MAXIM MAX4026EWP

19-2758; Rev 0; 1/03
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
General Description
Applications
Set-Top Boxes
In-Car Navigation/Entertainment
Features
♦ Single +5V or Dual ±5V Operation
♦ 260MHz -3dB Bandwidth (MAX4023/MAX4025)
♦ 200MHz -3dB Bandwidth (MAX4024/MAX4026)
♦ 363V/µs Slew Rate (MAX4024/MAX4026)
♦ 25ns Channel Switching Time
♦ Ultra-Low 20mVP-P Switching Transient
♦ 0.012%/0.05° Differential Gain/Phase Error
♦ Input Common-Mode Range Includes Negative
Rail (MAX4023/MAX4025)
♦ Low-Power Disable Mode
♦ Available in Space-Saving 14-Pin TSSOP and
16-Pin QSOP Packages
Ordering Information
PART
TEMP RANGE
PIN-PACKAGE
MAX4023EEE
-40°C to +85°C
16 QSOP
MAX4023ESE
-40°C to +85°C
16 Narrow SO
MAX4024EUD
-40°C to +85°C
14 TSSOP
MAX4024ESD
-40°C to +85°C
14 Narrow SO
MAX4025EUP
-40°C to +85°C
20 TSSOP
MAX4025EWP
-40°C to +85°C
20 Wide SO
MAX4026EUP
-40°C to +85°C
20 TSSOP
MAX4026EWP
-40°C to +85°C
20 Wide SO
Selector Guide and Pin Configurations appear at end of data
sheet.
Servers
Typical Operating Circuit
Security Systems
Video Projectors
Notebook Computers
Broadcast Video
VIDEO R
SOURCE G
1
B
MAX4024
x2
R
Video Crosspoint Switching
TRIPLE
2:1
MUX
VIDEO R
SOURCE G
2
B
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
x2
x2
SOURCE
SELECT
G
DISPLAY
B
EN
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
MAX4023–MAX4026
The MAX4023–MAX4026 family of voltage feedback
multiplexer-amplifiers combine low-glitch switching and
excellent video specifications with fixed or settable
gain. The MAX4024/MAX4026 are triple and quad 2:1
multiplexers, respectively, with amplifiers that have a
fixed gain of +2. The MAX4023/MAX4025 are triple and
quad 2:1 multiplexers, respectively, with adjustable
gain amplifiers optimized for unity-gain stability. All
devices have 25ns channel switching time and low
10mVP-P switching transients, making them ideal for
high-speed video-switching applications. These
devices operate from a single +4.5V to +11V supply or
from dual supplies of ±2.25V to ±5.5V, and feature an
input common-mode voltage range that extends to the
negative supply rail. A low-power disable mode places
the output in a high-impedance state.
The MAX4023/MAX4025 have -3dB bandwidths of
260MHz and up to 330V/µs slew rates with a settable
gain to equalize long cable runs. The MAX4024/
MAX4026, with 200MHz -3dB bandwidths and 363V/µs
slew rates, have a fixed gain of +2 for driving short
back-terminated cables. The MAX4023/MAX4025 internal amplifiers maintain an open-loop output impedance
of only 18Ω over the full output voltage range, and minimize the gain error and bandwidth changes under
loads typical of most Rail-to-Rail ® amplifiers. These
devices are ideal for broadcast video applications with
differential gain and phase errors of 0.07% and 0.07°,
respectively.
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE) ..................................................12V
IN_A, IN_B, FB_ ...............................(VEE - 0.3V) to (VCC + 0.3V)
REF, EN, A/B ....................................(VEE - 0.3V) to (VCC + 0.3V)
Current Into IN_A, IN_B, FB_ ............................................±20mA
Short-Circuit Duration (OUT_ to GND or VEE) ............Continuous
Short-Circuit Duration (OUT_ to VCC)..............................(Note 1)
Continuous Power Dissipation (TA = +70°C)
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW
14-Pin Narrow SO (derate 8.3mW/°C above +70°C) ...667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C)...........667mW
16-Pin Narrow SO (derate 8.7mW/°C above +70°C) ...696mW
