19-2758; Rev 0; 1/03 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain General Description Applications Set-Top Boxes In-Car Navigation/Entertainment Features ♦ Single +5V or Dual ±5V Operation ♦ 260MHz -3dB Bandwidth (MAX4023/MAX4025) ♦ 200MHz -3dB Bandwidth (MAX4024/MAX4026) ♦ 363V/µs Slew Rate (MAX4024/MAX4026) ♦ 25ns Channel Switching Time ♦ Ultra-Low 20mVP-P Switching Transient ♦ 0.012%/0.05° Differential Gain/Phase Error ♦ Input Common-Mode Range Includes Negative Rail (MAX4023/MAX4025) ♦ Low-Power Disable Mode ♦ Available in Space-Saving 14-Pin TSSOP and 16-Pin QSOP Packages Ordering Information PART TEMP RANGE PIN-PACKAGE MAX4023EEE -40°C to +85°C 16 QSOP MAX4023ESE -40°C to +85°C 16 Narrow SO MAX4024EUD -40°C to +85°C 14 TSSOP MAX4024ESD -40°C to +85°C 14 Narrow SO MAX4025EUP -40°C to +85°C 20 TSSOP MAX4025EWP -40°C to +85°C 20 Wide SO MAX4026EUP -40°C to +85°C 20 TSSOP MAX4026EWP -40°C to +85°C 20 Wide SO Selector Guide and Pin Configurations appear at end of data sheet. Servers Typical Operating Circuit Security Systems Video Projectors Notebook Computers Broadcast Video VIDEO R SOURCE G 1 B MAX4024 x2 R Video Crosspoint Switching TRIPLE 2:1 MUX VIDEO R SOURCE G 2 B Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. x2 x2 SOURCE SELECT G DISPLAY B EN ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX4023–MAX4026 The MAX4023–MAX4026 family of voltage feedback multiplexer-amplifiers combine low-glitch switching and excellent video specifications with fixed or settable gain. The MAX4024/MAX4026 are triple and quad 2:1 multiplexers, respectively, with amplifiers that have a fixed gain of +2. The MAX4023/MAX4025 are triple and quad 2:1 multiplexers, respectively, with adjustable gain amplifiers optimized for unity-gain stability. All devices have 25ns channel switching time and low 10mVP-P switching transients, making them ideal for high-speed video-switching applications. These devices operate from a single +4.5V to +11V supply or from dual supplies of ±2.25V to ±5.5V, and feature an input common-mode voltage range that extends to the negative supply rail. A low-power disable mode places the output in a high-impedance state. The MAX4023/MAX4025 have -3dB bandwidths of 260MHz and up to 330V/µs slew rates with a settable gain to equalize long cable runs. The MAX4024/ MAX4026, with 200MHz -3dB bandwidths and 363V/µs slew rates, have a fixed gain of +2 for driving short back-terminated cables. The MAX4023/MAX4025 internal amplifiers maintain an open-loop output impedance of only 18Ω over the full output voltage range, and minimize the gain error and bandwidth changes under loads typical of most Rail-to-Rail ® amplifiers. These devices are ideal for broadcast video applications with differential gain and phase errors of 0.07% and 0.07°, respectively. MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ..................................................12V IN_A, IN_B, FB_ ...............................(VEE - 0.3V) to (VCC + 0.3V) REF, EN, A/B ....................................(VEE - 0.3V) to (VCC + 0.3V) Current Into IN_A, IN_B, FB_ ............................................±20mA Short-Circuit Duration (OUT_ to GND or VEE) ............Continuous Short-Circuit Duration (OUT_ to VCC)..............................(Note 1) Continuous Power Dissipation (TA = +70°C) 14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW 14-Pin Narrow SO (derate 8.3mW/°C above +70°C) ...667mW 16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW 16-Pin Narrow SO (derate 8.7mW/°C above +70°C) ...696mW 20-Pin TSSOP (derate 10.9mW/°C above +70°C) .......879mW 20-Pin Wide SO (derate 10mW/°C above +70°C)........800mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Note 1: Do not short OUT_ to VCC. