19-1178; Rev 1; 6/98 L MANUA ION KIT HEET T A U L EVA TA S WS DA FOLLO Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable The MAX4212/MAX4213 single, MAX4216 dual, MAX4218 triple, and MAX4220 quad op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail outputs. The MAX4213/ MAX4218 have a disable feature that reduces powersupply current to 400µA and places the outputs into a high-impedance state. These devices operate from a +3.3V to +10V single supply or from ±1.65V to ±5V dual supplies. The common-mode input voltage range extends beyond the negative power-supply rail (ground in single-supply applications). These devices require only 5.5mA of quiescent supply current while achieving a 300MHz -3dB bandwidth and a 600V/µs slew rate. Input voltage noise is only 10nV/√Hz and input current noise is only 1.3pA/√Hz for either the inverting or noninverting input. These parts are an excellent solution in low-power/low-voltage systems that require wide bandwidth, such as video, communications, and instrumentation. In addition, when disabled, their high output impedance makes them ideal for multiplexing applications. The MAX4212 comes in a miniature 5-pin SOT23 package, while the MAX4213/MAX4216 come in 8-pin µMAX and SO packages. The MAX4218/MAX4220 are available in a space-saving 16-pin QSOP, as well as a 14-pin SO. Applications Battery-Powered Instruments Video Line Driver Analog-to-Digital Converter Interface CCD Imaging Systems Video Routing and Switching Systems Features ♦ High Speed: 300MHz -3dB Bandwidth (MAX4212/13) 200MHz -3dB Bandwidth (MAX4216/18/20) 50MHz 0.1dB Gain Flatness (MAX4212/13) 600V/µs Slew Rate ♦ Single 3.3V/5.0V Operation ♦ Rail-to-Rail Outputs ♦ Input Common-Mode Range Extends Beyond VEE ♦ Low Differential Gain/Phase: 0.02%/0.02° ♦ Low Distortion at 5MHz: -78dBc SFDR -75dB Total Harmonic Distortion ♦ High Output Drive: ±100mA ♦ 400µA Shutdown Capability (MAX4213/18) ♦ High Output Impedance in Off State (MAX4213/18) ♦ Space-Saving SOT23-5, µMAX, or QSOP Packages Ordering Information PART TEMP. RANGE PINPACKAGE SOT TOP MARK MAX4212EUK -40°C to +85°C 5 SOT23-5 ABAF MAX4213ESA -40°C to +85°C 8 SO — MAX4213EUA -40°C to +85°C 8 µMAX — Ordering Information continued at end of data sheet. Pin Configuration Typical Operating Circuit TOP VIEW RF 24Ω OUT 1 RTO 50Ω MAX4212 VOUT ZO = 50Ω VEE 2 5 VCC IN+ 3 RTIN 50Ω UNITY-GAIN LINE DRIVER (RL = RO + RTO) 4 SOT23-5 EN 7 VCC IN+ 3 6 OUT VEE 4 5 N.C. IN- 2 MAX4212 RO 50Ω IN 8 N.C. 1 IN- MAX4213 µMAX/SO Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 General Description MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE)................................................+12V IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V) Output Short-Circuit Duration to VCC or VEE ............. Continuous Continuous Power Dissipation (TA = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW 8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) ............221mW 14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW 16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS (VCC = +5V, VEE = 0V, EN_ = +5V, RL = 2kΩ to VCC / 2, VOUT = VCC / 2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL Input