20-Pin TSSOP (derate 10.9mW/°C above +70°C) .......879mW
20-Pin Wide SO (derate 10mW/°C above +70°C)........800mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Do not short OUT_ to VCC.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS—Dual Supply
(VCC = +5V, VEE = -5V, RL = ∞, EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
Operating Supply Voltage Range
VS
Guaranteed by PSRR
Quiescent Supply Current
IS
OUT = 0V
Disable Supply Current
EN = 0V
Input Voltage Range
VIN
Input Offset Voltage
VOS
Input Offset Voltage Matching
∆VOS
Input Offset Voltage Drift
TCVOS
Input Bias Current
Input Offset Current
Differential Input Resistance
Input Resistance
Output Resistance
CONDITIONS
RIND
RIN
ROUT
MAX
UNITS
±5.5
V
25
36
MAX4025/MAX4026
34
48
MAX4023/MAX4024
3.6
6
MAX4025/MAX4026
4.4
6
MAX4023/MAX4025, inferred from CMRR
VEE
VCC - 2.8
MAX4024/MAX4026, inferred from AVCL
VEE + 2.9
VCC - 2.8
MAX4023/MAX4025
±0.5
±15
MAX4024/MAX4026
±1
±18
MAX4023/MAX4025
±1
MAX4024/MAX4026
±1.5
MAX4023/MAX4025
15
MAX4024/MAX4026
23
4
14
MAX4023/MAX4025
±0.1
±2
MAX4023/MAX4025, -10mV < VIND < +10mV
50
MAX4023/MAX4025, common mode
4.5
MAX4024/MAX4026, single ended
4.5
MAX4023/MAX4025
MAX4024/MAX4026
2
TYP
MAX4023/MAX4024
IB
IOS
MIN
±2.25
Open loop
Closed loop, AVCL = +1
mA
mA
V
mV
mV
µV°C
µA
µA
kΩ
MΩ
18
0.025
0.15
_______________________________________________________________________________________
Ω
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
(VCC = +5V, VEE = -5V, RL = ∞, EN = +5V, VCM = REF = OUT_ = 0V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
PARAMETER
Disable Output Resistance
SYMBOL
ROUT
CONDITIONS
MIN
TYP
MAX4023/MAX4025, EN = 0V
75
MAX4024/MAX4026, EN = 0V
1
MAX
UNITS
kΩ
Power-Supply Rejection Ratio
PSRR
±2.25V < VS < ±5.5V
50
64
dB
Common-Mode Rejection Ratio
CMRR
MAX4023/MAX4025, VEE < VCM < VCC - 2.8V
50
68
dB
Open-Loop Gain
AVOL
MAX4023/MAX4025, RL = 150Ω,
-4.3V < VOUT < +4.3V
70
85
dB
Voltage Gain
AVCL
MAX4024/MAX4026, RL = 150Ω,
VEE + 2.9V < VIN < VCC - 2.8V
5.5
6.0
∆AVCL
Gain Matching
MAX4024/MAX4026
1
RL = 150Ω
MAX4023/MAX4025
RL = 75Ω
Output Voltage Swing
6.5
VOUT
RL = 150Ω
MAX4024/MAX4026
RL = 75Ω
VCC - 0.7
dB
%
VCC - 0.5
VEE + 0.5 VEE + 0.7
VCC - 1.2
VCC - 0.8
VEE + 0.8 VEE + 1.2
VCC - 0.7
VCC - 0.5
V
VEE + 0.3 VEE + 0.7
VCC - 1.2 VCC - 0.8
VEE + 0.5 VEE + 1.2
LOGIC INPUT CHARACTERISTICS
Logic-Low Threshold
VIL
EN, A/B
VCC - 3.85
Logic-High Threshold
VIH
EN, A/B
Logic-Low Input Current
IIL
EN, A/B; EN or A/B = 0V
5
10
µA
Logic-High Input Current
IIH
EN, A/B; EN or A/B = VCC
2
8
µA
VCC - 3.3
V
V
_______________________________________________________________________________________
3
MAX4023–MAX4026
DC ELECTRICAL CHARACTERISTICS—Dual Supply (continued)
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
DC ELECTRICAL CHARACTERISTICS—Single Supply
(VCC = +5V, VEE = 0V, RL = ∞, EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
Operating Supply
Voltage Range
VS
Quiescent Supply
Current
IS
Disable Supply Current
Input Voltage Range
VIN
Input Offset Voltage
VOS
Input Offset Voltage
Matching
∆VOS
Input Offset Voltage Drift
TCVOS
Input Bias Current
Input Offset Current
Guaranteed by PSRR
MIN
RIND
Input Resistance
RIN
ROUT
TYP
4.5
MAX
UNITS
11
V
MAX4023/MAX4024, OUT = 0V
19
32
MAX4025/MAX4026, OUT = 0V
31
43
MAX4023/MAX4024, EN = 0V
3.3
6
MAX4025/MAX4026, EN = 0V
3.9
6
MAX4023/MAX4025, inferred from CMRR
VEE
VCC - 2.8
MAX4024/MAX4026, inferred from AVCL
VEE + 0.28
VCC - 2.8
MAX4023/MAX4025
±1
±18
MAX4024/MAX4026
±3
±20
MAX4023/MAX4025
±1
MAX4024/MAX4026
±1.5
mA
mA
V
mV
mV
MAX4023/MAX4025
9
MAX4024/MAX4026
13
4.5