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS—Dual Supply (VCC = +5V, VEE = -5V, RL = ∞, EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Operating Supply Voltage Range VS Guaranteed by PSRR Quiescent Supply Current IS OUT = 0V Disable Supply Current EN = 0V Input Voltage Range VIN Input Offset Voltage VOS Input Offset Voltage Matching ∆VOS Input Offset Voltage Drift TCVOS Input Bias Current Input Offset Current Differential Input Resistance Input Resistance Output Resistance CONDITIONS RIND RIN ROUT MAX UNITS ±5.5 V 25 36 MAX4025/MAX4026 34 48 MAX4023/MAX4024 3.6 6 MAX4025/MAX4026 4.4 6 MAX4023/MAX4025, inferred from CMRR VEE VCC - 2.8 MAX4024/MAX4026, inferred from AVCL VEE + 2.9 VCC - 2.8 MAX4023/MAX4025 ±0.5 ±15 MAX4024/MAX4026 ±1 ±18 MAX4023/MAX4025 ±1 MAX4024/MAX4026 ±1.5 MAX4023/MAX4025 15 MAX4024/MAX4026 23 4 14 MAX4023/MAX4025 ±0.1 ±2 MAX4023/MAX4025, -10mV < VIND < +10mV 50 MAX4023/MAX4025, common mode 4.5 MAX4024/MAX4026, single ended 4.5 MAX4023/MAX4025 MAX4024/MAX4026 2 TYP MAX4023/MAX4024 IB IOS MIN ±2.25 Open loop Closed loop, AVCL = +1 mA mA V mV mV µV°C µA µA kΩ MΩ 18 0.025 0.15 _______________________________________________________________________________________ Ω Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain (VCC = +5V, VEE = -5V, RL = ∞, EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER Disable Output Resistance SYMBOL ROUT CONDITIONS MIN TYP MAX4023/MAX4025, EN = 0V 75 MAX4024/MAX4026, EN = 0V 1 MAX UNITS kΩ Power-Supply Rejection Ratio PSRR ±2.25V < VS < ±5.5V 50 64 dB Common-Mode Rejection Ratio CMRR MAX4023/MAX4025, VEE < VCM < VCC - 2.8V 50 68 dB Open-Loop Gain AVOL MAX4023/MAX4025, RL = 150Ω, -4.3V < VOUT < +4.3V 70 85 dB Voltage Gain AVCL MAX4024/MAX4026, RL = 150Ω, VEE + 2.9V < VIN < VCC - 2.8V 5.5 6.0 ∆AVCL Gain Matching MAX4024/MAX4026 1 RL = 150Ω MAX4023/MAX4025 RL = 75Ω Output Voltage Swing 6.5 VOUT RL = 150Ω MAX4024/MAX4026 RL = 75Ω VCC - 0.7 dB % VCC - 0.5 VEE + 0.5 VEE + 0.7 VCC - 1.2 VCC - 0.8 VEE + 0.8 VEE + 1.2 VCC - 0.7 VCC - 0.5 V VEE + 0.3 VEE + 0.7 VCC - 1.2 VCC - 0.8 VEE + 0.5 VEE + 1.2 LOGIC INPUT CHARACTERISTICS Logic-Low Threshold VIL EN, A/B VCC - 3.85 Logic-High Threshold VIH EN, A/B Logic-Low Input Current IIL EN, A/B; EN or A/B = 0V 5 10 µA Logic-High Input Current IIH EN, A/B; EN or A/B = VCC 2 8 µA VCC - 3.3 V V _______________________________________________________________________________________ 3 MAX4023–MAX4026 DC ELECTRICAL CHARACTERISTICS—Dual Supply (continued) MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain DC ELECTRICAL CHARACTERISTICS—Single Supply (VCC = +5V, VEE = 0V, RL = ∞, EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL Operating Supply Voltage Range VS Quiescent Supply Current IS Disable Supply Current Input Voltage Range VIN Input Offset Voltage VOS Input Offset Voltage Matching ∆VOS Input Offset Voltage Drift TCVOS Input Bias Current Input Offset Current Guaranteed by PSRR MIN RIND Input Resistance RIN ROUT TYP 4.5 MAX UNITS 11 V MAX4023/MAX4024, OUT = 0V 19 32 MAX4025/MAX4026, OUT = 0V 31 43 MAX4023/MAX4024, EN = 0V 3.3 6 MAX4025/MAX4026, EN = 0V 3.9 6 MAX4023/MAX4025, inferred from CMRR VEE VCC - 2.8 MAX4024/MAX4026, inferred from AVCL VEE + 0.28 VCC - 2.8 MAX4023/MAX4025 ±1 ±18 MAX4024/MAX4026 ±3 ±20 MAX4023/MAX4025 ±1 MAX4024/MAX4026 ±1.5 mA mA V mV mV MAX4023/MAX4025 9 MAX4024/MAX4026 13 4.5 14 µA MAX4023/MAX4025 ±0.1 ±2 µA IB IOS Differential Input Resistance Output Resistance CONDITIONS MAX4023/MAX4025, -10mV < VIND < +10mV 50 MAX4023/MAX4025, common mode 4.5 MAX4024/MAX4026, single ended 4.5 MAX4023/MAX4025 µV°C Open loop kΩ MΩ 18 Closed loop, AVCL = +1 Ω 0.025 MAX4024/MAX4026 0.15 MAX4023/MAX4025, EN = 0V 75 MAX4024/MAX4026, EN = 0V 1 Disable Output Resistance ROUT Power-Supply Rejection Ratio PSRR ±4.5V < VS < ±11V 50 64 dB Common-Mode Rejection Ratio CMRR MAX4023/MAX4025, VEE < VCM < VCC - 2.8V 50 91 dB Open-Loop Gain AVOL MAX4023/MAX4025, RL = 150Ω, 0.3V < VOUT < 4.3V 70 85 dB Voltage Gain AVCL MAX4024/MAX4026, RL = 150Ω, VEE + 0.28V < VIN < VCC - 2.8V 5.5 6.0 Gain Matching 4 ∆AVCL MAX4024/MAX4026 1 _______________________________________________________________________________________ kΩ 6.5 dB % Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain (VCC = +5V, VEE = 0V, RL = ∞, EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER SYMBOL CONDITIONS RL = 150Ω to GND MAX4023/MAX4025 RL = 75Ω to GND Output Voltage Swing VOUT RL = 150Ω to GND MAX4024/MAX4026 RL = 75Ω to GND MIN VCC - 1.1 TYP VEE + 0.175 VCC - 0.5 VEE + 0.03 VCC - 1.1 VEE + 0.175 VCC - 0.8 VEE + 0.03 VCC - 1.1 UNITS VCC - 0.5 VEE + 0.03 VCC - 1.1 MAX V VEE + 0.09 VCC - 0.8 VEE + 0.04 VEE + 0.08 LOGIC INPUT CHARACTERISTICS Logic-Low Threshold VIL EN, A/B Logic-High Threshold VIH EN, A/B VCC - 3.85 Logic-Low Input Current IIL EN, A/B; EN or A/B = 0V 5 10 µA Logic-High Input IIH EN, A/B; EN or A/B = VCC 2 8 µA VCC - 3.3 V V _______________________________________________________________________________________ 5 MAX4023–MAX4026 DC ELECTRICAL CHARACTERISTICS—Single Supply (continued) MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain AC ELECTRICAL CHARACTERISTICS—Dual Supply (VCC = +5V, VEE = -5V, RIN = 75Ω to GND, RL = 150Ω to GND, EN = +5V, VCM = 0V, REF = 0V, AVCL = +1 (MAX4023/MAX4025). Typical values are at TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth BWSS VOUT = 100mVP-P Large-Signal -3dB Bandwidth BWLS VOUT = 2VP-P Small-Signal 0.1dB Gain-Flatness Bandwidth BW0.1dBSS VOUT = 100mVP-P Large-Signal 0.1dB Gain-Flatness Bandwidth BW0.1dBLS VOUT = 2VP-P Slew Rate SR VOUT = 2VP-P Settling Time to 0.1% tS VOUT = 2V step Power-Supply Rejection Ratio PSRR Output Impedance Differential Gain Error Differential Phase Error Group Delay Peak Signal to RMS Noise DG DP D/dT SNR Crosstalk MAX4023/MAX4025 MAX4024/MAX4026 MIN TYP 260 200 MAX4023/MAX4025 85 MAX4024/MAX4026 110 MAX4023/MAX4025 30 MAX4024/MAX4026 32 MAX4023/MAX4025 22 MAX4024/MAX4026 24 MAX4023/MAX4025 300 MAX4024/MAX4026 363 MAX4023/MAX4025 32 MAX4024/MAX4026 32 MAX UNITS MHz MHz MHz MHz V/µs ns f = 100kHz 60 dB f = 10MHz 1.5 Ω NTSC, PAL, AVCL = +2 NTSC, PAL, AVCL = +2 f = 3.58MHz or 4.43MHz, AVCL = +2 VOUT = 2VP-P, 10MHz BW, AVCL = +2 MAX4023/MAX4025 0.012 MAX4024/MAX4026 0.015 MAX4023/MAX4025 0.05 MAX4024/MAX4026 0.077 MAX4023/MAX4025 1.6 MAX4024/MAX4026 1.8 MAX4023/MAX4025 90 MAX4024/MAX4026 86 f = 10MHz -61 MAX4023/MAX4025 25 MAX4024/MAX4026 25 % Degrees ns dB dB SWITCHING CHARACTERISTICS Channel Switching Time tSW ns Enable Time tON VIN = 0.5V 60 ns Disable Time tOFF VIN = 0.5V 0.45 µs Switching Transient 6 MAX4023/MAX4025 20 MAX4024/MAX4026 20 _______________________________________________________________________________________ mVP-P Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain (VCC = +5V, VEE = 0V, RIN = 75Ω to VCM, RL = 150Ω to GND, EN = +5V, VCM = 0.5V, REF = VCM, AVCL = +1 (MAX4023/MAX4025). Typical values are at TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth BWSS VOUT = 100mVP-P Large-Signal -3dB Bandwidth BWLS VOUT = 2VP-P Small-Signal 0.1dB Gain-Flatness Bandwidth BW0.1dBSS VOUT = 100mVP-P Large-Signal 0.1dB Gain-Flatness Bandwidth BW0.1dBLS VOUT = 2VP-P Slew Rate SR VOUT = 2VP-P Settling Time to 0.1% tS VOUT = 2V step Power-Supply Rejection Ratio PSRR Output Impedance Differential Gain Error Differential Phase Error Group Delay DG DP D/dT Peak Signal to RMS Noise SNR Crosstalk MAX4023/MAX4025 MAX4024/MAX4026 MIN TYP MAX 260 200 MAX4023/MAX4025 83 MAX4024/MAX4026 110 MAX4023/MAX4025 40 MAX4024/MAX4026 44 MAX4023/MAX4025 22 MAX4024/MAX4026 25 MAX4023/MAX4025 300 MAX4024/MAX4026 363 MAX4023/MAX4025 32 MAX4024/MAX4026 32 UNITS MHz MHz MHz MHz V/µs ns f = 100kHz 60 dB f = 10MHz 1.5 Ω NTSC, PAL, AVCL = +2 NTSC, PAL, AVCL = +2 f = 3.58MHz or 4.43MHz, AVCL = +2 VOUT = 2VP-P, 10MHz BW, AVCL = +2 MAX4023/MAX4025 0.016 MAX4024/MAX4026 0.02 MAX4023/MAX4025 0.054 MAX4024/MAX4026 0.085 MAX4023/MAX4025 1.6 MAX4024/MAX4026 1.9 MAX4023/MAX4025 90 MAX4024/MAX4026 86 f = 10MHz -61 MAX4023/MAX4025 25 MAX4024/MAX4026 25 % Degrees ns dB dB SWITCHING CHARACTERISTICS Channel Switching Time tSW ns Enable Time tON VIN = 0.5V 90 ns Disable Time tOFF VIN = 0.5V 0.45 µs Switching Transient MAX4023/MAX4025 10 MAX4024/MAX4026 10 mVP-P Note 2: All devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design. _______________________________________________________________________________________ 7 MAX4023–MAX4026 AC ELECTRICAL CHARACTERISTICS—Single Supply Typical Operating Characteristics—±5V Dual Supply (VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.) 