TJ is the junction temperature.
TA is the ambient temperature.
PD is the device power dissipation.
θJA is the device package thermal resistance.
Rev. 0 | Page 12 of 16
ADR130
APPLICATION NOTES
BASIC VOLTAGE REFERENCE CONNECTION
The circuits in Figure 32 and Figure 33 illustrate the basic
configuration for the ADR130 voltage reference.
U2
ADR130
1
NC
2
GND
3
VIN
NC 6
SET 5
VOUT 4
ADR130
NC 6
1 NC
0.1µF
SET 5
2 GND
INPUT
VOUT2
0.1µF
OUTPUT
VOUT 4
3 VIN
INPUT
0.1µF
06322-032
0.1µF
U1
ADR130
1
NC
2
GND
3
VIN
NC 6
SET 5
VOUT 4
Figure 32. Basic Configuration, VOUT = 0.5 V
0.1µF
06322-035
0.1µF
VOUT1
ADR130
INPUT
1
NC
2
GND
3
NC 6
Figure 35. Stacking References with ADR130, VOUT1 = 0.5 V. VOUT2 = 1.5 V
SET 5
OUTPUT
VOUT 4
VIN
Two reference ICs are used and fed from an unregulated input,
VIN. The outputs of the individual ICs that are connected in
series provide two output voltages, VOUT1 and VOUT2. VOUT1 is the
terminal voltage of U1, and VOUT2 is the sum of this voltage and
the terminal voltage of U2. U1 and U2 are chosen for the two
voltages that supply the required outputs (see Table 5). For
example, if U1 is set to have an output of 1 V or 0.5 V, the user
can stack on top of U2 to get an output of 2 V or 1.5 V.
0.1µF
06322-033
0.1µF
Figure 33. Basic Configuration, VOUT = 1 V
STACKING REFERENCE ICs FOR
ARBITRARY OUTPUTS
Some applications may require two reference voltage sources
that are a combined sum of the standard outputs. Figure 34 and
Figure 35 show how these stacked output references can be
implemented.
U2
ADR130
1
NC
2
GND
3
VIN
Table 5. Required Outputs
U1/U2
ADR130/ADR130
ADR130/ADR130
NC 6
SET 5
VOUT 4
VOUT2
0.1µF
0.1µF
INPUT
U1
ADR130
1
NC
2
GND
3
VIN
SET 5
VOUT 4
VOUT1
0.1µF
06322-034
0.1µF
NC 6
Figure 34. Stacking References with ADR130, VOUT1 = 1.0 V, VOUT2 = 2.0 V
Rev. 0 | Page 13 of 16
Comments
See Figure 34
See Figure 35
VOUT1
1V
0.5 V
VOUT2
2V
1.5 V
ADR130
PRECISION CURRENT SOURCE
NEGATIVE PRECISION REFERENCE WITHOUT
PRECISION RESISTORS
A negative reference is easily generated by adding an op amp,
A1, and is configured as shown in Figure 36. VOUT is at virtual
ground and, therefore, the negative reference can be taken
directly from the output of the op amp. The op amp must be
dual-supply, low offset, and rail-to-rail if the negative supply
voltage is close to the reference output.
+VDD
U2
ADR130
1
NC
2
GND
3
VIN
In low power applications, the need can arise for a precision
current source that can operate on low supply voltages. The
ADR130 can be configured as a precision current source (see
Figure 37). The circuit configuration shown is a floating current
source with a grounded load. The reference output voltage is
bootstrapped across RSET, which sets the output current into the
load. With this configuration, circuit precision is maintained for
load currents ranging from the reference supply current,
typically 85 μA, to approximately 4 mA.
NC 6
ADR130
SET 5
VOUT 4
VIN
0.1µF
1
NC
2
GND
3
VIN
NC 6
SET 5
VOUT 4
RSET
A1
OP291
V–
–VDD
P1
06322-036
–VREF
1kΩ
RL
Figure 36. Negative Reference, −VREF = −0.5 V
06322-037
V+
Figure 37. ADR130 as a Precision Current Source
Rev. 0 | Page 14 of 16
ADR130
OUTLINE DIMENSIONS
2.90 BSC
6
5
4
1
2
3
2.80 BSC
1.60 BSC
PIN 1
INDICATOR
0.95 BSC
1.90
BSC
*0.90
0.87
0.84
*1.00 MAX
0.50
0.30
0.10 MAX
0.20
0.08
SEATING
PLANE
8°
4°
0°
0.60
0.45
0.30
*COMPLIANT TO JEDEC STANDARDS MO-193-AA WITH
THE EXCEPTION OF PACKAGE HEIGHT AND THICKNESS.
Figure 38. 6-Lead Thin Small Outline Transistor Package [TSOT]
(UJ-6)
Dimensions shown in millimeters
ORDERING GUIDE
Model
ADR130AUJZ-REEL7 1
ADR130AUJZ-R21
ADR130BUJZ-REEL71
ADR130BUJZ-R21
1
Temperature Coefficient
(ppm/°C)
50
50
25
25
Temperature
Range
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
−40°C to +125°C
Package
Description
6-Lead TSOT
6-Lead TSOT
6-Lead TSOT
6-Lead TSOT
Z = Pb-free part.
Rev. 0 | Page 15 of 16
Package
Option
UJ-6
UJ-6
UJ-6
UJ-6
Branding
R0W
R0W
R0X
R0X
Ordering
Quantity
3,000
250
3,000
250
ADR130
NOTES
©2006 Analog Devices, Inc. All rights reserved. Trademarks and
registered trademarks are the property of their respective owners.
D06322-0-10/06(0)
Rev. 0 | Page 16 of 16