14
µA
MAX4023/MAX4025
±0.1
±2
µA
IB
IOS
Differential Input
Resistance
Output Resistance
CONDITIONS
MAX4023/MAX4025, -10mV < VIND < +10mV
50
MAX4023/MAX4025, common mode
4.5
MAX4024/MAX4026, single ended
4.5
MAX4023/MAX4025
µV°C
Open loop
kΩ
MΩ
18
Closed loop, AVCL = +1
Ω
0.025
MAX4024/MAX4026
0.15
MAX4023/MAX4025, EN = 0V
75
MAX4024/MAX4026, EN = 0V
1
Disable Output
Resistance
ROUT
Power-Supply Rejection
Ratio
PSRR
±4.5V < VS < ±11V
50
64
dB
Common-Mode
Rejection Ratio
CMRR
MAX4023/MAX4025, VEE < VCM < VCC - 2.8V
50
91
dB
Open-Loop Gain
AVOL
MAX4023/MAX4025, RL = 150Ω,
0.3V < VOUT < 4.3V
70
85
dB
Voltage Gain
AVCL
MAX4024/MAX4026, RL = 150Ω,
VEE + 0.28V < VIN < VCC - 2.8V
5.5
6.0
Gain Matching
4
∆AVCL
MAX4024/MAX4026
1
_______________________________________________________________________________________
kΩ
6.5
dB
%
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
(VCC = +5V, VEE = 0V, RL = ∞, EN = +5V, VCM = REF = OUT = 0.5V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at
TA = +25°C.) (Note 2)
PARAMETER
SYMBOL
CONDITIONS
RL = 150Ω to GND
MAX4023/MAX4025
RL = 75Ω to GND
Output Voltage Swing
VOUT
RL = 150Ω to GND
MAX4024/MAX4026
RL = 75Ω to GND
MIN
VCC - 1.1
TYP
VEE + 0.175
VCC - 0.5
VEE + 0.03
VCC - 1.1
VEE + 0.175
VCC - 0.8
VEE + 0.03
VCC - 1.1
UNITS
VCC - 0.5
VEE + 0.03
VCC - 1.1
MAX
V
VEE + 0.09
VCC - 0.8
VEE + 0.04
VEE + 0.08
LOGIC INPUT CHARACTERISTICS
Logic-Low Threshold
VIL
EN, A/B
Logic-High Threshold
VIH
EN, A/B
VCC - 3.85
Logic-Low Input Current
IIL
EN, A/B; EN or A/B = 0V
5
10
µA
Logic-High Input
IIH
EN, A/B; EN or A/B = VCC
2
8
µA
VCC - 3.3
V
V
_______________________________________________________________________________________
5
MAX4023–MAX4026
DC ELECTRICAL CHARACTERISTICS—Single Supply (continued)
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
AC ELECTRICAL CHARACTERISTICS—Dual Supply
(VCC = +5V, VEE = -5V, RIN = 75Ω to GND, RL = 150Ω to GND, EN = +5V, VCM = 0V, REF = 0V, AVCL = +1 (MAX4023/MAX4025).
Typical values are at TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
BWSS
VOUT = 100mVP-P
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2VP-P
Small-Signal 0.1dB Gain-Flatness
Bandwidth
BW0.1dBSS VOUT = 100mVP-P
Large-Signal 0.1dB Gain-Flatness
Bandwidth
BW0.1dBLS VOUT = 2VP-P
Slew Rate
SR
VOUT = 2VP-P
Settling Time to 0.1%
tS
VOUT = 2V step
Power-Supply Rejection Ratio
PSRR
Output Impedance
Differential Gain Error
Differential Phase Error
Group Delay
Peak Signal to RMS Noise
DG
DP
D/dT
SNR
Crosstalk
MAX4023/MAX4025
MAX4024/MAX4026
MIN
TYP
260
200
MAX4023/MAX4025
85
MAX4024/MAX4026
110
MAX4023/MAX4025
30
MAX4024/MAX4026
32
MAX4023/MAX4025
22
MAX4024/MAX4026
24
MAX4023/MAX4025
300
MAX4024/MAX4026
363
MAX4023/MAX4025
32
MAX4024/MAX4026
32
MAX
UNITS
MHz
MHz
MHz
MHz
V/µs
ns
f = 100kHz
60
dB
f = 10MHz
1.5
Ω
NTSC, PAL, AVCL = +2
NTSC, PAL, AVCL = +2
f = 3.58MHz or
4.43MHz, AVCL = +2
VOUT = 2VP-P, 10MHz
BW, AVCL = +2
MAX4023/MAX4025
0.012
MAX4024/MAX4026
0.015
MAX4023/MAX4025
0.05
MAX4024/MAX4026
0.077
MAX4023/MAX4025
1.6
MAX4024/MAX4026
1.8
MAX4023/MAX4025
90
MAX4024/MAX4026
86
f = 10MHz
-61
MAX4023/MAX4025
25
MAX4024/MAX4026
25
%
Degrees
ns
dB
dB
SWITCHING CHARACTERISTICS
Channel Switching Time
tSW
ns
Enable Time
tON
VIN = 0.5V
60
ns
Disable Time
tOFF
VIN = 0.5V
0.45
µs
Switching Transient
6
MAX4023/MAX4025
20
MAX4024/MAX4026
20
_______________________________________________________________________________________
mVP-P
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
(VCC = +5V, VEE = 0V, RIN = 75Ω to VCM, RL = 150Ω to GND, EN = +5V, VCM = 0.5V, REF = VCM, AVCL = +1 (MAX4023/MAX4025).