5 0.5 5 3 0.1 1 0 -1 GAIN (dB) 2 1 GAIN (dB) 0.2 0 -0.1 0 -1 -2 -0.2 -2 -3 -0.3 -3 -4 -0.4 -4 -5 -0.5 -5 1 10 100 1000 0.1 1 10 100 1000 0.1 10 1000 100 FREQUENCY (MHz) FREQUENCY (MHz) MAX4023/MAX4025 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY MAX4024/MAX4026 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY MAX4024/MAX4026 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY 0.2 0.1 0 -0.1 -0.2 2 1 0 -1 -2 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -3 -0.4 -4 -0.4 -0.5 -5 -0.5 1 10 100 1000 MAX4023/25 toc06 3 0.5 NORMALIZED GAIN (dB) 4 NORMALIZED GAIN (dB) 0.3 MAX4023/25 toc05 5 MAX4023/25 toc04 0.4 0.1 1 FREQUENCY (MHz) 0.5 -0.3 0.1 1 10 100 0.1 1000 1 10 1000 100 FREQUENCY (MHz) FREQUENCY (MHz) MAX4024/MAX4026 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY MAX4024/MAX4026 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY MAX4023/MAX4025 DIFFERENTIAL GAIN AND PHASE 3 2 1 0 -1 -2 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -3 -4 -0.4 -5 -0.5 0.1 1 10 FREQUENCY (MHz) 100 1000 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 0.1 1 10 100 1000 MAX4023/25 toc09 4 DIFFERENTIAL PHASE (°) MAX4023/25 toc07 5 DIFFERENTIAL GAIN (%) FREQUENCY (MHz) MAX4023/25 toc08 GAIN (dB) 4 2 0.1 8 0.3 NORMALIZED GAIN (dB) GAIN (dB) 3 0.4 MAX4023/25 toc03 MAX4023/MAX4025 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY MAX4023/25 toc02 MAX4023/MAX4025 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY MAX4023/25 toc01 MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY 4 NORMALIZED GAIN (dB) MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain 1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 FREQUENCY (MHz) _______________________________________________________________________________________ Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023/25 toc12 -20 3rd 4th 5th 6th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 CMRR (dB) 2nd PSRR (dB) -40 -60 -40 -60 -80 -80 -100 -120 3rd 4th 5th -100 0.01 6th OFF-ISOLATION vs. FREQUENCY -40 -60 -80 10 100 0.01 0.1 1 100 10 FREQUENCY (MHz) FREQUENCY (MHz) ALL-HOSTILE CROSSTALK vs. FREQUENCY OUTPUT IMPEDANCE vs. FREQUENCY MAX4023/25 toc14 -20 CROSSTALK (dB) -20 1 0 MAX4023/25 toc13 0 0.1 -40 -60 1000 100 MAX4023/25 toc15 2nd OUTPUT IMPEDANCE (Ω) 1st 10 1 -80 -100 -100 -120 1 10 100 0.1 1 1000 10 100 1 1000 100 10 1000 FREQUENCY (MHz) FREQUENCY (MHz) FREQUENCY (MHz) INPUT VOLTAGE-NOISE DENSITY vs. FREQUENCY MAX4023/MAX4025 LARGE-SIGNAL TRANSIENT RESPONSE MAX4023/MAX4025 SMALL-SIGNAL TRANSIENT RESPONSE MAX4023/25 toc16 1000 INPUT 1V/div MAX4023/25 toc18 OFF-ISOLATION (dB) 0 MAX4023/25 toc11 -20 MAX4023/25 toc17 DIFFERENTIAL PHASE (°) 0 MAX4023/25 toc10 DIFFERENTIAL GAIN (%) 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st VOLTAGE-NOISE DENSITY (nV/√Hz) MAX4023/MAX4025 COMMON-MODE REJECTION RATIO vs. FREQUENCY POWER-SUPPLY REJECTION RATIO vs. FREQUENCY MAX4024/MAX4026 DIFFERENTIAL GAIN AND PHASE INPUT 50mV/div 100 OUTPUT 50mV/div OUTPUT 1V/div 10 0.01 0.1 1 10 100 1000 20ns/div 20ns/div FREQUENCY (kHz) _______________________________________________________________________________________ 9 MAX4023–MAX4026 Typical Operating Characteristics—±5V Dual Supply (continued) (VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.) Typical Operating Characteristics—±5V Dual Supply (continued) (VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.) MAX4024/MAX4026 SMALL-SIGNAL TRANSIENT RESPONSE OUTPUT 1V/div OUTPUT 50mV/div MAX4023/25 toc21 INPUT 25mV/div VA/B 5V/div VOUT 20mV/div 20ns/div 20ns/div 20ns/div ENABLE RESPONSE TIME MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY vs. CL OPTIMAL ISOLATION RESISTOR vs. CAPACITIVE