19-3285; Rev 1; 5/05 KITS ATION EVALU ABLE AVAIL High-Side Power and Current Monitors The MAX4210/MAX4211 low-cost, low-power, high-side power/current monitors provide an analog output voltage proportional to the power consumed by a load by multiplying load current and source voltage. The MAX4210/MAX4211 measure load current by using a high-side current-sense amplifier, making them especially useful in battery-powered systems by not interfering with the ground path of the load. The MAX4210 is a small, simple 6-pin power monitor intended for limited board space applications. The MAX4210A/B/C integrate an internal 25:1 resistor-divider network to reduce component count. The MAX4210D/E/F use an external resistor-divider network for greater design flexibility. The MAX4211 is a full-featured current and power monitor. The device combines a high-side current-sense amplifier, 1.21V bandgap reference, and two comparators with open-drain outputs to make detector circuits for overpower, overcurrent, and/or overvoltage conditions. The open-drain outputs can be connected to potentials as high as 28V, suitable for driving high-side switches for circuit-breaker applications. Both the MAX4210/MAX4211 feature three different current-sense amplifier gain options: 16.67V/V, 25.00V/V, and 40.96V/V. The MAX4210 is available in 3mm x 3mm, 6-pin TDFN and 8-pin µMAX® packages and the MAX4211 is available in 4mm x 4mm, 16-pin thin QFN and 16-pin TSSOP packages. Both parts are specified for the -40°C to +85°C extended operating temperature range. Features ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ Real-Time Current and Power Monitoring ±1.5% (max) Current-Sense Accuracy ±1.5% (max) Power-Sense Accuracy Two Uncommitted Comparators (MAX4211) 1.21V Reference Output (MAX4211) Three Current/Power Gain Options 100mV/150mV Current-Sense Full-Scale Voltage +4V to +28V Input Source Voltage Range +2.7V to +5.5V Power-Supply Voltage Range Low Supply Current: 380µA (MAX4210) 220kHz Bandwidth Small 6-Pin TDFN and 8-Pin µMAX Packages (MAX4210) Ordering Information PART TEMP RANGE MAX4210AETT-T -40°C to +85°C MAX4210AEUA -40°C to +85°C 8 µMAX AHF — Ordering Information continued at end of data sheet. Functional Diagrams 4V TO 28V VSENSE - RSENSE + - LOAD RS+ Overpower Circuit Breakers Smart Battery Packs/Chargers 6 TDFN-6-EP* (3mm x 3mm) TOP MARK *EP = Exposed paddle. + Applications PIN-PACKAGE RS- VCC 2.7V TO 5.5V + - Smart Peripheral Control IOUT 25:1 Short-Circuit Protection POUT Power-Supply Displays 1.21V REFERENCE Measurement Instrumentation Baseband Analog Multipliers INHIBIT VGA Circuits COUT1 Power-Level Detectors LE REF CIN1+ CIN1- CIN2+ COUT2 µMAX is a registered trademark of Maxim Integrated Products, Inc. Pin Configurations and Selector Guide appear at end of data sheet. CIN2MAX4211A MAX4211B MAX4211C GND Functional Diagrams continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX4210/MAX4211 General Description MAX4210/MAX4211 High-Side Power and Current Monitors ABSOLUTE MAXIMUM RATINGS VCC, IN, CIN1, CIN2 to GND ....................................-0.3V to +6V RS+, RS-, INHIBIT, LE, COUT1, COUT2 to GND ...-0.3V to +30V IOUT, POUT, REF to GND ..........................-0.3V to (VCC + 0.3V) Differential Input Voltage (VRS+ - VRS-) .................................±5V Maximum Current into Any Pin..........................................±10mA Output Short-Circuit Duration to VCC or GND ........................10s Continuous Power Dissipation (TA = +70°C) 6-Pin TDFN (derate 24.4mW/°C above +70°C) ..........1951mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) .............362mW 16-Pin TSSOP (derate 9.4mW/°C above +70°C) ..........754mW 16-Pin Thin QFN (derate 25mW/°C above +70°C) .....2000mW Operating Temperature Range ...........................-40°C to +85°C Junction Temperature ......................................................+150°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Operating Voltage Range (Note 2) Common-Mode Input Range (Note 3) Supply Current SYMBOL CONDITIONS VCC VCMR ICC Measured at RS+ TA = +25°C, VCC = +5.5V IN Input Bias Current Leakage Current VSENSE Full-Scale Voltage (Note 4) IN Full-Scale Voltage (Note 4) IN Input Voltage Range (Note 5) Minimum IOUT/POUT Voltage Maximum IOUT/POUT Voltage (Note 6) 2 2.7 5.5 V 4 28 V MAX4210 380 MAX4211 670 25 8 VSENSE = 0mV MAX421_D/E/F 3 -0.1 8 -1 µA VCC = 0V 0.1 1 µA MAX421_A/B/D/E 150 MAX421_C/F 100 1 VIN MAX421_D/E/F, VSENSE = 10mV to 100mV 0.16 MAX421_A/B/C, VSENSE = 10mV to 100mV 25 MAX421_A/B/C, VSENSE = 10mV to 100mV 4 VOUT_MAX µA 3 MAX421_D/E/F, VSENSE = 10mV to 100mV VOUT_MIN 960 670 1100 VIN_FS VRS+ 570 14 IRSIIN VRS+ Full-Scale Voltage (Note 4) VRS+ Input Voltage Range (Note 5) UNITS MAX421_A/B/C VSENSE = 0mV VSENSE_FS MAX MAX421_D/E/F IRS+ IRS+, IRS- TYP MAX4210 MAX4211 VCC = +5.5V Input Bias Current MIN VSENSE = 0V, VRS+ = 25V VSENSE = 300mV, VRS+ = 25V µA mV V 1.10 V V 28 Current into IOUT = 10µA 1.5 Current into IOUT = 100µA 2.5 Current into POUT = 10µA 1.5 Current into POUT = 100µA 2.5 80 mV 80 Current out of IOUT = 500µA VCC 0.25 Current out of POUT = 500µA VCC 0.25 _______________________________________________________________________________________ V V High-Side Power and Current Monitors (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Current-Sense Amplifier Gain SYMBOL VIOUT/ VSENSE VPOUT/ (VSENSE x VRS+) Power-Sense Amplifier Gain VPOUT/ (VSENSE x VIN) CONDITIONS MIN TYP MAX4211A/D 16.67 MAX4211B/E 25.00 MAX4211C/F 40.96 MAX421_A 0.667 MAX421_B 1.00 MAX421_C 1.64 MAX421_D 16.67 MAX421_E 25.00 MAX421_F MAX UNITS V/V 1/V 40.96 IOUT Common-Mode Rejection CMRI MAX4211, VRS+ = 4V to 28V 60 80 dB POUT Common-Mode Rejection CMRP MAX421_D/E/F, VRS+ = 4V to 28V 60 80 dB IOUT Power-Supply Rejection PSRI VCC = 2.7V to 5.5V 52 80 dB POUT Power-Supply Rejection PSRP VCC = 2.7V to 5.5V 52 70 dB Output Resistance for POUT, IOUT, REF ROUT 0.5 Ω VSENSE = 100mV, VSENSE AC source 220 kHz BWPOUT/SENSE VSENSE = 100mV, VSENSE AC source 220 IOUT -3dB Bandwidth POUT -3dB Bandwidth Capacitive-Load Stability (POUT, IOUT, REF) Current Output (IOUT) Settling Time to 1% of Final Value BWIOUT/SENSE BWPOUT/VIN VSENSE = 100mV, VIN AC source, MAX421_D/E/F 