19-1837; Rev 0; 10/00 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs ________________________Applications Features ♦ Ultra-Low 1.6mA Supply Current ♦ Single +3V/+5V Operation ♦ High Speed 400MHz -3dB Bandwidth (MAX4414/MAX4416/MAX4418) 200V/µs Slew Rate (MAX4414/MAX4416/MAX4418) 150MHz -3dB Bandwidth (MAX4415/MAX4417/MAX4419) 470V/µs Slew Rate (MAX4415/MAX4417/MAX4419) ♦ Rail-to-Rail Outputs ♦ Input Common-Mode Range Extends Beyond VEE ♦ Low Differential Gain/Phase: 0.03%/0.15° ♦ Low Distortion at 5MHz (MAX4414/MAX4416/MAX4418) -93dBc SFDR 0.003% Total Harmonic Distortion ♦ Low Cost Ordering Information PART TEMP. RANGE PIN-PACKAGE Battery-Powered Instruments MAX4414EUA -40°C to +85°C 8 µMAX Portable Communications MAX4414ESA -40°C to +85°C 8 SO Keyless Entry Systems MAX4415EUA -40°C to +85°C 8 µMAX MAX4415ESA -40°C to +85°C 8 SO Cellular Telephones Ordering information continued at end of data sheet. Video Line Drivers Baseband Applications Typical Operating Characteristic _____________________Selector Guide MINIMUM GAIN (V/V) -3dB SLEW RATE BANDWIDTH (V/µs) (MHz) MAX4414 1 1 400 200 MAX4415 1 5 150 470 MAX4416 2 1 400 200 MAX4417 2 5 150 470 MAX4418 4 1 400 200 MAX4419 4 5 150 470 1.80 MAX4414 toc01 NO. OF AMPS 1.75 1.70 SUPPLY CURRENT (mA) PART SUPPLY CURRENT vs. SUPPLY VOLTAGE (PER AMPLIFIER) 1.65 1.60 1.55 1.50 1.45 1.40 1.35 Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. Pin Configurations appear at end of data sheet. 1.30 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 SUPPLY VOLTAGE (V) ________________________________________________________________ Maxim Integrated Products 1 For price, delivery, and to place orders, please contact Maxim Distribution at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. MAX4414–MAX4419 General Description The MAX4414–MAX4419 operational amplifiers combine high-speed performance, low distortion, and ultralow supply current. Consuming just 1.6mA of supply current per amplifier, these devices operate from a single +2.7V to +5.5V supply, have Rail-to-Rail® outputs, and exhibit a common-mode input voltage range that extends from 100mV below ground to within 1.5V of the positive supply rail. The MAX4414/MAX4416/MAX4418 single/dual/quad op amps are unity-gain stable and achieve a 400MHz -3dB bandwidth with a 200V/µs slew rate. The MAX4415/ MAX4417/MAX4419 single/dual/quad op amps are compensated for closed-loop gains of +5V/V or greater and achieve a 150MHz -3dB bandwidth with a 470V/µs slew rate. The combination of high-speed, ultra-low power, and low-distortion makes the MAX4414– MAX4419 ideal for low-power/low-voltage, high-speed portable systems such as video, communications, and instrumentation. The MAX4414/MAX4415 single and MAX4416/ MAX4417 dual amplifiers are available in space-saving 8-pin µMAX and SO packages, while the MAX4418/ MAX4419 quad amplifiers are available in a 14-pin TSSOP package. MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE)..................................................+6V Differential Input Voltage ....................................................±2.5V IN_-, IN_+, OUT_..............................(VCC + 0.3V) to (VEE - 0.3V) Current into Input Pins ......................................................