MAXIM MAX2065ETL+

19-3131; Rev 0; 3/08
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
The MAX2065 high-linearity, analog/digital variablegain amplifier (VGA) is designed to operate in the
50MHz to 1000MHz frequency range with two independent attenuators (see the Typical Application Circuit).
The digital attenuator is controlled as a slave peripheral
using either the SPI™-compatible interface or a parallel
bus with 31dB total adjustment range in 1dB steps. An
added feature allows “rapid-fire” gain selection
between each of four steps, preprogrammed by the
user through the SPI-compatible interface. The 2-pin
control allows the user to quickly access any one of
four customized attenuation states without reprogramming the SPI bus. The analog attenuator is controlled
using an external voltage or through the SPI-compatible
interface using an on-chip 8-bit DAC.
Because each of the three stages has its own RF input
and RF output, this component can be configured to
either optimize NF (amplifier configured first), OIP3 (amplifier last), or a compromise of NF and OIP3. The device’s
performance features include 22dB amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator
insertion losses), and a high OIP3 level of +42dBm. Each
of these features makes the MAX2065 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2065 operates from a single +5V
supply with full performance, or a single +3.3V supply
with slightly reduced performance, and has an
adjustable bias to trade current consumption for linearity
performance. This device is available in a compact 40pin thin QFN package (6mm x 6mm) with an exposed
pad. Electrical performance is guaranteed over the
extended temperature range (TC = -40°C to +85°C).
Applications
IF and RF Gain Stages
Temperature Compensation Circuits
Cellular Band WCDMA and cdma2000® Base
Stations
GSM 850/GSM 900 EDGE Base Stations
WiMAX and LTE Base Stations and Customer
Premise Equipment
Fixed Broadband Wireless Access
Wireless Local Loop
Military Systems
Video-on-Demand (VOD) and DOCSIS®Compliant EDGE QAM Modulation
Cable Modem Termination Systems (CMTS)
SPI is a trademark of Motorola, Inc.
Features
♦ 50MHz to 1000MHz RF Frequency Range
♦ Pin-Compatible Family Includes:
MAX2066 (Digital VGA)
MAX2067 (Analog VGA)
♦ +19.4dB (Typ) Maximum Gain
♦ 0.5dB Gain Flatness Over 100MHz Bandwidth
♦ 62dB Gain Range (31dB Analog + 31dB Digital)
♦ Built-in DAC for Analog Attenuation Control
♦ Supports Four “Rapid-Fire” Preprogrammed
Attenuator States
Quickly Access Any One of Four Customized
Attenuation States Without Reprogramming
the SPI Bus
Ideal for Fast-Attack, High-Level Blocker Protection
Prevents ADC Overdrive Condition
♦ Excellent Linearity (Configured with Amplifier
Last)
+42dBm OIP3
+63dBm OIP2
+19dBm Output 1dB Compression Point
-67dBc HD2
-83dBc HD3
♦ 6.5dB Typical Noise Figure (NF)
♦ Fast, 25ns Digital Switching
♦ Very Low Digital VGA Amplitude Overshoot/
Undershoot
♦ Single +5V Supply (Optional +3.3V Operation)
♦ External Current-Setting Resistors Provide Option
for Operating Device in Reduced-Power/
Reduced-Performance Mode
Ordering Information
PART
MAX2065ETL+
TEMP RANGE
PINPACKAGE
PKG
CODE
-40°C to +85°C 40 Thin QFN-EP*
T4066-3
MAX2065ETL+T -40°C to +85°C 40 Thin QFN-EP*
T4066-3
+Denotes a lead-free package.
*EP = Exposed pad.
T = Tape and reel.
Pin Configuration appears at end of data sheet.
cdma2000 is a registered trademark of Telecommunications
Industry Association.
DOCSIS and CableLabs are registered trademarks of Cable
Television Laboratories, Inc. (CableLabs®).
________________________________________________________________ Maxim Integrated Products
For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642,
or visit Maxim’s website at www.maxim-ic.com.
