19-1569; Rev 1; 1/00 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs Features The MAX9040–MAX9043 and MAX9050–MAX9053 feature combinations of low-power comparators and a precision voltage reference. Their operating voltage range makes them ideal for both +3V and +5V systems. The MAX9040/MAX9041/MAX9050/MAX9051 have a single comparator and reference consuming only 40µA of supply current. The MAX9042/MAX9043/MAX9052/ MAX9053 have dual comparators and a reference, while consuming only 55µA of supply current. Low-voltage operation and low supply current make these devices ideal for battery-operated systems. ♦ Comparator + Precision Reference in SOT23 The comparators feature Rail-to-Rail® inputs and outputs, with a common-mode input voltage range that extends 250mV beyond the supply rails. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage features a unique design that limits supply current surges while switching, virtually eliminating supply glitches typical of many other comparators. This design also minimizes overall power consumption under dynamic conditions. The comparator outputs have rail-to-rail push-pull output stages that sink and source up to 8mA. The propagation delay is 400ns, even with the low operating supply current. ♦ Internal ±3mV Hysteresis The reference output voltage is set to 2.048V in the MAX9040–MAX9043 and to 2.500V in the MAX9050– MAX9053. These devices are offered in two grades: an A grade with 0.4% initial accuracy and 6ppm/°C tempco, and a B grade with 1% initial accuracy and 100ppm/°C tempco. The voltage reference features a proprietary curvature-correction circuit and lasertrimmed thin-film resistors. The series-mode references can sink or source up to 500µA of load current. Applications ♦ +2.5V to +5.5V Single-Supply Operation (MAX9040–MAX9043) ♦ Low Supply Current (MAX9042/43/52/53) 55µA Quiescent 65µA with 100kHz Switching ♦ 400ns Propagation Delay ♦ Rail-to-Rail Inputs ♦ Rail-to-Rail Output Stage Sinks and Sources 8mA ♦ Voltage Reference Offers ±0.4% max Initial Accuracy (MAX90_ _A) 6ppm/°C typ Temperature Coefficient Stable for 0 to 4.7nF Capacitive Loads Ordering Information TEMP. RANGE PINPACKAGE TOP MARK MAX9040AEUK-T -40°C to +85°C 5 SOT23-5 ADNV MAX9040BEUK-T -40°C to +85°C 5 SOT23-5 ADNX MAX9041AEUT-T* -40°C to +85°C 6 SOT23-6 AAHF MAX9041BEUT-T* -40°C to +85°C 6 SOT23-6 AAHH MAX9041AESA* -40°C to +85°C 8 SO — MAX9041BESA* MAX9042AEUA MAX9042BEUA MAX9042AESA MAX9042BESA MAX9043AEUB -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 8 SO 8 µMAX 8 µMAX 8 SO 8 SO 10 µMAX 10 µMAX — — — — — — — PART MAX9043BEUB Ordering Information continued at end of data sheet. *Future product—contact factory for availability. Pin Configurations Precision Battery Management Window Comparators IR Receivers Level Translators Digital Line Receivers TOP VIEW OUT 1 VEE 2 5 VCC 4 REF MAX9040 MAX9050 Typical Operating Circuit appears at end of data sheet. Functional Diagrams appear at end of data sheet. IN+ 3 Selector Guide appears at end of data sheet. Rail-to-Rail is a registered trademark of Nippon Motorola, Ltd. SOT23-5 Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX9040–MAX9043/MAX9050–MAX9053 General Description MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ....................................