19-1229; Rev 3; 9/02 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators Selector Guide PART COMPARATORS PER PACKAGE OUTPUT STAGE MAX985 1 Push-Pull MAX986 1 Open-Drain MAX989 2 Push-Pull MAX990 2 Open-Drain MAX993 4 Push-Pull MAX994 4 Open-Drain ____________________________Features ♦ 11µA Quiescent Supply Current ♦ 2.5V to 5.5V Single-Supply Operation ♦ Common-Mode Input Voltage Range Extends 250mV Beyond the Rails ♦ 300ns Propagation Delay ♦ Push-Pull Output Stage Sinks and Sources 8mA Current (MAX985/MAX989/MAX993) ♦ Open-Drain Output Voltage Extends Beyond VCC (MAX986/MAX990/MAX994) ♦ Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption ♦ 80µA Supply Current at 1MHz Switching Frequency ♦ No Phase Reversal for Overdriven Inputs ♦ Available in Space-Saving Packages: UCSP (MAX985) SOT23 (MAX985/MAX986/MAX989/MAX990) µMAX (MAX989/MAX990) Ordering Information Threshold Detectors/ Discriminators Ground/Supply-Sensing Applications IR Receivers Digital Line Receivers UCSP is a trademark of Maxim Integrated Products, Inc. TOP MARK TEMP RANGE MAX985EBT-T* -40°C to +85°C 6 UCSP-6 AAY MAX985EXK-T -40°C to +85°C 5 SC70-5 ABK *UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and environment. Refer to the UCSP Reliability section of this data sheet for more information. Ordering Information continued at end of data sheet. Typical Application Circuit appears at end of data sheet. Pin Configurations TOP VIEW (BUMPS ON BOTTOM) IN+ B1 A1 VEE IN- B2 A2 OUT N.C. B3 A3 VCC Applications Portable/BatteryPowered Systems Mobile Communications Zero-Crossing Detectors Window Comparators Level Translators PIN/BUMPPACKAGE PART MAX985 UCSP Pin Configurations continued at end of data sheet. Rail-to-Rail is a registered trademark of Nippon Motorola Ltd. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 General Description The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 single/dual/quad micropower comparators feature low-voltage operation and Rail-to-Rail® inputs and outputs. Their operating voltages range from 2.5V to 5.5V, making them ideal for both 3V and 5V systems. These comparators also operate with ±1.25V to ±2.75V dual supplies. They consume only 11µA of supply current while achieving a 300ns propagation delay. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage’s unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX986/MAX990/MAX994 have an open-drain output stage that can be pulled beyond VCC to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to singleended converters. The single MAX985 is available in a chip-scale package (UCSP™), significantly reducing the required PC board area. The single MAX985/MAX986 are available in 5-pin SC70 packages and the dual MAX989/MAX990 are available in 8-pin SOT23 packages. MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ...................................................6V IN_-, IN_+ to VEE .......................................-0.3V to (VCC + 0.3V) OUT_ to VEE MAX985/MAX989/MAX993 ....................-0.3V to (VCC + 0.3V) MAX986/MAX990/MAX994.....................................-0.3V to 6V OUT_ Short-Circuit Duration to VEE or VCC ...........................10s Continuous Power Dissipation (TA = +70°C) 5-Pin SC70 (derate 3.1mW/°C above +70°C) ...............247mW 5-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW 6-Bump UCSP (derate 3.9mW/°C above +70°C)..........308mW 8-Pin SOT23 (derate 9.1mW/°C above +70°C).............727mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) ..............362mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) ..........727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Bump Reflow Temperature (Note 1) ................................