MAXIM MAX9400EVKIT

19-2313; Rev 0; 1/02
MAX9400 Evaluation Kit
Features
♦ Controlled 50Ω Coplanar Traces
♦ Input Trace Lengths Matched to <2mils
♦ Output Trace Lengths Matched to <1mil
♦ Frequency Range
Up to 3.0GHz (MAX9400/MAX9402/MAX9403/
MAX9405)
Up to 2.0GHz (MAX9401/MAX9405)
Component List
DESIGNATION QTY
C1, C2
C3–C11
C12–C20
2
9
9
DESCRIPTION
♦ PECL/ECL or LVPECL/LVECL Supply
♦ 32-Pin TQFP Package
♦ Fully Assembled and Tested
10µF ±10%, 10V tantalum
capacitors (case B)
AVX TAJB106K010R
Kemet T494B106010AS
0.1µF ±10%, 16V X7R ceramic chip
capacitors (0603)
Murata GRM39X7R104K016A or
Taiyo Yuden EMK107BJ104KA
0.01µF ±10%, 16V X7R ceramic
capacitors (0402)
Taiyo Yuden EMK105BJ103KW or
Murata GRM36X7R103K016AD
IN0–IN3,
IN0–IN3,
OUT0–OUT3,
OUT0–
OUT3, CLK,
CLK
18
JU1–JU4
4
3-pin jumpers
R1, R2
0
Not installed resistor (0402)
R3–R8
6
49.9Ω ±1% resistors (0402)
R9–R36
28
100Ω ±1%, 1/8W resistors (1206)
U1
1
MAX9400EHJ (32-pin 5mm x 5mm
TQFP)
SEL, SEL ,
EN, EN
0
Not installed, SMA edge-mount
connectors
None
4
Shunts
None
1
MAX9400 PC board
SMA edge-mount connectors
Johnson Components
142-0701-801
None
1
MAX9400 EV kit data sheet
None
1
MAX9400 data sheet
Ordering Information
PART
MAX9400EVKIT
TEMP RANGE
0°C to +70°C
IC PACKAGE
32 TQFP
Note: To evaluate the MAX9401–MAX9405, request a
MAX9401EHJ/MAX9402EHJ/MAX9403EHJ/MAX9404EHJ/
MAX9405EHJ free sample with the MAX9400EVKIT.
Quick Start
The MAX9400 EV kit is fully assembled and tested. Do
not turn on the power supplies until all connections
are completed.
Recommended Equipment
•
One 3GHz (min) differential signal generator (e.g.,
Agilent 8133A)
•
One 12GHz (min) bandwidth oscilloscope with
internal 50Ω input termination (e.g., Tektronix
11801C digital sampling oscilloscope with SD-24
sampling head)
•
Two power supplies:
a) One 2.0V with 500mA current capability
b) One adjustable -3.5V to -0.375V with 500mA current capability
•
Matched male-SMA-to-male-SMA 50Ω coax cables:
a) Matched SMA 50Ω coax cables for inputs IN1
and IN1
b) Matched SMA 50Ω coax cables for outputs
OUT1 and OUT1
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
1
Evaluates: MAX9400–MAX9405
General Description
The MAX9400 evaluation kit (EV kit) contains the
MAX9400 low-skew quad buffer. The MAX9400 EV kit
runs at PECL/ECL and LVPECL/LVECL supplies at clock
rates up to 3.0GHz. The EV kit can be operated synchronously with an external clock or asynchronously.
The EV kit is designed with 50Ω controlled-impedance
traces in a four-layer PC board. It can also be used to
evaluate the MAX9401–MAX9405.
Evaluates: MAX9400–MAX9405
MAX9400 Evaluation Kit
Component Suppliers
SUPPLIER
PHONE
FAX
WEBSITE
www.avxcorp.com
AVX
843-946-0238
843-626-3123
Kemet
864-963-6300
864-963-6322
www.kemet.com
Murata
770-436-1300
770-436-3030
www.murata.com
Taiyo Yuden
800-348-2496
847-945-0899
www.t-yuden.com
Note: Please indicate that you are using the MAX9400–MAX9405 when contacting these component suppliers.
Asynchronous Operation
1) Verify that shunts are across pins 1 and 2 of
jumpers JU1 (SEL) and JU3 (EN) and pins 2 and 3
of jumpers JU2 (SEL) and JU4 (EN).
2) Connect two matched coax cables to the oscilloscope. Then connect the other end of the cables to
OUT1 and OUT1 on the MAX9400 EV kit board.
3) Connect the 2.0V power supply to the VCC pad. Set
the supply to 2.00V. Connect the supply ground to
the GND pad closest to VCC.
