MAXIM MAX4415ESA

19-1837; Rev 0; 10/00
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
________________________Applications
Features
♦ Ultra-Low 1.6mA Supply Current
♦ Single +3V/+5V Operation
♦ High Speed
400MHz -3dB Bandwidth
(MAX4414/MAX4416/MAX4418)
200V/µs Slew Rate
(MAX4414/MAX4416/MAX4418)
150MHz -3dB Bandwidth
(MAX4415/MAX4417/MAX4419)
470V/µs Slew Rate
(MAX4415/MAX4417/MAX4419)
♦ Rail-to-Rail Outputs
♦ Input Common-Mode Range Extends Beyond VEE
♦ Low Differential Gain/Phase: 0.03%/0.15°
♦ Low Distortion at 5MHz (MAX4414/MAX4416/MAX4418)
-93dBc SFDR
0.003% Total Harmonic Distortion
♦ Low Cost
Ordering Information
PART
TEMP. RANGE
PIN-PACKAGE
Battery-Powered Instruments
MAX4414EUA
-40°C to +85°C
8 µMAX
Portable Communications
MAX4414ESA
-40°C to +85°C
8 SO
Keyless Entry Systems
MAX4415EUA
-40°C to +85°C
8 µMAX
MAX4415ESA
-40°C to +85°C
8 SO
Cellular Telephones
Ordering information continued at end of data sheet.
Video Line Drivers
Baseband Applications
Typical Operating Characteristic
_____________________Selector Guide
MINIMUM
GAIN
(V/V)
-3dB
SLEW RATE
BANDWIDTH
(V/µs)
(MHz)
MAX4414
1
1
400
200
MAX4415
1
5
150
470
MAX4416
2
1
400
200
MAX4417
2
5
150
470
MAX4418
4
1
400
200
MAX4419
4
5
150
470
1.80
MAX4414 toc01
NO. OF
AMPS
1.75
1.70
SUPPLY CURRENT (mA)
PART
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(PER AMPLIFIER)
1.65
1.60
1.55
1.50
1.45
1.40
1.35
Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd.
Pin Configurations appear at end of data sheet.
1.30
2.7
3.1
3.5
3.9
4.3
4.7
5.1
5.5
SUPPLY VOLTAGE (V)
________________________________________________________________ Maxim Integrated Products
1
For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
MAX4414–MAX4419
General Description
The MAX4414–MAX4419 operational amplifiers combine high-speed performance, low distortion, and ultralow supply current. Consuming just 1.6mA of supply
current per amplifier, these devices operate from a single +2.7V to +5.5V supply, have Rail-to-Rail® outputs,
and exhibit a common-mode input voltage range that
extends from 100mV below ground to within 1.5V of the
positive supply rail.
The MAX4414/MAX4416/MAX4418 single/dual/quad op
amps are unity-gain stable and achieve a 400MHz -3dB
bandwidth with a 200V/µs slew rate. The MAX4415/
MAX4417/MAX4419 single/dual/quad op amps are
compensated for closed-loop gains of +5V/V or greater
and achieve a 150MHz -3dB bandwidth with a 470V/µs
slew rate. The combination of high-speed, ultra-low
power, and low-distortion makes the MAX4414–
MAX4419 ideal for low-power/low-voltage, high-speed
portable systems such as video, communications, and
instrumentation.
The MAX4414/MAX4415 single and MAX4416/
MAX4417 dual amplifiers are available in space-saving
8-pin µMAX and SO packages, while the MAX4418/
MAX4419 quad amplifiers are available in a 14-pin
TSSOP package.
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
ABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC to VEE)..................................................+6V
Differential Input Voltage ....................................................±2.5V
IN_-, IN_+, OUT_..............................(VCC + 0.3V) to (VEE - 0.3V)
Current into Input Pins ......................................................±20mA
Output Short-Circuit Duration to VCC or VEE ..............Continuous
Continuous Power Dissipation (TA = +70°C)
8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW
8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW
14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW
Operating Temperature Range ...........................-40°C to +85°C
Junction Temperature ......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
DC ELECTRICAL CHARACTERISTICS
(VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL = ∞ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted.
Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
Operating Supply Voltage Range
VS
Quiescent Supply Current
(per Amplifier)
IS
Input Common-Mode Voltage
Range
Input Offset Voltage
Input Offset Voltage Temperature
VCM
Input Offset Current
Input Resistance
Common-Mode Rejection Ratio
MAX
UNITS
5.5
V
1.6
3
VCC = +3V
1.4
2.6
Guaranteed by CMRR test
VEE 0.1
VCC 1.5
VOS
0.5
3
MAX4416–MAX4419
6
mA
V
mV
µV/°C
±1
mV
IB
1.3
4
µA
IOS
0.1
0.7
µA
RIN
CMRR
Differential mode,
-0.04V ≤ (VIN+ - VIN-) ≤ +0.04V
60
kΩ
Common mode,
VEE - 0.1V < VCM < VCC - 1.5V
16
MΩ
dB
VEE - 0.1V < VCM < VCC - 1.5V
65
94
+0.2V ≤ VOUT ≤ +4.8V, RL = 10kΩ
78
93
+0.4V ≤ VOUT ≤ +4.6V, RL = 1kΩ
68
80
66
80
AVOL
+1V ≤ VOUT ≤ +4V, RL = 150Ω
65
+0.2V ≤ VOUT ≤ +2.8V, RL = 10kΩ
75
90
+0.25V ≤ VOUT ≤ +2.75V, RL = 1kΩ
65
78
63
75
VCC = +3V +0.2V ≤ VOUT ≤ +2.5V,
RL = 1kΩ to VEE
+0.5V ≤ VOUT ≤ +2.5V, RL = 150Ω
2
TYP
2.7
VCC = +5V
VCC = +5V +0.3V ≤ VOUT ≤ +4.4V,
RL = 1kΩ to VEE
Open-Loop Gain
MIN
TCVOS
Input Offset Voltage Matching
Input Bias Current
CONDITIONS
Guaranteed by PSRR test
62
_______________________________________________________________________________________
dB
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
(VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL = ∞ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted.
Typical values are at TA = +25°C.) (Note 1)
PARAMETER
SYMBOL
CONDITIONS
RL = 10kΩ
VCC = +5V RL = 1kΩ
RL = 150Ω
Output Voltage Swing
VOUT
RL = 10kΩ
VCC = +3V RL = 1kΩ
RL = 150Ω
Output Current
IOUT
Output Short-Circuit Current
Power-Supply Rejection Ratio
ISC
PSRR
TYP
MAX
VCC - VOH
MIN
0.085
0.375
VOL - VEE
0.015
0.100
VCC - VOH
0.105
0.400
VOL - VEE
0.035
0.125
VCC - VOH
0.385
VOL - VEE
0.150
VCC - VOH
0.060
0.365
VOL - VEE
0.010
0.090
VCC - VOH
0.075
0.390
VOL - VEE
0.025
0.115
VCC - VOH
0.275
VOL - VEE
0.070
RL = 20Ω connected to VCC or VEE,
VCC = +5V
±25
Sinking or sourcing
VCC = +2.7V to +5.5V, VCM = 0, VOUT = 2V
60
UNITS
V
±75
mA
±85
mA
77
dB
AC ELECTRICAL CHARACTERISTICS
(VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.)
PARAMETER
Small Signal -3dB Bandwidth
Large Signal -3dB Bandwidth
SYMBOL
BWSS
BWLS
CONDITIONS
VOUT = 100mVp-p
VOUT = 2Vp-p
VOUT = 100mVp-p
Bandwidth for 0.1dB Flatness
BW0.1dB
VOUT = 2Vp-p
MIN
TYP
MAX4414/MAX4416/
MAX4418, AV = +1V/V
400
MAX4415/MAX4417/
MAX4419, AV = +5V/V
150
MAX4414/MAX4416/
MAX4418, AV = +1V/V
32
MAX4415/MAX4417/
MAX4419, AV = +5V/V
75
MAX4414/MAX4416/
MAX4418, AV = +1V/V
43
MAX4415/MAX4417/
MAX4419, AV = +5V/V
16
MAX4414/MAX4416/
MAX4418, AV = +1V/V
22
MAX4415/MAX4417/
MAX4419, AV = +5V/V
28
MAX
UNITS
MHz
MHz
MHz
_______________________________________________________________________________________
3
MAX4414–MAX4419
DC ELECTRICAL CHARACTERISTICS (continued)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.)