500 BWPOUT/RS+ VSENSE = 100mV, VRS+ AC source, MAX421_A/B/C 250 No sustained oscillations 450 CLOAD MAX4211 MAX421_A/B/C Power Output (POUT) Settling Time to 1% of Final Value MAX421_D/E/F VSENSE = 10mV to 100mV 15 VSENSE = 100mV to 10mV 15 VSENSE = 10mV to 100mV 10 VSENSE = 100mV to 10mV 10 VRS+ = 4V to 25V, VSENSE = 100mV 15 VRS+ = 25V to 4V, VSENSE = 100mV 15 VSENSE = 10mV to 100mV 10 VSENSE = 100mV to 10mV 10 VIN = 160mV to 1V, VSENSE = 100mV 10 VIN = 1V to 160mV, VSENSE = 100mV 10 kHz pF µs µs _______________________________________________________________________________________ 3 MAX4210/MAX4211 ELECTRICAL CHARACTERISTICS (continued) MAX4210/MAX4211 High-Side Power and Current Monitors ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Power-Up Time to 1% of Current Output Final Value VSENSE = 100mV, CLOAD = 10pF, MAX4211 100 µs Power-Up Time to 1% of Power Output Final Value VSENSE = 100mV, CLOAD = 10pF 100 µs CLOAD = 10pF, VSENSE = -100mV to +100mV 35 CLOAD = 10pF, VSENSE = 1.5V to 100mV 35 VCC = 5V, VRS+ = 10V, CLOAD = 10pF, VSENSE = -100mV to +100mV 25 VCC = 5V, VRS+ = 10V, CLOAD = 10pF, VSENSE = 1.5V to 100mV 25 Saturation Recovery Time for Current Out (Note 7) Saturation Recovery Time for Power Out (Note 7) Reference Voltage VREF Comparator Input Offset µs µs IREF = 0 to 100µA, TA = +25°C 1.20 IREF = 0 to 100µA, TA = -40°C to +85°C 1.19 1.21 ±0.5 Common-mode voltage = REF Comparator Hysteresis 1.22 1.23 ±5 V mV 5 mV Comparator Common-Mode Low Functional test 0.1 V Comparator Common-Mode High Functional test VCC 1.15 V -2 nA Comparator Input Bias Current IBIAS Comparator Output Low Voltage VOL Comparator Output-High Leakage Current (Note 8) ISINK = 1mA 0.2 VPULLUP = 28V LE Logic Input-High Voltage Threshold VIH LE Logic Input-Low Voltage Threshold VIL 0.68 INHIBIT Logic Input-High Voltage Threshold 1.3 1 µA V 1 0.33 x VCC V 2.20 µA V INHIBIT Logic Input-Low Voltage Threshold 0.5 INHIBIT Logic Input Hysteresis 4 V 0.67 x VCC LE Logic Input Internal Pulldown Current INHIBIT Logic Input Internal Pulldown Current 0.6 0.6 0.68 1 _______________________________________________________________________________________ V V 2.20 µA High-Side Power and Current Monitors (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Comparator Propagation Delay SYMBOL tPD+, tPD- CONDITIONS MIN CLOAD = 10pF, RLOAD = 10kΩ pullup to VCC, 5mV overdrive Minimum INHIBIT Pulse Width Minimum LE Pulse Width Comparator Power-Up Blanking Time From VCC LATCH Setup Time tON VCC from 0 to (2.7V to 5.5V) tSETUP TYP MAX UNITS 4 µs 1 µs 1 µs 300 µs 3 µs MAX4210A/MAX4211A (power gain = 0.667) POUT Gain Accuracy (Note 9) ∆VPOUT/ ∆VSENSE VSENSE = 10mV to 100mV, VRS+ = 25V TA = +25°C ∆VPOUT/ ∆VRS+ VSENSE = 100mV, VRS+ = 5V to 25V TA = +25°C VSENSE = 5mV to 100mV, VRS+ = 5V to 25V TA = +25°C VSENSE = 150mV, VRS+ ≥ 15V TA = +25°C ∆VPOUT_MAX/ FSO Total POUT Output Error (Note 10) ∆VPOUT_MAX/ VPOUT ±1.5 ±3.0 TA = TMIN to TMAX ±0.5 ±1.5 % ±3.0 TA = TMIN to TMAX ±0.15 ±1.5 % FSO* ±3.0 TA = TMIN to TMAX ±0.2 VSENSE = 100mV, VRS+ ≥ 4V ±2.5 VSENSE = 100mV, VRS+ ≥ 9V ±1.2 VSENSE = 50mV, VRS+ ≥ 6V ±1.8 VSENSE = 25mV, VRS+ ≥ 15V ±1.8 TA = +25°C ∆VPOUT/ ∆VSENSE VSENSE = 10mV to 100mV, VRS+ = 25V TA = +25°C ∆VPOUT/ ∆VRS+ VSENSE = 100mV, VRS+ = 5V to 25V TA = +25°C ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 0V, VRS+ = 25V POUT Output Offset Voltage (Note 11) ±0.5 1.5 TA = TMIN to TMAX % 5 15 mV MAX4210B/MAX4211B (power gain = 1.00) POUT Gain Accuracy (Note 9) ±0.5 ±3.0 TA = TMIN to TMAX TA = TMIN to TMAX ±1.5 ±0.5 ±1.5 % ±3.0 *FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V. _______________________________________________________________________________________ 5 MAX4210/MAX4211 ELECTRICAL CHARACTERISTICS (continued) MAX4210/MAX4211 High-Side Power and Current Monitors ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER Total POUT Output Error (Note 10) SYMBOL CONDITIONS ∆VPOUT_MAX/ FSO VSENSE = 5mV to TA = +25°C 100mV, VRS+ = 5V to TA = TMIN to TMAX 25V VSENSE = 150mV, VRS+ > 15V ∆VPOUT_MAX/ VPOUT POUT Output Offset Voltage (Note 11) MIN TA = +25°C TYP MAX ±0.15 ±1.5 ±0.2 ±1.5 ±3.0 TA = TMIN to TMAX ±2.5 VSENSE = 100mV, VRS+ > 9V ±1.2 VSENSE = 50mV, VRS+ > 6V ±1.8 VSENSE = 25mV, VRS+ > 15V ±1.8 TA = +25°C % FSO* ±3.0 VSENSE = 100mV, VRS+ > 4V VSENSE = 0V, VRS+ = 25V UNITS 2 TA = TMIN to TMAX % 6.5 20 mV MAX4210C/MAX4211C (power gain = 1.64) POUT Gain Accuracy (Note 9) Total POUT Output Error (Note 10) ∆VPOUT/ ∆VSENSE VSENSE = 10mV to 100mV, VRS+ = 25V TA = +25°C ∆VPOUT/ ∆VRS+ VSENSE = 100mV, VRS+ = 5V to 25V TA = +25°C ∆VPOUT_MAX/ FSO VSENSE = 5mV to 100mV, VRS+ = 5V to 25V TA = +25°C ∆VPOUT_MAX/ VPOUT ±0.5 ±0.15 VSENSE = 100mV, VRS+ ≥ 4V ±2.5 VSENSE = 100mV, VRS+ ≥ 9V ±1.2 VSENSE = 50mV, VRS+ ≥ 6V ±1.8 VSENSE = 25mV, VRS+ ≥ 15V ±1.8 VSENSE = 10mV to 100mV, VIN = 1V TA = +25°C ∆VPOUT/ ∆VIN VSENSE = 100mV, VIN = 0.2V to 1V TA = +25°C % ±1.5 ±3.0 TA = TMIN to TMAX ∆VPOUT/ ∆VSENSE ±1.5 ±3.0 TA = TMIN to TMAX TA = +25°C ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 0V, VRS+ = 25V POUT Output Offset Voltage (Note 11) ±0.5 3 TA = TMIN to TMAX % FSO* % 10 mV 30 MAX4210D/MAX4211D (power gain = 16.67) POUT Gain Accuracy (Note 9) ±0.5 ±3.0 TA = TMIN to TMAX ±0.5 TA = TMIN to TMAX *FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V. 6 ±1.5 _______________________________________________________________________________________ ±1.5 ±3.0 % High-Side Power and Current Monitors (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL ∆VPOUT_MAX/ FSO Total POUT Output Error (Note 10) ∆VPOUT_MAX/ VPOUT POUT Output Offset Voltage (Note 11) CONDITIONS VSENSE = 5mV to 100mV, VRS+ = 25V, VIN = 0.2V to 1V MIN TA = +25°C TYP MAX ±0.15 ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 150mV, VRS+ TA = +25°C = 25V, VIN = 600mV TA = TMIN to TMAX ±0.2 VSENSE = 100mV, VRS+ = 15V, VIN ≥ 160mV ±2.5 VSENSE = 100mV, VRS+ = 15V, VIN ≥ 360mV ±1.2 VSENSE = 50mV, VRS+ = 15V, VIN ≥ 240mV ±1.8 VSENSE = 25mV, VRS+ = 15V, VIN ≥ 600mV ±1.8 VSENSE = 0V, VRS+ = 25V, VIN = 1V TA = +25°C UNITS % FSO* ±1.5 ±3.0 1.5 TA = TMIN to TMAX % 5 15 mV MAX4210E/MAX4211E (power gain = 25.00) POUT Gain Accuracy (Note 9) ∆VPOUT/ ∆VSENSE ∆VPOUT/ ∆VIN ∆VPOUT_MAX/ FSO Total POUT