Common-Mode Voltage Range VCM Input Offset Voltage (Note 1) VOS Input Offset Voltage Temperature Coefficient Input Offset Current Input Resistance Common-Mode Rejection Ratio Open-Loop Gain (Note 1) Guaranteed by CMRR test MAX VCC 2.25 4 12 MAX42_ _ES_, MAX42_ _EEE 4 9 UNITS V mV 8 µV/°C Any channels for MAX4216/MAX4218/ MAX4220 ±1 mV IB (Note 1) 5.4 9.0 µA IOS (Note 1) 0.1 1.0 Differential mode (-1V ≤ VIN ≤ +1V) 70 µA kΩ Common mode (-0.2V ≤ VCM ≤ +2.75V) 3 MΩ dB RIN CMRR AVOL (VEE - 0.2V) ≤ VCM ≤ (VCC - 2.25V) 0.25V ≤ VOUT ≤ 4.75V, RL = 2kΩ 70 100 55 61 0.5V ≤ VOUT ≤ 4.5V, RL = 150Ω 52 59 RL = 10kΩ RL = 2kΩ VOUT RL = 150Ω RL = 50Ω 2 TYP MAX4212EUK, MAX421_EUA 1.0V ≤ VOUT ≤ 4V, RL = 50Ω Output Voltage Swing MIN VEE 0.20 TCVOS Input Offset Voltage Matching Input Bias Current CONDITIONS dB 57 VCC - VOH 0.05 VOL - VEE 0.05 VCC - VOH 0.06 0.20 VOL - VEE 0.06 0.20 VCC - VOH 0.30 0.50 VOL - VEE 0.30 0.50 VCC - VOH 0.70 VOL - VEE 0.60 _______________________________________________________________________________________ V Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable (VCC = +5V, VEE = 0V, EN_ = +5V, RL = 2kΩ to VCC / 2, VOUT = VCC / 2, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Output Current SYMBOL IOUT Output Short-Circuit Current ISC Open-Loop Output Resistance ROUT Power-Supply Rejection Ratio (Note 2) PSRR CONDITIONS RL = 20Ω to VCC or VEE MIN ±100 Sinking or sourcing Disabled Output Resistance VS ROUT (OFF) EN_ Logic-Low Threshold VIL EN_ Logic-High Threshold VIH EN_ Logic Input Low Current IIL EN_ Logic Input High Current IIH Quiescent Supply Current (per Amplifier) IS MAX ±120 mA mA Ω VCC = 5V, VEE = 0V, VCM = +2.0V 52 57 VCC = 5V, VEE = -5V, VCM = 0V 60 66 VCC to VEE EN_ = 0V, 0V ≤ VOUT ≤ 5V (Note 3) UNITS ±150 8 VCC = 3.3V, VEE = 0V, VCM = +0.90V Operating Supply-Voltage Range TYP dB 45 3.15 20 11.0 V kΩ 35 VCC - 2.6 VCC - 1.6 V V (VEE + 0.2V) ≤ EN_ ≤ VCC 0.5 EN_ = 0V 200 300 EN_ = 5V 0.5 10 Enabled 5.5 7.0 Disabled (EN_ = 0V) 0.40 0.55 µA µA mA _______________________________________________________________________________________ 3 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 DC ELECTRICAL CHARACTERISTICS (continued) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable AC ELECTRICAL CHARACTERISTICS (VCC = +5V, VEE = 0V, VCM = 2.5V, EN_ = +5V, RF = 24Ω, RL = 100Ω to VCC / 2, VOUT = VCC / 2, AVCL = +1, TA = +25°C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS Small-Signal -3dB Bandwidth BWSS VOUT = 20mVp-p Large-Signal -3dB Bandwidth BWLS VOUT = 2Vp-p Bandwidth for 0.1dB Gain Flatness BW0.1dB VOUT = 20mVp-p MIN TYP MAX4212/MAX4213 300 MAX4216/MAX4218/ MAX4220 200 180 MAX4212/MAX4213 50 MAX4216/MAX4218/ MAX4220 35 MAX UNITS MHz MHz MHz Slew Rate SR VOUT = 2V step 600 V/µs Settling Time to 0.1% tS VOUT = 2V step 45 ns 1 ns -78 dBc Rise/Fall Time tR, tF VOUT = 100mVp-p Spurious-Free Dynamic Range SFDR fC = 5MHz, VOUT = 2Vp-p Harmonic Distortion Two-Tone, Third-Order Intermodulation Distortion HD IP3 Input 1dB Compression Point fC = 5MHz, VOUT = 2Vp-p 2nd harmonic -78 3rd harmonic -82 Total harmonic distortion -75 dB 35 dBc f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1Vp-p 11 dBm Differential Phase Error DP NTSC, RL = 150Ω 0.02 degrees Differential Gain Error DG NTSC, RL = 150Ω 0.02 % Input Noise-Voltage Density en f = 10kHz 10 nV/√Hz Input Noise-Current Density in f = 10kHz 1.3 pA/√Hz Input Capacitance Disabled Output Capacitance Output Impedance fC = 10MHz, AVCL = +2 dBc 1 pF COUT (OFF) CIN EN_ = 0V 2 pF ZOUT f = 10MHz 6 Ω Amplifier Enable Time tON 100 ns Amplifier Disable Time tOFF 1 µs MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 20mVp-p 0.1 dB MAX4216/MAX4218/MAX4220, f = 10MHz, VOUT = 2Vp-p -95 dB Amplifier Gain Matching Amplifier Crosstalk XTALK Note 1: Tested with VCM = +2.5V. Note 2: PSR for single +5V supply tested with VEE = 0V, VCC = +4.5V to +5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V, VCC = +4.5V to +5.5V; and for single +3.3V supply with VEE = 0V, VCC = +3.15V to +3.45V. Note 3: Does not include the external feedback network’s impedance. 4 _______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable VOUT = 20mVp-p 3 2 2 8 -1 -2 6 -1 -2 -3 5 4 3 -3 -4 2 -4 -5 1 -5 -6 0 -6 -7 1M 10M 100M -1 100k 1M 10M 100M 1G 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) MAX4216/18/20 SMALL-SIGNAL GAIN vs. FREQUENCY LARGE-SIGNAL GAIN vs. FREQUENCY MAX4212/13 GAIN FLATNESS vs. FREQUENCY 7 3 VOUT = 2Vp-p VOUT BIAS = 1.75V 2 6 0.7 0.6 0.5 0.4 4 3 GAIN (dB) GAIN (dB) 1 5 0 -1 -2 0.3 0.2 0.1 2 -3 0 1 -4 -0.1 0 -5 -0.2 -1 -6 1M 10M 100M 1G -0.3 100k 1M 10M 100M 1M 10M 100M 1G FREQUENCY (Hz) FREQUENCY (Hz) FREQUENCY (Hz) MAX4216/18/20 GAIN FLATNESS vs. FREQUENCY MAX4216/18/20 CROSSTALK vs. FREQUENCY CLOSED-LOOP OUTPUT IMPEDANCE vs. FREQUENCY 0.3 10 CROSSTALK (dB) 0.2 30 0.1 0 -0.1 -0.2 -10 -30 -50 -70 -110 -0.4 -130 10M 100M FREQUENCY (Hz) 1G 10 1 -150 1M 100 -90 -0.3 -0.5 1000 IMPEDANCE (Ω) 0.4 MAX4212/3/6/8/20-09 50 MAX4212/3/6/8/20-07 0.5 0.1M 0.1M 1G MAX4212/3/6/8/20-08 100k 1G MAX4212/3/6/8/20-06 AVCL = +2 VOUT = 20mVp-p MAX4212/3/6/8/20-05 4 MAX4212/3/6/8/20-04 8 1G AVCL = +2 VOUT = 20mVp-p 7 GAIN (dB) GAIN (dB) GAIN (dB) 0 9 GAIN (dB) 9 0 100k GAIN (dB) VOUT = 20mVp-p 1 1 MAX4212/13 SMALL-SIGNAL GAIN vs. FREQUENCY MAX4212/3/6/8/20-02 3 MAX4212/3/6/8/20-01 4 MAX4216/18/20 SMALL-SIGNAL GAIN vs. FREQUENCY MAX4212/3/6/8/20-03 MAX4212/13 SMALL-SIGNAL GAIN vs. FREQUENCY 0.1 100k 1M 10M 100M FREQUENCY (Hz) 1G 0.1M 1M 10M 100M FREQUENCY (Hz) _______________________________________________________________________________________ 5 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 __________________________________________Typical Operating Characteristics (VCC = +5V, VEE = 0V, AVCL = +1, RF = 24Ω, RL = 100Ω to VCC / 2, TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0V, AVCL = +1, RF = 24Ω, RL = 100Ω to VCC / 2, TA = +25°C, unless otherwise noted.) -60 2ND HARMONIC -80 3RD HARMONIC -90 -100 100k 1M 10M -80 3RD HARMONIC 10M -50 -60 -70 2ND HARMONIC -80 200 400 600 LOAD (Ω) 800 MAX4212/3/6/8/20-14 -30 -40 -30 -40 -50 -60 -70 -80 -60 -70 2ND HARMONIC -80 3RD HARMONIC 100M MAX4212/3/6/8/20-12 VCM = +1.35V 0.02 0.01 0.00 -0.01 0 100 OUTPUT SWING vs. LOAD RESISTANCE (RL) MAX4212/3/6/8/20-17 -10 -20 -30 -40 -50 4.5 4.0 3.5 3.0 2.5 2.0 -60 -80 10M 100 IRE 0.03 IRE 0 -100 FREQUENCY (Hz) 100M 0.00 2.0 10 -70 1M 1.0 1.5 OUTPUT SWING (Vp-p) 20 -90 100k 