Typical values are at TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
Small-Signal -3dB Bandwidth
BWSS
VOUT = 100mVP-P
Large-Signal -3dB Bandwidth
BWLS
VOUT = 2VP-P
Small-Signal 0.1dB Gain-Flatness
Bandwidth
BW0.1dBSS VOUT = 100mVP-P
Large-Signal 0.1dB Gain-Flatness
Bandwidth
BW0.1dBLS VOUT = 2VP-P
Slew Rate
SR
VOUT = 2VP-P
Settling Time to 0.1%
tS
VOUT = 2V step
Power-Supply Rejection Ratio
PSRR
Output Impedance
Differential Gain Error
Differential Phase Error
Group Delay
DG
DP
D/dT
Peak Signal to RMS Noise
SNR
Crosstalk
MAX4023/MAX4025
MAX4024/MAX4026
MIN
TYP
MAX
260
200
MAX4023/MAX4025
83
MAX4024/MAX4026
110
MAX4023/MAX4025
40
MAX4024/MAX4026
44
MAX4023/MAX4025
22
MAX4024/MAX4026
25
MAX4023/MAX4025
300
MAX4024/MAX4026
363
MAX4023/MAX4025
32
MAX4024/MAX4026
32
UNITS
MHz
MHz
MHz
MHz
V/µs
ns
f = 100kHz
60
dB
f = 10MHz
1.5
Ω
NTSC, PAL, AVCL = +2
NTSC, PAL, AVCL = +2
f = 3.58MHz or
4.43MHz, AVCL = +2
VOUT = 2VP-P, 10MHz
BW, AVCL = +2
MAX4023/MAX4025
0.016
MAX4024/MAX4026
0.02
MAX4023/MAX4025
0.054
MAX4024/MAX4026
0.085
MAX4023/MAX4025
1.6
MAX4024/MAX4026
1.9
MAX4023/MAX4025
90
MAX4024/MAX4026
86
f = 10MHz
-61
MAX4023/MAX4025
25
MAX4024/MAX4026
25
%
Degrees
ns
dB
dB
SWITCHING CHARACTERISTICS
Channel Switching Time
tSW
ns
Enable Time
tON
VIN = 0.5V
90
ns
Disable Time
tOFF
VIN = 0.5V
0.45
µs
Switching Transient
MAX4023/MAX4025
10
MAX4024/MAX4026
10
mVP-P
Note 2: All devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design.
_______________________________________________________________________________________
7
MAX4023–MAX4026
AC ELECTRICAL CHARACTERISTICS—Single Supply
Typical Operating Characteristics—±5V Dual Supply
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025),
AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.)
5
0.5
5
3
0.1
1
0
-1
GAIN (dB)
2
1
GAIN (dB)
0.2
0
-0.1
0
-1
-2
-0.2
-2
-3
-0.3
-3
-4
-0.4
-4
-5
-0.5
-5
1
10
100
1000
0.1
1
10
100
1000
0.1
10
1000
100
FREQUENCY (MHz)
FREQUENCY (MHz)
MAX4023/MAX4025
LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY
MAX4024/MAX4026
SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4024/MAX4026
SMALL-SIGNAL GAIN FLATNESS
vs. FREQUENCY
0.2
0.1
0
-0.1
-0.2
2
1
0
-1
-2
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-3
-0.4
-4
-0.4
-0.5
-5
-0.5
1
10
100
1000
MAX4023/25 toc06
3
0.5
NORMALIZED GAIN (dB)
4
NORMALIZED GAIN (dB)
0.3
MAX4023/25 toc05
5
MAX4023/25 toc04
0.4
0.1
1
FREQUENCY (MHz)
0.5
-0.3
0.1
1
10
100
0.1
1000
1
10
1000
100
FREQUENCY (MHz)
FREQUENCY (MHz)
MAX4024/MAX4026
LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4024/MAX4026
LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY
MAX4023/MAX4025
DIFFERENTIAL GAIN AND PHASE
3
2
1
0
-1
-2
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-3
-4
-0.4
-5
-0.5
0.1
1
10
FREQUENCY (MHz)
100
1000
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
0.1
1
10
100
1000
MAX4023/25 toc09
4
DIFFERENTIAL
PHASE (°)
MAX4023/25 toc07
5
DIFFERENTIAL
GAIN (%)
FREQUENCY (MHz)
MAX4023/25 toc08
GAIN (dB)
4
2
0.1
8
0.3
NORMALIZED GAIN (dB)
GAIN (dB)
3
0.4
MAX4023/25 toc03
MAX4023/MAX4025
LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4023/25 toc02
MAX4023/MAX4025
SMALL-SIGNAL GAIN FLATNESS vs. FREQUENCY
MAX4023/25 toc01
MAX4023/MAX4025
SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
4
NORMALIZED GAIN (dB)
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
1st
2nd
3rd
4th
5th
6th
1st
2nd
3rd
4th
5th
6th
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
FREQUENCY (MHz)
_______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
MAX4023/25 toc12
-20
3rd
4th
5th
6th
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
CMRR (dB)
2nd
PSRR (dB)
-40
-60
-40
-60
-80
-80
-100
-120
3rd
4th
5th
-100
0.01
6th
OFF-ISOLATION vs. FREQUENCY
-40
-60
-80
10
100
0.01
0.1
1
100
10
FREQUENCY (MHz)
FREQUENCY (MHz)
ALL-HOSTILE CROSSTALK
vs. FREQUENCY
OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4023/25 toc14
-20
CROSSTALK (dB)
-20
1
0
MAX4023/25 toc13
0
0.1
-40
-60
1000
100
MAX4023/25 toc15
2nd
OUTPUT IMPEDANCE (Ω)
1st
10
1
-80
-100
-100
-120
1
10
100
0.1
1
1000
10
100
1
1000
100
10
1000
FREQUENCY (MHz)
FREQUENCY (MHz)
FREQUENCY (MHz)
INPUT VOLTAGE-NOISE DENSITY
vs. FREQUENCY
MAX4023/MAX4025
LARGE-SIGNAL TRANSIENT RESPONSE
MAX4023/MAX4025
SMALL-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc16
1000
INPUT
1V/div
MAX4023/25 toc18
OFF-ISOLATION (dB)
0
MAX4023/25 toc11
-20
MAX4023/25 toc17
DIFFERENTIAL
PHASE (°)
0
MAX4023/25 toc10
DIFFERENTIAL
GAIN (%)
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
1st
VOLTAGE-NOISE DENSITY (nV/√Hz)
MAX4023/MAX4025
COMMON-MODE REJECTION RATIO
vs. FREQUENCY
POWER-SUPPLY REJECTION RATIO
vs. FREQUENCY
MAX4024/MAX4026
DIFFERENTIAL GAIN AND PHASE
INPUT
50mV/div
100
OUTPUT
50mV/div
OUTPUT
1V/div
10
0.01
0.1
1
10
100
1000
20ns/div
20ns/div
FREQUENCY (kHz)
_______________________________________________________________________________________
9
MAX4023–MAX4026
Typical Operating Characteristics—±5V Dual Supply (continued)
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025),
AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics—±5V Dual Supply (continued)
(VCC = +5V, VEE = -5V, VCM = REF = 0V, EN = +5V, RIN = 75Ω to GND, RL = 150Ω to GND, AVCL = +1V/V (MAX4023/MAX4025),
AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.)