1
MAX2065
General Description
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
ABSOLUTE MAXIMUM RATINGS
VCC_ to GND ........................................................-0.3V to +5.5V
VDD_LOGIC, DATA, CS, CLK, SER/PAR, VDAC_EN,
VREF_SELECT.....................................-0.3V to (VCC_ + 0.3V)
STATE_A, STATE_B, D0–D4 ....................-0.3V to (VCC_ + 0.3V)
AMP_IN, AMP_OUT, VREF_IN,
ANALOG_VCTRL ................................-0.3V to (VCC_ + 0.3V)
ATTEN1_IN, ATTEN1_OUT, ATTEN2_IN,
ATTEN2_OUT...................................................-1.2V to + 1.2V
RSET to GND........................................................-0.3V to + 1.2V
RF Input Power (ATTEN1_IN, ATTEN1_OUT,
ATTEN2_IN, ATTEN2_OUT).......................................+20dBm
RF Input Power (AMP_IN)...............................................+18dBm
Continuous Power Dissipation (Note 1) ...............................6.5W
θJA (Notes 2, 3)..............................................................+38°C/W
θJC (Note 3) ...................................................................+10°C/W
Operating Temperature Range (Note 4) .....TC = -40°C to +85°C
Maximum Junction Temperature .....................................+150°C
Storage Temperature.........................................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Note 1: Based on junction temperature TJ = TC + (θJC x VCC x ICC). This formula can be used when the temperature of the exposed
pad is known while the device is soldered down to a printed-circuit board (PCB). See the Applications Information section
for details. The junction temperature must not exceed +150°C.
Note 2: Junction temperature TJ = TA + (θJA x VCC x ICC). This formula can be used when the ambient temperature of the PCB is
known. The junction temperature must not exceed +150°C.
Note 3: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a 4-layer
board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.
Note 4: TC is the temperature on the exposed pad of the package. TA is the ambient temperature of the device and PCB.
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
+3.3V SUPPLY DC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, high-current (HC) mode, VCC = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = +3.3V
and TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
3.0
3.3
3.6
UNITS
V
60
80
mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0–D4)
Input High Voltage
VIH
2
V
Input Low Voltage
VIL
0.8
V
+5V SUPPLY DC ELECTRICAL CHARACTERISTICS
( Typical Application Circuit , V CC = +4.75V to +5.25V, T C = -40°C to +85°C. Typical values are at V CC = +5V and
TC = +25°C, unless otherwise noted.)
PARAMETER
SYMBOL
Supply Voltage
VCC
Supply Current
ICC
CONDITIONS
MIN
TYP
MAX
UNITS
4.75
5
5.25
V
Low-current (LC) mode
73
93
High-current (HC) mode
124
146
mA
LOGIC INPUTS (DATA, CS, CLK, VDAC_EN, VREF_SELECT, SER/PAR, STATE_A, STATE_B, D0–D4)
Input High Voltage
VIH
Input Low Voltage
VIL
Input Current Logic-High
IIH
Input Current Logic-Low
IIL
2
3
V
0.8
V
-1
+1
µA
-1
+1
µA
_______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
(Typical Application Circuit, VCC = +3.0V to +3.6V, TC = -40°C to +85°C. Typical values are at VCC = +3.3V, HC mode with attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise noted.) (Note 5)
PARAMETER
SYMBOL
RF Frequency Range
fRF
Small Signal Gain
G
Output Third-Order Intercept
Point
Noise Figure
OIP3
NF
Total Attenuation Range
CONDITIONS
(Notes 6, 7)
MIN
TYP
50
POUT = 0dBm/tone, maximum gain setting
MAX
UNITS
1000
MHz
18.8
dB
37.5
dBm
Maximum gain setting
6.7
dB
Analog and digital combined
61.5
dB
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise
noted.) (Note 5)
PARAMETER