±20mA Output Short-Circuit Duration to VCC or VEE ..............Continuous Continuous Power Dissipation (TA = +70°C) 8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW 8-Pin SO (derate 5.9mW/°C above +70°C)..................471mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) .........727mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL = ∞ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL Operating Supply Voltage Range VS Quiescent Supply Current (per Amplifier) IS Input Common-Mode Voltage Range Input Offset Voltage Input Offset Voltage Temperature VCM Input Offset Current Input Resistance Common-Mode Rejection Ratio MAX UNITS 5.5 V 1.6 3 VCC = +3V 1.4 2.6 Guaranteed by CMRR test VEE 0.1 VCC 1.5 VOS 0.5 3 MAX4416–MAX4419 6 mA V mV µV/°C ±1 mV IB 1.3 4 µA IOS 0.1 0.7 µA RIN CMRR Differential mode, -0.04V ≤ (VIN+ - VIN-) ≤ +0.04V 60 kΩ Common mode, VEE - 0.1V < VCM < VCC - 1.5V 16 MΩ dB VEE - 0.1V < VCM < VCC - 1.5V 65 94 +0.2V ≤ VOUT ≤ +4.8V, RL = 10kΩ 78 93 +0.4V ≤ VOUT ≤ +4.6V, RL = 1kΩ 68 80 66 80 AVOL +1V ≤ VOUT ≤ +4V, RL = 150Ω 65 +0.2V ≤ VOUT ≤ +2.8V, RL = 10kΩ 75 90 +0.25V ≤ VOUT ≤ +2.75V, RL = 1kΩ 65 78 63 75 VCC = +3V +0.2V ≤ VOUT ≤ +2.5V, RL = 1kΩ to VEE +0.5V ≤ VOUT ≤ +2.5V, RL = 150Ω 2 TYP 2.7 VCC = +5V VCC = +5V +0.3V ≤ VOUT ≤ +4.4V, RL = 1kΩ to VEE Open-Loop Gain MIN TCVOS Input Offset Voltage Matching Input Bias Current CONDITIONS Guaranteed by PSRR test 62 _______________________________________________________________________________________ dB Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs (VCC = +2.7V to +5.5V, VCM = VCC/2 - 0.75V, VEE = 0, RL = ∞ to VCC/2, VOUT = VCC/2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS RL = 10kΩ VCC = +5V RL = 1kΩ RL = 150Ω Output Voltage Swing VOUT RL = 10kΩ VCC = +3V RL = 1kΩ RL = 150Ω Output Current IOUT Output Short-Circuit Current Power-Supply Rejection Ratio ISC PSRR TYP MAX VCC - VOH MIN 0.085 0.375 VOL - VEE 0.015 0.100 VCC - VOH 0.105 0.400 VOL - VEE 0.035 0.125 VCC - VOH 0.385 VOL - VEE 0.150 VCC - VOH 0.060 0.365 VOL - VEE 0.010 0.090 VCC - VOH 0.075 0.390 VOL - VEE 0.025 0.115 VCC - VOH 0.275 VOL - VEE 0.070 RL = 20Ω connected to VCC or VEE, VCC = +5V ±25 Sinking or sourcing VCC = +2.7V to +5.5V, VCM = 0, VOUT = 2V 60 UNITS V ±75 mA ±85 mA 77 dB AC ELECTRICAL CHARACTERISTICS (VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.) PARAMETER Small Signal -3dB Bandwidth Large Signal -3dB Bandwidth SYMBOL BWSS BWLS CONDITIONS VOUT = 100mVp-p VOUT = 2Vp-p VOUT = 100mVp-p Bandwidth for 0.1dB Flatness BW0.1dB VOUT = 2Vp-p MIN TYP MAX4414/MAX4416/ MAX4418, AV = +1V/V 400 MAX4415/MAX4417/ MAX4419, AV = +5V/V 150 MAX4414/MAX4416/ MAX4418, AV = +1V/V 32 MAX4415/MAX4417/ MAX4419, AV = +5V/V 75 MAX4414/MAX4416/ MAX4418, AV = +1V/V 43 MAX4415/MAX4417/ MAX4419, AV = +5V/V 16 MAX4414/MAX4416/ MAX4418, AV = +1V/V 22 MAX4415/MAX4417/ MAX4419, AV = +5V/V 28 MAX UNITS MHz MHz MHz _______________________________________________________________________________________ 3 MAX4414–MAX4419 DC ELECTRICAL CHARACTERISTICS (continued) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs AC ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.) PARAMETER Slew Rate Rise/Fall Time SYMBOL SR tR, tF tS 1% CONDITIONS VOUT = 2V step VOUT = 2V step, 10% to 90% VOUT = 2V step Settling Time tS 0.1% VOUT = 2V step VCC = +5V, fC = 5MHz Spurious-Free Dynamic Range TYP MAX4414/MAX4416/ MAX4418, AV = +1V/V 200 MAX4415/MAX4417/ MAX4419, AV = +5V/V 470 MAX4414/MAX4416/ MAX4418, AV = +1V/V 14 MAX4415/MAX4417/ MAX4419, AV = +5V/V 5 MAX4414/MAX4416/ MAX4418, AV = +1V/V 100 MAX4415/MAX4417/ MAX4419, AV = +5V/V 120 MAX4414/MAX4416/ MAX4418, AV = +1V/V 150 MAX4415/MAX4417/ MAX4419, AV = +5V/V 160 MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -84 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -76 MAX UNITS V/µs ns ns dBc SFDR VCC = +3V, fC = 5MHz 4 MIN MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -93 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -79 _______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs (VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS VCC = +5V, fC = 5MHz 2nd Harmonic Distortion TYP MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -84 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -76 MAX UNITS dBc SFDR VCC = +3V, fC = 5MHz VCC = +5V, fC = 5MHz 3rd Harmonic Distortion MIN MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -93 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -65 MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -95 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -80 dBc SFDR VCC = +3V, fC = 5MHz MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p -95 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p -67 _______________________________________________________________________________________ 5 MAX4414–MAX4419 AC ELECTRICAL CHARACTERISTICS (continued) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs AC ELECTRICAL CHARACTERISTICS (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS VCC = +5V, fC = 5MHz Total Harmonic Distortion Differential Gain Error Differential Phase Error 6 TYP MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p 0.007 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p 0.02 IP3 DG DP MAX UNITS % SFDR VCC = +3V, fC = 5MHz Two-Tone, Third-Order Intermodulation Distortion MIN MAX4414/MAX4416/ MAX4418, AV = +1V/V, VOUT = 1Vp-p 0.003 MAX4415/MAX4417/ MAX4419, AV = +5V/V, VOUT = 2Vp-p 0.01 fC = 10MHz, f2 = 9.9MHZ RL = 150Ω, NTSC RL = 150Ω, NTSC -67 MAX4414/MAX4416/ MAX4418, AV = +1V/V 0.03 MAX4414/MAX4416/ MAX4418, AV = +2V/V 0.04 MAX4415/MAX4417/ MAX4419, AV = +5V/V 0.05 MAX4414/MAX4416/ MAX4418, AV = +1V/V 0.15 MAX4414/MAX4416/ MAX4418, AV = +2V/V 0.25 MAX4415/MAX4417/ MAX4419, AV = +5V/V 0.35 _______________________________________________________________________________________ dBc % degrees Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs (VCC = +5V, VEE = 0, VCM = +1.75V, RL = 1kΩ connected to VCC/2, CL = 5pF, AVCL = +1V/V, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Gain Matching MAX4416–MAX4419, VOUT = 100mVp-p, f ≤ 10MHz 0.1 dB Phase Matching MAX4416–MAX4419, VOUT = 100mVp-p, f ≤ 10MHz 0.1 degrees Input Noise-Voltage Density en f = 10kHz 10 nV/√Hz Input Noise-Current Density In f = 10kHz 0.6 pA/√Hz 1.8 pF Input Capacitance CIN Output Impedance ZOUT Capacitive Load Drive f = 1MHz 0.5 Ω No sustained oscillations 120 pF Power-Up 1% Settling Time (Note 2) 1.2 Crosstalk MAX4416–MAX4419, f = 10MHz, VOUT = 2Vp-p XTALK 100 -72 µs dB Note 1: All devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design. Note 2: Guaranteed by design. Typical Operating Characteristics (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) 1.65 1.60 1.55 1.50 1.45 1 0 -1 MAX4415/MAX4417/MAX4419 (AVCL = +5V/V) -2 -3 -4 1.40 -5 1.35 -6 1.30 MAX4414/MAX4416/MAX4418 (AVCL = +1V/V) 3.1 3.5 3.9 4.3 4.7 SUPPLY VOLTAGE (V) 5.1 5.5 AVCL = +1V/V 6 22pF 4 15pF 2 0 5pF -2 -4 -6 -7 2.7 