MAX4024/MAX4026
SMALL-SIGNAL TRANSIENT RESPONSE
OUTPUT
1V/div
OUTPUT
50mV/div
MAX4023/25 toc21
INPUT
25mV/div
VA/B
5V/div
VOUT
20mV/div
20ns/div
20ns/div
20ns/div
ENABLE RESPONSE TIME
MAX4023/MAX4025
SMALL-SIGNAL BANDWIDTH
vs. FREQUENCY vs. CL
OPTIMAL ISOLATION RESISTOR
vs. CAPACITIVE LOAD
3
2
CL = 15pF
1
CL = 10pF
0
-1
CL = 5pF
-2
VOUT
500mV/div
CL = 0pF
-3
50
OPTIMAL ISOLATION RESISTOR (Ω)
4
GAIN (dB)
VEN
5V/div
MAX4023/25 toc23
5
MAX4023
RL = 150Ω
40
MAX4023/25 toc24
INPUT
500mV/div
CHANNEL SWITCHING TRANSIENT
MAX4023/25 toc20
MAX4023/25 toc19
MAX4024/MAX4026
LARGE-SIGNAL TRANSIENT RESPONSE
MAX4023/25 toc22
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
30
20
10
-4
-5
20ns/div
0
1.0
10
100
FREQUENCY (MHz)
10
1000
0
50
100
150
CAPACITIVE LOAD (pF)
______________________________________________________________________________________
200
250
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
MAX4023/MAX4025
SMALL-SIGNAL GAIN FLATNESS
vs. FREQUENCY
0.4
0.3
4
3
0.2
2
1
0.1
1
0
GAIN (dB)
2
GAIN (dB)
0
0
-1
-0.1
-1
-2
-0.2
-2
-3
-0.3
-3
-4
-0.4
-4
-5
-0.5
-5
1
10
100
0.1
1000
1
10
1000
100
0.1
10
100
FREQUENCY (MHz)
FREQUENCY (MHz)
MAX4023/MAX4025
LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY
MAX4024/MAX4026
SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
MAX4024/MAX4026
SMALL-SIGNAL GAIN FLATNESS
vs. FREQUENCY
0.4
3
NORMALIZED GAIN (dB)
0.3
4
0.2
0.1
0
-0.1
-0.2
-0.3
2
1
0
-1
-2
-3
-0.4
-4
-0.5
-5
10
100
1000
0.1
FREQUENCY (MHz)
1
10
1000
100
0.1
FREQUENCY (MHz)
0.4
0.3
NORMALIZED GAIN (dB)
3
2
1
0
-1
-2
1000
0.2
0.1
0
-0.1
-0.2
-3
-0.3
-4
-0.4
-5
100
MAX4023/25 toc32
4
10
FREQUENCY (MHz)
0.5
MAX4023/25 toc31
5
1
MAX4024/MAX4026
LARGE-SIGNAL GAIN FLATNESS
vs. FREQUENCY
MAX4024/MAX4026
LARGE-SIGNAL BANDWIDTH vs. FREQUENCY
NORMALIZED GAIN (dB)
1
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-0.5
-0.6
-0.7
1000
MAX4023/25 toc30
5
MAX4023/25 toc28
0.5
0.1
1
FREQUENCY (MHz)
NORMALIZED GAIN (dB)
0.1
MAX4023/25 toc29
NORMALIZED GAIN (dB)
3
5
MAX4023/25 toc26
4
GAIN (dB)
0.5
MAX4023/25 toc25
5
MAX4023/MAX4025
LARGE-SIGNAL BANDWIDTH
vs. FREQUENCY
MAX4023/25 toc27
MAX4023/MAX4025
SMALL-SIGNAL BANDWIDTH vs. FREQUENCY
0.5
0.1
1
10
FREQUENCY (MHz)
100
1000
0.1
1
10
100
1000
FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX4023–MAX4026
Typical Operating Characteristics—+5V Single Supply
(V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75Ω to V CM , R L = 150Ω to GND, A VCL = +1V/V
(MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics—+5V Single Supply (continued)
(V CC = +5V, V EE = 0V, V CM = 0.5V, V REF = V CM , EN = +5V, R IN = 75Ω to V CM , R L = 150Ω to GND, A VCL = +1V/V
(MAX4023/MAX4025), AVCL = +2V/V (MAX4024/MAX4026), TA = +25°C, unless otherwise noted.)