-0.3V to +6V All Other Pins ...................................(VEE - 0.3V) to (VCC + 0.3V) Output Short-Circuit Duration (OUT_, REF) .............Indefinite Short Circuit to Either Supply Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.10mW/°C above +70°C)........571mW 6-Pin SOT23 (derate 8.70mW/°C above +70°C)........696mW 8-Pin µMAX (derate 4.1mW/°C above +70°C) ...........330mW 10-Pin µMAX (derate 5.6mW/°C above +70°C) .........444mW 8-Pin SO (derate 5.88mW/°C above +70°C)..............471mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—A Grade (0.4% initial accuracy) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL Supply Voltage Range (Note 2) VCC Supply Current ICC CONDITIONS MIN TYP MAX MAX9040–MAX9043 2.5 5.5 MAX9050–MAX9053 2.7 5.5 MAX9040/MAX9041/ MAX9050/MAX9051 VCC = 2.7V 40 55 VCC = 5.0V 45 60 MAX9042/MAX9043/ MAX9052/MAX9053 VCC = 2.7V 55 80 VCC = 5.0V 60 85 Over entire commonmode range TA = +25°C ±0.5 ±5.0 UNITS V µA COMPARATORS Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Notes 4, 5, 6) Input Offset Current (Note 4) VOS IB IOS CMVR Common-Mode Rejection Ratio (Note 4) CMRR Input Capacitance (Note 4) PSRR ±3.0 Specified common-mode range Specified common-mode range TA = +25°C ISC Output Voltage Low VOL Output Voltage High VOH ±10.0 ±0.5 VEE - 0.25 VEE Specified common-mode range 52 80 MAX9040–MAX9043, 2.5V ≤ VCC ≤ 5.5V 55 80 MAX9050–MAX9053, 2.7V ≤ VCC ≤ 5.5V 55 VCC V dB dB 80 2.5 VOUT = VEE or VCC nA pA VCC + 0.25 TA = -40°C to +85°C mV mV ±0.001 CIN Output Short-Circuit Current 2 ±7.0 VHYST Common-Mode Voltage Range (Notes 4, 7) Power-Supply Rejection Ratio TA = -40°C to +85°C VCC = 5V 95 VCC = 2.7V 35 pF mA VCC = 5V, ISINK = 8mA 0.2 0.55 VCC = 2.7V, ISINK = 3.5mA 0.15 0.4 VCC = 5V, ISOURCE = 8mA 4.45 4.85 VCC = 2.7V, ISOURCE = 3.5mA 2.3 2.55 _______________________________________________________________________________________ V V Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER Output Rise/Fall Times Output Propagation Delay (Note 8) Power-Up Time SYMBOL tR/tF tPD+/tPDtPU CONDITIONS MIN TYP CL = 15pF 40 CL = 50pF 50 CL = 200pF 80 CL = 15pF, VCC = 2.7V 50mV overdrive 450 100mV overdrive 400 Time to VOUT valid logic state MAX UNITS ns ns 20 µs VOLTAGE REFERENCE Output Voltage VREF TA = +25°C MAX9040–MAX9043 2.040 2.048 2.056 MAX9050–MAX9053 2.490 2.500 2.510 6 30 Output Voltage Temperature Coefficient (Note 9) TCVREF Line Regulation ∆VREF/ ∆VCC 2.5V ≤ VCC ≤ 5.5V, MAX9040–MAX9043 +50 +200 2.7V ≤ VCC ≤ 5.5V, MAX9050–MAX9053 +50 +200 Load Regulation ∆VREF/ ∆IREF Sourcing: 0 ≤ IREF ≤ 500µA 2 4 Sinking: -500µA ≤ IREF ≤ 0 3.5 6 Output Short-Circuit Current ISC Thermal Hysteresis (Note 10) THYST Long-Term Stability Noise Voltage EOUT ∆VREF/ ∆VCC Ripple Rejection Turn-On Settling Time tR(VREF) VREF = VEE or VCC V ppm/°C µV/V µV/µA 4 mA 130 ppm 1000h at TA = +25°C 50 ppm f = 0.1Hz to 10Hz 40 µVp-p f = 10Hz to 10kHz 105 µVRMS VCC = 5V ±100mV, f = 120Hz 84 dB To VREF = 1% of final value 200 µs Capacitive Load Stability Range CL(VREF) (Note 6) 0 4.7 nF ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL Supply Voltage Range (Note 2) VCC Supply Current ICC CONDITIONS MIN