RF Frequency Range
SYMBOL
fRF
CONDITIONS
(Notes 6, 7)
MIN
50
200MHz
G
17.5
Noise Figure
NF
Total Attenuation Range
Output Second-Order Intercept
Point
OIP2
18.2
750MHz
16.4
900MHz
15.6
OIP3
UNITS
1000
MHz
19.7
dB
-0.006
dB/°C
Any 100MHz frequency band from 50MHz
to 500MHz
0.5
dB
200MHz
6.5
350MHz, TC = +25°C (Note 7)
6.8
450MHz
7
8
dB
750MHz
7.8
900MHz
8.2
Analog and digital combined
61.5
dB
63
dBm
POUT = 0dBm/tone, Δf = 1MHz, f1 + f2
200MHz
42
350MHz
40
450MHz
39
750MHz
36
900MHz
35
200MHz
40
350MHz
POUT = 0dBm/tone,
450MHz
LC mode, Δf = 1MHz
750MHz
38
900MHz
33
POUT = 0dBm/tone,
HC mode, Δf = 1MHz
Output Third-Order Intercept
Point
18.7
450MHz
Gain Variation vs. Temperature
Gain Flatness vs. Frequency
MAX
19.4
350MHz, TC = +25°C
Small Signal Gain
TYP
dBm
37
35
_______________________________________________________________________________________
3
MAX2065
+3.3V SUPPLY AC ELECTRICAL CHARACTERISTICS
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise
noted.) (Note 5)
PARAMETER
MIN
TYP
350MHz, TC = +25°C (Note 8)
17
18.7
dBm
Second Harmonic
POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 7)
-60
-67
dBc
Third Harmonic
POUT = +3dBm, fRF = 200MHz, TC = +25°C
(Note 7)
-71
-83
dBc
Input Return Loss
50Ω source, maximum gain setting
18
dB
Output Return Loss
50Ω load, maximum gain setting
18
dB
2.5
dB
52
dBm
41
dBm
Output -1dB Compression Point
SYMBOL
P1dB
CONDITIONS
MAX
UNITS
DIGITAL ATTENUATOR
Insertion Loss
Input Second-Order Intercept
Point
IIP2
PRF1 = 0dBm, PRF2 = 0dBm, Δf = 1MHz,
f1 + f2
Input Third-Order Intercept Point
IIP3
PRF1 = 0dBm, PRF2 = 0dBm, Δf = 1MHz
Attenuation Range
31.2
dB
1
dB
Relative Step Accuracy
0.2
dB
Absolute Step Accuracy
0.45
dB
Step Size
0dB to 16dB
Insertion Phase Step
fRF = 170MHz
4.8
24dB
8
31dB
10.8
ET = 15ns
1.0
ET = 40ns
0.05
Degrees
Amplitude Overshoot/Undershoot
Between any two
states
Switching Speed
RF settled to within
±0.1dB
Input Return Loss
50Ω source
19
dB
Output Return Loss
50Ω load
19
dB
1.2
dB
31dB to 0dB
25
0dB to 31dB
21
dB
ns
ANALOG ATTENUATOR
Insertion Loss
Input Second-Order Intercept
Point
IIP2
PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, Δf = 1MHz, f1 + f2
70
dBm
Input Third-Order Intercept Point
IIP3
PRF1 = 0dBm, PRF2 = 0dBm, maximum gain
setting, Δf = 1MHz
36
dBm
dB
Attenuation Range
Analog control input
31.1
Gain Control Slope
Analog control input
-12.5
dB/V
Maximum Gain Control Slope
Over analog control input range
-35
dB/V
Insertion Phase Change
Over analog control input range
18
Degrees
Group Delay
Maximum gain setting
0.98
ns
Group Delay vs. Control Voltage
Over analog control input range
-0.25
ns
Analog Control Input Range
4
0.25
_______________________________________________________________________________________
2.75
V
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
(Typical Application Circuit, VCC = +4.75 to +5.25V, HC mode with each attenuator set for maximum gain, 50MHz ≤ fRF ≤ 1000MHz,
TC = -40°C to +85°C. Typical values are at VCC = +5.0V, HC mode, PIN = -20dBm, fRF = 200MHz, and TC = +25oC, unless otherwise
noted.) (Note 5)
PARAMETER
SYMBOL
CONDITIONS
MIN
Analog Control Input Impedance
TYP
MAX
UNITS
80
kΩ
Input Return Loss
50Ω source
22
dB
Output Return Loss
50Ω load
22
dB
8
Bits
D/A CONVERTER
Number of Bits
DAC code = 00000000
Output Voltage
DAC code = 11111111
0.25
2.75
V
SERIAL PERIPHERAL INTERFACE (SPI)
Maximum Clock Speed
fCLK
20
MHz
Data-to-Clock Setup Time
tCS
2
ns
Data-to-Clock Hold Time
tCH
2.5
ns
Clock-to-CS Setup Time
tES
3
ns
CS Positive Pulse Width
tEW
7
ns
CS Setup Time
tEWS
3.5
ns
Clock Pulse Width
tCW
5
ns
Note 5: All limits include external component losses. Output measurements are performed at RF output port of the Typical
Application Circuit.