8 SMALL-SIGNAL GAIN (dB) SMALL-SIGNAL GAIN (dB) 1.70 2 MAX4414 toc02 1.75 SUPPLY CURRENT (mA) SMALL-SIGNAL GAIN vs. FREQUENCY 3 MAX4414 toc01 1.80 MAX4414/MAX4416/MAX4418 SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD vs. FREQUENCY MAX4414 toc03 SUPPLY CURRENT vs. SUPPLY VOLTAGE (PER AMPLIFIER) 100k 1M 10M FREQUENCY (Hz) 100M 1G 100k 1M 10M 100M 1G FREQUENCY (Hz) _______________________________________________________________________________________ 7 MAX4414–MAX4419 AC ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) MAX4415/MAX4417/MAX4419 SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD vs. FREQUENCY 22pF 4 15pF 2 0 5pF -2 22pF AVCL = +1V/V 2 SMALL-SIGNAL GAIN (dB) SMALL-SIGNAL GAIN (dB) 6 3 MAX4414 toc04 AVCL = +5V/V MAX4414 toc05 MAX4414/MAX4416/MAX4418 SMALL-SIGNAL GAIN WITH CAPACITIVE LOAD AND 22Ω ISOLATION RESISTOR vs. FREQUENCY 8 15pF 1 0 -1 5pF -2 -3 -4 -5 -4 -6 -6 -7 1M 10M 100M 1G MAX4414 toc06 2 MAX4415/MAX4417/ MAX4419 (AVCL = +5V/V) 1 MAX4415/MAX4417/ MAX4419 (AVCL = +5V/V) 0 -1 -2 MAX4414/MAX4416/ MAX4418 (AVCL = +1V/V) -3 -4 -0.3 -5 -0.4 -6 -0.5 -7 1M 10M 100M 1G 100k 1M 10M 100M 1G FREQUENCY (Hz) FREQUENCY (Hz) LARGE-SIGNAL GAIN vs. FREQUENCY (VOUT = 2Vp-p) MAX4414/MAX4416/MAX4418 GAIN AND PHASE vs. FREQUENCY MAX4415/MAX4417/ MAX4419 (AVCL = +5V/V) 2 1 MAX4414 toc09 100 MAX4414 toc08 3 AVCL = +1000V/V 80 135 60 90 0 -2 GAIN (dB) MAX4414/MAX4416/ MAX4418 (AVCL = +1V/V) -1 -3 -4 -5 -6 -7 10k 100k 1M 10M FREQUENCY (Hz) 100M 1G 180 GAIN 40 45 0 20 PHASE 0 -45 -20 -90 -40 -135 -60 -180 1G 10k 100k 1M 10M 100M FREQUENCY (Hz) _______________________________________________________________________________________ PHASE (deg) 100k 8 1G 3 LARGE-SIGNAL GAIN (dB) GAIN FLATNESS (dB) MAX4414/MAX4416/ MAX4418 (AVCL = +1V/V) 0 -0.2 100M LARGE-SIGNAL GAIN vs. FREQUENCY (VOUT = 1Vp-p) 0.3 0.1 10M GAIN FLATNESS vs. FREQUENCY 0.5 0.2 1M FREQUENCY (Hz) 0.4 -0.1 100k FREQUENCY (Hz) MAX4414 toc07 100k LARGE-SIGNAL GAIN (dB) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 135 80 45 40 0 20 PHASE 0 -45 -20 -90 -40 -135 -60 -180 1G 100k 1M 10M 100M 0.04 0.03 0.02 0.01 0 -0.01 0 10 20 30 40 50 60 70 80 90 100 IRE 0 10 20 30 40 50 60 70 80 90 100 0.15 0.10 0.05 0 -0.05 FREQUENCY (Hz) IRE MAX4415/MAX4417/MAX4419 DIFFERENTIAL GAIN AND PHASE MAX4414/MAX4416/MAX4418 SMALL-SIGNAL PULSE RESPONSE MAX4414 toc13 0.06 MAX4414 toc12 DIFFERENTIAL GAIN (%) 10k 0.04 0.02 INPUT 50mV/div 0 -0.02 0 DIFFERENTIAL PHASE (deg) 90 GAIN PHASE (deg) GAIN (dB) 60 MAX4414/MAX4416/MAX4418 DIFFERENTIAL GAIN AND PHASE MAX4414 toc11 180 AVCL = +1000V/V DIFFERENTIAL GAIN (%) MAX4414 toc10 100 DIFFERENTIAL PHASE (deg) MAX4415/MAX4417/MAX4419 GAIN AND PHASE vs. FREQUENCY 10 20 30 40 50 60 70 80 90 100 IRE 0.05 OUTPUT 50mV/div 0.03 0.01 RL = 1kΩ -0.01 0 10 20 30 40 50 60 70 80 90 100 50ns/div IRE MAX4414/MAX4416/MAX4418 LARGE-SIGNAL PULSE RESPONSE MAX4415/MAX4417/MAX4419 SMALL-SIGNAL PULSE RESPONSE MAX4414 toc14 MAX4414 toc15 INPUT 10mV/div INPUT 500mV/div OUTPUT 50mV/div OUTPUT 500mV/div RL = 1kΩ RL = 1kΩ 50ns/div 50ns/div _______________________________________________________________________________________ 9 MAX4414–MAX4419 Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) MAX4415/MAX4417/MAX4419 LARGE-SIGNAL PULSE RESPONSE MAX4414/MAX4416/MAX4418 LARGE-SIGNAL PULSE RESPONSE MAX4414 toc16 MAX4414 toc17 INPUT 100mV/div INPUT 1V/div OUTPUT 500mV/div OUTPUT 1V/div