TYP MAX MAX9040–MAX9043 2.5 5.5 MAX9050–MAX9053 2.7 5.5 MAX9040/MAX9041/ MAX9050/MAX9051 VCC = 2.7V 40 VCC = 5.0V 45 MAX9042/MAX9043/ MAX9052/MAX9053 VCC = 2.7V 55 VCC = 5.0V 60 100 UNITS V µA 130 _______________________________________________________________________________________ 3 MAX9040–MAX9043/MAX9050–MAX9053 ELECTRICAL CHARACTERISTICS—A Grade (0.4% initial accuracy) (continued) MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy) (continued) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS ±1 ±9.0 mV COMPARATOR Input Offset Voltage (Note 3) Input Hysteresis Input Bias Current (Notes 4, 5, 6) Input Offset Current (Note 4) VOS Specified common-mode range ±0.001 IOS Specified common-mode range ±0.5 CMVR Common-Mode Rejection Ratio (Note 4) CMRR Power-Supply Rejection Ratio PSRR Input Capacitance (Note 4) CIN Output Short-Circuit Current ISC Output Voltage Low VOL Output Voltage High VOH Output Propagation Delay (Note 8) Power-Up Time ±3.0 IB Common-Mode Voltage Range (Notes 4, 7) Output Rise/Fall Times Over entire common-mode range VHYST tR/tF tPD+/tPDtPU VEE mV ±25.0 pA VCC Specified common-mode range 52 80 MAX9040–MAX9043, 2.5V ≤ VCC ≤ 5.5V 55 80 MAX9050–MAX9053, 2.7V ≤ VCC ≤ 5.5V 55 80 VCC = 5V 95 VCC = 2.7V 35 VCC = 5V, ISINK = 8mA 0.2 VCC = 2.7V, ISINK = 3.5mA 0.15 VCC = 5V, ISOURCE = 8mA 4.45 dB mA 0.55 4.85 CL = 15pF 40 CL = 50pF 50 CL = 200pF 80 CL = 15pF, VCC = 2.7V pF V V 2.55 VCC = 2.7V, ISOURCE = 3.5mA V dB 2.5 VOUT = VEE or VCC nA ns 50mV overdrive 450 100mV overdrive 400 ns ns µs 20 µs Time to VOUT valid logic state VOLTAGE REFERENCE Output Voltage VREF Output Voltage Temperature Coefficient (Note 9) TCVREF Line Regulation ∆VREF/ ∆VCC Load Regulation ∆VREF/ ∆lREF Output Short-Circuit Current ISC Thermal Hysteresis (Note 10) THYST Long-Term Stability 4 MAX9040–MAX9043 2.028 2.048 2.068 MAX9050–MAX9053 2.475 2.500 2.525 20 100 MAX9040–MAX9043 +50 +200 MAX9050–MAX9053 +50 +200 Sourcing: 0 ≤ IREF ≤ 500µA 2 4 Sinking: -500µA ≤ IREF ≤ 0 3.5 6 TA = +25°C 2.5V ≤ VCC ≤ 5.5V VREF = VEE or VCC 1000h at TA = +25°C V ppm/°C µV/V µV/mA 4 mA 130 ppm 100 ppm _______________________________________________________________________________________ Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Note 1) PARAMETER SYMBOL Noise Voltage EOUT CONDITIONS MIN TYP MAX UNITS f = 0.1Hz to 10Hz 40 µVp-p f = 10Hz to 10kHz 105 µVRMS Ripple Rejection ∆VREF/ ∆VCC VCC = 5V ±100mV, f = 120Hz 84 dB Turn-On Settling Time tR(VREF) To VREF = 1% of final value 200 µs Capacitive Load Stability Range (Note 6) CL(VREF) 0 4.7 nF Note 1: All devices are 100% production tested at TA = +25°C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 2: Supply voltage range guaranteed by PSRR test on comparator and line regulation of REF. Note 3: VOS is defined as the center of the input-referred hysteresis band. Note 4: For the comparators with the inverting input (IN-) uncommitted. Note 5: Input bias current is the average of the inverting and noninverting input bias currents. Note 6: Not production tested. Guaranteed by design. Note 7: Guaranteed by CMRR test. Note 8: VOVERDRIVE is beyond the offset and hysteresis determined trip point. Note 9: Temperature coefficient is measured by the box