Note 6: Operating outside this range is possible, but with degraded performance of some parameters.
Note 7: Guaranteed by design and characterization.
Note 8: It is advisable not to operate continuously the VGA RF input above +15dBm.
_______________________________________________________________________________________
5
MAX2065
+5V SUPPLY AC ELECTRICAL CHARACTERISTICS (continued)
Typical Operating Characteristics
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
TC = -40°C
130
120
19
21
20
TC = +25°C
GAIN (dB)
TC = +25°C
GAIN (dB)
18
TC = +85°C
16
TC = +85°C
5.000
5.125
5.250
250
450
650
850
50
1050
450
650
850
RF FREQUENCY (MHz)
GAIN OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
DIGITAL ATTENUATOR RELATIVE
ERROR vs. RF FREQUENCY
DIGITAL ATTENUATOR ABSOLUTE
ERROR vs. RF FREQUENCY
0.50
ABSOLUTE ERROR (dB)
0.50
0.25
0
-0.25
-0.50
450
650
850
1050
-0.25
-0.50
-0.75
-1.00
-1.25
-1.70
-2.00
-1.00
250
0.25
0
-1.50
-0.75
-18
1050
MAX2065 toc06
0.75
RELATIVE ERROR (dB)
2
1.00
0.75
MAX2065 toc05
MAX2065 toc04
1.00
-8
50
250
450
650
850
50
1050
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
REVERSE ISOLATION OVER DIGITAL
ATTENUATOR SETTING vs. RF FREQUENCY
0dB, 8dB
-10
-5
OUTPUT MATCH (dB)
16dB
1dB, 2dB
-15
-20
0dB, 1dB, 2dB, 4dB
REVERSE ISOLATION (dB)
-5
8dB
-10
-15
-20
16dB, 31dB
-25
-30
MAX2065 toc08
0
MAX2065 toc07
0
-40
DIGITAL ATTENUATOR 0dB
-50
DIGITAL ATTENUATOR 31dB
-60
-25
4dB
31dB
-30
-70
-30
0
200
400
600
RF FREQUENCY (MHz)
6
250
RF FREQUENCY (MHz)
12
GAIN (dB)
14
50
VCC (V)
22
50
VCC = 4.75V
15
14
4.875
VCC = 5.00V
16
15
100
4.750
18
17
17
110
VCC = 5.25V
19
MAX2065 toc09
SUPPLY CURRENT (mA)
21
20
22
MAX2065 toc02
MAX2065 toc01
TC = -40°C
140
GAIN vs. RF FREQUENCY
GAIN vs. RF FREQUENCY
22
MAX2065 toc03
SUPPLY CURRENT vs. VCC
150
INPUT MATCH (dB)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
800
1000
0
200
400
600
RF FREQUENCY (MHz)
800
1000
50
250
450
650
RF FREQUENCY (MHz)
_______________________________________________________________________________________
850
1050
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
MAX2065 toc11
12
DAC CODE 32
7
DAC CODE 64
2
-3
10
REFERENCED TO HIGH GAIN STATE
POSITIVE PHASE = ELECTRICALLY SHORTER
50
250
450
650
7
2
1000MHz
450MHz
-3
DAC CODE 128
DAC CODE 256
-8
-8
-13
-13
-18
-18
50
1050
850
200MHz
250
450
650
0
1050
850
32
64
96
224 256
128 160 192
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
GAIN vs. ANALOG ATTENUATOR SETTING
GAIN vs. ANALOG ATTENUATOR SETTING
INPUT MATCH
vs. ANALOG ATTENUATOR SETTING
RF = 200MHz
17
12
7
7
GAIN (dB)
12
2
-3
-8
-8
-13
-13
-18
-5
VCC = 4.75V, 5.00V, 5.25V
2
-3
0
32
64
96
128 160 192
450MHz
50MHz
200MHz
-20
-30
0
32
64
96
128 160 192
224 256
0
32
64
96
224 256
128 160 192
DAC CODE