1st
2nd
3rd
4th
5th
6th
DIFFERENTIAL
PHASE (°)
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
1st
2nd
3rd
4th
5th
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
6th
MAX4023/25 toc34
DIFFERENTIAL
GAIN (%)
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
MAX4024/MAX4026
DIFFERENTIAL GAIN AND PHASE
MAX4023/25 toc33
DIFFERENTIAL
GAIN (%)
MAX4023/MAX4025
DIFFERENTIAL GAIN AND PHASE
DIFFERENTIAL
PHASE (°)
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
1st
2nd
3rd
4th
5th
6th
1st
2nd
3rd
4th
5th
6th
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
Pin Description
PIN
MAX4023
SO/QSOP
MAX4024
SO/TSSOP
MAX4025
SO/TSSOP
MAX4026
SO/TSSOP
NAME
1
1
1
1
IN1A
Amplifier Input 1A
2
2
2
2
IN2A
Amplifier Input 2A
3
3
3
3
IN3A
Amplifier Input 3A
4
4
5
5, 6
VEE
Negative Power-Supply Voltage. Bypass VEE to GND with
a 0.1µF capacitor. Connect VEE to GND for single-supply
operation.
5
13
6
17
A/B
Channel Select Input. Pull A/B high to select channel A.
Drive A/B low to select channel B.
6
5
7
7
IN1B
Amplifier Input 1B
7
6
8
8
IN2B
Amplifier Input 2B
8
7
9
9
IN3B
Amplifier Input 3B
9
—
14
—
FB3
Amplifier Feedback Input for Amplifier 3
10
9
13
13
OUT3
Amplifier Output 3
11
10
18
18
OUT2
Amplifier Output 2
12
—
17
—
FB2
Amplifier Feedback Input for Amplifier 2
13
11
15
14
EN
Enable Input. Pull EN high for normal operation. Drive EN
low to disable all outputs.
12
FUNCTION
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
PIN
MAX4023
SO/QSOP
MAX4024
SO/TSSOP
MAX4025
SO/TSSOP
MAX4026
SO/TSSOP
NAME
FUNCTION
14
12
16
15, 16
VCC
15
14
19
19
OUT1
16
—
20
—
FB1
Amplifier Feedback Input for Amplifier 1
—
8
—
11, 20
REF
Reference Pin for Internal Gain Resistor Network
—
—
4
4
IN4A
Amplifier Input 4A
—
—
10
10
IN4B
Amplifier Input 4B
—
—
11
—
FB4
Amplifier Feedback Input for Amplifier 4
—
—
12
12
OUT4
Positive Power-Supply Voltage. Bypass VCC to GND with
a 0.1µF capacitor.
Amplifier Output 1
Amplifier Output 4
Functional Diagrams
A/B
VCC
A/B
EN
IN1A
MUX1
VCC
EN
IN1A
MUX1
IN1B
OUT1
IN1B
OUT1
FB1
TO A/B
TO A/B
TO REF
TO EN
IN2A
IN2A
MUX2
IN2B
OUT2
TO EN
MUX2
IN2B
OUT2
FB2
TO A/B
TO A/B
TO REF
TO EN
IN3A
IN3A
MUX3
TO EN
MUX3
IN3B
OUT3
IN3B
OUT3
FB3
MAX4024
MAX4023
REF
VEE
VEE
______________________________________________________________________________________
13
MAX4023–MAX4026
Pin Description (continued)
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
Detailed Description
The MAX4024/MAX4026 combine three and four 2:1
multiplexers, respectively, with a fixed gain of 2 amplifier. The MAX4023/MAX4025 combine three and four 2:1
multiplexers, respectively, with an adjustable gain output amplifier optimized for a closed-loop gain of +1 or
greater. These devices operate from a single-supply
voltage of +4.5V to +11V or from dual supplies of
±2.25V to ±5.5V. The outputs may be placed in a highimpedance state and the supply current minimized by
forcing the EN pin low. The input multiplexers feature
short 25ns channel-switching times and small 10mVP-P
switching transients. These devices feature voltagefeedback output amplifiers that achieve up to 363V/µs
slew rates and up to 220MHz -3dB bandwidths. They
also feature excellent differential gain/phase performance.
The MAX4023–MAX4026 feature an A/B pin, which is
an input pin for selecting either channel A or B. Drive
A/B high to select channel A or drive A/B low to select
channel B. Channel A is automatically selected if A/B is
left unconnected.
Applications Information
Feedback and Gain Resistor Selection
(MAX4023/MAX4025)
Select the MAX4023/MAX4025 gain-setting feedback
RF and RG resistors to fit your application. Large resistor values increase voltage noise and interact with the
amplifier’s input and PC board capacitance. This can
generate undesirable poles and zeros, and can
decrease bandwidth or cause oscillations.
Stray capacitance at the FB pin produces peaking in
the frequency-response curve. Keep the capacitance
at FB as low as possible by using surface-mount resistors and by avoiding the use of a ground plane beneath
or beside these resistors and the FB pin. Some capacitance is unavoidable. If necessary, its effects can be
neutralized by adjusting RF. Use 1% resistors to maintain gain accuracy.
Low-Power Shutdown Mode
All parts feature a low-power shutdown mode that is
activated by driving the EN input low. Placing the
amplifier in shutdown mode reduces the quiescent supply current to below 4mA and places the output into a
high-impedance state, typically 75kΩ (MAX4023/
MAX4025). Multiple devices may be paralleled to construct larger switch matrices by connecting the outputs
of several devices together and disabling all but one of
the paralleled amplifiers’ outputs.