method; i.e., the maximum ∆VREF is divided by the maximum ∆T. Note 10: Thermal hysteresis is defined as the change in VREF at +25°C before and after cycling the device from TMIN to TMAX. Typical Operating Characteristics (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.) VCC = +2.7V 40 30 20 VIN+ > VIN- VCC = +5.0V 50 VCC = +2.7V 40 30 20 200 MAX9040-3/50-3 toc02A SUPPLY CURRENT (µA) 50 60 MAX9040/MAX9041/MAX9050/MAX9051 SUPPLY CURRENT vs. SWITCHING FREQUENCY SUPPLY CURRENT (µA) VCC = +5.0V MAX9040-3/50-3 toc01 VIN+ > VIN- MAX9042/MAX9043/MAX9052/MAX9053 SUPPLY CURRENT vs. TEMPERATURE SUPPLY CURRENT (µA) 60 MAX9040-3/50-3 toc01A MAX9040/MAX9041/MAX9050/MAX9051 SUPPLY CURRENT vs. TEMPERATURE 150 100 VCC = +5.0V 50 10 10 0 VCC = +2.7V 0 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 0 -40 -20 0 20 40 TEMPERATURE (°C) 60 80 0.01 0.1 1 10 100 1000 SWITCHING FREQUENCY (kHz) _______________________________________________________________________________________ 5 MAX9040–MAX9043/MAX9050–MAX9053 ELECTRICAL CHARACTERISTICS—B Grade (1% initial accuracy) (continued) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.) OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT 1000 VCC = +2.7V VOL (mV) 150 100 VCC = +5.0V 10 100 VCC = +5.0V 50 1 VCC = +2.7V VIN+ > VIN1000 0.1 0 0.1 1 10 100 VCC = +5.0V 10 1 0.1 1 10 0.01 0.1 1 10 SWITCHING FREQUENCY (kHz) OUTPUT SINK CURRENT (mA) OUTPUT SOURCE CURRENT (mA) OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 2.7V) 80 60 VCC = +2.7V 20 0 VCC = +5.0V VOD = 50mV 550 60 40 0 20 40 60 80 450 tPD+ TO VOUT = 10% OF FINAL VALUE 20 400 -20 0 20 40 60 tPD+ TO VOUT = 50% OF FINAL VALUE CAPACITIVE LOAD (pF) tPD+ TO VOUT = 10% OF FINAL VALUE 400 650 MAX9040-3/50-3 toc08 VOD = 50mV 500 450 0 100 200 300 400 500 600 700 800 900 1000 PROPAGATION DELAY vs. TEMPERATURE tPD- TO VOUT = 50% OF FINAL VALUE tPD- TO VOUT = 10% OF FINAL VALUE VOD = 50mV 600 500 tPD- TO VOUT = 50% OF FINAL VALUE 400 350 300 300 CAPACITIVE LOAD (pF) tPD+ TO VOUT = 10% OF FINAL VALUE 450 350 0 100 200 300 400 500 600 700 800 900 1000 tPD+ TO VOUT = 50% OF FINAL VALUE 550 tPD (ns) tPD (ns) 550 80 TEMPERATURE (°C) PROPAGATION DELAY vs. CAPACITIVE LOAD (VCC = 5V) 600 tPD- TO VOUT = 10% OF FINAL VALUE 350 -40 TEMPERATURE (°C) 650 tPD- TO VOUT = 50% OF FINAL VALUE 500 VCC = +2.7V 0 -20 tPD+ TO VOUT = 50% OF FINAL VALUE MAX9040-3/50-3 toc09 40 80 600 MAX9040-3/50-3 toc07 VCC = +5.0V VIN- > VIN+ OUT SHORTED TO VCC tPD (ns) 100 100 MAX9040-3/50-3 toc06 VIN+ > VINOUT SHORTED TO VEE OUTPUT SOURCE CURRENT (mA) 120 -40 VCC = +2.7V 100 0.1 0.01 1000 MAX9040-3/50-3 toc05 0.01 6 10,000 MAX9040-3/50-3 toc04 VIN+ < VIN- OUTPUT HIGH VOLTAGE (VCC - VOH) (mV) 200 SUPPLY CURRENT (µA) 10,000 MAX9040-3/50-3 toc02 250 OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT MAX9040-3/50-3 toc03 MAX9042/MAX9043/MAX9052/MAX9053 SUPPLY CURRENT vs. SWITCHING FREQUENCY OUTPUT SINK CURRENT (mA) MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs tPD- TO VOUT = 10% OF FINAL VALUE -40 -20 0 20 40 60 80 TEMPERATURE (°C) _______________________________________________________________________________________ Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs PROPAGATION DELAY vs. INPUT OVERDRIVE