DAC CODE
OUTPUT MATCH
vs. ANALOG ATTENUATOR SETTING
REVERSE ISOLATION OVER ANALOG
ATTENUATOR SETTING vs. RF FREQUENCY
S21 PHASE CHANGE
vs. ANALOG ATTENUATOR SETTING
-15
-20
200MHz
MAX2065 toc17
80
-40
DAC CODE 0
-50
DAC CODE 255
-60
REFERENCED TO HIGH GAIN STATE
POSITIVE PHASE = ELECTRICALLY SHORTER
70
S21 PHASE CHANGE (DEG)
REVERSE ISOLATION (dB)
1000MHz
-10
50MHz
-30
MAX2065 toc16
450MHz
-25
1000MHz
-15
DAC CODE
0
-5
224 256
-10
-25
-18
0
MAX2065 toc15
TC = -40°C, +25°C, +85°C
22
INPUT MATCH (dB)
RF = 200MHz
17
MAX2065 toc14
22
60
1000MHz
50
MAX2065 toc18
20
50MHz
17
GAIN (dB)
GAIN (dB)
30
-10
OUTPUT MATCH (dB)
22
12
40
0
GAIN (dB)
DAC CODE 0
17
MAX2065 toc13
S21 PHASE CHANGE (DEG)
50
GAIN vs. ANALOG ATTENUATOR SETTING
22
MAX2065 toc10
60
GAIN OVER ANALOG ATTENUATOR
SETTING vs. RF FREQUENCY
MAX2065 toc12
S21 PHASE CHANGE OVER DIGITAL
ATTENUATOR SETTING vs. RF FREQUENCY
450MHz
40
30
200MHz
20
10
0
-30
0
32
64
96
128 160 192
DAC CODE
224 256
50MHz
-10
-70
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
32
64
96
128 160 192 224 258
DAC CODE
_______________________________________________________________________________________
7
MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
8
7
6
VCC = 5.00V
7
VCC = 5.25V
6
TC = -40°C
5
450
650
1050
850
50
250
RF FREQUENCY (MHz)
OUTPUT P1dB vs. RF FREQUENCY
650
850
50
1050
250
MAX2065 toc22
50
POUT = 0dBm/TONE
17
VCC = 4.75V
850
1050
POUT = 0dBm/TONE
45
OUTPUT IP3 (dBm)
OUTPUT IP3 (dBm)
18
650
OUTPUT IP3 vs. RF FREQUENCY
50
45
VCC = 5.00V
450
RF FREQUENCY (MHz)
OUTPUT IP3 vs. RF FREQUENCY
VCC = 5.25V
19
TC = -40°C
17
RF FREQUENCY (MHz)
21
20
450
MAX2065 toc23
250
18
15
4
50
19
16
5
4
OUTPUT P1dB (dBm)
TC = +25°C
9
8
TC = +85°C
20
MAX2065 toc24
TC = +25°C
VCC = 4.75V
OUTPUT P1dB (dBm)
9
10
21
MAX2065 toc20
MAX2065 toc19
TC = +85°C
NOISE FIGURE (dB)
NOISE FIGURE (dB)
10
OUTPUT P1dB vs. RF FREQUENCY
NOISE FIGURE vs. RF FREQUENCY
11
MAX2065 toc21
NOISE FIGURE vs. RF FREQUENCY
11
TC = +25°C
40
35
VCC = 5.00V
VCC = 5.25V
40
35
TC = -40°C
VCC = 4.75V
16
TC = +85°C
30
30
250
450
650
850
1050
50
450
650
850
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
OUTPUT IP3
vs. DIGITAL ATTENUATOR STATE
OUTPUT IP3
vs. ANALOG ATTENUATOR STATE
POUT = -3dBm/TONE
RF = 200MHz
TC = +25°C LSB, USB
45
MAX2065 toc25
42
POUT = -3dBm/TONE
RF = 200MHz
50
1050
TC = +85°C LSB, USB
35
25
8
12
16
20
24
DIGITAL ATTENUATOR STATE (dB)
28
32
1050
POUT = 3dBm
TC = -40°C
70
60
TC = +25°C
TC = +85°C
TC = -40°C, +25°C, +85°C TONE = LSB, USB
38
4
850
50
TC = -40°C LSB, USB
0
650
2nd HARMONIC vs. RF FREQUENCY
30
39
450
80
2nd HARMONIC (dBc)
OUTPUT IP3 (dBm)
40
250
RF FREQUENCY (MHz)
40
41
8
250
MAX2065 toc27
50
MAX2065 toc26
15
OUTPUT IP3 (dBm)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
