19-2313; Rev 0; 1/02 MAX9400 Evaluation Kit Features ♦ Controlled 50Ω Coplanar Traces ♦ Input Trace Lengths Matched to <2mils ♦ Output Trace Lengths Matched to <1mil ♦ Frequency Range Up to 3.0GHz (MAX9400/MAX9402/MAX9403/ MAX9405) Up to 2.0GHz (MAX9401/MAX9405) Component List DESIGNATION QTY C1, C2 C3–C11 C12–C20 2 9 9 DESCRIPTION ♦ PECL/ECL or LVPECL/LVECL Supply ♦ 32-Pin TQFP Package ♦ Fully Assembled and Tested 10µF ±10%, 10V tantalum capacitors (case B) AVX TAJB106K010R Kemet T494B106010AS 0.1µF ±10%, 16V X7R ceramic chip capacitors (0603) Murata GRM39X7R104K016A or Taiyo Yuden EMK107BJ104KA 0.01µF ±10%, 16V X7R ceramic capacitors (0402) Taiyo Yuden EMK105BJ103KW or Murata GRM36X7R103K016AD IN0–IN3, IN0–IN3, OUT0–OUT3, OUT0– OUT3, CLK, CLK 18 JU1–JU4 4 3-pin jumpers R1, R2 0 Not installed resistor (0402) R3–R8 6 49.9Ω ±1% resistors (0402) R9–R36 28 100Ω ±1%, 1/8W resistors (1206) U1 1 MAX9400EHJ (32-pin 5mm x 5mm TQFP) SEL, SEL , EN, EN 0 Not installed, SMA edge-mount connectors None 4 Shunts None 1 MAX9400 PC board SMA edge-mount connectors Johnson Components 142-0701-801 None 1 MAX9400 EV kit data sheet None 1 MAX9400 data sheet Ordering Information PART MAX9400EVKIT TEMP RANGE 0°C to +70°C IC PACKAGE 32 TQFP Note: To evaluate the MAX9401–MAX9405, request a MAX9401EHJ/MAX9402EHJ/MAX9403EHJ/MAX9404EHJ/ MAX9405EHJ free sample with the MAX9400EVKIT. Quick Start The MAX9400 EV kit is fully assembled and tested. Do not turn on the power supplies until all connections are completed. Recommended Equipment • One 3GHz (min) differential signal generator (e.g., Agilent 8133A) • One 12GHz (min) bandwidth oscilloscope with internal 50Ω input termination (e.g., Tektronix 11801C digital sampling oscilloscope with SD-24 sampling head) • Two power supplies: a) One 2.0V with 500mA current capability b) One adjustable -3.5V to -0.375V with 500mA current capability • Matched male-SMA-to-male-SMA 50Ω coax cables: a) Matched SMA 50Ω coax cables for inputs IN1 and IN1 b) Matched SMA 50Ω coax cables for outputs OUT1 and OUT1 ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 Evaluates: MAX9400–MAX9405 General Description The MAX9400 evaluation kit (EV kit) contains the MAX9400 low-skew quad buffer. The MAX9400 EV kit runs at PECL/ECL and LVPECL/LVECL supplies at clock rates up to 3.0GHz. The EV kit can be operated synchronously with an external clock or asynchronously. The EV kit is designed with 50Ω controlled-impedance traces in a four-layer PC board. It can also be used to evaluate the MAX9401–MAX9405. Evaluates: MAX9400–MAX9405 MAX9400 Evaluation Kit Component Suppliers SUPPLIER PHONE FAX WEBSITE www.avxcorp.com AVX 843-946-0238 843-626-3123 Kemet 864-963-6300 864-963-6322 www.kemet.com Murata 770-436-1300 770-436-3030 www.murata.com Taiyo Yuden 800-348-2496 847-945-0899 www.t-yuden.com Note: Please indicate that you are using the MAX9400–MAX9405 when contacting these component suppliers. Asynchronous Operation 1) Verify that shunts are across pins 1 and 2 of jumpers JU1 (SEL) and JU3 (EN) and pins 2 and 3 of jumpers JU2 (SEL) and JU4 (EN). 2) Connect two matched coax cables to the oscilloscope. Then connect the other end of the cables to OUT1 and OUT1 on the MAX9400 EV kit board. 