PARAMETER
Slew Rate
Rise/Fall Time
SYMBOL
SR
tR, tF
tS 1%
CONDITIONS
VOUT = 2V step
VOUT = 2V step,
10% to 90%
VOUT = 2V step
Settling Time
tS 0.1%
VOUT = 2V step
VCC = +5V,
fC = 5MHz
Spurious-Free Dynamic Range
TYP
MAX4414/MAX4416/
MAX4418, AV = +1V/V
200
MAX4415/MAX4417/
MAX4419, AV = +5V/V
470
MAX4414/MAX4416/
MAX4418, AV = +1V/V
14
MAX4415/MAX4417/
MAX4419, AV = +5V/V
5
MAX4414/MAX4416/
MAX4418, AV = +1V/V
100
MAX4415/MAX4417/
MAX4419, AV = +5V/V
120
MAX4414/MAX4416/
MAX4418, AV = +1V/V
150
MAX4415/MAX4417/
MAX4419, AV = +5V/V
160
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-84
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-76
MAX
UNITS
V/µs
ns
ns
dBc
SFDR
VCC = +3V,
fC = 5MHz
4
MIN
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-93
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-79
_______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
(VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
VCC = +5V,
fC = 5MHz
2nd Harmonic Distortion
TYP
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-84
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-76
MAX
UNITS
dBc
SFDR
VCC = +3V,
fC = 5MHz
VCC = +5V,
fC = 5MHz
3rd Harmonic Distortion
MIN
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-93
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-65
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-95
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-80
dBc
SFDR
VCC = +3V,
fC = 5MHz
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
-95
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
-67
_______________________________________________________________________________________
5
MAX4414–MAX4419
AC ELECTRICAL CHARACTERISTICS (continued)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
AC ELECTRICAL CHARACTERISTICS (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
VCC = +5V,
fC = 5MHz
Total Harmonic Distortion
Differential Gain Error
Differential Phase Error
6
TYP
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
0.007
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
0.02
IP3
DG
DP
MAX
UNITS
%
SFDR
VCC = +3V,
fC = 5MHz
Two-Tone, Third-Order
Intermodulation Distortion
MIN
MAX4414/MAX4416/
MAX4418, AV = +1V/V,
VOUT = 1Vp-p
0.003
MAX4415/MAX4417/
MAX4419, AV = +5V/V,
VOUT = 2Vp-p
0.01
fC = 10MHz, f2 = 9.9MHZ
RL = 150Ω, NTSC
RL = 150Ω, NTSC
-67
MAX4414/MAX4416/
MAX4418, AV = +1V/V
0.03
MAX4414/MAX4416/
MAX4418, AV = +2V/V
0.04
MAX4415/MAX4417/
MAX4419, AV = +5V/V
0.05
MAX4414/MAX4416/
MAX4418, AV = +1V/V
0.15
MAX4414/MAX4416/
MAX4418, AV = +2V/V
0.25
MAX4415/MAX4417/
MAX4419, AV = +5V/V
0.35
_______________________________________________________________________________________
dBc
%
degrees
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
(VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
CONDITIONS
MIN
TYP
MAX
UNITS
Gain Matching
MAX4416–MAX4419,
VOUT = 100mVp-p, f ≤ 10MHz
0.1
dB
Phase Matching
MAX4416–MAX4419,
VOUT = 100mVp-p, f ≤ 10MHz
0.1
degrees
Input Noise-Voltage Density
en
f = 10kHz
10
nV/√Hz
Input Noise-Current Density
In
f = 10kHz
0.6
pA/√Hz
1.8
pF
Input Capacitance
CIN
Output Impedance
ZOUT
Capacitive Load Drive
f = 1MHz
0.5
Ω
No sustained oscillations
120
pF
Power-Up 1% Settling Time
(Note 2)
1.2
Crosstalk
MAX4416–MAX4419, f = 10MHz,
VOUT = 2Vp-p
XTALK
100
-72
µs
dB
Note 1: All devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design.
Note 2: Guaranteed by design.