Output Error (Note 10) POUT Output Offset Voltage (Note 11) ∆VPOUT_MAX/ VPOUT VSENSE = 10mV to 100mV, VIN = 1V TA = +25°C VSENSE = 100mV, VIN = 0.2V to 1V TA = +25°C VSENSE = 5mV to 100mV, VRS+ = 25V, VIN = 0.2V to 1V TA = +25°C VSENSE = 150mV, VRS+ =25V, VIN = 600mV TA = +25°C ±0.5 ±1.5 ±0.5 ±1.5 ±3.0 TA = TMIN to TMAX ±3.0 TA = TMIN to TMAX ±0.15 ±1.5 % FSO* ±3.0 TA = TMIN to TMAX ±0.2 ±2.5 VSENSE = 100mV, VRS+ = 15V, VIN ≥ 360mV ±1.2 VSENSE = 50mV, VRS+ = 15V, VIN ≥ 240mV ±1.8 VSENSE = 25mV, VRS+ = 15V, VIN ≥ 600mV ±1.8 TA = +25°C TA = TMIN to TMAX ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 100mV, VRS+ = 15V, VIN ≥ 160mV VSENSE = 0V, VRS+ = 25V, VIN = 1V % 2 % 6.5 20 mV *FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V. _______________________________________________________________________________________ 7 MAX4210/MAX4211 ELECTRICAL CHARACTERISTICS (continued) MAX4210/MAX4211 High-Side Power and Current Monitors ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX ±0.5 ±1.5 ±0.5 ±1.5 UNITS MAX4210F/MAX4211F (power gain = 40.96) POUT Gain Accuracy (Note 9) ∆VPOUT/ ∆VSENSE ∆VPOUT/ ∆VIN ∆VPOUT_MAX/ FSO Total POUT Output Error (Note 10) ∆VPOUT_MAX/ VPOUT POUT Output Offset Voltage (Note 11) VSENSE = 10mV to 100mV, VIN = 1V TA = +25°C VSENSE = 100mV, VIN = 0.2V to 1V TA = +25°C VSENSE = 5mV to 100mV, VRS+ = 25V, VIN = 0.2V to 1V TA = +25°C ±3.0 TA = TMIN to TMAX ±3.0 TA = TMIN to TMAX ±0.15 ±2.5 VSENSE = 100mV, VRS+ = 15V, VIN ≥ 360mV ±1.2 VSENSE = 50mV, VRS+ = 15V, VIN ≥ 240mV ±1.8 VSENSE = 25mV, VRS+ = 15V, VIN ≥ 600mV ±1.8 TA = +25°C ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 100mV, VRS+ = 15V, VIN ≥ 160mV VSENSE = 0V, VRS+ = 25V, VIN = 1V % % FSO* % 3 TA = TMIN to TMAX 10 30 mV MAX4211A/MAX4211D (current gain = 16.67) IOUT Gain Accuracy ∆VIOUT/ ∆VSENSE ∆VIOUT_MAX/ FSO Total IOUT Output Error (Note 10) VSENSE = 20mV to 100mV, VRS+ = 25V TA = +25°C VSENSE = 5mV to 100mV TA = +25°C VSENSE = 150mV ∆VIOUT_MAX/ VIOUT ±0.5 ±3.0 TA = TMIN to TMAX ±0.15 ±0.2 % % FSO* ±1.5 ±3.0 TA= TMIN to TMAX VSENSE = 50mV ±1.2 VSENSE = 25mV ±1.8 VSENSE = 5mV ±20 *FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V. 8 ±1.5 ±3.0 TA = TMIN to TMAX TA = +25°C ±1.5 _______________________________________________________________________________________ % High-Side Power and Current Monitors (VCC = 5.0V, VRS+ = 25V, VSENSE = 5mV, VIN = 1.0V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = GND, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C, unless otherwise noted.) (Note 1) PARAMETER SYMBOL CONDITIONS MIN TYP MAX ±0.5 ±1.5 UNITS MAX4211B/MAX4211E (current gain = 25.00) IOUT Gain Accuracy ∆VIOUT/ ∆VSENSE ∆VIOUT_MAX/ FSO Total IOUT Output Error (Note 10) VSENSE = 20mV to 100mV, VRS+ = 25V VSENSE = 5mV to 100mV VSENSE = 150mV ∆VIOUT_MAX/ VIOUT TA = +25°C ±3.0 TA = TMIN to TMAX TA = +25°C ±0.15 TA = +25°C ±1.5 ±3.0 TA = TMIN to TMAX ±0.2 % % FSO* ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 50mV ±1.2 VSENSE = 25mV ±1.8 VSENSE = 5mV ±20 % MAX4211C/MAX4211F (current gain = 40.96) IOUT Gain Accuracy ∆VIOUT/ ∆VSENSE ∆VIOUT_MAX/ FSO Total IOUT Output Error (Note 10) TA = TMIN to TMAX VSENSE = 5mV to 100mV TA = TMIN to TMAX VSENSE = 100mV ∆VIOUT_MAX/ VIOUT TA = +25°C VSENSE = 20mV to 100mV, VRS+ =25V TA = +25°C TA = +25°C ±0.5 ±1.5 ±3.0 ±0.15 ±1.5 ±3.0 ±0.2 % % FSO* ±1.5 ±3.0 TA = TMIN to TMAX VSENSE = 50mV ±1.2 VSENSE = 25mV ±1.8 VSENSE = 5mV ±20 % *FSO refers to full-scale output under the conditions: VSENSE = 100mV, VRS+ = +25V, or VIN = 1V. All devices are 100% production tested at TA = +25°C. All temperature limits are guaranteed by design. Guaranteed by power-supply rejection test. Guaranteed by output voltage error tests (IOUT). Guaranteed by output voltage error tests (IOUT or POUT, or both). IN Input Voltage Range (MAX421_D/E/F) and VRS+ Input Voltage Range (MAX421_A/B/C) are guaranteed by design (GBD) and not production tested. See Multiplier Transfer Characteristics graphs in the Typical Operating Characteristics. Note 6: This test does not apply to the low gain options, MAX421_A/D, because OUT is clamped at approximately 4V. Note 7: The device does not experience phase reversal when overdriven. Note 8: VPULLUP is defined as an externally applied voltage through a resistor, RPULLUP, to pull up the comparator output. Note 9: POUT gain accuracy is the sum of gain error and multiplier nonlinearity. Note 10: Total output voltage error is the sum of gain and offset voltage errors. Note 11: POUT Output Offset Voltage is the sum of offset and multiplier feedthrough. Note 1: Note 2: Note 3: Note 4: Note 5: _______________________________________________________________________________________ 9 MAX4210/MAX4211 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) SUPPLY CURRENT vs. COMMON-MODE VOLTAGE 0.5 0.7 MAX4211 0.6 0.5 MAX4210 0.4 VSENSE = 5mV VCC = 5V 0.45 VCC = 5.5V VCC = 4.0V 0.40 0.35 0.30 VCC = 2.7V MAX4210 0.3 0.25 0.2 0.3 3.1 3.5 3.9 4.3 4.7 5.1 4 5.5 8 12 24 0.20 28 -40 -15 VCC = 5.5V 14 BIAS CURRENT (µA) VCC = 4.0V 0.6 0.5 VCC = 2.7V RS+ (A/B/C VERSIONS) 12 VRS+ = VRS- = 25V 10 8 RS- 6 35 60 85 RS+/RS- BIAS CURRENT vs. COMMON-MODE VOLTAGE 16 MAX4210/11 toc04 VSENSE = 5mV 10 TEMPERATURE (°C) RS+/RS- BIAS CURRENT vs. TEMPERATURE MAX4211 SUPPLY CURRENT vs. TEMPERATURE 0.7 20 RS+ VOLTAGE (V) SUPPLY VOLTAGE (V) 0.8 16 16 14 RS+ (A/B/C VERSIONS) BIAS CURRENT (µA) 2.7 MAX4210/11 toc06 0.4 SUPPLY CURRENT (mA) 0.50 SUPPLY CURRENT (mA) MAX4211 0.6 VSENSE = 5mV VCC = 5V MAX4210/11 toc05 SUPPLY CURRENT (mA) 0.7 0.8 MAX4210/11 toc02 VSENSE = 5mV SUPPLY CURRENT (mA) MAX4210/11 toc01 0.8 MAX4210 SUPPLY CURRENT vs. TEMPERATURE MAX4210/11 toc03 SUPPLY CURRENT vs. SUPPLY VOLTAGE 12 10 VRS+ = VRS- 8 6 RS- 4 4 0.4 2 2 RS+ (D/E/F VERSIONS) RS+ (D/E/F VERSIONS) 0 0 -15 10 35 60 -15 10 35 60 CURRENT OUTPUT ERROR vs. SUPPLY VOLTAGE -0.1 -0.3 TA = +25°C -0.5 TA = +85°C -0.6 TA = -40°C -0.2 TA = +25°C -0.3 -0.4 -0.5 TA = 0°C TA = +85°C -0.6 -0.7 -0.8 -0.8 2.7 3.1 3.5 3.9 4.3 4.7 SUPPLY VOLTAGE (V) 10 5.1 5.5 16 20 24 0 -0.2 TA = 0°C -0.4 -0.6 28 TA = -40°C -0.8 -1.0 TA = +25°C -1.2 -1.4 TA = +85°C -1.6 -0.7 12 POWER OUTPUT ERROR vs. SENSE VOLTAGE OUTPUT ERROR (%) OUTPUT ERROR (%) TA = 0°C -0.4 0 MAX4210/11 