LOAD 3 2 CL = 15pF 1 CL = 10pF 0 -1 CL = 5pF -2 VOUT 500mV/div CL = 0pF -3 50 OPTIMAL ISOLATION RESISTOR (Ω) 4 GAIN (dB) VEN 5V/div MAX4023/25 toc23 5 MAX4023 RL = 150Ω 40 MAX4023/25 toc24 INPUT 500mV/div CHANNEL SWITCHING TRANSIENT MAX4023/25 toc20 MAX4023/25 toc19 MAX4024/MAX4026 LARGE-SIGNAL TRANSIENT RESPONSE MAX4023/25 toc22 MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain 30 20 10 -4 -5 20ns/div 0 1.0 10 100 FREQUENCY (MHz) 10 1000 0 50 100 150 CAPACITIVE LOAD (pF) ______________________________________________________________________________________ 200 250 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023/MAX4025 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY 0.4 0.3 4 3 0.2 2 1 0.1 1 0 GAIN (dB) 2 GAIN (dB) 0 0 -1 -0.1 -1 -2 -0.2 -2 -3 -0.3 -3 -4 -0.4 -4 -5 -0.5 -5 1 10 100 0.1 1000 1 10 1000 100 0.1 10 100 FREQUENCY (MHz) FREQUENCY (MHz) MAX4023/MAX4025 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY MAX4024/MAX4026 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY MAX4024/MAX4026 SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY 0.4 3 NORMALIZED GAIN (dB) 0.3 4 0.2 0.1 0 -0.1 -0.2 -0.3 2 1 0 -1 -2 -3 -0.4 -4 -0.5 -5 10 100 1000 0.1 FREQUENCY (MHz) 1 10 1000 100 0.1 FREQUENCY (MHz) 0.4 0.3 NORMALIZED GAIN (dB) 3 2 1 0 -1 -2 1000 0.2 0.1 0 -0.1 -0.2 -3 -0.3 -4 -0.4 -5 100 MAX4023/25 toc32 4 10 FREQUENCY (MHz) 0.5 MAX4023/25 toc31 5 1 MAX4024/MAX4026 LARGE-SIGNAL GAIN FLATNESS vs. FREQUENCY MAX4024/MAX4026 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY NORMALIZED GAIN (dB) 1 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 1000 MAX4023/25 toc30 5 MAX4023/25 toc28 0.5 0.1 1 FREQUENCY (MHz) NORMALIZED GAIN (dB) 0.1 MAX4023/25 toc29 NORMALIZED GAIN (dB) 3 5 MAX4023/25 toc26 4 GAIN (dB) 0.5 MAX4023/25 toc25 5 MAX4023/MAX4025 LARGE-SIGNAL BANDWIDTH vs. FREQUENCY MAX4023/25 toc27 MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY 0.5 0.1 1 10 FREQUENCY (MHz) 100 1000 0.1 1 10 100 1000 FREQUENCY (MHz) ______________________________________________________________________________________ 11 MAX4023–MAX4026 Typical Operating Characteristics—+5V Single Supply (V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75Ω to V CM , R L = 150Ω to GND, A VCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.) Typical Operating Characteristics—+5V Single Supply (continued) (V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75Ω to V CM , R L = 150Ω to GND, A VCL = +1V/V (MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.) 1st 2nd 3rd 4th 5th 6th DIFFERENTIAL PHASE (°) 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 1st 2nd 3rd 4th 5th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 6th MAX4023/25 toc34 DIFFERENTIAL GAIN (%) 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 MAX4024/MAX4026 DIFFERENTIAL GAIN AND PHASE MAX4023/25 toc33 DIFFERENTIAL GAIN (%) MAX4023/MAX4025 DIFFERENTIAL GAIN AND PHASE DIFFERENTIAL PHASE (°) MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain 1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th 0.3 0.2 0.1 0 -0.1 -0.2 -0.3 Pin Description PIN MAX4023 SO/QSOP MAX4024 SO/TSSOP MAX4025 SO/TSSOP MAX4026 SO/TSSOP NAME 1 1 1 1 IN1A Amplifier Input 1A 2 2 2 2 IN2A Amplifier Input 2A 3 3 3 3 IN3A Amplifier Input 3A 4 4 5 5, 6 VEE Negative Power-Supply Voltage. Bypass VEE to GND with a 0.1µF capacitor. Connect VEE to GND for single-supply operation. 5 13 6 17 A/B Channel Select Input. Pull A/B high to select channel A. Drive A/B low to select channel B. 6 5 7 7 IN1B Amplifier Input 1B 7 6 8 8 IN2B Amplifier Input 2B 8 7 9 9 IN3B Amplifier Input 3B 9 — 14 — FB3 Amplifier Feedback Input for Amplifier 3 10 9 13 13 OUT3 Amplifier Output 3 11 10 18 18 OUT2 Amplifier Output 2 12 — 17 — FB2 Amplifier Feedback Input for Amplifier 2 13 11 15 14 EN Enable Input. Pull EN high for normal operation. Drive EN low to disable all outputs. 