RL = 1kΩ RL = 1kΩ 50ns/div 50ns/div MAX4415/MAX4417/MAX4419 LARGE-SIGNAL PULSE RESPONSE MAX4414/MAX4416/MAX4418 SMALL-SIGNAL PULSE RESPONSE MAX4414 toc18 MAX4414 toc19 INPUT 200mV/div INPUT 50mV/div OUTPUT 1V/div OUTPUT 50mV/div RL = 150Ω RL = 1kΩ 50ns/div 50ns/div INPUT 10mV/div INPUT 500mV/div OUTPUT 500mV/div OUTPUT 50mV/div RL = 150Ω RL = 150Ω 50ns/div 10 MAX4414 toc21 MAX4414/MAX4416/MAX4418 LARGE-SIGNAL PULSE RESPONSE MAX4415/MAX4417/MAX4419 SMALL-SIGNAL PULSE RESPONSE MAX4414 toc20 MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 50ns/div ______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs MAX4414 toc22 INPUT 100mV/div OUTPUT 500mV/div MAX4414 toc23 MAX4414/MAX4416/MAX4418 SMALL-SIGNAL PULSE RESPONSE (CLOAD = 15pF) MAX4415/MAX4417/MAX4419 LARGE-SIGNAL PULSE RESPONSE AV = +1V/V INPUT 50mV/div OUTPUT 50mV/div RL = 150Ω RL = 150Ω 50ns/div 50ns/div MAX4415/MAX4417/MAX4419 SMALL-SIGNAL PULSE RESPONSE (CLOAD = 15pF) CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY OUTPUT IMPEDANCE (Ω) INPUT 10mV/div OUTPUT 50mV/div MAX4414 toc25 1000 MAX4414 toc24 AV = +5V/V 100 10 1 RL = 150Ω 0.1 100k 50ns/div 1M 10M 100M 1G FREQUENCY (MHz) SMALL-SIGNAL BANDWIDTH vs. LOAD RESISTANCE MAX4416–MAX4419 CROSSTALK vs. FREQUENCY -10 400 BANDWIDTH (MHz) CROSSTALK (dB) -30 -40 -50 MAX4414 MAX4416 MAX4418 350 -20 MAX4414 toc27 450 MAX4414 toc26 0 300 250 200 150 -60 100 -70 50 MAX4415 MAX4417 MAX4419 0 -80 100k 1M 10M FREQUENCY (Hz) 100M 1G 100 1000 RLOAD (Ω) ______________________________________________________________________________________ 11 MAX4414–MAX4419 Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) OPEN-LOOP GAIN vs. LOAD RESISTANCE OUTPUT VOLTAGE SWING vs. LOAD RESISTANCE 100 80 60 40 20 350 300 250 200 150 VOH 100 VOL 50 0 100 10k 1k 0 100k 100 1k 10k RLOAD (Ω) RLOAD (Ω) POWER SUPPLY REJECTION vs. FREQUENCY COMMON MODE REJECTION vs. FREQUENCY -40 MAX4414 toc30 0 -10 -20 -50 -30 -60 -40 CMR (dB) PSR (dB) MAX4414 toc29 400 MAX4414 toc31 OPEN-LOOP GAIN (dB) 120 450 OUTPUT VOLTAGE SWING (mV) MAX4414 toc28 140 -50 -60 -70 -80 -70 -80 -90 -90 -100 -100 100k 1M 10M 100M 1G 1M 10M 100M FREQUENCY (Hz) VOLTAGE NOISE DENSITY vs. FREQUENCY CURRENT NOISE DENSITY vs. FREQUENCY 10 1G MAX4414 toc33 100 CURRENT NOISE DENSITY (pA/√Hz) MAX4414 toc32 100 1 10 1 0 1 10 100 1k 10k FREQUENCY (Hz) 12 100k FREQUENCY (Hz) 1000 VOLTAGE NOISE DENSITY (nV/√Hz) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 100k 1M 1 10 100 1k 10k 100k 1M FREQUENCY (Hz) ______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs AVCL = +1V/V, VOUT = 1Vp-p -40 -60 2nd HARMONIC -80 AVCL = +5V/V, VOUT = 2Vp-p -50 DISTORTION (dBc) -20 -60 -70 2nd HARMONIC -80 -90 -100 3rd HARMONIC 3rd HARMONIC -100 100k 10M 100k 100M 100M MAX4414/MAX4416/MAX4418 DISTORTION vs. OUTPUT VOLTAGE MAX4415/MAX4417/MAX4419 DISTORTION vs. OUTPUT VOLTAGE AVCL = +1V/V, f = 5MHz -60 AVCL = +5V/V, f = 5MHz -65 -70 DISTORTION (dBc) -70 DISTORTION (dBc) 10M FREQUENCY (Hz) -65 -75 2nd HARMONIC -80 -85 -90 2nd HARMONIC -75 -80 -85 -90 3rd HARMONIC 3rd HARMONIC -95 -95 -100 -100 0 0.5 1.0 1.5 2.0 VOUT (V) 2.5 3.0 3.5 0 -20 0 AVCL = +5V/V, VOUT = 2Vp-p, f = 5MHz -20 DISTORTION (dBc) AVCL = +1V/V, VOUT = 1Vp-p, f = 5MHz MAX4415/MAX4417/MAX4419 DISTORTION vs. LOAD RESISTANCE MAX4414 toc38 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 VOUT (V) MAX4414/MAX4416/MAX4418 DISTORTION vs. LOAD RESISTANCE DISTORTION (dBc) 1M FREQUENCY (Hz) MAX4414 toc36 -60 1M MAX4414 toc37 -120 -40 -60 2nd HARMONIC -80 MAX4414 toc39 DISTORTION (dBc) -40 MAX4414 toc34 0 MAX4414 toc35 MAX4415/MAX4417/MAX4419 DISTORTION vs. FREQUENCY MAX4414/MAX4416/MAX4418 DISTORTION vs. FREQUENCY -40 2nd HARMONIC -60 -80 3rd HARMONIC -100 -100 3rd HARMONIC -120 -120 100 1k RLOAD (Ω) 10k 100 1k 10k RLOAD (Ω) ______________________________________________________________________________________ 13 MAX4414–MAX4419 Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = +1.75V, AVCL = +1V/V (MAX4414/MAX4416/MAX4418), AVCL = +5V/V (MAX4415/MAX4417/MAX4419), RL = 1kΩ to VCC/2, CL = 5pF, TA = +25°C, unless otherwise noted.) ISOLATION RESISTANCE vs. CAPACITIVE LOAD MAX4414/MAX4416/MAX4418 POWER-UP TIME MAX4415/MAX4417/MAX4419 POWER-UP TIME MAX4414 toc42 MAX4414 toc41 MAX4414 toc40 30 28 26 5V 5V VSUPPLY 2V/div VSUPPLY 2V/div RISO (Ω) 24 0 0 22 20 1.5V 18 1.5V VOUT 750mV/div 16 14 VOUT 500mV/div 0 0 12 10 0 100 200 300 400 500 600 700 800 900 1000 500ns/div 500ns/div INPUT BIAS CURRENT vs. TEMPERATURE INPUT OFFSET CURRENT vs. TEMPERATURE CLOAD (pF) VCC = +5V VCC = +3V 1.0 1.6 0.09 1.4 1.2 1.0 0.8 0.6 0.4 0.5 0.07 0.06 0.05 0.04 0.03 0.02 0 0 -5 10 25 40 55 70 -50 -35 -20 85 -5 10 25 40 55 120 100 80 VOH = VCC -VOUT 60 40 0 25 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 -0.5 -1.0 -1.5 -2.0 VOL = VOUT -VEE 10 INPUT OFFSET VOLTAGE (mV) MAX4414 toc46 OUTPUT VOLTAGE SWING (mV) VCC = 5V, RL = 10kΩ -5 10 INPUT OFFSET VOLTAGE vs. TEMPERATURE 160 -50 -35 -20 -5 40 TEMPERATURE (°C) 55 70 25 40 TEMPERATURE (°C) OUTPUT VOLTAGE SWING vs. TEMPERATURE 20 -50 -35 -20 85 TEMPERATURE (°C) TEMPERATURE (°C) 140 70 MAX4414 toc47 -50 -35 -20 14 0.08 0.01 0.2 0 MAX4414 toc45 0.10 MAX4414 toc44 1.8 INPUT BIAS CURRENT (µA) 2.0 1.5 2.0 MAX4414 toc43 2.5 INPUT OFFSET CURRENT (µA) SUPPLY CURRENT (PER AMPLIFIER) vs. TEMPERATURE SUPPLY CURRNET (mA) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs -50 -35 -20 -5 10 25 40 55 70 TEMPERATURE (°C) ______________________________________________________________________________________ 85 55 70 85 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs PIN MAX4414 MAX4415 MAX4416 MAX4417 MAX4418 MAX4419 NAME FUNCTION 1, 5, 8 — — N.C. No Connection. Not internally connected. Amplifier Noninverting Input 3 — — IN+ — 3 3 INA+ Amplifier A Noninverting Input — 5 5 INB+ Amplifier B Noninverting Input — — 10 INC+ Amplifier C Noninverting Input — — 12 IND+ 2 — — IN- — 2 2 INA- Amplifier A Inverting Input — 6 6 INB- Amplifier B Inverting Input — — 9 INC- Amplifier C Inverting Input — — 13 IND- Amplifier D Inverting Input 4 4 11 VEE Negative Power Supply 6 — — OUT Amplifier Output — 1 1 OUTA Amplifier A Output — 7 7 OUTB Amplifier B Output — — 8 OUTC Amplifier C Output — — 14 OUTD 7 8 4 VCC Amplifier D Noninverting Input Amplifier Inverting Input Amplifier D Output Positive Power Supply _______________Detailed Description The MAX4414–MAX4419 single-supply, rail-to-rail, voltage-feedback amplifiers achieve high slew rates and bandwidths, while consuming only 1.6mA of supply current per amplifier. Excellent harmonic distortion and differential gain/phase performance make these amplifiers an ideal choice for a wide variety of video and RF signal-processing applications. Internal feedback around the output stage ensures low open-loop output impedance, reducing gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors. Rail-to-Rail