19-1157; Rev 0; 12/96 Micropower, Latching Voltage Monitors in SOT23-5 The MAX834/MAX835 micropower voltage monitors contain a 1.204V precision bandgap reference, comparator, and latched output in a 5-pin SOT23 package. Using the latched output prevents deep discharge of batteries. The MAX834 has an open-drain, N-channel output driver, while the MAX835 has a push/pull output driver. Two external resistors set the trip-threshold voltage. The MAX834/MAX835 feature a level-sensitive latch, eliminating the need to add hysteresis to prevent oscillations in battery-load-disconnect applications. ____________________________Features ♦ Prevents Deep Discharge of Batteries ♦ Precision ±1.25% Voltage Threshold ♦ Latched Output (once low, stays low until cleared) ♦ SOT23-5 Package ♦ Low Cost ♦ Wide Operating Voltage Range, +2.5V to +11V ♦ <2µA Typical Supply Current ♦ Open-Drain Output (MAX834) Push/Pull Output (MAX835) ________________________Applications ______________Ordering Information Precision Battery Monitor PART TEMP. RANGE PINPACKAGE SOT TOP MARK Battery-Powered Systems MAX834EUK-T -40°C to +85°C 5 SOT23-5 AAAX Threshold Detectors MAX835EUK-T -40°C to +85°C 5 SOT23-5 AAAY Load Switching __________Typical Operating Circuit VCC RL CLEAR LATCH OUT CLEAR (MAX834 ONLY) __________________Pin Configuration OUT TOP VIEW MAX834 MAX835 CLEAR 1 GND VCC GND 2 IN VCC 5 OUT 4 IN MAX834 MAX835 VCC 3 R1 0.1µF R2 SOT23-5 ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800 MAX834/MAX835 _______________General Description MAX834/MAX835 Micropower, Latching Voltage Monitors in SOT23-5 ABSOLUTE MAXIMUM RATINGS VCC, OUT (MAX834), CLEAR to GND ......................-0.3V to 12V IN, OUT (MAX835), to GND........................-0.3V to (VCC + 0.3V) INPUT Current VCC .................................................................................20mA IN.....................................................................................10mA OUT Current.......................................................................-20mA VCC Rate of Rise .............................................................100V/µs Continuous Power Dissipation SOT23-5 (derate 7.1mW/°C above +70°C)..................571mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = +2.5V to +11V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Operating Voltage Range (Note 1) Supply Current (Note 2) SYMBOL MIN VCC ICC Threshold Voltage VTH Threshold Voltage Hysteresis VHYST TYP 2.5 VIN = 1.16V, OUT = low, VCLEAR ≥ VCC - 0.25V or VCLEAR ≤ 0.25V VIN = 1.25V, OUT = high, VCLEAR ≥ VCC - 0.25V or VCLEAR ≤ 0.25V VIN falling VCC = 3.6V TA = +25°C 2.4 TA = TMIN to TMAX UNITS 11 V 5 10 VCC = full operating range VCC = 3.6V MAX 15 µA TA = +25°C 1.1 TA = TMIN to TMAX 4 8 VCC = full operating range 13 TA = +25°C 1.185 1.204 1.215 TA = 0°C to +70°C 1.169 1.204 1.231 VCC = 5V, IN = low to high 6 V mV IN Operating Voltage Range (Note 1) VIN IN Leakage Current (Note 3) IIN VIN = VTH ±3 Propagation Delay tPL VCC = 5V, 50mV overdrive 80 µs VCC = 5V, 100mV overdrive 35 µs Glitch Immunity 0 VCC - 1 ±12 V nA OUT Rise Time tRT VCC = 5V, no load (MAX835 only) 200 µs OUT Fall Time tFT VCC = 5V, no load (MAX834 pull-up = 10kΩ) 480 µs Output Leakage Current (Note 4) 2 CONDITIONS ILOUT VIN > VTH(MAX) (MAX834 only) Output Voltage High VOH VIN > VTH(MAX), ISOURCE = 500µA (MAX835 only) Output Voltage Low VOL VIN < VTH(MIN), ISINK = 500µA ±1 VCC - 0.5 _______________________________________________________________________________________ µA V 0.4 V Micropower, Latching Voltage Monitors in SOT23-5 MAX834/MAX835 ELECTRICAL CHARACTERISTICS (continued) (VCC = +2.5V to +11V, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL CLEAR Input High Voltage VCIH CLEAR Input Low Voltage VCIL CLEAR Input Leakage Current MIN TYP MAX UNITS 2 V ICLEAR CLEAR Input Pulse Width Note 1: Note 2: Note 3: Note 4: CONDITIONS ±1 tCLR 0.4 V ±100 nA 1 µs The voltage-detector output remains in the correct state for VCC down to 1.2V when VIN ≤ VCC / 2. Supply current has a monotonic dependence on VCC (see Typical Operating Characteristics). IN leakage current has a monotonic dependence on VCC (see Typical Operating Characteristics). The MAX834 open-drain output can be pulled up to a voltage greater than VCC, but may not exceed 11V. __________________________________________Typical Operating Characteristics (VCC = +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.) 3.5 3.0 2.5 2.0 50 40 40 60 TA = -40°C 80 100 MAXMAX834/835-10 VIN = 1.25V 3.5 TA = +85°C 3.0 2.5 TA = +25°C 2.0 TA = -40°C 1.5 1.0 0.5 TA = +85°C 0 0 1 2 3 4 5 6 7 8 9 10 11 12 0 1 2 4 5 3 6 7 9 10 11 12 8 TEMPERATURE (°C) VIN (V) VCC (V) SUPPLY CURRENT vs. INPUT VOLTAGE SUPPLY CURRENT vs. INPUT VOLTAGE PROGRAMMED TRIP VOLTAGE vs. TEMPERATURE 2 1 8 7 6 5 4 3 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 VIN (V) 4.8 VTRIP ≈ 4.5V (FIGURE 2, R1 = 270kΩ, R2 = 100kΩ) 4.4 4.0 3.6 3.2 VTRIP ≈ 3.3V (FIGURE 2, R1 = 180kΩ, R2 = 100kΩ) 2.4 1 0 5.2 2.8 2 MAXMAX834/835-13 9 6.0 5.6 TRIP VOLTAGE (V) 4 VCC = 11.0V 10 SUPPLY CURRENT (µA) 5 12 11 MAXMAX834/835-12 VCC = 3.6V 0 4.5 4.0 20 0 20 TA = +25°C 30 1.0 0 MAXMAX834/835-08 60 10 6 SUPPLY CURRENT (µA) 70 1.5 -60 -40 -20 VCC = 11.0V 80 SUPPLY CURRENT (µA) 4.0 90 INPUT LEAKAGE CURRENT (nA) VCC = 5.0V VIN = 1.2V MAX834/835-11 INPUT LEAKAGE CURRENT (nA) 5.0 4.5 SUPPLY CURRENT vs. SUPPLY VOLTAGE INPUT LEAKAGE CURRENT vs. INPUT VOLTAGE MAXMAX834/835-07 INPUT LEAKAGE CURRENT vs. TEMPERATURE 2.0 0 1 2 3 4 5 6 7 VIN (V) 8 9 10 11 12 -60 -40 -20 0 20 40 60 80 100 TEMPERATURE (°C) _______________________________________________________________________________________ 3 _____________________________Typical Operating Characteristics (continued) (VCC = +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.) MAX835 OUTPUT HIGH VOLTAGE vs. SUPPLY VOLTAGE 150 100 TA = +25°C TA = +85°C 350 300 250 200 TA = +25°C 150 100 0 15 TA = -40°C 1 2 3 4 5 6 7 9 10 11 12 8 TA = +25°C 10 TA = +85°C 5 0 0 0 0 1 2 3 4 5 6 9 10 11 12 8 7 0 1 2 3 4 5 6 7 8 9 10 11 12 VCC (V) VCC (V) VCC (V) MAX835 OUTPUT SHORT-CIRCUIT SOURCE CURRENT vs. SUPPLY VOLTAGE SUPPLY VOLTAGE FALLING TO OUT PROPAGATION DELAY vs. TEMPERATURE MAX835 OUTPUT RISE TIME vs. SUPPLY VOLTAGE TA = +25°C 10 5 TA = +85°C 3 4 5 6 7 110 100 90 80 MAXMAX834/835-20 600 500 TA = +25°C 400 300 70 10mV/µs 200 50 100 40 0 -60 -40 -20 0 20 40 60 80 100 TA = -40°C 0 1 2 3 4 5 6 7 8 9 10 11 12 TEMPERATURE (°C) VCC (V) OUTPUT FALL TIME vs. SUPPLY VOLTAGE OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT MAX835 OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT 100k MAXMAX834/835-21 2.0 VCC = 11V 10k TA = +25°C VOL (mV) TA = +85°C 1.5 1.0 1k TA = +85°C 100 TA = +25°C 10 0.5 TA = -40°C 3 TA = -40°C 4 5 6 7 VCC (V) 8 9 10 11 12 100k VCC = 11V TA = +25°C 10k TA = +85°C 1k TA = -40°C 100 10 1 0 1 2 TA = +85°C 700 VCC (V) 2.5 0 800 1mV/µs 