Typical Operating Characteristics
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
1.65
1.60
1.55
1.50
1.45
1
0
-1
MAX4415/MAX4417/MAX4419
(AVCL = +5V/V)
-2
-3
-4
1.40
-5
1.35
-6
1.30
MAX4414/MAX4416/MAX4418
(AVCL = +1V/V)
3.1
3.5
3.9
4.3
4.7
SUPPLY VOLTAGE (V)
5.1
5.5
AVCL = +1V/V
6
22pF
4
15pF
2
0
5pF
-2
-4
-6
-7
2.7
8
SMALL-SIGNAL GAIN (dB)
SMALL-SIGNAL GAIN (dB)
1.70
2
MAX4414 toc02
1.75
SUPPLY CURRENT (mA)
SMALL-SIGNAL GAIN vs. FREQUENCY
3
MAX4414 toc01
1.80
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL GAIN WITH
CAPACITIVE LOAD vs. FREQUENCY
MAX4414 toc03
SUPPLY CURRENT vs. SUPPLY VOLTAGE
(PER AMPLIFIER)
100k
1M
10M
FREQUENCY (Hz)
100M
1G
100k
1M
10M
100M
1G
FREQUENCY (Hz)
_______________________________________________________________________________________
7
MAX4414–MAX4419
AC ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL GAIN WITH
CAPACITIVE LOAD vs. FREQUENCY
22pF
4
15pF
2
0
5pF
-2
22pF
AVCL = +1V/V
2
SMALL-SIGNAL GAIN (dB)
SMALL-SIGNAL GAIN (dB)
6
3
MAX4414 toc04
AVCL = +5V/V
MAX4414 toc05
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD AND
22Ω ISOLATION RESISTOR vs. FREQUENCY
8
15pF
1
0
-1
5pF
-2
-3
-4
-5
-4
-6
-6
-7
1M
10M
100M
1G
MAX4414 toc06
2
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
1
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
0
-1
-2
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
-3
-4
-0.3
-5
-0.4
-6
-0.5
-7
1M
10M
100M
1G
100k
1M
10M
100M
1G
FREQUENCY (Hz)
FREQUENCY (Hz)
LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 2Vp-p)
MAX4414/MAX4416/MAX4418
GAIN AND PHASE vs. FREQUENCY
MAX4415/MAX4417/
MAX4419
(AVCL = +5V/V)
2
1
MAX4414 toc09
100
MAX4414 toc08
3
AVCL = +1000V/V
80
135
60
90
0
-2
GAIN (dB)
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
-1
-3
-4
-5
-6
-7
10k
100k
1M
10M
FREQUENCY (Hz)
100M
1G
180
GAIN
40
45
0
20
PHASE
0
-45
-20
-90
-40
-135
-60
-180
1G
10k
100k
1M
10M
100M
FREQUENCY (Hz)
_______________________________________________________________________________________
PHASE (deg)
100k
8
1G
3
LARGE-SIGNAL GAIN (dB)
GAIN FLATNESS (dB)
MAX4414/MAX4416/
MAX4418
(AVCL = +1V/V)
0
-0.2
100M
LARGE-SIGNAL GAIN vs. FREQUENCY
(VOUT = 1Vp-p)
0.3
0.1
10M
GAIN FLATNESS vs. FREQUENCY
0.5
0.2
1M
FREQUENCY (Hz)
0.4
-0.1
100k
FREQUENCY (Hz)
MAX4414 toc07
100k
LARGE-SIGNAL GAIN (dB)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
135
80
45
40
0
20
PHASE
0
-45
-20
-90
-40
-135
-60
-180
1G
100k
1M
10M
100M
0.04
0.03
0.02
0.01
0
-0.01
0
10 20 30 40 50 60 70 80 90 100
IRE
0
10 20 30 40 50 60 70 80 90 100
0.15
0.10
0.05
0
-0.05
FREQUENCY (Hz)
IRE
MAX4415/MAX4417/MAX4419
DIFFERENTIAL GAIN AND PHASE
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc13
0.06
MAX4414 toc12
DIFFERENTIAL GAIN (%)
10k
0.04
0.02
INPUT
50mV/div
0
-0.02
0
DIFFERENTIAL PHASE (deg)
90
GAIN
PHASE (deg)
GAIN (dB)
60
MAX4414/MAX4416/MAX4418
DIFFERENTIAL GAIN AND PHASE
MAX4414 toc11
180
AVCL = +1000V/V
DIFFERENTIAL GAIN (%)
MAX4414 toc10
100
DIFFERENTIAL PHASE (deg)
MAX4415/MAX4417/MAX4419
GAIN AND PHASE vs. FREQUENCY