Outputs, Ground-Sensing Input The MAX4414–MAX4419 input common-mode range extends from (VEE - 0.1V) to (VCC - 1.5V) with excellent common-mode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 105mV of either power-supply rail with a 1kΩ load. Input ground sensing and railto-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 3.6Vp-p, and the output can swing 4.6Vp-p with minimal distortion. Output Capacitive Loading and Stability The MAX4414–MAX4419 are optimized for AC performance. They are not designed to drive highly reactive loads. Such loads decrease phase margin and may produce excessive ringing and oscillation. The use of an isolation resistor eliminates this problem (Figure 1). Figure 2 is a graph of the Optimal Isolation Resistor (RISO) vs. Capacitive Load. The Small-Signal Gain vs. Frequency with Capacitive Load and No Isolation Resistor graph in the Typical Operating Characteristics shows how a capacitive load causes excessive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. The Small-Signal Gain vs. Frequency with Capacitive Load and 22Ω Isolation Resistor graph shows the effect of a 22Ω isolation resistor on closed-loop response. ______________________________________________________________________________________ 15 MAX4414–MAX4419 Pin Description Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance. ___________Applications Information Choosing Resistor Values Unity-Gain Configuration The MAX4414/MAX4416/MAX4418 are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω feedback resistor (RF). This resistor improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance. RG Inverting and Noninverting Configurations Select the gain-setting feedback (RF) and input (RG) resistor values that best fit the application. Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1kΩ resistors, combined with 1.8pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 114MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1kΩ resistors to 100Ω extends the pole frequency to 1.14GHz, but could limit output swing by adding 200Ω in parallel with the amplifier’s load resistor. Note: For high gain applications where output offset voltage is a consideration, choose RS to be equal to the parallel combination of RF and RG (Figures 3a and 3b): RS = RF RISO RG VOUT VIN RF × RG RF + RG RF CL VOUT RBIN RS IN R0 VOUT = [1+ (RF / RG)] VIN Figure 1. Driving a Capacitive Load Through an Isolation Resistor Figure 3a. Noninverting Gain Configuration 30 28 26 RG 24 RISO (Ω) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs RF IN 22 20 VOUT 18 16 RO 14 VOUT = (RF / RG) VIN 12 RS 10 0 200 400 600 800 1000 CLOAD (pF) Figure 2. Capacitive Load vs. Isolation Resistance 16 Figure 3b. Inverting Gain Configuration ______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs RF 24Ω RTO 75Ω Active Filters The low distortion and high bandwidth of the MAX4414–MAX4419 make them ideal for use in active filter circuits. Figure 5 is a 15MHz lowpass, multiplefeedback active filter using the MAX4414. GAIN = f0 = 1 × 2π R2 R1 (RL = RO + RTO) Figure 4. Video Line Driver 1 R2 × R3 × C1 × C2 C2 Q = RO 75Ω IN RTIN 75Ω VOUT ZO = 75Ω MAX4414 C1 × C2 × R2 × R3 1 1 1 + + R1 R2 R3 Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. Design the PC board for a frequency greater than 1GHz to prevent amplifier performance degradation due to board parasitics. Avoid