4) Connect the -0.375V to -3.5V power supply to the
VEE pad. Set the supply to -1.3V. Connect the supply ground to the GND closest to VEE.
5) Connect two matched coax cables to the differential
signal generator that provides differential square
waves with the following setting:
a)
b)
c)
d)
Frequency = 2GHz
VIH = 1.5V
VIL = 1.0V
Duty cycle = 50%
6) Connect the other end of the cables to IN1 and IN1.
7) Turn on the two power supplies, enable the function
generator, and verify the differential output signal
(VOUT1 - V OUT1) is greater than 500mV.
To evaluate other channels, make sure the corresponding output termination resistors on the EV kit board are
removed and the unused outputs are terminated.
To eliminate signal distortion, use the matched samelength input cables, and use the matched same-length
output cables.
2
Detailed Description
The MAX9400 EV kit contains an extremely fast, lowskew quad LVECL/LVPECL or ECL/PECL buffer. The EV
kit demonstrates ultra-low propagation delay and channel-to-channel skew. The four channels can be operated
synchronously with an external clock, or in asynchronous mode, depending on the state of the SEL input.
Power Supply
The MAX9400/MAX9402/MAX9403/MAX9405 are specified with outputs terminated with 50Ω to VCC - 2V. In
order to terminate the outputs with 50Ω to VCC - 2V
using the 50Ω oscilloscope input termination, VCC is set
to 2.0V. The MAX9401/MAX9404 are specified with outputs terminated with 50Ω to VCC - 3.3V, and with double swing outputs. In order to terminate the outputs with
50Ω to VCC - 3.3V, VCC is set to 3.3V. Table 1 lists the
supply ranges for VCC and VEE. In an actual application, VCC and VEE can have different supplies (refer to
the MAX9400/MAX9402/MAX9403/MAX9405 data sheet
or the MAX9401/MAX9404 data sheet).
Enable and Select
EN, EN, SEL, and SEL can be controlled by either
jumpers or external signals. The MAX9400 EV kit can
provide internal DC logic signals to EN, EN, SEL, and
SEL by using jumpers JU1, JU2, JU3, and JU4. Table 2
lists jumper JU3 and jumper JU4 functions. Table 3 lists
jumper JU1 and jumper JU2 functions. The EV kit can
also be controlled by external signals using EN, EN,
SEL, and SEL connectors. Before connecting external
signals to the EN, EN, SEL, SEL connectors, verify
there are no shunts across jumpers JU1–JU4.
_______________________________________________________________________________________
MAX9400 Evaluation Kit
DEVICE
VCC (V)
VEE RANGE (V)
MAX9400
2.0
-3.5 to -0.375
MAX9401
3.3
-2.2 to +0.3
MAX9402
2.0
-3.5 to -0.375
MAX9403
2.0
-3.5 to -0.375
MAX9404
3.3
-2.2 to +0.3
MAX9405
2.0
-3.5 to -0.375
Table 2. Jumper JU3 and JU4 Functions
JU3
LOCATION
EN
PIN
EN
PIN
JU4
LOCATION
The MAX9400 EV kit is a four-layer PC board with 50Ω
controlled-impedance input traces with 50Ω termination
(two parallel 100Ω resistors). All output signal traces
are also 50Ω controlled-impedance traces (with 49.9Ω
termination resistors).
The MAX9400 EV kit can be used to evaluate the
MAX9401–MAX9405 after modification. Table 4 lists onchip input and output termination to the corresponding
Maxim IC:
• To evaluate the MAX9401, replace the MAX9400EHJ
with a MAX9401EHJ.
•
To evaluate the MAX9402, replace the MAX9400EHJ
with a MAX9402EHJ and remove output termination
resistors R1 to R8. The output is half-amplitude
compared to an open output because of the voltage-divider formed by the on-chip series 50Ω and
the 50Ω oscilloscope input.
OUTPUT
1 and 2
Connected
to VCC
2 and 3
Connected
to GND
Enabled
•
To evaluate the MAX9403/MAX9404, replace the
MAX9400EHJ with a MAX9403EHJ/MAX9404EHJ
and remove input termination resistors R9 to R36.
2 and 3
Connected
to GND
1 and 2
Connected
to VCC
Disabled
•
To evaluate the MAX9405, replace the MAX9400EHJ
with a MAX9405EHJ and remove input and output
termination resistors R1 to R36. The output is halfamplitude compared to an open output because of
the voltage-divider formed by the on-chip series
50Ω and the 50Ω oscilloscope input.