10 20 30 40 50 60 70 80 90 100
IRE
0.05
OUTPUT
50mV/div
0.03
0.01
RL = 1kΩ
-0.01
0
10 20 30 40 50 60 70 80 90 100
50ns/div
IRE
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc14
MAX4414 toc15
INPUT
10mV/div
INPUT
500mV/div
OUTPUT
50mV/div
OUTPUT
500mV/div
RL = 1kΩ
RL = 1kΩ
50ns/div
50ns/div
_______________________________________________________________________________________
9
MAX4414–MAX4419
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
MAX4414 toc16
MAX4414 toc17
INPUT
100mV/div
INPUT
1V/div
OUTPUT
500mV/div
OUTPUT
1V/div
RL = 1kΩ
RL = 1kΩ
50ns/div
50ns/div
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc18
MAX4414 toc19
INPUT
200mV/div
INPUT
50mV/div
OUTPUT
1V/div
OUTPUT
50mV/div
RL = 150Ω
RL = 1kΩ
50ns/div
50ns/div
INPUT
10mV/div
INPUT
500mV/div
OUTPUT
500mV/div
OUTPUT
50mV/div
RL = 150Ω
RL = 150Ω
50ns/div
10
MAX4414 toc21
MAX4414/MAX4416/MAX4418
LARGE-SIGNAL PULSE RESPONSE
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
MAX4414 toc20
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
50ns/div
______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
MAX4414 toc22
INPUT
100mV/div
OUTPUT
500mV/div
MAX4414 toc23
MAX4414/MAX4416/MAX4418
SMALL-SIGNAL PULSE RESPONSE
(CLOAD = 15pF)
MAX4415/MAX4417/MAX4419
LARGE-SIGNAL PULSE RESPONSE
AV = +1V/V
INPUT
50mV/div
OUTPUT
50mV/div
RL = 150Ω
RL = 150Ω
50ns/div
50ns/div
MAX4415/MAX4417/MAX4419
SMALL-SIGNAL PULSE RESPONSE
(CLOAD = 15pF)
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
OUTPUT IMPEDANCE (Ω)
INPUT
10mV/div
OUTPUT
50mV/div
MAX4414 toc25
1000
MAX4414 toc24
AV = +5V/V
100
10
1
RL = 150Ω
0.1
100k
50ns/div
1M
10M
100M
1G
FREQUENCY (MHz)
SMALL-SIGNAL BANDWIDTH
vs. LOAD RESISTANCE
MAX4416–MAX4419
CROSSTALK vs. FREQUENCY
-10
400
BANDWIDTH (MHz)
CROSSTALK (dB)
-30
-40
-50
MAX4414
MAX4416
MAX4418
350
-20
MAX4414 toc27
450
MAX4414 toc26
0
300
250
200
150
-60
100
-70
50
MAX4415
MAX4417
MAX4419
0
-80
100k
1M
10M
FREQUENCY (Hz)
100M
1G
100
1000
RLOAD (Ω)
______________________________________________________________________________________
11
MAX4414–MAX4419
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
OUTPUT VOLTAGE SWING
vs. LOAD RESISTANCE
100
80
60
40
20
350
300
250
200
150
VOH
100
VOL
50
0
100
10k
1k
0
100k
100
1k
10k
RLOAD (Ω)
RLOAD (Ω)
POWER SUPPLY REJECTION
vs. FREQUENCY
COMMON MODE REJECTION
vs. FREQUENCY
-40
MAX4414 toc30
0
-10
-20
-50
-30
-60
-40
CMR (dB)
PSR (dB)
MAX4414 toc29
400
MAX4414 toc31
OPEN-LOOP GAIN (dB)
120
450
OUTPUT VOLTAGE SWING (mV)
MAX4414 toc28
140
-50
-60
-70
-80
-70
-80
-90
-90
-100
-100
100k
1M
10M
100M
1G
1M
10M
100M
FREQUENCY (Hz)
VOLTAGE NOISE DENSITY
vs. FREQUENCY
CURRENT NOISE DENSITY
vs. FREQUENCY
10
1G
MAX4414 toc33
100
CURRENT NOISE DENSITY (pA/√Hz)
MAX4414 toc32
100
1
10
1
0
1
10
100
1k
10k
FREQUENCY (Hz)
12
100k
FREQUENCY (Hz)
1000
VOLTAGE NOISE DENSITY (nV/√Hz)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
100k
1M
1
10
100
1k
10k
100k
1M
FREQUENCY (Hz)
______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
AVCL = +1V/V, VOUT = 1Vp-p
-40