120 9 10 11 12 8 900 VCC - VOH (mV) 1 2 130 MAXMAX834/835-23 0 140 60 0 1000 MAXMAX834/835-25 TA = -40°C 15 150 RISE TIME (ns) 20 160 MAXMAX834/835-19 MAXMAX834/835-18 VIN = 1.3V PROPAGATION DELAY (µs) 25 4 VIN = 1.1V TA = -40°C 50 TA = -40°C 20 MAXMAX834/835-17 400 50 SHORT-CIRCUIT CURRENT (mA) ISOURCE = 500µA 450 VCC - VOH (mV) VOL (mV) TA = +85°C MAXMAX834/835-15 ISINK = 500µA 200 500 MAXMAX834/835-14 250 OUTPUT SHORT-CIRCUIT SINK CURRENT vs. SUPPLY VOLTAGE SHORT-CIRCUIT CURRENT (mA) OUTPUT LOW VOLTAGE vs. SUPPLY VOLTAGE FALL TIME (µs) MAX834/MAX835 Micropower, Latching Voltage Monitors in SOT23-5 1 0.1 1 10 OUTPUT SINK CURRENT (mA) 100 0.1 1 10 OUTPUT SOURCE CURRENT (mA) _______________________________________________________________________________________ 100 Micropower, Latching Voltage Monitors in SOT23-5 MAX835 OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT TA = -40°C TA = +25°C 10 100 TA = -40°C TA = +25°C 10 1.5 MAXMAX834/835-30 TA = +85°C 1k VCC - VOH (mV) VOL (mV) VCC = 3.6V TA = +85°C 100 MAXMAX834/835-29 VCC = 3.6V 1k 10k MAXMAX834/835-27 10k CLEAR TO OUT PROPAGATION DELAY vs. TEMPERATURE VIN > VTH 1.3 PROPAGATION DELAY (µs) OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT VCC = 3.6V 1.1 0.9 VCC = 5.0V 0.7 0.5 VCC = 11.0V 0.3 1 1 0.1 1 10 OUTPUT SINK CURRENT (mA) 100 0.1 0.1 1 OUTPUT SOURCE CURRENT (mA) -60 -40 -20 10 0 20 40 60 80 100 TEMPERATURE (°C) ______________________________________________________________Pin Description PIN NAME 1 CLEAR 2 GND System Ground 3 VCC System Supply Input 4 IN 5 OUT FUNCTION Clear Input resets the latched output. With VIN > VTH, pulse CLEAR high for a minimum of 1µs to reset the output latch. Connect to VCC to make the latch transparent. Noninverting Input to the Comparator. The inverting input connects to the internal 1.204V bandgap reference. Open-Drain (MAX834) or Push/Pull (MAX835) Latched Output. OUT is active low. VCC CLEAR RL (MAX834 ONLY) CLEAR LATCH GND MAX834 MAX835 LATCH CLEAR GND OUT OUT IN VCC VCC MAX834 MAX835 IN 1.204V OUT VCC 0.1µF VTRIP = (1.204) R1 ( R1R2+ R2 ) R2 (UNITS ARE OHMS AND VOLTS) Figure 1. Functional Diagram Figure 2. Programming the Trip Voltage (VTRIP) _______________________________________________________________________________________ 5 MAX834/MAX835 _____________________________Typical Operating Characteristics (continued) (VCC = +5V, Typical Operating Circuit, TA = +25°C, unless otherwise noted.) MAX834/MAX835 Micropower, Latching Voltage Monitors in SOT23-5 _______________Detailed Description The MAX834/MAX835 micropower voltage monitors contain a 1.204V precision bandgap reference and a comparator with an output latch (Figure 1). The difference between the two parts is the structure of the comparator output driver. The MAX834 has an open-drain, N-channel output driver that can be pulled up to a voltage higher than VCC, but less than 11V. The MAX835’s output is push/pull and can both source and sink current. Programming the Trip Voltage (VTRIP) Two external resistors set the trip voltage, VTRIP (Figure 2). VTRIP is the point at which the falling monitored voltage (typically VCC) causes OUT to go low. IN’s high input impedance allows the use of large-value resistors without compromising trip voltage accuracy. To minimize current consumption, choose a value for R2 between 500kΩ and 1MΩ, then calculate R1 as follows: where VTRIP is the desired trip voltage and VTH is the threshold