0.01 0 0.5 POWER-SUPPLY REJECTION (dB) -20 VCM = +1.35V 0.02 POWER-SUPPLY REJECTION vs. FREQUENCY MAX4212/3/6/8/20-16 0 10M 0.03 -50 1000 1M -0.01 COMMON-MODE REJECTION vs. FREQUENCY -10 100k DIFFERENTIAL GAIN AND PHASE -100 0 -80 FREQUENCY (Hz) -20 -90 3RD HARMONIC 3RD HARMONIC -70 100M fO = 5MHz -10 -100 6 1M 0 HARMONIC DISTORTION (dBc) -40 -60 -90 100k 2ND HARMONIC -50 -100 HARMONIC DISTORTION vs. OUTPUT SWING -30 -40 -100 HARMONIC DISTORTION vs. LOAD -20 -30 -90 FREQUENCY (Hz) MAX4212/3/6/8/20-13 HARMONIC DISTORTION (dBc) 2ND HARMONIC -70 100M f = 5MHz VOUT = 2Vp-p -90 -60 FREQUENCY (Hz) 0 -10 -50 -20 MAX4212/3/6/8/20-18 -70 -40 VOUT = 2Vp-p AVCL = +5 MAX4212/3/6/8/20-15 -50 -30 DIFF. GAIN (%) -40 -20 0 -10 DIFF. PHASE (deg) -30 VOUT = 2Vp-p AVCL = +2 OUTPUT SWING (Vp-p) -20 0 -10 MAX4212/3/6/8/20-11 VOUT = 2Vp-p HARMONIC DISTORTION (dBc) HARMONIC DISTORTION (dBc) MAX4212/3/6/8/20-10 0 -10 HARMONIC DISTORTION vs. FREQUENCY (AVCL = +5) HARMONIC DISTORTION vs. FREQUENCY (AVCL = +2) HARMONIC DISTORTION (dBc) HARMONIC DISTORTION vs. FREQUENCY (AVCL = +1) CMR (dB) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable 1.5 AVCL = +2 1.0 100k 1M 10M FREQUENCY (Hz) 100M 25 50 75 100 125 LOAD RESISTANCE (Ω) _______________________________________________________________________________________ 150 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable SMALL-SIGNAL PULSE RESPONSE (AVCL = +2) SMALL-SIGNAL PULSE RESPONSE (AVCL = +1) SMALL-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = +1) MAX4212/3/6/8/20-20 IN (25mV/ div) IN (50mV/ div) VOLTAGE VOLTAGE MAX4212/3/6/8/20-21 VOLTAGE MAX4212/3/6/8/20-19 OUT (25mV/ div) OUT (25mV/ div) OUT (25mV/ div) IN (50mV/ div) TIME (20ns/div) TIME (20ns/div) VCM = +1.75V, RL = 100Ω to GROUND LARGE-SIGNAL PULSE RESPONSE (AVCL = +2) LARGE-SIGNAL PULSE RESPONSE (AVCL = +1) LARGE-SIGNAL PULSE RESPONSE (CL = 5pF, AVCL = +2) MAX4212/3/6/8/20-24 MAX4212/3/6/8/20-23 MAX4212/3/6/8/20-22 IN (1V/ div) VOLTAGE VOLTAGE VOLTAGE IN (500mV/ div) IN (1V/div) OUT (500mV/ div) OUT (1V/div) OUT (500mV/ div) TIME (20ns/div) TIME (20ns/div) TIME (20ns/div) MAX4218 CURRENT NOISE DENSITY vs. FREQUENCY MAX4213 VOLTAGE NOISE DENSITY vs. FREQUENCY ENABLE RESPONSE TIME MAX4212/3/6/8/20-27 5.0V (ENABLE) EN_ NOISE (pA/ √Hz) MAX4212/3/6/8/20-26 10 MAX4212/3/6/8/20-25 100 VCM = +1.75V, RL = 100Ω to GROUND VCM = 0.9V, RL = 100Ω to GROUND VCM = +1.75V, RL = 100Ω to GROUND NOISE (nV/√Hz) TIME (20ns/div) VCM = +1.25V, RL = 100Ω to GROUND VCM = +2.5V, RL = 100Ω to GROUND 10 0V (DISABLE) OUT 1V 0V 1 1 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M 1 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M TIME (1µs/div) VIN = +1.0V _______________________________________________________________________________________ 7 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 ____________________________Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0V, AVCL = +1, RF = 24Ω, RL = 100Ω to VCC / 2, TA = +25°C, unless otherwise noted.) ____________________________Typical Operating Characteristics (continued) (VCC = +5V, VEE = 0V, AVCL = +1, RF = 24Ω, RL = 100Ω to VCC / 2, TA = +25°C, unless otherwise noted.) CLOSED-LOOP BANDWIDTH vs. LOAD RESISTANCE 30 20 