+235°C Note 1: This device is constructed using a unique set of packaging techniques that impose a limit on the thermal profile the device can be exposed to during board-level solder attach and rework. This limit permits only the use of the solder profiles recommended in the industry-standard specification, JEDEC 020A, paragraph 7.6, Table 3 for IR/VPR and Convection Packaging Reflow. Preheating is required. Hand or wave soldering is not allowed. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = 2.7V to 5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER Supply Voltage Supply Current per Comparator SYMBOL VCC VCMR Input Hysteresis Input Bias Current (Note 5) Input Offset Current Input Capacitance OUT Output Voltage Low 2 VCC TA = +25°C ±0.5 TA = -40°C to +85°C CIN VOL ±5 ±7 0.5 52 TA = +25°C VCC = 2.7V, ISINK = 3.5mA TA = +25°C mV mV 10 nA pA pF 80 dB 1.0 VCC = 5V, ISINK = 8mA V 1.0 VOUT = high Sourcing or sinking, VOUT = VEE or VCC µA dB VEE IOS ISC 20 VCC + 0.25 0.001 ILEAK 20 VEE 0.25 IB Output Leakage Current (MAX986/MAX990/ MAX994 only) V 24 ±3 CMRR UNITS 5.5 80 VHYST Common-Mode Rejection Ratio Output Short-Circuit Current Full common-mode range 11 55 TA = +25°C MAX 24 TA = -40°C to +85°C 2.5V ≤ VCC ≤ 5.5V TA = -40°C to +85°C VOS 12 TA = +25°C VCC = 2.7V Common-Mode Voltage Range (Note 3) TYP 2.5 TA = -40°C to +85°C ICC PSRR MIN TA = +25°C VCC = 5V Power-Supply Rejection Ratio Input Offset Voltage (Note 4) CONDITIONS Inferred from PSRR test VCC = 5V 95 VCC = 2.7V 35 0.2 TA = -40°C to +85°C mA 0.4 0.55 0.15 TA = -40°C to +85°C _______________________________________________________________________________________ µA 0.3 0.4 V Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators (VCC = 2.7V to 5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) (Note 2) PARAMETER OUT Output Voltage High (MAX985/MAX989/ MAX993 only) SYMBOL VOH OUT Rise Time (MAX985/MAX989/ MAX993 only) tRISE OUT Fall Time tFALL tPDPropagation Delay tPD+ Power-Up Time tPU CONDITIONS MIN TYP VCC = 5V, ISOURCE = 8mA TA = +25°C 4.6 4.85 TA = -40°C to +85°C 4.45 VCC = 2.7V, ISOURCE = 3.5mA TA = +25°C 2.4 TA = -40°C to +85°C 2.3 VCC = 5.0V VCC = 5.0V CL = 15pF 2.55 CL = 15pF 40 CL = 50pF 50 CL = 200pF 80 CL = 15pF 40 CL = 50pF 50 CL = 200pF 80 MAX985/MAX989/ 10mV overdrive MAX993 only 100mV overdrive 450 MAX986/MAX990/ 10mV overdrive MAX994 only, RPULLUP = 5.1kΩ 100mV overdrive 450 MAX985/MAX989/ MAX993 only, CL = 15pF MAX UNITS V ns ns 300 ns 300 10mV overdrive 450 100mV overdrive 300 20 µs Note 2: All device specifications are 100% production tested at TA = +25°C. Limits over the extended temperature range are guaranteed by design. Note 3: Inferred from the VOS test. Both or either inputs can be driven 0.3V beyond either supply rail without output phase reversal. Note 4: VOS is defined as the center of the hysteresis band at the input. Note 5: IB is defined as the average of the two input bias currents (IB-, IB+). _______________________________________________________________________________________ 3 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 ELECTRICAL CHARACTERISTICS (continued) __________________________________________Typical Operating Characteristics (VCC = 5V, VCM = 0V, TA = +25°C, unless otherwise noted.) 10,000 VIN+ < VINOUTPUT LOW VOLTAGE (mV) (VOL) VIN+ > VIN- MAX985-02 1000 MAX985-01 18 17 OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT SUPPLY CURRENT vs. OUTPUT TRANSITION FREQUENCY SUPPLY CURRENT (µA) SUPPLY CURRENT (µA) 16 15 14 13 VCC = 5.0V 12 11 VCC = 2.7V 100 VCC = 5.0V 10 MAX985-04 SUPPLY CURRENT vs. TEMPERATURE VCC = 2.7V 10 1000 VCC = 2.7V 100 VCC = 5.0V 10 9 8 -40 -20 0 20 40 60 80 1 1 100 0.01 0.1 1 10 100 0.01 1000 0.1 1 10 TEMPERATURE (°C) OUTPUT TRANSITION FREQUENCY (kHz) OUTPUT SINK CURRENT (mA) OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. TEMPERATURE VCC = 2.7V VCC = 5.0V 10 1 VCC = 5.0V 80 70 60 50 40 30 0.1 0.01 1 10 0.5 0.3 0.1 -0.3 -60 OUTPUT SOURCE CURRENT (mA) -40 -20 0 20 40 60 80 -60 100 -40 -20 0 20 40 TEMPERATURE (°C) TEMPERATURE (°C) PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 5V) PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 3V) 530 MAX985-05a 600 VOD = 50mV VOD = 50mV 510 550 490 TO VOUT = 50% OF FINAL VALUE 500 470 tPD (ns) tPD (ns) 0.7 -0.1 0 100 0.9 VCC = 2.7V 20 10 0.1 1.1 MAX985-05b 100 OUTPUT SINK CURRENT (mA) 1000 120 110 100 90 OFFSET VOLTAGE (mV) VIN+ > VIN- TO VOUT = 50% OF FINAL VALUE 450 430 450 TO VOUT = 10% OF FINAL VALUE 400 410 TO VOUT = 10% OF FINAL VALUE 390 370 350 350 0 200 400 600 CAPACITIVE LOAD (pF) 4 800 100 MAX985-07 MAX985-08 10,000 MAX985-06 -60 OUTPUT HIGH VOLTAGE (VCC - VOH) (mV) MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators 1000 0 200 400 600 800 CAPACITIVE LOAD (pF) _______________________________________________________________________________________ 1000 60 80 100 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators PROPAGATION DELAY vs. TEMPERATURE PROPAGATION DELAY vs. INPUT OVERDRIVE VOD = 50mV 440 MAX985-10 900 MAX985-09 450 800 700 600 TO VOUT = 50% POINT OF FINAL VALUE 420 tPD (ns) tPD (ns) 430 410 500 TO VOUT = 10% POINT OF FINAL VALUE 400 VCC = 2.7V 400 300 VCC = 5.0V 200 390 100 380 -40 -20 0 20 40 60 80 0 100 40 0 TEMPERATURE (°C) MAX985/MAX989/MAX993 PROPAGATION DELAY (tPD+) MAX985-12 50mV/ div 120 160 200 MAX985/MAX989/MAX993 SWITCHING CURRENT, OUT RISING PROPAGATION DELAY (tPD-) MAX985-11 IN+ 80 INPUT OVERDRIVE (mV) IN+ MAX985-13 50mV/ div 50mV/ div IN+ 2V/div OUT 2V/div OUT 2V/div OUT 1mA/div ICC VOD = 50mV VOD = 50mV VOD = 50mV 100ns/div 100ns/div 100ns/div 1MHz RESPONSE SWITCHING CURRENT, OUT FALLING POWER-UP DELAY MAX985-15 MAX985-14 IN+ OUT MAX985-16 IN+ 50mV/ div 50mV/ div VCC 2V/div OUT 2V/div ICC OUT VIN- = 50mV VIN+ = 0V 1mA/div VOD = 50mV VOD = 50mV 100ns/div 200ns/div 5µs/div _______________________________________________________________________________________ 5 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 ____________________________Typical Operating Characteristics (continued) (VCC = 5V, VCM = 0V, TA = +25°C, unless otherwise noted.) MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators Pin Description PIN MAX985 MAX986 MAX989 MAX990 MAX993 MAX994 NAME FUNCTION SOT23/ SC70 SO UCSP* SO/µMAX/ SOT23 SO/ TSSOP 1 6 A2 — — OUT Comparator Output 2 7 A3 8 4 VCC Positive Supply Voltage 3 3 B1 — — IN+ Comparator Noninverting Input 4 2 B2 — — IN- Comparator Inverting Input 5 4 A1 4 11 VEE Negative Supply Voltage — — — 1 1 OUTA — — — 2 2 INA- Comparator A Inverting Input — — — 3 3 INA+ Comparator A Noninverting Input — — — 5 5 INB+ Comparator B Noninverting Input — — — 6 6 INB- Comparator B Inverting Input — — — 7 7 OUTB Comparator B Output — — — — 8 OUTC Comparator C Output — — — — 9 INC- Comparator C Inverting Input — — — — 10 INC+ Comparator C Noninverting Input — — — — 12 IND+ Comparator D Noninverting Input — — — — 13 IND- Comparator D Inverting Input — — — — 14 OUTD — 1, 5, 8 B3 — — N.C. Comparator A Output Comparator D Output No Connection. Not internally connected. *MAX985 only 6 _______________________________________________________________________________________ Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX985/MAX989/MAX993 have a push-pull output structure that sinks as well as sources current. The MAX986/MAX990/MAX994 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6V above VEE. Input Stage Circuitry The devices’ input common-mode range extends from -0.25V to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails. Output Stage Circuitry These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Output Transition Frequency shows the minimal supply-current increase as the output switching frequency approaches 1MHz. This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in highspeed, battery-powered applications is a substantial increase in battery life. VCC R3 R1 VIN VCC R2 OUT VEE VREF MAX985 MAX989 MAX993 Figure 1. Additional Hysteresis (MAX985/MAX989/MAX993) __________Applications Information Additional Hysteresis MAX985/MAX989/MAX993 The MAX985/MAX989/MAX993 have ±3mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX985/MAX989/MAX993. 