All other combinations
(not driven externally)
Undefined
Table 3. Jumpers JU1 and JU2 Functions
JU1
LOCATION
SEL
PIN
JU2
LOCATION
1 and 2
Connected
to VCC
2 and 3
Connected
to GND
SEL
PIN
OPERATING
MODE
MAX9400
INPUT
TERMINATION
RESISTOR
Open
Synchronous
mode
MAX9401
Open
MAX9402
Open
50Ω
Undefined
MAX9403
100Ω
Open
MAX9404
100Ω
Open
MAX9405
100Ω
50Ω
2 and 3
Connected Asynchronous
to GND
mode
1 and 2
Connected
to VCC
All other combinations
(not driven externally)
Table 4. On-Chip Input and Output
Termination
NAME
OUTPUT
TERMINATION
RESISTOR
Open
Open
_______________________________________________________________________________________
3
Evaluates: MAX9400–MAX9405
Evaluating the MAX9401–MAX9405
Table 1. VCC and VEE Range
Evaluates: MAX9400–MAX9405
MAX9400 Evaluation Kit
OUT0
OUT0
SMA
SMA
R7
49.9Ω
1%
IN0
SMA
R11
100Ω
1%
R10
100Ω
1%
IN0
VCC
SMA
32
R9
100Ω
1%
R12
100Ω
1% VCC
1N0
1
C9
0.1µF
VCC
SEL
C10
0.1µF
C11
0.1µF
C19
0.01µF
C20
0.01µF
30
29
VCC
1N0
OUT0
28
SMA
2
R36
100Ω
1%
R35
100Ω
1%
IN1
SMA
27
OUT0
IN1
VEE
26
IN1
25
R13
100Ω
1%
IN1
VCC
VCC
R14
100Ω
1%
C12
0.01µF
OUT1
SEL
VCC
C1
10µF
10V GND
24
C18
0.01µF
1
JU1 2
SMA
31
VEE
R8
49.9Ω
1%
C3
0.1µF
OUT1
23
SMA
3
VCC
SEL
JU2 2
SMA
1
R23
100Ω
1%
R24
100Ω
1%
R25
100Ω
1%
R26
100Ω
1%
SMA
R27
100Ω
1%
CLK
SMA
VCC
EN
SMA
JU3
1
2
OUT1
SEL
3
CLK
U1
3
R28
100Ω
1%
22
R1
OPEN
OUT1
SMA
MAX9400
4
VEE
CLK
21
R2
OPEN
VEE
C13
0.01µF
5
R29
100Ω
1%
R30
100Ω
1%
6
R31
100Ω
1%
R32
100Ω
1%
7
C2
10µF
10V GND
C4
0.1µF
20
CLK
VEE
EN
OUT2
OUT2
19
SMA
3
VCC
EN
SMA
JU4 2
1
EN
OUT2
VCC
VCC
18
R3
49.9Ω
1%
OUT2
SMA
3
R33
100Ω
1%
R34
100Ω
1%
VCC
8
IN3
9
C8
0.1µF
1N3
VCC
10
C17
0.01µF
OUT3
OUT3
12
13
11
VEE
IN2
14
VCC
15
IN2
17
R4
49.9Ω
1%
VCC
16
C14
0.01µF
VEE
C5
0.1µF
IN3
IN2
SMA
IN3
R21
100Ω
1%
R22
100Ω
1%
SMA
C16
0.01µF
C15
0.01µF
C7
0.1µF
C6
0.1µF
OUT3
R20
100Ω
1%
R16
100Ω
1%
R15
100Ω
1%
SMA
R6
49.9Ω
1%
R5
49.9Ω
1%
R18
100Ω
1%
R17
100Ω
1%
Figure 1. MAX9400 EV Kit Schematic
4
IN2
SMA
OUT3
SMA
R19
100Ω
1%
SMA
_______________________________________________________________________________________
MAX9400 Evaluation Kit
1.0"
Figure 2. MAX9400 EV Kit Component Placement Guide—
Component Side
1.0"
Figure 3. MAX9400 EV Kit Component Place Guide—Solder Side
1.0"
Figure 4. MAX9400 EV Kit PC Board Layout—Component Side
Figure 5. MAX9400 EV Kit PC Board Layout—Inner Layer 2
(GND Layer)
_______________________________________________________________________________________
5
Evaluates: MAX9400–MAX9405
1.0"
Evaluates: MAX9400–MAX9405
MAX9400 Evaluation Kit
1.0"
1.0"
Figure 6. MAX9400 EV Kit PC Board Layout—Inner Layer 3
(VCC Layer)
Figure 7. MAX9400 EV Kit PC Board Layout—Solder Side
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
6 _____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
© 2002 Maxim Integrated Products
Printed USA
is a registered trademark of Maxim Integrated Products.