300 250 200 150 100 1k 100 200 300 400 500 LOAD RESISTANCE (Ω) 100k 600 5 4 MAX4212/3/6/8/20-32 5.5 5.0 4.5 POWER-SUPPLY CURRENT vs. POWER-SUPPLY VOLTAGE -25 0 25 50 TEMPERATURE (°C) 75 6 4 2 0 0.04 -50 4 11 -25 0 25 50 TEMPERATURE (°C) 75 100 VOLTAGE SWING vs. TEMPERATURE 3 2 5.0 RL = 150Ω TO VCC / 2 4.8 4.6 4.4 4.2 1 4.0 0 5 6 7 8 9 10 POWER-SUPPLY VOLTAGE (V) 0.08 100 MAX4212/3/6/8/20-35 5 INPUT OFFSET VOLTAGE (mV) MAX4212/3/6/8/20-34 8 4 0.12 INPUT OFFSET VOLTAGE vs. TEMPERATURE 10 3 0.16 0 -50 100 100M 0.20 VOLTAGE SWING (Vp-p) 75 10M FREQUENCY (Hz) 4.0 3 1M INPUT OFFSET CURRENT vs. TEMPERATURE 6.0 INPUT BIAS CURRENT (µA) MAX4212/3/6/8/20-31 POWER-SUPPLY CURRENT (mA) 6 0 25 50 TEMPERATURE (°C) -60 INPUT BIAS CURRENT vs. TEMPERATURE 7 -25 -50 -90 0 POWER-SUPPLY CURRENT vs. TEMPERATURE -50 -40 MAX4212/3/6/8/20-33 400 600 800 LOAD RESISTANCE (Ω) -30 -80 INPUT OFFSET CURRENT (µA) 200 -20 -70 50 0 0 8 0 -10 MAX4212/3/6/8/20-36 40 350 OFF ISOLATION (dB) 50 OFF ISOLATION vs. FREQUENCY 10 MAX4212/3/6/8/20-29 OPEN-LOOP GAIN (dB) 60 400 CLOSED-LOOP BANDWIDTH (MHz) MAX4212/3/6/8/20-28 70 MAX4212/3/6/8/20-30 OPEN-LOOP GAIN vs. LOAD RESISTANCE POWER-SUPPLY CURRENT (mA) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable -50 -25 0 25 50 TEMPERATURE (°C) 75 100 -50 -25 0 25 50 TEMPERATURE (°C) _______________________________________________________________________________________ 75 100 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable PIN MAX4212 MAX4213 MAX4216 SOT23-5 SO/µMAX SO/µMAX MAX4218 MAX4220 SO QSOP SO QSOP NAME FUNCTION — 1, 5 — — 8, 9 — 8, 9 N.C. No Connect. Not internally connected. Tie to ground or leave open. 1 6 — — — — — OUT Amplifier Output 2 4 4 11 13 11 13 VEE Negative Power Supply or Ground (in single-supply operation) 3 3 — — — — — IN+ Noninverting Input 4 2 — — — — — IN- Inverting Input 5 7 8 4 4 4 4 VCC Positive Power Supply — — 1 7 7 1 1 OUTA — — 2 6 6 2 2 INA- Amplifier A Inverting Input — — 3 5 5 3 3 INA+ Amplifier A Noninverting Input — — 7 8 10 7 7 OUTB Amplifier B Output — — 6 9 11 6 6 INB- Amplifier B Inverting Input — — 5 10 12 5 5 INB+ Amplifier B Noninverting Input — — — 14 16 8 10 OUTC Amplifier C Output — — — 13 15 9 11 INC- Amplifier C Inverting Input — — — 12 14 10 12 INC+ Amplifier C Noninverting Input — — — — — 14 16 OUTD Amplifier D Output — — — — — 13 15 IND- Amplifier D Inverting Input — — — — — 12 14 IND+ Amplifier D Noninverting Input — 8 — — — — — EN — — — 1 1 — — ENA Enable Amplifier A — — — 3 3 — — ENB Enable Amplifier B — — — 2 2 — — ENC Enable Amplifier C Amplifier A Output Enable Amplifier _______________________________________________________________________________________ 9 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 ______________________________________________________________Pin Description MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable _______________Detailed Description The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are single-supply, rail-to-rail, voltage-feedback amplifiers that employ current-feedback techniques to achieve 600V/µs slew rates and 300MHz bandwidths. Excellent harmonic distortion and differential gain/ phase performance make these amplifiers an ideal