-60
2nd HARMONIC
-80
AVCL = +5V/V, VOUT = 2Vp-p
-50
DISTORTION (dBc)
-20
-60
-70
2nd HARMONIC
-80
-90
-100
3rd HARMONIC
3rd HARMONIC
-100
100k
10M
100k
100M
100M
MAX4414/MAX4416/MAX4418
DISTORTION vs. OUTPUT VOLTAGE
MAX4415/MAX4417/MAX4419
DISTORTION vs. OUTPUT VOLTAGE
AVCL = +1V/V, f = 5MHz
-60
AVCL = +5V/V, f = 5MHz
-65
-70
DISTORTION (dBc)
-70
DISTORTION (dBc)
10M
FREQUENCY (Hz)
-65
-75
2nd HARMONIC
-80
-85
-90
2nd HARMONIC
-75
-80
-85
-90
3rd HARMONIC
3rd HARMONIC
-95
-95
-100
-100
0
0.5
1.0
1.5
2.0
VOUT (V)
2.5
3.0
3.5
0
-20
0
AVCL = +5V/V, VOUT = 2Vp-p, f = 5MHz
-20
DISTORTION (dBc)
AVCL = +1V/V, VOUT = 1Vp-p, f = 5MHz
MAX4415/MAX4417/MAX4419
DISTORTION vs. LOAD RESISTANCE
MAX4414 toc38
0
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
VOUT (V)
MAX4414/MAX4416/MAX4418
DISTORTION vs. LOAD RESISTANCE
DISTORTION (dBc)
1M
FREQUENCY (Hz)
MAX4414 toc36
-60
1M
MAX4414 toc37
-120
-40
-60
2nd HARMONIC
-80
MAX4414 toc39
DISTORTION (dBc)
-40
MAX4414 toc34
0
MAX4414 toc35
MAX4415/MAX4417/MAX4419
DISTORTION vs. FREQUENCY
MAX4414/MAX4416/MAX4418
DISTORTION vs. FREQUENCY
-40
2nd HARMONIC
-60
-80
3rd HARMONIC
-100
-100
3rd HARMONIC
-120
-120
100
1k
RLOAD (Ω)
10k
100
1k
10k
RLOAD (Ω)
______________________________________________________________________________________
13
MAX4414–MAX4419
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419),
RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.)
ISOLATION RESISTANCE
vs. CAPACITIVE LOAD
MAX4414/MAX4416/MAX4418
POWER-UP TIME
MAX4415/MAX4417/MAX4419
POWER-UP TIME
MAX4414 toc42
MAX4414 toc41
MAX4414 toc40
30
28
26
5V
5V
VSUPPLY
2V/div
VSUPPLY
2V/div
RISO (Ω)
24
0
0
22
20
1.5V
18
1.5V
VOUT
750mV/div
16
14
VOUT
500mV/div
0
0
12
10
0 100 200 300 400 500 600 700 800 900 1000
500ns/div
500ns/div
INPUT BIAS CURRENT vs. TEMPERATURE
INPUT OFFSET CURRENT
vs. TEMPERATURE
CLOAD (pF)
VCC = +5V
VCC = +3V
1.0
1.6
0.09
1.4
1.2
1.0
0.8
0.6
0.4
0.5
0.07
0.06
0.05
0.04
0.03
0.02
0
0
-5
10
25
40
55
70
-50 -35 -20
85
-5
10
25
40
55
120
100
80
VOH = VCC -VOUT
60
40
0
25
4.0
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
-0.5
-1.0
-1.5
-2.0
VOL = VOUT -VEE
10
INPUT OFFSET VOLTAGE (mV)
MAX4414 toc46
OUTPUT VOLTAGE SWING (mV)
VCC = 5V, RL = 10kΩ
-5
10
INPUT OFFSET VOLTAGE vs.
TEMPERATURE
160
-50 -35 -20
-5
40
TEMPERATURE (°C)
55
70
25
40
TEMPERATURE (°C)
OUTPUT VOLTAGE SWING
vs. TEMPERATURE
20
-50 -35 -20
85
TEMPERATURE (°C)
TEMPERATURE (°C)
140
70
MAX4414 toc47
-50 -35 -20
14
0.08
0.01
0.2
0
MAX4414 toc45
0.10
MAX4414 toc44
1.8
INPUT BIAS CURRENT (µA)
2.0
1.5
2.0
MAX4414 toc43
2.5
INPUT OFFSET CURRENT (µA)
SUPPLY CURRENT (PER AMPLIFIER)
vs. TEMPERATURE
SUPPLY CURRNET (mA)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
-50 -35 -20 -5
10
25
40
55
70
TEMPERATURE (°C)
______________________________________________________________________________________
85
55
70
85
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
PIN
MAX4414
MAX4415
MAX4416
MAX4417
MAX4418
MAX4419
NAME
FUNCTION
1, 5, 8
—
—
N.C.
No Connection. Not internally connected.