1) Select R3. Leakage current at IN is under 10nA, so the current through R3 should be at least 1µA to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF - VOUT) / R3. Considering the two possible output states in solving for R3 yields two formulas: R3 = VREF / 1µA or R3 = (VREF - VCC) / 1µA. Use the smaller of the two resulting resistor values. For example, if VREF = 1.2V and VCC = 5V, then the two R3 resistor values are 1.2MΩ and 3.8MΩ. Choose a 1.2MΩ standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = R3 x (VHB / VCC) For this example, insert the values R1 = 1.2MΩ x (50mV / 5V) = 12kΩ. 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V. _______________________________________________________________________________________ 7 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 _______________Detailed Description The MAX985/MAX986/MAX989/MAX990/MAX993/ MAX994 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between 2.5V and 5.5V and consume only 11µA. Their common-mode input voltage range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-to-rail output swing with up to 8mA loads. MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators 5) Calculate R2 as follows. For this example, choose an 8.2kΩ standard value: 1 R2 = VTHR 1 1 V − R1 − R 3 REF x R1 R2 = 1 3.0V 1 1 − − 12kΩ 2.2MΩ 1.2 x 12kΩ = 8.03kΩ 6) Verify trip voltages and hysteresis as follows: 1 1 1 + + VIN rising: VTHR = VREF x R1 x R2 R3 R1 R1 x VCC VIN falling : VTHF = VTHR − R3 Use the following procedure to calculate resistor values: 1) Select R3 according to the formulas R3 = VREF / 500µA or R3 = (VREF - VCC) / 500µA - R4. Use the smaller of the two resulting resistor values. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = (R3 + R4) x (VHB / VCC) 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. 5) Calculate R2 as follows: R2 = Hysteresis = VTHR − VTHF MAX986/MAX990/MAX994 The MAX986/MAX990/MAX994 have ±3mV internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX985/MAX989/MAX993. 1 VTHR 1 1 V − R1 − R 3 + R4 REF x R1 6) Verify trip voltages and hysteresis as follows: VIN rising: VTHR = VREF x R1 x 1 1 1 + + R2 R3 + R4 R1 R1 x VCC VIN falling : VTHF = VTHR − R3 + R4 Hysteresis = VTHR − VTHF VCC R3 Board Layout and Bypassing R1 R4 VIN VCC R2 OUT VEE VREF MAX986 MAX990 MAX994 Power-supply bypass capacitors are not typically needed, but use 100nF bypass capacitors when supply impedance is high, when supply leads are long, or when excessive noise is expected on the supply lines. Minimize signal trace lengths to reduce stray capacitance. Figure 2. Additional Hysteresis (MAX986/MAX990/MAX994) 8 _______________________________________________________________________________________ Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators Logic-Level Translator Figure 4 shows an application that converts 5V logic levels to 3V logic levels. The MAX986 is powered by the 5V supply voltage, and the pullup resistor for the MAX986’s open-drain output is connected to the 3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the 3V supply to VCC and the 5V supply to the pullup resistor. UCSP Package Consideration For general UCSP package information and PC layout considerations, please refer to Maxim Application Note,“Wafer-Level Chip-Scale Package.” UCSP Reliability The chip-scale package (UCSP) represents a unique packaging form factor that may not perform equally to a packaged product through traditional mechanical reliability tests. UCSP reliability is integrally linked to the user’s assembly