choice for a wide variety of video and RF signalprocessing applications. The output voltage swing comes to within 50mV of each supply rail. Local feedback around the output stage assures low open-loop output impedance to reduce gain sensitivity to load variations. This feedback also produces demand-driven current bias to the output transistors for ±100mA drive capability, while constraining total supply current to less than 7mA. The input stage permits common-mode voltages beyond the negative supply and to within 2.25V of the positive supply rail. __________Applications Information Choosing Resistor Values Unity-Gain Configuration The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are internally compensated for unity gain. When configured for unity gain, the devices require a 24Ω resistor (R F ) in series with the feedback path. This resistor RG improves AC response by reducing the Q of the parallel LC circuit formed by the parasitic feedback capacitance and inductance. Inverting and Noninverting Configurations Select the gain-setting feedback (RF) and input (RG) resistor values to fit your application. Large resistor values increase voltage noise and interact with the amplifier’s input and PC board capacitance. This can generate undesirable poles and zeros and decrease bandwidth or cause oscillations. For example, a noninverting gain-of-two configuration (RF = RG) using 1kΩ resistors, combined with 1pF of amplifier input capacitance and 1pF of PC board capacitance, causes a pole at 159MHz. Since this pole is within the amplifier bandwidth, it jeopardizes stability. Reducing the 1kΩ resistors to 100Ω extends the pole frequency to 1.59GHz, but could limit output swing by adding 200Ω in parallel with the amplifier’s load resistor. Table 1 shows suggested feedback, gain resistors, and bandwidth for several gain values in the configurations shown in Figures 1a and 1b. Layout and Power-Supply Bypassing These amplifiers operate from a single +3.3V to +11V power supply or from dual supplies to ±5.5V. For singlesupply operation, bypass VCC to ground with a 0.1µF capacitor as close to the pin as possible. If operating with dual supplies, bypass each supply with a 0.1µF capacitor. RF RF RG IN RTO IN VOUT = [1+ (RF / RG)] VIN RTIN Figure 1a. Noninverting Gain Configuration 10 VOUT RTIN RTO RO VOUT = -(RF / RG) VIN RS Figure 1b. Inverting Gain Configuration ______________________________________________________________________________________ VOUT RO Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable • Use surface-mount instead of through-hole components for better high-frequency performance. • Use a PC board with at least two layers; it should be as free from voids as possible. • Keep signal lines as short and as straight as possible. Do not make 90° turns; round all corners. Rail-to-Rail Outputs, Ground-Sensing Input The input common-mode range extends from (VEE - 200mV) to (VCC - 2.25V) with excellent commonmode rejection. Beyond this range, the amplifier output is a nonlinear function of the input, but does not undergo phase reversal or latchup. The output swings to within 50mV of either powersupply rail with a 10kΩ load. The input ground-sensing and the rail-to-rail