toc07 -0.1 8 COMMON-MODE VOLTAGE (V) POWER OUTPUT ERROR vs. SUPPLY VOLTAGE TA = -40°C 4 85 TEMPERATURE (°C) 0 -0.2 -40 85 TEMPERATURE (°C) MAX4210/11 toc08 -40 MAX4210/11 toc09 0.3 OUTPUT ERROR (%) MAX4210/MAX4211 High-Side Power and Current Monitors -1.8 2.7 3.1 3.5 3.9 4.3 4.7 SUPPLY VOLTAGE (V) 5.1 5.5 -2.0 0 25 50 75 100 SENSE VOLTAGE (mV) ______________________________________________________________________________________ 125 150 High-Side Power and Current Monitors TA = +25°C -1.2 -1.4 0.2 0 -0.2 -0.6 -1.8 -0.8 -2.0 -1.0 25 50 75 100 125 TA = +25°C TA = +85°C -0.4 -1.6 0 10 16 19 22 -1.4 25 0 200 400 24.90 24.85 MAX4211E 24.90 24.85 24.80 85 1000 MAX4211D VSENSE = 100mV 2.0 1.5 VSENSE = 70mV VSENSE = 30mV 1.0 0.5 0 -40 -15 10 35 60 0 85 0.3 0.6 0.9 1.2 TEMPERATURE (°C) IN VOLTAGE (V) MULTIPLIER TRANSFER CHARACTERISTICS MULTIPLIER TRANSFER CHARACTERISTICS REFERENCE VOLTAGE vs. SUPPLY VOLTAGE 3 2 VRS+ = 4V 1 VSENSE = 70mV 2.0 1.5 VSENSE = 30mV 1.0 1.220 1.5 MAX4210/11 toc18 VSENSE = 100mV 2.5 POUT VOLTAGE (V) VRS+ = 25V MAX4211B REFERENCE VOLTAGE (V) VRS+ = 15V 4 3.0 MAX4210/11 toc16 MAX4211B MAX4210/11 toc17 TEMPERATURE (°C) 5 1200 MULTIPLIER TRANSFER CHARACTERISTICS 24.70 60 800 2.5 24.75 24.80 600 IN VOLTAGE (mV) POUT VOLTAGE (V) 24.95 POUT VOLTAGE (V) 13 24.95 CURRENT GAIN (V/V) GAIN (1/V) 25.00 35 TA = 0°C -1.2 CURRENT GAIN vs. TEMPERATURE 25.00 MAX4210/11 toc13 MAX4211E 10 -1.0 VRS+ VOLTAGE (V) 25.05 -15 TA = +25°C -2.0 7 POWER GAIN vs. TEMPERATURE -40 TA = +85°C -0.8 -1.8 MAX4211B 4 150 -0.6 -1.6 SENSE VOLTAGE (mV) 25.10 TA = -40°C TA = 0°C MAX4210/11 toc14 -1.0 0.4 TA = -40°C -0.4 MAX4210/11 toc15 TA = +85°C -0.8 0.6 -0.2 OUTPUT ERROR (%) -0.6 0.8 OUTPUT ERROR (%) OUTPUT ERROR (%) TA = 0°C 0 MAX4210/11 toc11 TA = -40°C -0.4 1.0 MAX4210/11 toc10 0 -0.2 POWER OUTPUT ERROR vs. IN VOLTAGE POWER OUTPUT ERROR vs. VRS+ MAX4210/11 toc12 CURRENT OUTPUT ERROR vs. SENSE VOLTAGE 1.215 1.210 1.205 0.5 0 0 0 50 100 150 200 SENSE VOLTAGE (mV) 250 300 1.200 4 8 12 16 20 RS+ VOLTAGE (V) 24 28 2.7 3.1 3.5 3.9 4.3 4.7 5.1 5.5 SUPPLY VOLTAGE (V) ______________________________________________________________________________________ 11 MAX4210/MAX4211 Typical Operating Characteristics (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) COMPARATOR PROPAGATION DELAY vs. OVERDRIVE VOLTAGE 1.210 1.205 1.4 1.2 1.0 0.8 0.6 0.4 1.8 MAX4210/11 toc21 1.6 PROPAGATION DELAY (µs) 1.215 MAX4210/11 toc20 1.8 MAX4210/11 toc19 REFERENCE VOLTAGE (V) 1.220 COMPARATOR PROPAGATION DELAY vs. TEMPERATURE 1.6 PROPAGATION DELAY (µs) REFERENCE VOLTAGE vs. TEMPERATURE 1.4 1.2 1.0 0.8 0.2 0.6 0 1.200 -40 -15 10 35 60 0 85 50 100 150 200 -40 -15 10 35 60 TEMPERATURE (°C) OVERDRIVE VOLTAGE (mV) TEMPERATURE (°C) COMPARATOR OUTPUT VOLTAGE (VOL) vs. CURRENT SINK COMPARATOR OUTPUT VOLTAGE (VOL) vs. TEMPERATURE COMPARATOR POWER-UP DELAY CURRENT SINK = 1mA 350 COUT VOLTAGE (mV) 500 400 300 200 85 MAX4210/11 toc24 MAX4210/11 toc23 400 MAX4210/11 toc22 600 COUT VOLTAGE (mV) MAX4210/MAX4211 High-Side Power and Current Monitors 300 5V VCC 2V/div 0V 250 200 5V 150 COUT 2V/div 100 100 0V 50 0 0 0 1 2 3 -40 4 -15 10 35 60 200µs/div 85 TEMPERATURE (°C) CURRENT SINK (mA) COMPARATOR PROPAGATION DELAY POUT POWER-UP DELAY COMPARATOR AC RESPONSE MAX4210/11 toc25 MAX4210/11 toc27 MAX4210/11 toc26 MAX4211E CIN- = 1.21V VOD = 5mV 5V 1.45V CIN+ VCIN+ VCC 2V/div 0V 0.95V 2µs/div 12 5V 5V 2.5V COUT 2V/div COUT 2V/div POUT 1V/div 0V 0V 0V 4µs/div 200µs/div ______________________________________________________________________________________ High-Side Power and Current Monitors IOUT POWER-UP DELAY VCC POWER-UP/DOWN RESPONSE POUT MAX4210/11 toc28 MAX4211E MAX4210/11 toc29 5V VCC 2V/div VSENSE = 150mV MAX4211E VCC 2V/div 0V 0V 2.5V IOUT 1V/div POUT 2V/div 0V 0V 200µs/div 2ms/div VCC POWER-UP/DOWN RESPONSE IOUT RS POWER-UP/DOWN RESPONSE POUT MAX4210/11 toc30 MAX4210/11 toc31 VSENSE = 150mV MAX4211E 10V VRS+ 5V/div VCC 2V/div 0V VSENSE 0V 2.5V POUT 1V/div IOUT 2V/div 0V 2ms/div 0V 20ms/div POUT SMALL-SIGNAL PULSE RESPONSE RS POWER-UP/DOWN RESPONSE IOUT MAX4210/11 toc33 MAX4210/11 toc32 10V VRS+ 5V/div VSENSE = 10mV TO 20mV STEP 0V 470pF LOAD 2.5V IOUT 1V/div POUT 100mV/div 0V 20ms/div 10µs/div ______________________________________________________________________________________ 13 MAX4210/MAX4211 Typical Operating Characteristics (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) Typical Operating Characteristics (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) POUT LARGE-SIGNAL PULSE RESPONSE IOUT SMALL-SIGNAL PULSE RESPONSE MAX4210/11 toc35 MAX4210/11 toc34 470pF LOAD VSENSE = 10mV TO 90mV STEP VSENSE = 10mV TO 20mV STEP 470pF LOAD POUT 1V/div IOUT 100mV/div 10µs/div 10µs/div POUT SLEW-RATE PULSE RESPONSE IOUT LARGE-SIGNAL PULSE RESPONSE MAX4210/11 toc37 MAX4210/11 toc36 NO LOAD 470pF LOAD VSENSE = 10mV TO 90mV STEP VSENSE = 10mV TO 90mV STEP POUT 1V/div POUT 1V/div 10µs/div 10µs/div POUT COMMON-MODE REJECTION RATIO vs. FREQUENCY IOUT SLEW-RATE PULSE RESPONSE MAX4210/11 toc38 MAX4210/11 toc39 -20 NO LOAD VSENSE = 100mV -30 VSENSE = 10mV TO 90mV STEP -40 CMRR (dB) MAX4210/MAX4211 High-Side Power and Current Monitors IOUT 1V/div -50 -60 -70 -80 10µs/div -90 0.001 0.01 0.1 1 FREQUENCY (MHz) 14 ______________________________________________________________________________________ High-Side Power and Current Monitors -10 -20 PSR (dB) -50 -60 -40 15 10 -60 -80 5 -70 0 0.001 -80 10 1 0.1 100 1k 100k 10k VSENSE = 10mVP-P 30 25 20 10 VSENSE = 90mVP-P GAIN (dB) 20 15 15 10 10 5 5 0.01 0.1 1 0 0.001 10 0.01 1 0.1 FREQUENCY (MHz) FREQUENCY (MHz) IOUT LARGE-SIGNAL GAIN vs. FREQUENCY IN SMALL-SIGNAL GAIN vs. FREQUENCY 5 MAX4210/11 toc45 30 VSENSE = 90mVP-P 0 GAIN (dB) 20 15 -5 MAX4210/11 toc46 0 0.001 25 1 POUT LARGE-SIGNAL GAIN vs. FREQUENCY MAX4210/11 toc43 30 0.1 FREQUENCY (MHz) IOUT SMALL-SIGNAL GAIN vs. FREQUENCY 25 0.01 FREQUENCY (Hz) FREQUENCY (MHz) MAX4210/11 toc44 0.01 GAIN (dB) -90 0.001 VSENSE = 10mVP-P 20 -30 -50 -70 GAIN (dB) CMRR (dB) -40 25 MAX4210/11 toc42 -30 30 GAIN (dB) VSENSE = 100mV MAX4210/11 toc41 0 MAX4210/11 toc40 -20 POUT SMALL-SIGNAL GAIN vs. FREQUENCY POWER-SUPPLY REJECTION vs. FREQUENCY IOUT COMMON-MODE REJECTION RATIO vs. FREQUENCY VIN = 10mVP-P MEASURED AT POUT VSENSE = 40mV -10 10 -15 5 0 0.001 0.01 0.1 FREQUENCY (MHz) 1 -20 0.001 0.01 0.1 1 10 FREQUENCY (MHz) ______________________________________________________________________________________ 15 MAX4210/MAX4211 Typical Operating Characteristics (continued) (VCC = 5.0V, VRS+ = 25V, VSENSE = 100mV, VIN = 1V, VLE = 0V, RIOUT = RPOUT = 1MΩ, VCIN1+ = VCIN2+ = VREF, VCIN1- = VCIN2- = 0V, VINHIBIT = 0V, RCOUT1 = RCOUT2 = 5kΩ connected to VCC, TA = +25°C, unless otherwise noted.) MAX4210/MAX4211 High-Side Power and Current Monitors MAX4210A/B/C Pin Description PIN 6 TDFN 8 µMAX NAME FUNCTION 1 1 GND Ground 2 2, 3, 6 N.C. No Connection. Not internally connected. 