methods, circuit board material, and usage environment. The user should closely review these areas when considering use of a UCSP package. Performance through Operating Life Test and Moisture Resistance remains uncompromised as it is primarily determined by the wafer-fabrication process. Mechanical stress performance is a greater consideration for a UCSP package. UCSPs are attached through direct solder contact to the user’s PC board, foregoing the inherent stress relief of a packaged product lead frame. Solder joint contact integrity must be considered. Information on Maxim’s qualification plan, test data, and recommendations are detailed in the UCSP application note, which can be found on Maxim’s website at www.maxim-ic.com. 5V (3V) VCC 3V (5V) 2 2 100kΩ VCC VCC 100mV 4 4 IN+ OUT 1 OUT 100kΩ 3 3 IN- 3V (5V) LOGIC OUT MAX986 VEE VEE Figure 3. Zero-Crossing Detector 1 IN+ MAX985 5 RPULLUP IN- 5 5V (3V) LOGIC IN Figure 4. Logic-Level Translator _______________________________________________________________________________________ 9 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Zero-Crossing Detector Figure 3 shows a zero-crossing detector application. The MAX985’s inverting input is connected to ground, and its noninverting input is connected to a 100mVP-P signal source. As the signal at the noninverting input crosses 0V, the comparator’s output changes state. Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Typical Application Circuit Ordering Information (continued) VCC PIN/BUMPPACKAGE TOP MARK -40°C to +85°C 5 SOT23-5 ABYZ -40°C to +85°C 8 SO MAX986EXK-T -40°C to +85°C 5 SC70-5 MAX986EUK-T -40°C to +85°C 5 SOT23-5 MAX986ESA -40°C to +85°C 8 SO MAX989EKA-T -40°C to +85°C 8 SOT23-8 MAX989EUA -40°C to +85°C 8 µMAX — MAX989ESA -40°C to +85°C 8 SO — MAX990EKA-T -40°C to +85°C 8 SOT23-8 MAX990EUA -40°C to +85°C 8 µMAX — MAX990ESA -40°C to +85°C 8 SO — MAX993EUD -40°C to +85°C 14 TSSOP — MAX993ESD -40°C to +85°C 14 SO — MAX994EUD -40°C to +85°C 14 TSSOP — MAX994ESD -40°C to +85°C 14 SO — PART TEMP RANGE MAX985EUK-T MAX985ESA VIN VCC *RPULLUP IN+ OUT IN- MAX98_ MAX99_ VEE VREF *MAX986/MAX990/MAX994 ONLY. THRESHOLD DETECTOR — ABL ABZA — AADZ AAEA Pin Configurations (continued) TOP VIEW OUT 1 VCC 2 5 VEE IN- 2 MAX985 MAX986 IN+ 3 IN+ 3 4 SOT23/SC70 N.C. 1 IN- MAX985 MAX986 VEE 4 SO 8 N.C. OUTA 1 7 VCC INA- 2 6 OUT INA+ 3 5 N.C. VEE 4 MAX989 MAX990 8 VCC 7 OUTB OUTA 1 14 OUTD INA- 2 13 IND12 IND+ INA+ 3 6 INB- 5 INB+ SO/µMAX/SOT23 VCC 4 INB+ 5 MAX993 MAX994 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC SO/TSSOP 10 11 VEE ______________________________________________________________________________________ Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators SOT5L.EPS ______________________________________________________________________________________ 11 MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.) 6L, UCSP.EPS MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators 12 ______________________________________________________________________________________ Micropower, Low-Voltage, UCSP/SC70, Rail-to-Rail I/O Comparators E ÿ 0.50±0.1 8 INCHES DIM A A1 A2 b H c D e E H 0.6±0.1 1 L 1 α 0.6±0.1 S BOTTOM VIEW D MIN 0.002 0.030 MAX 0.043 0.006 0.037 0.010 0.014 0.005 0.007 0.116 0.120 0.0256 BSC 0.116 0.120 0.188 0.198 0.016 0.026 0∞ 6∞ 0.0207 BSC 8LUMAXD.EPS 4X S 8 MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95 0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0∞ 6∞ 0.5250 BSC TOP VIEW A1 A2 e A α c b L SIDE VIEW FRONT VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 8L uMAX/uSOP APPROVAL DOCUMENT CONTROL NO. 21-0036 REV. J 1 1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600___________________ 13 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. MAX985/MAX986/MAX989/MAX990/MAX993/MAX994 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)