output substantially increase the dynamic range. With a symmetric input in a single +5V application, the input can swing 2.95Vp-p, and the output can swing 4.9Vp-p with minimal distortion. Enable Input and Disabled Output The enable feature (EN_) allows the amplifier to be placed in a low-power, high-output-impedance state. Typically, the EN_ logic low input current (IIL) is small. However, as the EN voltage (VIL) approaches the negative supply rail, IIL increases (Figure 2). A single resistor connected as shown in Figure 3 prevents the rise in the logic-low input current. This resistor provides a feedback mechanism that increases VIL as the logic input is brought to VEE. Figure 4 shows the resulting input current (IIL). When the MAX4213/MAX4218 are disabled, the amplifier’s output impedance is 35kΩ. This high resistance and the low 2pF output capacitance make these parts ideal in RF/video multiplexer or switch applications. For larger arrays, pay careful attention to capacitive loading. See the Output Capacitive Loading and Stability section for more information. Table 1. Recommended Component Values GAIN (V/V) COMPONENT +1 -1 +2 -2 +5 -5 +10 -10 +25 -25 RF (Ω) 24 500 500 500 500 500 500 500 500 1200 RG (Ω) ∞ 500 500 250 124 100 56 50 20 50 RS (Ω) — 0 — 0 — 0 — 0 — 0 RTIN (Ω) 49.9 56 49.9 62 49.9 100 49.9 ∞ 49.9 ∞ RTO (Ω) 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 49.9 Small-Signal -3dB Bandwidth (MHz) 300 90 105 60 25 33 11 25 6 10 Note: RL = RO + RTO; RTIN and RTO are calculated for 50Ω applications. For 75Ω systems, RTO = 75Ω; calculate RTIN from the following equation: R TIN = 75 Ω 75 1RG ______________________________________________________________________________________ 11 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Maxim recommends using microstrip and stripline techniques to obtain full bandwidth. To ensure that the PC board does not degrade the amplifier’s performance, design it for a frequency greater than 1GHz. Pay careful attention to inputs and outputs to avoid large parasitic capacitance. Whether or not you use a constantimpedance board, observe the following guidelines when designing the board: • Don’t use wire-wrap boards because they are too inductive. • Don’t use IC sockets because they increase parasitic capacitance and inductance. 20 ENABLE 0 INPUT CURRENT (µA) -20 10k -40 IN- -60 -80 EN_ MAX42_ _ OUT IN+ -100 -120 -140 -160 0 50 100 150 200 250 300 350 400 450 500 Figure 3. Circuit to Reduce Enable Logic-Low Input Current mV ABOVE VEE Output Capacitive Loading and Stability Figure 2. Enable Logic-Low Input Current vs. VIL 0 -1 -2 INPUT CURRENT (µA) MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable -3 -4 -5 -6 -7 -8 -9 -10 0 50 100 150 200 250 300 350 400 450 500 mV ABOVE VEE Figure 4. Enable Logic-Low Input Current vs. VIL with 10kΩ Series Resistor 12 The MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 are optimized for AC performance. They are not designed to drive highly reactive loads, which decreases phase margin and may produce excessive ringing and oscillation. Figure 5 shows a circuit that eliminates this problem. Figure 6 is a graph of the optimal isolation resistor (RS) vs. capacitive