Amplifier Noninverting Input
3
—
—
IN+
—
3
3
INA+
Amplifier A Noninverting Input
—
5
5
INB+
Amplifier B Noninverting Input
—
—
10
INC+
Amplifier C Noninverting Input
—
—
12
IND+
2
—
—
IN-
—
2
2
INA-
Amplifier A Inverting Input
—
6
6
INB-
Amplifier B Inverting Input
—
—
9
INC-
Amplifier C Inverting Input
—
—
13
IND-
Amplifier D Inverting Input
4
4
11
VEE
Negative Power Supply
6
—
—
OUT
Amplifier Output
—
1
1
OUTA
Amplifier A Output
—
7
7
OUTB
Amplifier B Output
—
—
8
OUTC
Amplifier C Output
—
—
14
OUTD
7
8
4
VCC
Amplifier D Noninverting Input
Amplifier Inverting Input
Amplifier D Output
Positive Power Supply
_______________Detailed Description
The MAX4414–MAX4419 single-supply, rail-to-rail, voltage-feedback amplifiers achieve high slew rates and
bandwidths, while consuming only 1.6mA of supply
current per amplifier. Excellent harmonic distortion and
differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF
signal-processing applications.
Internal feedback around the output stage ensures low
open-loop output impedance, reducing gain sensitivity
to load variations. This feedback also produces
demand-driven current bias to the output transistors.
Rail-to-Rail Outputs, Ground-Sensing Input
The MAX4414–MAX4419 input common-mode range
extends from (VEE - 0.1V) to (VCC - 1.5V) with excellent
common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does
not undergo phase reversal or latchup.
The output swings to within 105mV of either power-supply rail with a 1kΩ load. Input ground sensing and railto-rail output substantially increase the dynamic range.
With a symmetric input in a single +5V application, the
input can swing 3.6Vp-p, and the output can swing
4.6Vp-p with minimal distortion.
Output Capacitive Loading and Stability
The MAX4414–MAX4419 are optimized for AC performance. They are not designed to drive highly reactive
loads. Such loads decrease phase margin and may
produce excessive ringing and oscillation. The use of
an isolation resistor eliminates this problem (Figure 1).
Figure 2 is a graph of the Optimal Isolation Resistor
(RISO) vs. Capacitive Load.
The Small-Signal Gain vs. Frequency with Capacitive
Load and No Isolation Resistor graph in the Typical
Operating Characteristics shows how a capacitive load
causes excessive peaking of the amplifier’s frequency
response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω
to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load
capacitance and the isolation resistor. The Small-Signal
Gain vs. Frequency with Capacitive Load and 22Ω
Isolation Resistor graph shows the effect of a 22Ω isolation resistor on closed-loop response.
______________________________________________________________________________________
15
MAX4414–MAX4419
Pin Description
Coaxial cable and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the line’s
capacitance.
___________Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4414/MAX4416/MAX4418 are internally compensated for unity gain. When configured for unity gain,
the devices require a 24Ω feedback resistor (RF). This
resistor improves AC response by reducing the Q of the
parallel LC circuit formed by the parasitic feedback
capacitance and inductance.
RG
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG)
resistor values that best fit the application. Large resistor values increase voltage noise and interact with the
amplifier’s input and PC board capacitance. This can
generate undesirable poles and zeros and decrease
bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1kΩ
resistors, combined with 1.8pF of amplifier input capacitance and 1pF of PC board capacitance, causes a
pole at 114MHz. Since this pole is within the amplifier
bandwidth, it jeopardizes stability. Reducing the 1kΩ
resistors to 100Ω extends the pole frequency to
1.14GHz, but could limit output swing by adding 200Ω
in parallel with the amplifier’s load resistor.
Note: For high gain applications where output offset
voltage is a consideration, choose RS to be equal to the
parallel combination of RF and RG (Figures 3a and 3b):
RS =
RF
RISO
RG
VOUT
VIN
RF × RG
RF + RG
RF
CL
VOUT
RBIN
RS
IN
R0
VOUT = [1+ (RF / RG)] VIN
Figure 1. Driving a Capacitive Load Through an Isolation
Resistor
Figure 3a. Noninverting Gain Configuration
30
28
26
RG
24
RISO (Ω)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
RF
IN
22
20
VOUT
18
16
RO
14
VOUT = (RF / RG) VIN
12
RS
10
0
200
400
600
800
1000
CLOAD (pF)
Figure 2. Capacitive Load vs. Isolation Resistance
16
Figure 3b. Inverting Gain Configuration
______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
RF
24Ω
RTO
75Ω
Active Filters
The low distortion and high bandwidth of the
MAX4414–MAX4419 make them ideal for use in active
filter circuits. Figure 5 is a 15MHz lowpass, multiplefeedback active filter using the MAX4414.