3) Connect the 2.0V power supply to the VCC pad. Set the supply to 2.00V. Connect the supply ground to the GND pad closest to VCC. 4) Connect the -0.375V to -3.5V power supply to the VEE pad. Set the supply to -1.3V. Connect the supply ground to the GND closest to VEE. 5) Connect two matched coax cables to the differential signal generator that provides differential square waves with the following setting: a) b) c) d) Frequency = 2GHz VIH = 1.5V VIL = 1.0V Duty cycle = 50% 6) Connect the other end of the cables to IN1 and IN1. 7) Turn on the two power supplies, enable the function generator, and verify the differential output signal (VOUT1 - V OUT1) is greater than 500mV. To evaluate other channels, make sure the corresponding output termination resistors on the EV kit board are removed and the unused outputs are terminated. To eliminate signal distortion, use the matched samelength input cables, and use the matched same-length output cables. 2 Detailed Description The MAX9400 EV kit contains an extremely fast, lowskew quad LVECL/LVPECL or ECL/PECL buffer. The EV kit demonstrates ultra-low propagation delay and channel-to-channel skew. The four channels can be operated synchronously with an external clock, or in asynchronous mode, depending on the state of the SEL input. Power Supply The MAX9400/MAX9402/MAX9403/MAX9405 are specified with outputs terminated with 50Ω to VCC - 2V. In order to terminate the outputs with 50Ω to VCC - 2V using the 50Ω oscilloscope input termination, VCC is set to 2.0V. The MAX9401/MAX9404 are specified with outputs terminated with 50Ω to VCC - 3.3V, and with double swing outputs. In order to terminate the outputs with 50Ω to VCC - 3.3V, VCC is set to 3.3V. Table 1 lists the supply ranges for VCC and VEE. In an actual application, VCC and VEE can have different supplies (refer to the MAX9400/MAX9402/MAX9403/MAX9405 data sheet or the MAX9401/MAX9404 data sheet). Enable and Select EN, EN, SEL, and SEL can be controlled by either jumpers or external signals. The MAX9400 EV kit can provide internal DC logic signals to EN, EN, SEL, and SEL by using jumpers JU1, JU2, JU3, and JU4. Table 2 lists jumper JU3 and jumper JU4 functions. Table 3 lists jumper JU1 and jumper JU2 functions. The EV kit can also be controlled by external signals using EN, EN, SEL, and SEL connectors. Before connecting external signals to the EN, EN, SEL, SEL connectors, verify there are no shunts across jumpers JU1–JU4. _______________________________________________________________________________________ MAX9400 Evaluation Kit DEVICE VCC (V) VEE RANGE (V) MAX9400 2.0 -3.5 to -0.375 MAX9401 3.3 -2.2 to +0.3 MAX9402 2.0 -3.5 to -0.375 MAX9403 2.0 -3.5 to -0.375 MAX9404 3.3 -2.2 to +0.3 MAX9405 2.0 -3.5 to -0.375 Table 2. Jumper JU3 and JU4 Functions JU3 LOCATION EN PIN EN PIN JU4 LOCATION The MAX9400 EV kit is a four-layer PC board with 50Ω controlled-impedance input traces with 50Ω termination (two parallel 100Ω resistors). All output signal traces are also 50Ω controlled-impedance traces (with 49.9Ω termination resistors). The MAX9400 EV kit can be used to evaluate the MAX9401–MAX9405 after modification. Table 4 lists onchip input and output termination to the corresponding Maxim IC: • To evaluate the MAX9401, replace the MAX9400EHJ with a MAX9401EHJ. • To evaluate the MAX9402, replace the MAX9400EHJ with a MAX9402EHJ and remove output termination resistors R1 to R8. The output is half-amplitude compared to an open output because of the voltage-divider formed by the on-chip series 50Ω and the 50Ω oscilloscope input. OUTPUT 1 and 2 Connected to VCC 2 and 3 Connected to GND Enabled • To evaluate the MAX9403/MAX9404, replace the MAX9400EHJ with a MAX9403EHJ/MAX9404EHJ and remove input termination resistors R9 to R36. 