A MAX9040-3/50-3 toc12 700 PROPAGATION DELAY (tPD-) MAX9040-3/50-3 toc11 800 A 600 tPD+, VCC = 5.0V 500 tPD+, VCC = 2.7V 400 tPD-, VCC = 5.0V 300 B tPD-, VCC = 2.7V B 200 100ns/div 20 40 60 80 100 120 140 160 180 200 A = IN+, 50mV/div B = OUT, 2V/div SWITCHING CURRENT (OUT FALLING EDGE) POWER-UP DELAY (OUT) MAX9040-3/50-3 toc14 MAX9040-3/50-3 toc13 SWITCHING CURRENT (OUT RISING EDGE) A 100ns/div A = IN+, 50mV/div B = OUT, 2V/div INPUT OVERDRIVE (mV) A MAX9040-3/50-3 toc15 0 A B B B C C 100ns/div REFERENCE OUTPUT VOLTAGE TEMPERATURE DRIFT IB+ 0.002 MAX9040-3/50-3 toc17 VIN- = +2.0V IB0.001 1.00 OUTPUT VOLTAGE CHANGE (mV) C 0.003 INPUT BIAS CURRENT (nA) B A = VCC, 2V/div B = OUT, 1V/div INPUT BIAS CURRENT vs. INPUT VOLTAGE POWER-UP DELAY (REF) A 5µs/div A = IN+, 100mV/div B = OUT, 5V/div C = ICC, 1mA/div 0.75 MAX9040-3/50-3 toc18 100ns/div A = IN+, 100mV/div B = OUT, 5V/div C = ICC, 1mA/div MAX9040-3/50-3 toc16 tPD (ns) PROPAGATION DELAY (tPD+) MAX9040-3/50-3 toc10 900 THREE TYPICAL PARTS NORMALIZED TO +25°C 0.50 0.25 0 -0.25 -0.50 -0.75 -1.00 0 100µs/div A = VCC, 2V/div B = REF, 1V/div C = REF, 50mV/div, 2.048V OFFSET 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 VIN+ (V) -40 -20 0 20 40 60 80 TEMPERATURE (°C) _______________________________________________________________________________________ 7 MAX9040–MAX9043/MAX9050–MAX9053 Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0, VCM = 0, IOUT = 0, IREF = 0, TA = +25°C, unless otherwise noted.) LOAD REGULATION LINE REGULATION 50 REFERENCE OUTPUT VOLTAGE CHANGE (µV) 100 0 TA = +25°C -50 TA = -40°C -100 TA = +85°C -150 2000 MAX9040-3/50-3 toc20 150 MAX9040-3/50-3 toc19 REFERENCE OUTPUT VOLTAGE CHANGE (µV) MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs TA = +85°C 1500 TA = +25°C 1000 500 TA = -40°C 0 -500 -1000 -200 -1500 2.5 3.0 3.5 4.0 4.5 5.0 5.5 -500 INPUT VOLTAGE (V) -300 -100 100 300 500 LOAD CURRENT (µA) Pin Description PIN MAX9040 MAX9050 8 MAX9041 MAX9051 MAX9042 MAX9052 MAX9043 MAX9053 NAME FUNCTION SOT23-5 SOT23-6 SO SO/µMAX µMAX 1 1 6 — — OUT Comparator Output 2 2 4 4 5 VEE Negative Supply Voltage 3 3 3 — — IN+ Comparator Noninverting Input 4 5 1 2 2 REF Reference Voltage Output 5 6 7 8 10 VCC Positive Supply Voltage — 4 2 — — IN- Comparator Inverting Input — — 5, 8 — 9 N.C. — — — 1 1 OUTA Comparator A Output — — — 3 4 INA+ Comparator A Noninverting Input — — — 5 6 INB+ Comparator B Noninverting Input — — — 6 7 INB- Comparator B Inverting Input — — — 7 8 OUTB — — — — 3 INA- No Connection. Not internally connected. Comparator B Output Comparator A Inverting Input _______________________________________________________________________________________ Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs The MAX9040–MAX9043 and MAX9050–MAX9053 feature single/dual, low-power, low-voltage comparators and a precision voltage reference. They operate from a single +2.5V to +5.5V (MAX904_) or +2.7V to +5.5V (MAX905_) supply. The single comparators with reference (MAX9040/MAX9041/MAX9050/MAX9051) consume only 40µA of supply current, while the dual comparators with reference (MAX9042/MAX9043/ MAX9052/MAX9053) consume only 55µA of supply current. Their common-mode input