3 4 VCC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND. 4 5 RS+ Power Connection to External-Sense Resistor and Internal Resistor-Divider 5 7 RS- Load-Side Connection for External-Sense Resistor 6 8 POUT EP — EP* Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current). Exposed Paddle. EP is internally connected to GND. *TDFN package only. MAX4210D/E/F Pin Description PIN NAME FUNCTION 6 TDFN 8 µMAX 1 1 GND 2 2 IN 3 4 VCC 4 5 RS+ Power Connection to External-Sense Resistor 5 7 RS- Load-Side Connection for External-Sense Resistor 6 8 POUT EP — EP* Exposed Paddle. EP is internally connected to GND. — 3, 6 N.C. No Connection. Not internally connected. Ground Multiplier Input Voltage. Voltage input for internal multiplier. Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND. Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current). *TDFN package only. 16 ______________________________________________________________________________________ High-Side Power and Current Monitors PIN NAME FUNCTION 16 THIN QFN 16 TSSOP 1 3 VCC Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND. 2 4 N.C. No Connection. Not internally connected. 3 5 LE 4 6 COUT1 Open-Drain Comparator 1 Output. LE and INHIBIT control the comparator 1 output. 5 7 INHIBIT INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator operation. Drive logic low for normal operation. 6 8 COUT2 7 9 GND 8 10 CIN2+ Latch Enable for Comparator 1. Driving logic low makes the comparator transparent (regular comparator). Driving logic high latches the output. Open-Drain Comparator 2 Output Ground Comparator 2 Positive Input 9 11 CIN2- Comparator 2 Negative Input 10 12 CIN1+ Comparator 1 Positive Input 11 13 CIN1- Comparator 1 Negative Input 12 14 REF 1.21V Internal Reference Output 13 15 POUT Power Output Voltage. Voltage output proportional to source power (input voltage multiplied by load current). 14 16 IOUT Current Output Voltage. Voltage output proportional to VSENSE (VRS+ - VRS-) load current. 15 1 RS- 16 2 RS+ Power Connection to External-Sense Resistor and Internal Resistor-Divider EP — EP* Exposed Paddle. EP is internally connected to GND. Load-Side Connection for External-Sense Resistor *Thin QFN package only. ______________________________________________________________________________________ 17 MAX4210/MAX4211 MAX4211A/B/C Pin Description MAX4210/MAX4211 High-Side Power and Current Monitors MAX4211D/E/F Pin Description PIN NAME FUNCTION 16 THIN QFN 16 TSSOP 1 3 VCC 2 4 IN Multiplier Input Voltage. Voltage input for internal multiplier. 3 5 LE Latch Enable for Comparator 1. Driving logic low makes the comparator transparent (regular comparator). Driving logic high latches the output. 4 6 COUT1 Open-Drain Comparator 1 Output. Output controlled by LE and INHIBIT. INHIBIT for Comparator 1 Output. Driving logic high inhibits the comparator operation. Drive logic low for normal operation. 5 7 INHIBIT 6 8 COUT2 7 9 GND 8 10 CIN2+ Power-Supply Voltage. Connect a 0.1µF bypass capacitor from VCC to GND. Open-Drain Comparator 2 Output Ground Comparator 2 Positive Input 9 11 CIN2- Comparator 2 Negative Input 10 12 CIN1+ Comparator 1 Positive Input 11 13 CIN1- Comparator 1 Negative Input 12 14 REF 1.21V Internal Reference Output 13 15 POUT Power Output Voltage. Voltage output proportional source power (input voltage multiplied by load current). 14 16 IOUT Current Output Voltage. Voltage output proportional VSENSE (VRS+ - VRS-) load current. 15 1 RS- Load-Side Connection for External-Sense Resistor 16 2 RS+ Power Connection to External-Sense Resistor EP — EP* Exposed Paddle. EP is internally connected to GND. *Thin QFN package only. Functional Diagrams VSENSE + 4V TO 28V - RSENSE + - LOAD RS+ 4V TO 28V LOAD RS- RS+ RS- VCC + - 2.7V TO 5.5V + MAX4210D MAX4210E MAX4210F 25:1 IN POUT 0 TO 1V MAX4210A MAX4210B MAX4210C GND 18 - RSENSE + - VCC 2.7V TO 5.5V VSENSE + POUT + - GND ______________________________________________________________________________________ High-Side Power and Current Monitors VSENSE + 4V TO 28V - RSENSE + - LOAD RS+ 4V TO 28V - RSENSE + - LOAD RS- RS+ VCC 2.7V TO 5.5V VSENSE + RS- VCC + - 2.7V TO 5.5V + - IOUT 25:1 IOUT IN POUT 0 TO 1V 1.21V REFERENCE INHIBIT POUT + - REF CIN1+ 1.21V REFERENCE INHIBIT REF CIN1+ COUT1 COUT1 CIN1- CIN1LE LE CIN2+ CIN2+ COUT2 COUT2 CIN2- CIN2MAX4211A MAX4211B MAX4211C MAX4211D MAX4211E MAX4211F GND Detailed Description The MAX4210/MAX4211 families of current- and powermonitoring ICs integrate a precision current-sense amplifier and an analog multiplier for a variety of current and power measurements. The MAX4211 integrates an additional uncommitted 1.21V reference and two comparators with open-drain outputs. These features enable the design of detector circuits for overpower, overcurrent, overvoltage, or any combination of fault conditions. The MAX4210/MAX4211 offer various gains, packages, and configurations allowing for greater design flexibility and lower overall cost. These devices monitor the load current with their highside current-sense amplifiers and provide an analog GND output voltage proportional to that current at IOUT (MAX4211). This voltage is fed to the analog multiplier for multiplying the load current with a source voltage to obtain a voltage proportional to load power at POUT. Current-Sense Amplifier The integrated current-sense amplifier is a differential amplifier that amplifies the voltage across RS+ and RS-. A sense resistor, RSENSE, is connected across RS+ and RS-. A voltage drop across RSENSE is developed when a load