2SC4967 Silicon NPN Bipolar Transistor Application VHF & UHF wide band amplifire CMPAK Features 3 • Low Ron and high performance for RF switch. • Capable of high density mounting. 1 2 1. Emitter 2. Base 3. Collector Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Collector to base voltage VCBO 12 V ——————————————————————————————————————————— Collector to emitter voltage VCEO 8 V ——————————————————————————————————————————— Emitter to base voltage VEBO 3 V ——————————————————————————————————————————— Collector current IC 100 mA ——————————————————————————————————————————— Collector power dissipation PC 100 mW ——————————————————————————————————————————— Junction temperature Tj 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— 2SC4967 Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Collector to base breakdown voltage V(BR)CBO 12 — — V IC = 10 µA IE = 0 ——————————————————————————————————————————— Collector cutoff current ICBO — — 10 µA VCB = 10 V, IE = 0 ——————————————————————————————— ICEO — — 1 mA VCE = 8 V, RBE = ∞ ——————————————————————————————————————————— Emitter cutoff current IEBO — — 10 µA VEB = 3 V, IC = 0 ——————————————————————————————————————————— DC current transfer ratio hFE 100 250 — VCE = 5 V, IC = 5 mA ——————————————————————————————————————————— Collector to emitter saturation voltage VCE(sat) — 150 200 mV IC = 80mA IB = 5mA ——————————————————————————————————————————— Output capacitance Cob — 1.9 2.6 pF VCB = 5 V, IE = 0, f = 1 MHz ——————————————————————————————————————————— On resistance Ron — 1.2 — Ω IB = 2.5 mA f = 1 kHz ——————————————————————————————————————————— Note: Marking of 2SC4967 is "YW–". 2SC4967 DC current transfer ratio vs. collector current Collector power dissipation curve 500 DC Current Transfer Ratio h FE 300 100 200 50 0 100 50 100 150 Ambient Temperature Ta (°C) 2.8 IE = 0 f = 1 MHz 2.4 2.0 1.6 1.2 0.8 0.5 0 1 200 Collector output capacitance vs. collector to base voltage Collector Output Capacitance Cob (pF) VCE = 5V 400 150 1 2 5 10 20 Collector to Base Voltage V CB (V) 2 5 10 20 50 Collector Current I C (mA) 100 Gain bandwidth product vs. collector current 2.0 Gain Bandwidth Product f T (GHz) Collector Power Dissipation Pc (mW) 200 VCE = 5V 1.6 1.2 0.8 0.4 0 1 2 5 10 20 50 Collector Current I C (mA) 100 2SC4967 Ron test circuit On resistance vs. base current 10 f = 1kHz On Resistance Ron ( Ω ) 8 Vin 6 100µF R1(1k Ω) 100µF Vout 2.7k Ω 4 3 D.U.T. 2nF 2 Ron= VB 1 0.1 0.2 0.5 1 2 5 Base Current I B (mA) Vout R1 Vin-Vout 10 Signal reduction test circuit Signal reduction vs. frequency 0 Signal Reduction Rs (dB) VB = 0 INPUT - 10 2.7k Ω - 20 L1 V B = 5V D.U.T. 2nF - 30 VB - 40 - 50 50 33pF OUTPUT 33pF L1 : Inside dia ø 3 mm , ø 0.5 mm Enameled Copper Wire 7 Turns. 100 200 500 Frequency f (MHz) 1000 2SC4967 Signal reduction test circuit Signal reduction vs. frequency 0 Signal Reduction Rt (dB) V B = 5V - 20 D.U.T. INPUT 33pF - 10 VB = 0 L1 33pF OUTPUT L2 2.7k Ω - 30 2nF - 40 - 50 50 VB L1 , L2 : Inside dia ø 3 mm , ø 0.5 mm Enameled Copper Wire 7 Turns. 100 200 500 Frequency f (MHz) 1000