large parasitic capacitances at inputs and outputs. Whether or not a constant-impedance board is used, observe the following guidelines: • Do not use wire-wrap boards due to their high inductance. • Do not use IC sockets because of the increased parasitic capacitance and inductance. ADC Input Buffer Input buffer amplifiers can be a source of significant errors in high-speed ADC applications. The input buffer is usually required to rapidly charge and discharge the ADC’s input, which is often capacitive (see Output Capacitive Loading and Stability). In addition, since a high-speed ADC’s input impedance often changes very rapidly during the conversion cycle, measurement accuracy must be maintained using an amplifier with very low output impedance at high frequencies. The combination of high speed, fast slew rate, low noise, and a low and stable distortion over load make the MAX4414–MAX4419 ideally suited for use as buffer amplifiers in high-speed ADC applications. • Use surface-mount instead of through-hole components for better high-frequency performance. • Use a PC board with at least two layers; it should be as free from voids as possible. • Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners. Layout and Power-Supply Bypassing These amplifiers operate from a single +2.7V to +5.5V power supply. Bypass V CC to ground with a 0.1µF capacitor as close to the pin as possible. ______________________________________________________________________________________ 17 MAX4414–MAX4419 Video Line Driver The MAX4414–MAX4419 are designed to minimize differential gain error and differential phase error to 0.03%/ 0.15° respectively, making them ideal for driving video loads. See Figure 4. MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs +5.0V C2 15pF R2 150Ω R3 511Ω R1 150Ω 10k VIN VOUT C1 100pF MAX4414 10k Figure 5. Multiple-Feedback Lowpass Filter 18 ______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs TOP VIEW N.C. 1 IN- 2 IN+ 3 MAX4414 MAX4415 VEE 4 8 N.C. OUTA 1 7 VCC INA- 2 6 OUT 5 N.C. INA+ 3 MAX4416 MAX4417 VEE 4 µMAX/SO µMAX/SO 8 VCC 7 OUTB 6 INB- 5 INB+ OUTA 1 14 OUTD INA- 2 13 IND- INA+ 3 12 IND+ VCC 4 INB+ 5 MAX4418 MAX4419 11 VEE 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC TSSOP Ordering Information (continued) PART TEMP. RANGE PIN-PACKAGE MAX4416EUA -40°C to +85°C 8 µMAX MAX4416ESA -40°C to +85°C 8 SO MAX4417EUA -40°C to +85°C 8 µMAX MAX4417ESA -40°C to +85°C 8 SO MAX4418EUD -40°C to +85°C 14 TSSOP MAX4419EUD -40°C to +85°C 14 TSSOP Chip Information _ MAX4414/MAX4415 TRANSISTOR COUNT: 95 MAX4416/MAX4417 TRANSISTOR COUNT: 184 MAX4418/MAX4419 TRANSISTOR COUNT: 268 PROCESS: Bipolar ______________________________________________________________________________________ 19 MAX4414–MAX4419 Pin Configurations MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs 8LUMAXD.EPS Package Information 20 ______________________________________________________________________________________ Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs TSSOP,NO PADS.EPS ______________________________________________________________________________________ 21 MAX4414–MAX4419 Package Information (continued) MAX4414–MAX4419 Low-Power, +3V/+5V, 400MHz Single-Supply Op Amps with Rail-to-Rail Outputs SOICN.EPS Package Information (continued) Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 22 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.