current is passed through it. This voltage is amplified and is proportional to the load current. This voltage is also fed to the analog multiplier for powersensing applications (see the Analog Multiplier section). The current-sense amplifiers feature three gain options: 16.67V/V, 25.0V/V, and 40.96V/V (see Table 1). ______________________________________________________________________________________ 19 MAX4210/MAX4211 Functional Diagrams (continued) MAX4210/MAX4211 High-Side Power and Current Monitors The common-mode voltage range is +4V to +28V and independent of the supply voltage. With this feature, the device can monitor the output current of a high-voltage source while running at a lower system voltage typically between 2.7V and 5.5V. The MAX4211 has a current-sense amplifier output. The voltage at IOUT is proportional to the voltage across VSENSE: VIOUT = AVIOUT x VSENSE where VSENSE is the voltage across RS+ and RS-, and AVIOUT is the amplifier gain of the device given in Table 1. Analog Multiplier The MAX4210/MAX4211 integrate an analog multiplier that enables real-time monitoring of power delivered to a load. The voltage proportional to the load current is fed to one input of the multiplier and a voltage proportional to the source voltage is fed to the other. The analog multiplier multiplies these two voltages to obtain an output voltage proportional to the load power. The analog multiplier is designed only to operate in the positive quadrant, that is, the inputs and outputs are always positive voltages. For the MAX4210D/E/F and MAX4211D/E/F, the analog multiplier full-scale input at IN is approximately 1V. This independent multiplier input allows greater design flexibility when using an external voltage-divider. For the MAX4210A/B/C and MAX4211A/B/C, an integrated voltage-divider divides the source voltage at the RS+ pin by a nominal value of 25 and passes this voltage to the multiplier. Thus, the full-scale input voltage at RS+ is 25V. The integrated, trimmed resistor-dividers reduce external component count and cost. The voltage output at POUT is proportional to the output power: For the MAX4210A/B/C and MAX4211A/B/C: VPOUT = AVPOUT x VSENSE x VRS+ For the MAX4210D/E/F and MAX4211D/E/F: VPOUT = AVPOUT x VSENSE x VIN Table 1. MAX4211 Current-Sense Amplifier Gain and Full-Scale Sense Voltage where VSENSE is the voltage across RS+ and RS- and A VPOUT is the amplifier gain of the device given in Table 2. Internal Comparators (MAX4211) The MAX4211 features two uncommitted open-drain output comparators. These comparators can be configured to trip when load current or power reaches a set limit. They can also be configured as a window comparator with wire-OR output. Comparator 1 (COUT1) features latch-enable (LE) and inhibit (INHIBIT) inputs. When LE is low, the comparator is transparent (it functions as a regular unlatched comparator). When LE is high, the comparator output (COUT1) is latched. When high, the INHIBIT input suspends the comparator operation and latches the output to the current state. The operation of INHIBIT is similar to LE, except it has a different input threshold and wider hysteresis. The INHIBIT logic-high threshold is 1.21V and logic-low threshold is 0.6V with 0.6V hysteresis. INHIBIT is useful in preventing the comparator from giving false output during fast RS+ transients. INHIBIT is generally triggered by an RC network connected to RS+ (see the Applications Information). Both comparators have a built-in 300µs blanking period at power-up to prevent false outputs. The comparator outputs are open drain and they can be pulled up to V CC, RS+, or any voltage less than +28V. LE and INHIBIT are internally pulled down by a 1µA source. Table 2. MAX4210/MAX4211 Power-Sense Amplifier Gain and Full-Scale Sense Voltage POWER-SENSE AMPLIFIER GAIN (AVPOUT, 1/V) FULL-SCALE SENSE VOLTAGE (mV) MAX4210A 0.667 150 MAX4210B 1.000 150 MAX4210C 1.640 100 MAX4210D 16.670 150 MAX4210E 25.000 150 MAX4210F 40.960 100 PART CURRENT-SENSE AMPLIFIER GAIN (AVIOUT, V/V) FULL-SCALE SENSE VOLTAGE (mV) MAX4211A 0.667 150 MAX4211B 1.000 150 MAX4211C 1.640 100 MAX4211A/D 16.67 150 MAX4211D 16.670 150 MAX4211B/E 25.00 150 MAX4211E 25.000 150 MAX4211C/F 40.96 100 MAX4211F 40.960 100 PART 20 ______________________________________________________________________________________ High-Side Power and Current Monitors Typical Operating Circuit + 4V TO 28V VSENSE - RSENSE + - LOAD RS+ RS- VCC 2.7V TO 5.5V + - C1 IOUT 25:1 POUT RP 1.21V REFERENCE R7 REF VPULLUP INHIBIT CIN1+ R3 R1 COUT1 CIN1- VPULLUP LE CIN2+ R6 R2 R4 COUT2 CIN2MAX4211A MAX4211B MAX4211C GND R5 ______________________________________________________________________________________ 21 MAX4210/MAX4211 the comparators’ inputs. This is the comparison reference voltage. If a lower reference voltage is needed, use an external voltage-divider. The reference can source or sink a load current up to 100µA. Internal Reference (MAX4211) The MAX4211 features a 1.21V bandgap reference output, stable over supply voltage and temperature. Typically, the reference output is connected to one of MAX4210/MAX4211 High-Side Power and Current Monitors Applications Information Recommended Component Values Ideally, the maximum load current develops the fullscale sense voltage across the current-sense resistor. Choose the gain version needed to yield the maximum current-sense amplifier output voltage without saturating it. The typical high-side saturation voltage is about VCC - 0.25V. The current-sense amplifier output voltage is given by: VIOUT = VSENSE x AVIOUT where VIOUT is the voltage fed to the analog multiplier or at IOUT. VSENSE is the sense voltage. AVIOUT is the current-sense amplifier gain of the device specified in Table 1. Calculate the maximum value for RSENSE so the differential voltage across RS+ and RS- does not exceed the full-scale sense voltage: RSENSE = VSENSE(FULL−SCALE) ILOAD(FULL−SCALE) Choose the highest value resistance possible to maximize VSENSE and thus minimize total output error. In applications monitoring high current, ensure that RSENSE is able to dissipate its own I2R power dissipation. If the resistor’s power dissipation is exceeded, its value can drift or