voltage (1.204V). The voltage at IN must be at least 1V less than VCC. Latched-Output Operation The MAX834/MAX835 feature a level-sensitive latch input (CLEAR), designed to eliminate the need for hysteresis in battery undervoltage-detection applications. When the monitored voltage (VMON) is above the programmed trip voltage (VTRIP) (as when the system battery is recharged or a fresh battery is installed), pulse CLEAR low-high-low for at least 1µs to reset the output latch (OUT goes high). When VMON falls below VTRIP, OUT goes low and remains low (even if VMON rises above VTRIP), until CLEAR is pulsed high again with VMON > VTRIP. Figure 3 shows the timing relationship between VMON, OUT, and CLEAR. R1 = R2 [(VTRIP / VTH) - 1] > VTRIP VMON < VTRIP > 1µs > 1µs > 1µs VCC CLEAR 0V VCC OUT 0V Figure 3a. Timing Diagram > VTRIP VMON < VTRIP VCC OUT 0V Figure 3b. Timing Diagram, CLEAR = VCC 6 _______________________________________________________________________________________ Micropower, Latching Voltage Monitors in SOT23-5 CLEAR LATCH VMON RL* R1 OUT CLEAR VMON(MAX) = (VCC - 1)(R1 + R2) / R2 IN GND VCC OUT Load-Disconnect Switch VCC R2 MAX834 MAX835 0.1µF R1 + R2 R2 (UNITS ARE OHMS AND VOLTS) VTRIP = (1.204) *MAX834 ONLY Figure 4. Monitoring Voltages Other than VCC P ___________________Chip Information Q1 CLEAR LATCH VBATT The circuit in Figure 5 is designed to prevent a leadacid battery or a secondary battery such as an NiCd, from sustaining damage through deep discharge. As the battery reaches critical undervoltage, OUT switches low. Q1 and Q2 turn off, disconnecting the battery from the load. The MAX835’s latched output prevents Q1 and Q2 from turning on again as the battery voltage relaxes to its open-circuit voltage when the load disconnects. CLEAR can be connected to a pushbutton switch, an RC network, or a logic gate to reset the latch when the battery is recharged or replaced. TRANSISTOR COUNT: 74 1M RLOAD R1 Q2 CLEAR N OUT GND VCC IN R2 MAX835 VCC 0.1µF Figure 5. Load-Disconnect Switch _______________________________________________________________________________________ 7 MAX834/MAX835 VCC Monitoring Voltages Other than VCC The typical operating circuit for the MAX834/MAX835 monitors VCC. Voltages other than VCC can easily be monitored, as shown in Figure 4. Calculate VTRIP as in the section Programming the Trip Voltage. When monitoring voltages other than VCC, ensure that the maximum value for VMON is not exceeded: __________________________________________________Tape-and-Reel Information E D P0 W P2 B0 t D1 F P NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA481-1 STANDARD. K0 A0 A0 3.200 ±0.102 E 1.753 ±0.102 P0 B0 3.099 ±0.102 F 3.505 ±0.051 P010 D 1.499 +0.102 +0.000 K0 1.397 ±0.102 P2 P 3.988 ±0.102 t D1 0.991 +0.254 +0.000 3.988 ±0.102 40.005±0.203 2.007±0.051 0.254±0.127 +0.305 -0.102 W 8.001 5 SOT23-5 MAX834/MAX835 Micropower, Latching Voltage Monitors in SOT23-5 ________________________________________________________________Package Information b DIM e E e1 D α A A1 A2 b C D E E1 L e e1 α MILLIMETERS MIN MAX 0.90 1.45 0.00 0.15 0.90 1.30 0.35 0.50 0.08 0.20 2.80 3.00 2.60 3.00 1.50 1.75 0.35 0.55 0.95ref 1.90ref 0° 10° 21-0057B E1 A A2 C L 5-PIN SOT23-5 SMALL-OUTLINE TRANSISTOR PACKAGE A1 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 8 ___________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 1996 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.