12 FUNCTION ______________________________________________________________________________________ Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain PIN MAX4023 SO/QSOP MAX4024 SO/TSSOP MAX4025 SO/TSSOP MAX4026 SO/TSSOP NAME FUNCTION 14 12 16 15, 16 VCC 15 14 19 19 OUT1 16 — 20 — FB1 Amplifier Feedback Input for Amplifier 1 — 8 — 11, 20 REF Reference Pin for Internal Gain Resistor Network — — 4 4 IN4A Amplifier Input 4A — — 10 10 IN4B Amplifier Input 4B — — 11 — FB4 Amplifier Feedback Input for Amplifier 4 — — 12 12 OUT4 Positive Power-Supply Voltage. Bypass VCC to GND with a 0.1µF capacitor. Amplifier Output 1 Amplifier Output 4 Functional Diagrams A/B VCC A/B EN IN1A MUX1 VCC EN IN1A MUX1 IN1B OUT1 IN1B OUT1 FB1 TO A/B TO A/B TO REF TO EN IN2A IN2A MUX2 IN2B OUT2 TO EN MUX2 IN2B OUT2 FB2 TO A/B TO A/B TO REF TO EN IN3A IN3A MUX3 TO EN MUX3 IN3B OUT3 IN3B OUT3 FB3 MAX4024 MAX4023 REF VEE VEE ______________________________________________________________________________________ 13 MAX4023–MAX4026 Pin Description (continued) MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain Detailed Description The MAX4024/MAX4026 combine three and four 2:1 multiplexers, respectively, with a fixed gain of 2 amplifier. The MAX4023/MAX4025 combine three and four 2:1 multiplexers, respectively, with an adjustable gain output amplifier optimized for a closed-loop gain of +1 or greater. These devices operate from a single-supply voltage of +4.5V to +11V or from dual supplies of ±2.25V to ±5.5V. The outputs may be placed in a highimpedance state and the supply current minimized by forcing the EN pin low. The input multiplexers feature short 25ns channel-switching times and small 10mVP-P switching transients. These devices feature voltagefeedback output amplifiers that achieve up to 363V/µs slew rates and up to 220MHz -3dB bandwidths. They also feature excellent differential gain/phase performance. The MAX4023–MAX4026 feature an A/B pin, which is an input pin for selecting either channel A or B. Drive A/B high to select channel A or drive A/B low to select channel B. Channel A is automatically selected if A/B is left unconnected. Applications Information Feedback and Gain Resistor Selection (MAX4023/MAX4025) Select the MAX4023/MAX4025 gain-setting feedback RF and RG resistors to fit your application. Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capacitance. This can generate undesirable poles and zeros, and can decrease bandwidth or cause oscillations. Stray capacitance at the FB pin produces peaking in the frequency-response curve. Keep the capacitance at FB as low as possible by using surface-mount resistors and by avoiding the use of a ground plane beneath or beside these resistors and the FB pin. Some capacitance is unavoidable. If necessary, its effects can be neutralized by adjusting RF. Use 1% resistors to maintain gain accuracy. Low-Power Shutdown Mode All parts feature a low-power shutdown mode that is activated by driving the EN input low. Placing the amplifier in shutdown mode reduces the quiescent supply current to below 4mA and places the output into a high-impedance state, typically 75kΩ (MAX4023/ MAX4025). Multiple devices may be paralleled to construct larger switch matrices by connecting the outputs of several devices together and disabling all but one of the paralleled amplifiers’ outputs. 14 For MAX4023/MAX4025 application circuits operating with a closed-loop gain of +1 or greater, consider the external-feedback network impedance of all devices used in the mux application when calculating the total load on the output amplifier of the active device. The MAX4024/MAX4026 have a fixed gain of +2 that is internally set with two 500Ω thin-film resistors. The impedance of the internal feedback resistors must be taken into account when operating multiple MAX4024/ MAX4026s in large multiplexer applications. For normal operation, drive EN high. Note that the MAX4023–MAX4026 have internal pullup circuitry on EN, so if left unconnected, it is automatically pulled up to VCC. Layout and Power-Supply Bypassing The MAX4023–MAX4026 have high bandwidths and consequently require careful board layout, including the possible use of constant-impedance microstrip or stripline techniques. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have at least two layers: a signal and power layer on one side, and a large, low-impedance ground plane on the other side. The ground plane should be as free of voids as possible, with one exception: The feedback (FB) should have as low a capacitance to ground as possible. Whether or not a constant-impedance board is used, it is best to observe the following guidelines when designing the board: 1) Do not use wire-wrapped boards or breadboards. 2) Do not use IC sockets; they increase parasitic capacitance and inductance. 3) Keep signal lines as short and straight as possible. Do not make 90° turns; round all corners. 4) Observe high-frequency bypassing techniques to maintain the amplifier’s accuracy and stability. 5) Use surface-mount components. They generally have shorter bodies and lower parasitic reactance, yielding better high-frequency performance than through-hole components. The bypass capacitors should include a 0.1µF ceramic surface-mount capacitor between each supply pin and the ground plane, located as close to the package as possible. Optionally, place a 10µF tantalum capacitor at the power-supply’s point of entry to the PC board to ensure the integrity of incoming supplies. The powersupply traces should lead directly from the tantalum capacitor to the VCC and VEE pins. To minimize para- ______________________________________________________________________________________ Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023–MAX4026 A/B EN 75Ω CABLE RT 75Ω IN_A OUT_ RT 75Ω 75Ω CABLE RF 75Ω CABLE RT 75Ω FB_ IN_B RT 75Ω RG MAX4023 MAX4025 Figure 1. MAX4023/MAX4025 Noninverting Gain Configuration sitic inductance, keep PC traces short and use surfacemount components. If input termination resistors and output back-termination resistors are used, they should be surface-mount types, and should be placed as close to the IC pins as possible. Video Line Driver The MAX4024/MAX4026 are well suited to drive short coaxial transmission lines when the cable is terminated at both ends (as shown in Figure 2a) where the fixed gain of +2 compensates for the loss in the resistors. The MAX4023/MAX4025 have settable gain to equalize long cables. The MAX4023/MAX4025 allow adding functions that normally require additional op amps. For example, a cable driver can “boost” the high frequencies for long runs, making the part perform multiple functions. Figure 2b shows the “cable booster” using the MAX4023/MAX4025. Driving Capacitive Loads A correctly terminated transmission line is purely resistive and presents no capacitive load to the amplifier. Reactive loads decrease phase margin and may produce excessive ringing and oscillation (see Typical Operating Characteristics). Another concern when driving capacitive loads is the amplifier’s output impedance, which appears inductive at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes peaking in the frequency response and degrades the amplifier’s phase margin. Although the MAX4023–MAX4026 are optimized for AC performance and are not designed to drive highly capacitive loads, they are capable of driving up to 33pF without oscillations. However, some peaking may occur in the frequency domain (Figure 3). To drive larger capacitive loads or to reduce ringing, add an isolation resistor between the amplifier’s output and the load (Figure 4). The value of RISO depends on the circuit’s gain and the capacitive load (Figure 5). Also note that the isolation resistor forms a divider that decreases the voltage delivered to the load. ______________________________________________________________________________________ 15 MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain A/B EN 75Ω CABLE IN_A OUT_ RT 75Ω RT 75Ω 75Ω CABLE RT 75Ω 75Ω CABLE IN_B RT 75Ω REF MAX4024/ MAX4026 Figure 2a. Video Line Driver VIDEO IN A VCC 75Ω VIDEO OUT VIDEO