14
For MAX4023/MAX4025 application circuits operating
with a closed-loop gain of +1 or greater, consider the
external-feedback network impedance of all devices
used in the mux application when calculating the total
load on the output amplifier of the active device. The
MAX4024/MAX4026 have a fixed gain of +2 that is
internally set with two 500Ω thin-film resistors. The
impedance of the internal feedback resistors must be
taken into account when operating multiple MAX4024/
MAX4026s in large multiplexer applications.
For normal operation, drive EN high. Note that the
MAX4023–MAX4026 have internal pullup circuitry on
EN, so if left unconnected, it is automatically pulled up
to VCC.
Layout and Power-Supply Bypassing
The MAX4023–MAX4026 have high bandwidths and
consequently require careful board layout, including
the possible use of constant-impedance microstrip or
stripline techniques.
To realize the full AC performance of these high-speed
amplifiers, pay careful attention to power-supply
bypassing and board layout. The PC board should
have at least two layers: a signal and power layer on
one side, and a large, low-impedance ground plane on
the other side. The ground plane should be as free of
voids as possible, with one exception: The feedback
(FB) should have as low a capacitance to ground as
possible. Whether or not a constant-impedance board
is used, it is best to observe the following guidelines
when designing the board:
1) Do not use wire-wrapped boards or breadboards.
2) Do not use IC sockets; they increase parasitic
capacitance and inductance.
3) Keep signal lines as short and straight as possible.
Do not make 90° turns; round all corners.
4) Observe high-frequency bypassing techniques to
maintain the amplifier’s accuracy and stability.
5) Use surface-mount components. They generally
have shorter bodies and lower parasitic reactance,
yielding better high-frequency performance than
through-hole components.
The bypass capacitors should include a 0.1µF ceramic
surface-mount capacitor between each supply pin and
the ground plane, located as close to the package as
possible. Optionally, place a 10µF tantalum capacitor
at the power-supply’s point of entry to the PC board to
ensure the integrity of incoming supplies. The powersupply traces should lead directly from the tantalum
capacitor to the VCC and VEE pins. To minimize para-
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
MAX4023–MAX4026
A/B
EN
75Ω CABLE
RT
75Ω
IN_A
OUT_
RT
75Ω
75Ω CABLE
RF
75Ω CABLE
RT
75Ω
FB_
IN_B
RT
75Ω
RG
MAX4023
MAX4025
Figure 1. MAX4023/MAX4025 Noninverting Gain Configuration
sitic inductance, keep PC traces short and use surfacemount components.
If input termination resistors and output back-termination resistors are used, they should be surface-mount
types, and should be placed as close to the IC pins as
possible.
Video Line Driver
The MAX4024/MAX4026 are well suited to drive short
coaxial transmission lines when the cable is terminated
at both ends (as shown in Figure 2a) where the fixed
gain of +2 compensates for the loss in the resistors.
The MAX4023/MAX4025 have settable gain to equalize
long cables. The MAX4023/MAX4025 allow adding
functions that normally require additional op amps. For
example, a cable driver can “boost” the high frequencies for long runs, making the part perform multiple
functions. Figure 2b shows the “cable booster” using
the MAX4023/MAX4025.
Driving Capacitive Loads
A correctly terminated transmission line is purely resistive and presents no capacitive load to the amplifier.
Reactive loads decrease phase margin and may produce excessive ringing and oscillation (see Typical
Operating Characteristics).
Another concern when driving capacitive loads is the
amplifier’s output impedance, which appears inductive
at high frequencies. This inductance forms an L-C resonant circuit with the capacitive load, which causes
peaking in the frequency response and degrades the
amplifier’s phase margin.
Although the MAX4023–MAX4026 are optimized for AC
performance and are not designed to drive highly
capacitive loads, they are capable of driving up to
33pF without oscillations. However, some peaking may
occur in the frequency domain (Figure 3). To drive larger capacitive loads or to reduce ringing, add an isolation resistor between the amplifier’s output and the load
(Figure 4). The value of RISO depends on the circuit’s
gain and the capacitive load (Figure 5). Also note that
the isolation resistor forms a divider that decreases the
voltage delivered to the load.
