ETC 2SC4967

2SC4967
Silicon NPN Bipolar Transistor
Application
VHF & UHF wide band amplifire
CMPAK
Features
3
• Low Ron and high performance for RF switch.
• Capable of high density mounting.
1
2
1. Emitter
2. Base
3. Collector
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Collector to base voltage
VCBO
12
V
———————————————————————————————————————————
Collector to emitter voltage
VCEO
8
V
———————————————————————————————————————————
Emitter to base voltage
VEBO
3
V
———————————————————————————————————————————
Collector current
IC
100
mA
———————————————————————————————————————————
Collector power dissipation
PC
100
mW
———————————————————————————————————————————
Junction temperature
Tj
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
2SC4967
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Collector to base
breakdown voltage
V(BR)CBO
12
—
—
V
IC = 10 µA
IE = 0
———————————————————————————————————————————
Collector cutoff current
ICBO
—
—
10
µA
VCB = 10 V,
IE = 0
———————————————————————————————
ICEO
—
—
1
mA
VCE = 8 V,
RBE = ∞
———————————————————————————————————————————
Emitter cutoff current
IEBO
—
—
10
µA
VEB = 3 V,
IC = 0
———————————————————————————————————————————
DC current transfer ratio
hFE
100
250
—
VCE = 5 V,
IC = 5 mA
———————————————————————————————————————————
Collector to emitter
saturation voltage
VCE(sat)
—
150
200
mV
IC = 80mA
IB = 5mA
———————————————————————————————————————————
Output capacitance
Cob
—
1.9
2.6
pF
VCB = 5 V,
IE = 0, f = 1 MHz
———————————————————————————————————————————
On resistance
Ron
—
1.2
—
Ω
IB = 2.5 mA
f = 1 kHz
———————————————————————————————————————————
Note: Marking of 2SC4967 is "YW–".
2SC4967
DC current transfer ratio
vs. collector current
Collector power dissipation curve
500
DC Current Transfer Ratio h FE
300
100
200
50
0
100
50
100
150
Ambient Temperature Ta (°C)
2.8
IE = 0
f = 1 MHz
2.4
2.0
1.6
1.2
0.8
0.5
0
1
200
Collector output capacitance
vs. collector to base voltage
Collector Output Capacitance Cob (pF)
VCE = 5V
400
150
1
2
5
10
20
Collector to Base Voltage V CB (V)
2
5
10
20
50
Collector Current I C (mA)
100
Gain bandwidth product vs. collector current
2.0
Gain Bandwidth Product f T (GHz)
Collector Power Dissipation Pc (mW)
200
VCE = 5V
1.6
1.2
0.8
0.4
0
1
2
5
10
20
50
Collector Current I C (mA)
100
2SC4967
Ron test circuit
On resistance vs. base current
10
f = 1kHz
On Resistance Ron ( Ω )
8
Vin
6
100µF R1(1k Ω)
100µF Vout
2.7k Ω
4
3
D.U.T.
2nF
2
Ron=
VB
1
0.1
0.2
0.5
1
2
5
Base Current I B (mA)
Vout R1
Vin-Vout
10
Signal reduction test circuit
Signal reduction vs. frequency
0
Signal Reduction Rs (dB)
VB = 0
INPUT
- 10
2.7k Ω
- 20
L1
V B = 5V
D.U.T.
2nF
- 30
VB
- 40
- 50
50
33pF OUTPUT
33pF
L1 : Inside dia ø 3 mm ,
ø 0.5 mm Enameled Copper Wire 7 Turns.
100
200
500
Frequency f (MHz)
1000
2SC4967
Signal reduction test circuit
Signal reduction vs. frequency
0
Signal Reduction Rt (dB)
V B = 5V
- 20
D.U.T.
INPUT 33pF
- 10
VB = 0
L1
33pF OUTPUT
L2
2.7k Ω
- 30
2nF
- 40
- 50
50
VB
L1 , L2 : Inside dia ø 3 mm ,
ø 0.5 mm Enameled Copper Wire 7 Turns.
100
200
500
Frequency f (MHz)
1000