IN B VEE RF CB RI RB CB AND RB ARE CHOSEN SUCH THAT: GAIN EFFECT OF BOOST FREQUENCY Figure 2b. Cable Booster Using the MAX4023/MAX4025 16 ______________________________________________________________________________________ Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain 3 2 CL = 15pF 1 CL = 10pF 0 -1 CL = 5pF -2 CL = 0pF -3 MAX4023 RL = 150Ω 40 MAX4023/25 toc24 50 OPTIMAL ISOLATION RESISTOR (Ω) 4 GAIN (dB) OPTIMAL ISOLATION RESISTOR vs. CAPACITIVE LOAD MAX4023/25 toc23 5 MAX4023–MAX4026 MAX4023/MAX4025 SMALL-SIGNAL BANDWIDTH vs. FREQUENCY vs. CL 30 20 10 -4 -5 0 1.0 10 100 1000 0 FREQUENCY (MHz) 50 100 150 200 250 CAPACITIVE LOAD (pF) Figure 5. Optimal Isolation Resistance vs. Capacitive Load Figure 3. Small-Signal Bandwidth vs. Frequency with Capacitive Load and No Isolation Resistor Selector Guide A/B EN 75Ω CABLE PART IN_A OUT_ RT 75Ω PIN-PACKAGE RISO CL 75Ω CABLE IN_B RT 75Ω RL NO. OF VIDEO MUXAMPS AMPLIFIER GAIN (V/V) ≥+1 MAX4023 16 SO/QSOP 3 MAX4024 14 SO/TSSOP 3 +2 MAX4025 20 SO/TSSOP 4 ≥+1 MAX4026 20 SO/TSSOP 4 +2 REF MAX4024 MAX4026 Chip Information TRANSISTOR COUNT: 655 PROCESS: Bipolar Figure 4. Using an Isolation Resistor (RISO) for a HighCapacitive Load ______________________________________________________________________________________ 17 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MAX4023–MAX4026 Pin Configurations TOP VIEW IN1A 1 16 FB1 IN2A 2 15 OUT1 IN3A 3 VEE 4 14 VCC MAX4023 13 EN 12 FB2 A/B 5 IN1B 6 11 OUT2 IN2B 7 10 OUT3 IN3B 8 9 FB3 IN1A 1 14 OUT1 IN2A 2 13 A/B IN3A 3 VEE 4 IN1B 5 11 EN 10 OUT2 IN2B 6 9 OUT3 IN3B 7 8 REF SO/TSSOP SO/QSOP IN1A 1 20 FB1 IN1A 1 20 REF IN2A 2 19 OUT1 IN2A 2 19 OUT1 IN3A 3 18 OUT2 IN3A 3 18 OUT2 IN4A 4 17 FB2 IN4A 4 16 VCC VEE 5 VEE 5 MAX4025 17 A/B MAX4026 16 VCC A/B 6 15 EN VEE 6 15 VCC IN1B 7 14 FB3 IN1B 7 14 EN IN2B 8 13 OUT3 IN2B 8 13 OUT3 IN3B 9 12 OUT4 IN3B 9 12 OUT4 IN4B 10 11 FB4 IN4B 10 11 REF SO/TSSOP 18 12 VCC MAX4024 SO/TSSOP ______________________________________________________________________________________ Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain TSSOP4.40mm.EPS ______________________________________________________________________________________ 19 MAX4023–MAX4026 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) DIM A A1 B C e E H L N E H INCHES MILLIMETERS MAX MIN 0.069 0.053 0.010 0.004 0.014 0.019 0.007 0.010 0.050 BSC 0.150 0.157 0.228 0.244 0.016 0.050 MAX MIN 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 1.27 BSC 3.80 4.00 5.80 6.20 0.40 SOICN .EPS MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain 1.27 VARIATIONS: 1 INCHES TOP VIEW DIM D D D MIN 0.189 0.337 0.386 MAX 0.197 0.344 0.394 MILLIMETERS MIN 4.80 8.55 9.80 MAX 5.00 8.75 10.00 N MS012 8 AA 14 AB 16 AC D A B e C 0 -8 A1 L FRONT VIEW SIDE VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, .150" SOIC APPROVAL DOCUMENT CONTROL NO. 21-0041 20 ______________________________________________________________________________________ REV. B 1 1 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain QSOP.EPS ______________________________________________________________________________________ 21 MAX4023–MAX4026 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) INCHES N DIM A A1 B C e E H L H E MAX MIN 0.104 0.093 0.012 0.004 0.019 0.014 0.013 0.009 0.050 0.299 0.291 0.394 0.419 0.050 0.016 SOICW.EPS MAX4023–MAX4026 Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain MILLIMETERS MIN 2.35 0.10 0.35 0.23 MAX 2.65 0.30 0.49 0.32 1.27 7.40 7.60 10.00 10.65 0.40 1.27 VARIATIONS: 1 INCHES TOP VIEW DIM D D D D D D A B e MIN 0.398 0.447 0.496 0.598 0.697 MAX 0.413 0.463 0.512 0.614 0.713 MILLIMETERS MIN 10.10 11.35 12.60 15.20 17.70 MAX 10.50 11.75 13.00 15.60 18.10 N MS013 16 AA 18 AB 20 AC 24 AD 28 AE C 0 -8 A1 L FRONT VIEW SIDE VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, .300" SOIC APPROVAL DOCUMENT CONTROL NO. 21-0042 REV. B 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2003 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.