______________________________________________________________________________________
15
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
A/B
EN
75Ω CABLE
IN_A
OUT_
RT
75Ω
RT
75Ω
75Ω CABLE
RT
75Ω
75Ω CABLE
IN_B
RT
75Ω
REF
MAX4024/
MAX4026
Figure 2a. Video Line Driver
VIDEO IN A
VCC
75Ω
VIDEO OUT
VIDEO IN B
VEE
RF
CB
RI
RB
CB AND RB ARE CHOSEN SUCH THAT:
GAIN
EFFECT OF BOOST
FREQUENCY
Figure 2b. Cable Booster Using the MAX4023/MAX4025
16
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
3
2
CL = 15pF
1
CL = 10pF
0
-1
CL = 5pF
-2
CL = 0pF
-3
MAX4023
RL = 150Ω
40
MAX4023/25 toc24
50
OPTIMAL ISOLATION RESISTOR (Ω)
4
GAIN (dB)
OPTIMAL ISOLATION RESISTOR
vs. CAPACITIVE LOAD
MAX4023/25 toc23
5
MAX4023–MAX4026
MAX4023/MAX4025
SMALL-SIGNAL BANDWIDTH
vs. FREQUENCY vs. CL
30
20
10
-4
-5
0
1.0
10
100
1000
0
FREQUENCY (MHz)
50
100
150
200
250
CAPACITIVE LOAD (pF)
Figure 5. Optimal Isolation Resistance vs. Capacitive Load
Figure 3. Small-Signal Bandwidth vs. Frequency with
Capacitive Load and No Isolation Resistor
Selector Guide
A/B
EN
75Ω CABLE
PART
IN_A
OUT_
RT
75Ω
PIN-PACKAGE
RISO
CL
75Ω CABLE
IN_B
RT
75Ω
RL
NO. OF
VIDEO MUXAMPS
AMPLIFIER
GAIN (V/V)
≥+1
MAX4023
16 SO/QSOP
3
MAX4024
14 SO/TSSOP
3
+2
MAX4025
20 SO/TSSOP
4
≥+1
MAX4026
20 SO/TSSOP
4
+2
REF
MAX4024
MAX4026
Chip Information
TRANSISTOR COUNT: 655
PROCESS: Bipolar
Figure 4. Using an Isolation Resistor (RISO) for a HighCapacitive Load
______________________________________________________________________________________
17
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
MAX4023–MAX4026
Pin Configurations
TOP VIEW
IN1A 1
16 FB1
IN2A 2
15 OUT1
IN3A 3
VEE 4
14 VCC
MAX4023
13 EN
12 FB2
A/B 5
IN1B 6
11 OUT2
IN2B 7
10 OUT3
IN3B 8
9
FB3
IN1A 1
14 OUT1
IN2A
2
13 A/B
IN3A
3
VEE 4
IN1B 5
11 EN
10 OUT2
IN2B 6
9
OUT3
IN3B 7
8
REF
SO/TSSOP
SO/QSOP
IN1A 1
20 FB1
IN1A 1
20 REF
IN2A 2
19 OUT1
IN2A 2
19 OUT1
IN3A 3
18 OUT2
IN3A 3
18 OUT2
IN4A 4
17 FB2
IN4A 4
16 VCC
VEE 5
VEE 5
MAX4025
17 A/B
MAX4026
16 VCC
A/B 6
15 EN
VEE 6
15 VCC
IN1B 7
14 FB3
IN1B 7
14 EN
IN2B 8
13 OUT3
IN2B 8
13 OUT3
IN3B 9
12 OUT4
IN3B 9
12 OUT4
IN4B 10
11 FB4
IN4B 10
11 REF
SO/TSSOP
18
12 VCC
MAX4024
SO/TSSOP
______________________________________________________________________________________
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
TSSOP4.40mm.EPS
______________________________________________________________________________________
19
MAX4023–MAX4026
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
DIM
A
A1
B
C
e
E
H
L
N
E
H
INCHES
MILLIMETERS
MAX
MIN
0.069
0.053
0.010
0.004
0.014
0.019
0.007
0.010
0.050 BSC
0.150
0.157
0.228
0.244
0.016
0.050
MAX
MIN
1.35
1.75
0.10
0.25
0.35
0.49
0.19
0.25
1.27 BSC
3.80
4.00
5.80
6.20
0.40
SOICN .EPS
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
1.27
VARIATIONS:
1
INCHES
TOP VIEW
DIM
D
D
D
MIN
0.189
0.337
0.386
MAX
0.197
0.344
0.394
MILLIMETERS
MIN
4.80
8.55
9.80
MAX
5.00
8.75
10.00
N MS012
8
AA
14
AB
16
AC
D
A
B
e
C
0 -8
A1
L
FRONT VIEW
SIDE VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, .150" SOIC
APPROVAL
DOCUMENT CONTROL NO.
21-0041
20
______________________________________________________________________________________
REV.
B
1
1
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
QSOP.EPS
______________________________________________________________________________________
21
MAX4023–MAX4026
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information,
go to www.maxim-ic.com/packages.)
INCHES
N
DIM
A
A1
B
C
e
E
H
L
H
E
MAX
MIN
0.104
0.093
0.012
0.004
0.019
0.014
0.013
0.009
0.050
0.299
0.291
0.394
0.419
0.050
0.016
SOICW.EPS
MAX4023–MAX4026
Triple and Quad, 2:1 Video MultiplexerAmplifiers with Fixed and Settable Gain
MILLIMETERS
MIN
2.35
0.10
0.35
0.23
MAX
2.65
0.30
0.49
0.32
1.27
7.40
7.60
10.00
10.65
0.40
1.27
VARIATIONS:
1
INCHES
TOP VIEW
DIM
D
D
D
D
D
D
A
B
e
MIN
0.398
0.447
0.496
0.598
0.697
MAX
0.413
0.463
0.512
0.614
0.713
MILLIMETERS
MIN
10.10
11.35
12.60
15.20
17.70
MAX
10.50
11.75
13.00
15.60
18.10
N MS013
16
AA
18
AB
20 AC
24 AD
28 AE
C
0 -8
A1
L
FRONT VIEW
SIDE VIEW
PROPRIETARY INFORMATION
TITLE:
PACKAGE OUTLINE, .300" SOIC
APPROVAL
DOCUMENT CONTROL NO.
21-0042
REV.
B
1
1
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2003 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.