range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage employs a unique design that minimizes supply current surges while switching, virtually eliminating the supply glitches typical of many other comparators. Large internal output drivers allow rail-torail output swing that can sink and source up to 8mA of current. The precision reference uses a proprietary curvaturecorrection circuit and laser-trimmed thin-film resistors, resulting in a temperature coefficient of less than 30ppm/°C over the extended temperature range and initial accuracy of 0.4% (A grade). The reference output voltage is set to 2.048V in the MAX9040–MAX9043 and to 2.500V in the MAX9050–MAX9053. Comparator Input Stage Circuitry The devices’ input common-mode range extends from (VEE - 0.25V) to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input volt- R1 R2 VREF Comparator Output Stage Circuitry The comparators in these devices contain a unique output stage capable of rail-to-rail operation with loads up to 8mA. Many comparators consume orders-of-magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply current change during an output transition is extremely small. The Typical Operating Characteristics graph Supply Current vs. Switching Frequency shows the minimal supply current increase as the output switching frequency approaches 1MHz. This characteristic reduces the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Another advantage realized in high-speed, battery-powered applications is a substantial increase in battery life. Applications Information Additional Hysteresis These comparators have ±3mV internal hysteresis. Additional hysteresis can be generated with two resistors using positive feedback (Figure 1). Use the following procedure to calculate resistor values: 1) Calculate the trip points of the comparator using these formulas: ( VCC and VCC IN+ IN- MAX9040–9043 MAX9050–9053 VEE ) V CC − VREF R2 VTH = VREF + R1 + R2 OUT VIN age is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails. R2 VTL = VREF 1 − R1 + R2 VTH is the threshold voltage at which the comparator switches its output from high to low as V IN rises above the trip point. VTL is the threshold voltage at which the comparator switches its output from low to high as VIN drops below the trip point. 2) The hysteresis band will be: R1 + R2 VHYS = VTH - VTL = VCC Figure 1. Additional Hysteresis R2 _______________________________________________________________________________________ 9 MAX9040–MAX9043/MAX9050–MAX9053 Detailed Description MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs Board Layout and Bypassing VCC VCC IN+ VIN OUT 10k Reference Output/Load Capacitance IN- 0.1µF Power-supply bypass capacitors are not typically needed, but would be called for in cases where supply impedance is high, supply leads are long, or excessive noise is expected on the supply lines. Use 100nF bypass capacitors under these conditions. Minimize signal trace lengths to reduce stray capacitance. VEE MAX9040–9043 MAX9050–9053 Figure 2. Time Averaging of the Input Signal for Data Recovery The MAX904_/MAX905_ do not require an output capacitor on REF for frequency stability. They are stable for capacitive loads up to 4.7nF. However, in applications where the load or the supply can experience step changes, an output capacitor will reduce the amount of overshoot (or undershoot) and assist the circuit’s transient response. When an application is not subject to transient conditions, the REF capacitor can be omitted. 