it can fail altogether, causing a differential voltage across the terminals in excess of the absolute maximum ratings. Use resistors specified for current-sensing applications. Window Comparator In some applications where undercurrent or underpower (open-circuit fault) and overcurrent or overpower (short-circuit fault) needs to be monitored, a window comparator is desirable. Figure 1 shows a simple circuit suitable for window detection. Let POVER be the minimum load power required to cause a low state at COUT2, and let PUNDER be the maximum load current required to cause a high state at COUT1: PUNDER (WATTS) = POVER (WATTS) = R1 + R2 VREF AVPOUT × RSENSE R2 R4 + R5 VREF AVPOUT × RSENSE R5 where AVPOUT is the power-sense amplifier gain given in Table 2, and VREF is the internal reference voltage (1.2V, typ). The resulting comparator output is high 22 when the current is inside the current window and low when the current is outside the window. Note that COUT1 and COUT2 are wire-ORed together. Overpower Circuit Breaker Figure 2 shows a circuit breaker that shuts off current to the load when an overpower fault is detected (the same circuit can be used to detect overcurrent conditions by connecting the R1-R2 resistor-divider to IOUT, instead of POUT). This circuit is useful for protecting the battery from short-circuit or overpower conditions. When a power fault is detected, the P-MOSFET, M1, is turned off and stays off until the manual reset button is pressed. Also, cycling the input power causes the LE pin to go low, which unlatches the comparator output OUT1 and resets the circuit breaker. During power-up or when the characteristics of the load change, there can be an inrush current into the load. The temporary inrush current results in a higher voltage at POUT. This can bring the voltage at CIN+ above the reference voltage at CIN-, and, as a result, COUT1 goes high triggering the circuit-breaker function. This unwanted behavior can be disabled by bringing comparator 1’s INHIBIT input high. An RC network connected to INHIBIT (R4 and C1) can be incorporated to suspend comparator 1’s operation for a brief period. In this way, short surges in load power can be made invisible to the circuit-breaker function, while longer term overpower load demands (or a load short circuit) still “trip the breaker.” The logic-high threshold for INHIBIT is typically 1.2V, and the logic-low threshold is 0.6V. During power-up, INHIBIT quickly exceeds 1.2V through C1 and inhibits COUT1 from changing state. The comparator inputs are “inhibited” until the INHIBIT voltage is discharged to 0.6V. R3 is a current-limiting resistor, typically 10kΩ, which protects the INHIBIT input. Since INHIBIT is a high-impedance input, R3 has no effect on the R4-C1 charge/discharge time. The time during which the comparator is suspended is approximated by: ∆V tINHIBIT = R4 × C1 In 0.6V where ∆V is the voltage change at the load. For improved transient immunity, tINHIBIT can be increased as required, with the understanding that the breaker function will be suspended for this period. If any comparator is not used, its input must be biased to a known state. For example, connect CIN+ to VCC and CIN- to GND. ______________________________________________________________________________________ High-Side Power and Current Monitors 4V TO 28V VSENSE MAX4210/MAX4211 + - RSENSE + - LOAD RS+ RS- VCC 2.7V TO 5.5V + - IOUT 25:1 POUT 1.21V REFERENCE REF VPULLUP R1 INHIBIT CIN1+ COUT1 CIN1- R2 LE CIN2+ OVER/ UNDERPOWER R4 COUT2 CIN2MAX4211A MAX4211B MAX4211C GND R5 Figure 1. Window Comparator for Detecting Underpower and Overpower Faults (Also Detects Undercurrent and Overcurrent Faults by R1 and R4 to IOUT Instead of POUT) Variable-Gain Amplifier Figure 3 shows single-ended input, variable-gain amplifiers (VGA). This VGA features more than 200kHz bandwidth and is useful in automatic gain-control circuits commonly found in baseband processors. The gain is controlled by applying 0 to 1V to IN (V GC ) of the MAX4210D/E/F; 0V corresponds to minimum gain and 1V corresponds to maximum gain. Measure Load Power The MAX4210A/B/C and MAX4211A/B/C have internal voltage-divider resistors connected to RS+ and the analog multiplier input. This configuration measures source power accurately and provides protection to the power source such as a battery. To measure the load power accurately, choose the MAX4210D/E/F and MAX4211D/E/F with an external resistor-divider connected directly to the load as shown in Figure 4. This configuration improves the load-power measurement accuracy by excluding the additional power dissipated by RSENSE. Power-Supply Bypassing Bypass VCC to GND with a 0.1µF ceramic capacitor to isolate the IC from supply-voltage transients. To prevent high-frequency coupling, bypass RS+ or RS- with a 0.1µF capacitor. On the TDFN and thin QFN packages, there is an exposed paddle that does not carry any current, but should also be connected to the ground plane for rated power dissipation. ______________________________________________________________________________________ 23 MAX4210/MAX4211 High-Side Power and Current Monitors VSENSE + 4V TO 28V - M1 RSENSE + - LOAD R5 RS+ RS- VCC 2.7V TO 5.5V + - C1 IOUT 25:1 POUT R3 1.21V REFERENCE R4 INHIBIT REF R1 CIN1+ COUT1 CIN1- R2 LE CIN2+ COUT2 MANUAL RESET CIN2MAX4211A MAX4211B MAX4211C RESET (FROM µC) GND Figure 2. Overpower Circuit Breaker (For a Detailed Example, Refer to the MAX4211E EV Kit) 24 ______________________________________________________________________________________ High-Side Power and Current Monitors MAX4210/MAX4211 VCC MAX4210D/E/F RS+ POUT R2 OUTPUT RSIN VOUTPUT = VINPUT ✕ (R2/R1) ✕ AVPOUT ✕ VIN INPUT VIN GAIN CONTROL (0 TO 1V) R1 Figure 3. Single-Ended-Input, Variable-Gain Amplifier VSENSE + 4V TO 28V - RSENSE + RS+ RS- LOAD VCC 2.7V TO 5.5V + MAX4210D/E/F MAX4211D/E/F POUT IN GND Figure 4. Load-Power Measurement with External Voltage-Divider ______________________________________________________________________________________ 25 POWER GAIN (1/V) CURRENT/ POWER MEASUREMENT OUTPUT NO. OF COMPARATORS INTERNAL REFERENCE VOLTAGEMULTIPLIER INPUT (INTERNAL RESISTOR-DIVIDER/ EXTERNAL INPUT) FULL-SCALE VSENSE VOLTAGE (mV) Selector Guide CURRENT GAIN (V/V) MAX4210/MAX4211 High-Side Power and Current Monitors MAX4210AETT 6 TDFN — 0.667 P None N INT 150 MAX4210AEUA 8 µMAX — 0.667 P None N INT 150 MAX4210BETT 6 TDFN — 1.000 P None N INT 150 MAX4210BEUA 8 µMAX — 1.000 P None N INT 150 MAX4210CETT 6 TDFN — 1.640 P None N INT 100 MAX4210CEUA 8 µMAX — 1.640 P None N INT 100 MAX4210DETT 6 TDFN — 16.670 P None N EXT 150 MAX4210DEUA 8 µMAX — 16.670 P None N EXT 150 MAX4210EETT 6 TDFN — 25.000 P None N EXT 150 MAX4210EEUA 8 µMAX — 25.000 P None N EXT 150 MAX4210FETT 6 TDFN — 40.960 P None N EXT 100 MAX4210FEUA 8 µMAX — 40.960 P None N EXT 100 MAX4211AETE 16 Thin QFN 16.67 0.667 C/P 2 Y INT 150 MAX4211AEUE 16 TSSOP 16.67 0.667 C/P 2 Y INT 150 MAX4211BETE 16 Thin QFN 25.00 1.000 C/P 2 Y INT 150 MAX4211BEUE 16 TSSOP 25.00 1.000 C/P 2 Y INT 150 MAX4211CETE 16 Thin QFN 40.96 1.640 C/P 2 Y INT 100 MAX4211CEUE 16 TSSOP 40.96 1.640 C/P 2 Y INT 100 MAX4211DETE 16 Thin QFN 16.67 16.670 C/P 2 Y EXT 150 MAX4211DEUE 16 TSSOP 16.67 16.670 C/P 2 Y EXT 150 MAX4211EETE 16 Thin QFN 25.00 25.000 C/P 2 Y EXT 150 MAX4211EEUE 16 TSSOP 25.00 25.000 C/P 2 Y EXT 150 MAX4211FETE 16 Thin QFN 40.96 40.960 C/P 2 Y EXT 100 MAX4211FEUE 16 TSSOP 40.96 40.960 C/P 2 Y EXT 100 PART PINPACKAGE C = Current Measurement Output Available (IOUT). P = Power Measurement Output Available (POUT). Y = Yes. N = No. INT = Internal Resistor-Divider. EXT = External Input Pin. 26 ______________________________________________________________________________________ High-Side Power and Current Monitors PART TEMP RANGE PIN-PACKAGE 6 TDFN-6-EP* (3mm x 3mm) MAX4210BETT -40°C to +85°C MAX4210BEUA -40°C to +85°C 8 µMAX MAX4210CETT -40°C to +85°C MAX4210CEUA -40°C to +85°C 8 µMAX MAX4210DETT -40°C to +85°C MAX4210DEUA -40°C to +85°C 8 µMAX MAX4210EETT -40°C to +85°C MAX4210EEUA -40°C to +85°C 8 µMAX MAX4210FETT -40°C to +85°C MAX4210FEUA -40°C to +85°C 8 µMAX MAX4211AETE -40°C to +85°C MAX4211AEUE -40°C to +85°C 16 TSSOP MAX4211BETE -40°C to +85°C MAX4211BEUE -40°C to +85°C 16 TSSOP MAX4211CETE -40°C to +85°C MAX4211CEUE -40°C to +85°C 16 TSSOP MAX4211DETE -40°C to +85°C MAX4211DEUE -40°C to +85°C 16 TSSOP MAX4211EETE -40°C to +85°C MAX4211EEUE -40°C to +85°C 16 TSSOP MAX4211FETE -40°C to +85°C MAX4211FEUE -40°C to +85°C 16 TSSOP 6 TDFN-6-EP* (3mm x 3mm) 6 TDFN-6-EP* (3mm x 3mm) 6 TDFN-6-EP* (3mm x 3mm) 6 TDFN-6-EP* (3mm x 3mm) 16 Thin QFN-EP* (4mm x 4mm) 16 Thin QFN-EP* (4mm x 4mm) 16 Thin QFN-EP* (4mm x 4mm) 16 Thin QFN-EP* (4mm x 4mm) 16 Thin QFN-EP* (4mm x 4mm) 16 Thin QFN-EP* (4mm x 4mm) TOP MARK Chip Information MAX4210 TRANSISTOR COUNT: 515 MAX4211 TRANSISTOR COUNT: 1032 PROCESS: BiCMOS AHG — AHH — AHI — AHJ — AHK — — — — — — — — — — — — — *EP = Exposed paddle. ______________________________________________________________________________________ 27 MAX4210/MAX4211 Ordering Information (continued) High-Side Power and Current Monitors MAX4210/MAX4211 Pin Configurations POUT RS- RS+ TOP VIEW 6 5 4 MAX4210 1 1 8 2 7 RS- N.C. 3 6 N.C. VCC 4 5 RS+ VCC (IN) N.C. MAX4210 POUT µMAX 3 2 GND GND (IN) N.C. REF CIN1- CIN1+ CIN2- 3mm x 3mm TDFN 12 11 10 9 POUT 13 8 CIN2+ IOUT 14 7 GND MAX4211 RS- 15 1 2 3 4 VCC (IN) N.C. LE COUT1 RS+ 16 6 COUT2 5 INHIBIT RS- 1 16 IOUT RS+ 2 15 POUT VCC 3 14 REF (IN) N.C. 4 MAX4211 13 CIN1- LE 5 12 CIN1+ COUT1 6 11 CIN2- INHIBIT 7 10 CIN2+ COUT2 8 9 GND TSSOP 4mm x 4mm THIN QFN ( ) ARE FOR MAX421_D/E/F. 28 ______________________________________________________________________________________ High-Side Power and Current Monitors 6, 8, &10L, DFN THIN.EPS D2 D A2 PIN 1 ID N 0.35x0.35 b PIN 1 INDEX AREA E [(N/2)-1] x e REF. E2 DETAIL A e k A1 CL A CL L L e e PACKAGE OUTLINE, 6,8,10 & 14L, TDFN, EXPOSED PAD, 3x3x0.80 mm -DRAWING NOT TO SCALE- 21-0137 G 1 2 COMMON DIMENSIONS MIN. MAX. D 0.70 2.90 0.80 3.10 E A1 2.90 0.00 3.10 0.05 L k 0.20 0.40 0.25 MIN. A2 0.20 REF. SYMBOL A PACKAGE VARIATIONS PKG. CODE N D2 E2 e JEDEC SPEC b [(N/2)-1] x e DOWNBONDS ALLOWED T633-1 6 1.50–0.10 2.30–0.10 0.95 BSC MO229 / WEEA 0.40–0.05 1.90 REF NO T633-2 6 1.50–0.10 2.30–0.10 0.95 BSC MO229 / WEEA 0.40–0.05 1.90 REF NO T833-1 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF NO T833-2 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF NO T833-3 8 1.50–0.10 2.30–0.10 0.65 BSC MO229 / WEEC 0.30–0.05 1.95 REF YES T1033-1 10 1.50–0.10 2.30–0.10 0.50 BSC MO229 / WEED-3 0.25–0.05 2.00 REF NO T1433-1 14 1.70–0.10 2.30–0.10 0.40 BSC ---- 0.20–0.05 2.40 REF YES T1433-2 14 1.70–0.10 2.30–0.10 0.40 BSC ---- 0.20–0.05 2.40 REF NO PACKAGE OUTLINE, 6,8,10 & 14L, TDFN, EXPOSED PAD, 3x3x0.80 mm -DRAWING NOT TO SCALE- 21-0137 G 2 2 NOTE: THE TDFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T633-1 ______________________________________________________________________________________ 29 MAX4210/MAX4211 Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) 24L QFN THIN.EPS MAX4210/MAX4211 High-Side Power and Current Monitors PACKAGE OUTLINE, 12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm 21-0139 D 1 2 PACKAGE OUTLINE, 12, 16, 20, 24, 28L THIN QFN, 4x4x0.8mm 21-0139 D 2 2 NOTE: THE THIN QFN EXPOSED PADDLE SIZE-VARIATION PACKAGE CODE: T1644-4 30 ______________________________________________________________________________________ High-Side Power and Current Monitors 8 INCHES DIM A A1 A2 b E fl 0.50–0.1 H c D e E H 0.6–0.1 L 1 1 α 0.6–0.1 S BOTTOM VIEW D MIN 0.002 0.030 MAX 0.043 0.006 0.037 0.010 0.014 0.005 0.007 0.116 0.120 0.0256 BSC 0.116 0.120 0.188 0.198 0.016 0.026 6 0 0.0207 BSC 8LUMAXD.EPS 4X S 8 MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95 0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0 6 0.5250 BSC TOP VIEW A1 A2 A α c e FRONT VIEW b L SIDE VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 8L uMAX/uSOP APPROVAL DOCUMENT CONTROL NO. 21-0036 REV. J 1 1 ______________________________________________________________________________________ 31 MAX4210/MAX4211 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) TSSOP4.40mm.EPS MAX4210/MAX4211 High-Side Power and Current Monitors Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 32 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 2005 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products, Inc.