2 and 3 Connected to GND 1 and 2 Connected to VCC Disabled • To evaluate the MAX9405, replace the MAX9400EHJ with a MAX9405EHJ and remove input and output termination resistors R1 to R36. The output is halfamplitude compared to an open output because of the voltage-divider formed by the on-chip series 50Ω and the 50Ω oscilloscope input. All other combinations (not driven externally) Undefined Table 3. Jumpers JU1 and JU2 Functions JU1 LOCATION SEL PIN JU2 LOCATION 1 and 2 Connected to VCC 2 and 3 Connected to GND SEL PIN OPERATING MODE MAX9400 INPUT TERMINATION RESISTOR Open Synchronous mode MAX9401 Open MAX9402 Open 50Ω Undefined MAX9403 100Ω Open MAX9404 100Ω Open MAX9405 100Ω 50Ω 2 and 3 Connected Asynchronous to GND mode 1 and 2 Connected to VCC All other combinations (not driven externally) Table 4. On-Chip Input and Output Termination NAME OUTPUT TERMINATION RESISTOR Open Open _______________________________________________________________________________________ 3 Evaluates: MAX9400–MAX9405 Evaluating the MAX9401–MAX9405 Table 1. VCC and VEE Range Evaluates: MAX9400–MAX9405 MAX9400 Evaluation Kit OUT0 OUT0 SMA SMA R7 49.9Ω 1% IN0 SMA R11 100Ω 1% R10 100Ω 1% IN0 VCC SMA 32 R9 100Ω 1% R12 100Ω 1% VCC 1N0 1 C9 0.1µF VCC SEL C10 0.1µF C11 0.1µF C19 0.01µF C20 0.01µF 30 29 VCC 1N0 OUT0 28 SMA 2 R36 100Ω 1% R35 100Ω 1% IN1 SMA 27 OUT0 IN1 VEE 26 IN1 25 R13 100Ω 1% IN1 VCC VCC R14 100Ω 1% C12 0.01µF OUT1 SEL VCC C1 10µF 10V GND 24 C18 0.01µF 1 JU1 2 SMA 31 VEE R8 49.9Ω 1% C3 0.1µF OUT1 23 SMA 3 VCC SEL JU2 2 SMA 1 R23 100Ω 1% R24 100Ω 1% R25 100Ω 1% R26 100Ω 1% SMA R27 100Ω 1% CLK SMA VCC EN SMA JU3 1 2 OUT1 SEL 3 CLK U1 3 R28 100Ω 1% 22 R1 OPEN OUT1 SMA MAX9400 4 VEE CLK 21 R2 OPEN VEE C13 0.01µF 5 R29 100Ω 1% R30 100Ω 1% 6 R31 100Ω 1% R32 100Ω 1% 7 C2 10µF 10V GND C4 0.1µF 20 CLK VEE EN OUT2 OUT2 19 SMA 3 VCC EN SMA JU4 2 1 EN OUT2 VCC VCC 18 R3 49.9Ω 1% OUT2 SMA 3 R33 100Ω 1% R34 100Ω 1% VCC 8 IN3 9 C8 0.1µF 1N3 VCC 10 C17 0.01µF OUT3 OUT3 12 13 11 VEE IN2 14 VCC 15 IN2 17 R4 49.9Ω 1% VCC 16 C14 0.01µF VEE C5 0.1µF IN3 IN2 SMA IN3 R21 100Ω 1% R22 100Ω 1% SMA C16 0.01µF C15 0.01µF C7 0.1µF C6 0.1µF OUT3 R20 100Ω 1% R16 100Ω 1% R15 100Ω 1% SMA R6 49.9Ω 1% R5 49.9Ω 1% R18 100Ω 1% R17 100Ω 1% Figure 1. MAX9400 EV Kit Schematic 4 IN2 SMA OUT3 SMA R19 100Ω 1% SMA _______________________________________________________________________________________ MAX9400 Evaluation Kit 1.0" Figure 2. MAX9400 EV Kit Component Placement Guide— Component Side 1.0" Figure 3. MAX9400 EV Kit Component Place Guide—Solder Side 1.0" Figure 4. MAX9400 EV Kit PC Board Layout—Component Side Figure 5. MAX9400 EV Kit PC Board Layout—Inner Layer 2 (GND Layer) _______________________________________________________________________________________ 5 Evaluates: MAX9400–MAX9405 1.0" Evaluates: MAX9400–MAX9405 MAX9400 Evaluation Kit 1.0" 1.0" Figure 6. MAX9400 EV Kit PC Board Layout—Inner Layer 3 (VCC Layer) Figure 7. MAX9400 EV Kit PC Board Layout—Solder Side Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2002 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.