3) In this example, let VCC = +5V and VREF = +2.5V. R2 VTH = 2.5 + 2.5 R1 + R2 and R2 VTL = 2.5 1 − R1 + R2 4) Select R2. In this example, we will choose 1kΩ. 5) Select VHYS. In this example, we will choose 50mV. 6) Solve for R1. R2 VHYS = VCC R1 + R2 1000 0.050 = 5 R1 +1000 Biasing for Data Recovery Digital data is often embedded into a bandwidth- and amplitude-limited analog path. Recovering the data can be difficult. Figure 2 compares the input signal to a time-averaged version of itself. This self- biases the threshold to the average input voltage for optimal noise margin. Even severe phase distortion is eliminated from the digital output signal. Be sure to choose R1 and C1 so that fCAR >> 1 2πR1C1 where fCAR is the fundamental carrier frequency of the digital data stream. Chip Information MAX9040/41/50/51 TRANSISTOR COUNT: 204 MAX9042/43/52/53 TRANSISTOR COUNT: 280 where R1 ≈ 100kΩ, VTH = 2.525V, and VTL = 2.475V. 10 ______________________________________________________________________________________ Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs PART COMPARATORS PER PACKAGE VREF (V) MAX9040 1 2.048 REF MAX9041 1 2.048 Uncommitted MAX9050 1 2.500 REF MAX9051 1 2.500 Uncommitted MAX9042 2 2.048 REF/Uncommitted MAX9043 2 2.048 Uncommitted/Uncommitted MAX9052 2 2.500 REF/Uncommitted MAX9053 2 2.500 Uncommitted/Uncommitted IN- CONNECTIONS Pin Configurations (continued) TOP VIEW OUT 1 VEE 2 MAX9041 MAX9051 IN+ 3 6 VCC 5 REF REF 1 IN- 2 IN+ 4 IN- 3 MAX9041 MAX9051 VEE 4 8 N.C. OUTA 1 7 VCC REF 2 6 OUT 5 N.C. 3 VEE 4 TEMP. RANGE PINPACKAGE TOP MARK MAX9050AEUK-T -40°C to +85°C 5 SOT23-5 ADNW MAX9050BEUK-T -40°C to +85°C 5 SOT23-5 ADNY MAX9051AEUT-T* -40°C to +85°C 6 SOT23-6 AAHG MAX9051BEUT-T* -40°C to +85°C 6 SOT23-6 AAHI MAX9051AESA* -40°C to +85°C 8 SO — MAX9051BESA* MAX9052AEUA MAX9052BEUA MAX9052AESA MAX9052BESA MAX9053AEUB -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C 8 SO 8 µMAX 8 µMAX 8 SO 8 SO 10 µMAX 10 µMAX — — — — — — — MAX9053BEUB 7 OUTB 6 INB- 5 INB+ 10 VCC 9 N.C. 8 OUTB REF 2 INA- 3 INA+ 4 7 INB- VEE 5 6 INB+ MAX9043 MAX9053 µMAX Ordering Information (continued) PART VCC µMAX/SO SO SOT23-6 INA+ MAX9042 MAX9052 OUTA 1 8 Typical Operating Circuit VCC VIN VCC 0.1µF IN+ OUT IN- MAX9041/9043 MAX9051/9053 REF 2.048V/2.500V VEE *Future product—contact factory for availability. ______________________________________________________________________________________ 11 MAX9040–MAX9043/MAX9050–MAX9053 Selector Guide MAX9040–MAX9043/MAX9050–MAX9053 Micropower, Single-Supply, SOT23 Comparator + Precision Reference ICs Functional Diagrams OUTA MAX9042 MAX9052 VEE OUT REF VCC REF VCC OUTB INB- INA+ REF IN+ REF MAX9040 MAX9050 VEE OUT REF VEE INB+ OUTA MAX9043 MAX9053 REF VCC OUTB REF INA- VCC INB- INA+ REF IN+ IN- VEE INB+ MAX9041 MAX9051 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 12 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2000 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.