GAIN =
f0 =
1
×
2π
R2
R1
(RL = RO + RTO)
Figure 4. Video Line Driver
1
R2 × R3 × C1 × C2
C2
Q =
RO
75Ω
IN
RTIN
75Ω
VOUT
ZO = 75Ω
MAX4414
C1 × C2 × R2 × R3
1
1
1
+
+
R1
R2
R3
Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. Design the PC board
for a frequency greater than 1GHz to prevent amplifier
performance degradation due to board parasitics.
Avoid large parasitic capacitances at inputs and outputs. Whether or not a constant-impedance board is
used, observe the following guidelines:
• Do not use wire-wrap boards due to their high inductance.
• Do not use IC sockets because of the increased parasitic capacitance and inductance.
ADC Input Buffer
Input buffer amplifiers can be a source of significant
errors in high-speed ADC applications. The input buffer
is usually required to rapidly charge and discharge the
ADC’s input, which is often capacitive (see Output
Capacitive Loading and Stability). In addition, since a
high-speed ADC’s input impedance often changes very
rapidly during the conversion cycle, measurement
accuracy must be maintained using an amplifier with
very low output impedance at high frequencies. The
combination of high speed, fast slew rate, low noise,
and a low and stable distortion over load make the
MAX4414–MAX4419 ideally suited for use as buffer
amplifiers in high-speed ADC applications.
• Use surface-mount instead of through-hole components for better high-frequency performance.
• Use a PC board with at least two layers; it should be
as free from voids as possible.
• Keep signal lines as short and as straight as possible.
Do not make 90° turns; round all corners.
Layout and Power-Supply Bypassing
These amplifiers operate from a single +2.7V to +5.5V
power supply. Bypass V CC to ground with a 0.1µF
capacitor as close to the pin as possible.
______________________________________________________________________________________
17
MAX4414–MAX4419
Video Line Driver
The MAX4414–MAX4419 are designed to minimize differential gain error and differential phase error to 0.03%/
0.15° respectively, making them ideal for driving video
loads. See Figure 4.
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
+5.0V
C2
15pF
R2
150Ω
R3
511Ω
R1
150Ω
10k
VIN
VOUT
C1
100pF
MAX4414
10k
Figure 5. Multiple-Feedback Lowpass Filter
18
______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
TOP VIEW
N.C. 1
IN- 2
IN+
3
MAX4414
MAX4415
VEE 4
8
N.C.
OUTA
1
7
VCC
INA-
2
6
OUT
5
N.C.
INA+
3
MAX4416
MAX4417
VEE 4
µMAX/SO
µMAX/SO
8
VCC
7
OUTB
6
INB-
5
INB+
OUTA 1
14 OUTD
INA-
2
13 IND-
INA+
3
12 IND+
VCC 4
INB+ 5
MAX4418
MAX4419
11 VEE
10 INC+
INB- 6
9
INC-
OUTB 7
8
OUTC
TSSOP
Ordering Information
(continued)
PART
TEMP. RANGE
PIN-PACKAGE
MAX4416EUA
-40°C to +85°C
8 µMAX
MAX4416ESA
-40°C to +85°C
8 SO
MAX4417EUA
-40°C to +85°C
8 µMAX
MAX4417ESA
-40°C to +85°C
8 SO
MAX4418EUD
-40°C to +85°C
14 TSSOP
MAX4419EUD
-40°C to +85°C
14 TSSOP
Chip Information
_
MAX4414/MAX4415 TRANSISTOR COUNT: 95
MAX4416/MAX4417 TRANSISTOR COUNT: 184
MAX4418/MAX4419 TRANSISTOR COUNT: 268
PROCESS: Bipolar
______________________________________________________________________________________
19
MAX4414–MAX4419
Pin Configurations
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
8LUMAXD.EPS
Package Information
20
______________________________________________________________________________________
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
TSSOP,NO PADS.EPS
______________________________________________________________________________________
21
MAX4414–MAX4419
Package Information (continued)
MAX4414–MAX4419
Low-Power, +3V/+5V, 400MHz Single-Supply
Op Amps with Rail-to-Rail Outputs
SOICN.EPS
Package Information (continued)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2000 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.