load. Figure 7 shows how a capacitive load causes excessive peaking of the amplifier’s frequency response if the capacitor is not isolated from the amplifier by a resistor. A small isolation resistor (usually 20Ω to 30Ω) placed before the reactive load prevents ringing and oscillation. At higher capacitive loads, AC performance is controlled by the interaction of the load capacitance and the isolation resistor. Figure 8 shows the effect of a 27Ω isolation resistor on closed-loop response. Coaxial cable and other transmission lines are easily driven when properly terminated at both ends with their characteristic impedance. Driving back-terminated transmission lines essentially eliminates the line’s capacitance. ______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 RF RG RISO VOUT MAX42_ _ VIN CL 50Ω RTIN ISOLATION RESISTANCE, RISO (Ω) 30 25 20 15 10 5 0 0 Figure 5. Driving a Capacitive Load through an Isolation Resistor 100 150 200 CAPACITIVE LOAD (pF) 250 Figure 6. Capacitive Load vs. Isolation Resistance 6 3 5 2 CL = 15pF 4 RISO = 27Ω CL = 47pF 1 3 0 CL = 10pF 2 GIAN (dB) GIAN (dB) 50 1 0 CL = 5pF -1 CL = 68pF -1 -2 CL = 120pF -3 -4 -2 -5 -3 -6 -4 -7 100k 1M 10M 100M 1G FREQUENCY (Hz) Figure 7. Small-Signal Gain vs. Frequency with Load Capacitance and No Isolation Resistor 100k 1M 10M 100M 1G FREQUENCY (Hz) Figure 8. Small-Signal Gain vs. Frequency with Load Capacitance and 27Ω Isolation Resistor ______________________________________________________________________________________ 13 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable _____________________________________________Pin Configurations (continued) TOP VIEW 14 OUTC OUTA 1 14 OUTD ENC 2 13 INC- INA- 2 13 IND- ENB 3 12 INC+ INA+ 3 12 IND+ ENA 1 MAX4218 VCC 4 10 INB+ INB+ 5 10 INC+ INA- 6 9 INB- INB- 6 9 INC- 8 OUTB OUTB 7 8 OUTC VCC 4 OUTA 7 SO OUTA 1 INA- 2 INA+ 3 MAX4216 VEE 4 µMAX/SO 8 VCC 7 OUTB 6 INB- 5 INB+ 11 VEE SO ENA 1 16 OUTC OUTA 1 16 OUTD ENC 2 15 INC- INA- 2 15 IND- ENB 3 14 INC+ INA+ 3 14 IND+ MAX4218 MAX4220 13 VEE VCC 4 INA+ 5 12 INB+ INB+ 5 12 INC+ VCC 4 13 VEE INA- 6 11 INB- INB- 6 11 INC- OUTA 7 10 OUTB OUTB 7 10 OUTC N.C. 8 9 N.C. N.C. 8 9 N.C. QSOP 14 MAX4220 11 VEE INA+ 5 QSOP ______________________________________________________________________________________ Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable PINPACKAGE SOT TOP MARK PART TEMP. RANGE MAX4216ESA -40°C to +85°C 8 SO — MAX4216EUA -40°C to +85°C 8 µMAX — MAX4218ESD -40°C to +85°C 14 SO — MAX4218EEE -40°C to +85°C 16 QSOP — MAX4220ESD -40°C to +85°C 14 SO — MAX4220EEE -40°C to +85°C 16 QSOP — ___________________Chip Information PART TRANSISTOR COUNT MAX4212/MAX4213 MAX4216 MAX4218 MAX4220 95 190 299 362 SOT5L.EPS ________________________________________________________Package Information ______________________________________________________________________________________ 15 MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 _Ordering Information (continued) 8LUMAXD.EPS ___________________________________________Package Information (continued) QSOP.EPS MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable 16 ______________________________________________________________________________________