0
32
64
96
128 160 192 224 256
DAC CODE
40
50
250
450
650
RF FREQUENCY (MHz)
_______________________________________________________________________________________
850
1050
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
VCC = 4.75V
70
TC = +25°C
TC = +85°C
65
50
TC = +25°C
70
65
TC = +85°C
250
50
450
650
0
1050
4
8
16
20
24
28
0
32
64
96
128 160 192 224 256
DAC CODE
3rd HARMONIC vs. RF FREQUENCY
3rd HARMONIC vs. RF FREQUENCY
3rd HARMONIC
vs. DIGITAL ATTENUATOR STATE
80
70
60
MAX2065 toc32
VCC = 5.25V
VCC = 5.00V
90
80
70
TC = -40°C
100
VCC = 4.75V
450
650
850
1050
250
RF FREQUENCY (MHz)
95
TC = +25°C
450
650
850
TC = -40°C
60
55
TC = -40°C
TC = +25°C
50
70
96
128
160 192 224 256
DAC CODE
20
24
28
32
POUT = 0dBm/TONE
VCC = 5.00V
VCC = 5.25V
60
55
VCC = 4.75V
45
40
40
64
16
70
50
TC = +85°C
45
12
OIP2 vs. RF FREQUENCY
65
80
TC = +85°C
8
75
OIP2 (dBm)
OIP2 (dBm)
85
4
DIGITAL ATTENUATOR STATE (dB)
65
32
TC = -40°C
0
1050
POUT = 0dBm/TONE
70
90
75
80
OIP2 vs. RF FREQUENCY
75
MAX2065 toc34
POUT = 0dBm
RF = 200MHz
85
RF FREQUENCY (MHz)
3rd HARMONIC
vs. ANALOG ATTENUATOR STATE
100
90
70
50
MAX2065 toc35
250
TC = +85°C
75
60
50
POUT = 0dBm
RF = 200MHz
TC = +25°C
95
3rd HARMONIC (dBc)
TC = +25°C
90
POUT = 3dBm
100
3rd HARMONIC (dBc)
TC = +85°C
110
MAX2065 toc31
POUT = 3dBm
0
32
DIGITAL ATTENUATOR STATE (dB)
100
3rd HARMONIC (dBc)
12
RF FREQUENCY (MHz)
110
3rd HARMONIC (dBc)
850
TC = -40°C
60
60
40
MAX2065 toc30
75
MAX2065 toc33
60
75
POUT = 0dBm
RF = 200MHz
MAX2065 toc36
VCC = 5.00V
80
2nd HARMONIC (dBc)
70
POUT = 0dBm
RF = 200MHz
TC = -40°C
2nd HARMONIC (dBc)
2nd HARMONIC (dBc)
VCC = 5.25V
80
MAX2065 toc29
POUT = 3dBm
MAX2065 toc28
80
2nd HARMONIC
vs. ANALOG ATTENUATOR STATE
2nd HARMONIC
vs. DIGITAL ATTENUATOR STATE
2nd HARMONIC vs. RF FREQUENCY
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
_______________________________________________________________________________________
9
MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
POUT = -3dBm/TONE
RF = 200MHz
TC = +25°C
MAX2065 toc37
TC = -40°C
70
OIP2 vs. ANALOG ATTENUATOR STATE
75
70
TC = +25°C
65
OIP2 (dBm)
OIP2 (dBm)
65
60
55
POUT = -3dBm/TONE
RF = 200MHz
TC = -40°C
MAX2065 toc38
OIP2 vs. DIGITAL ATTENUATOR STATE
75
60
55
TC = +85°C
50
50
45
45
40
TC = +85°C
40
0
4
8
12
16
20
24
28
0
32
32
64
DIGITAL ATTENUATOR STATE (dB)
128 160 192 224 256
DAC VOLTAGE vs. DAC CODE
2.0
1.5
1.0
MAX2065 toc40
MAX2065 toc39
3.0
2.5
DAC VOLTAGE (V)
2.0
1.5
1.0
TC = -40°C, +25°C, +85°C
VCC = 4.75V, 5.00V, 5.25V
0.5
0.5
0
0
0
32
64
96
128 160 192 224 256
0
32
64
DAC CODE
0.02
0.01
0
-0.01
-0.02
0.0075
DAC VOLTAGE CHANGE (V)
TC CHANGED FROM +25°C TO -40°C
0.03
DAC VOLTAGE DRIFT vs. DAC CODE
0.0100
MAX2065 toc41
0.04
128 160 192 224 256
DAC CODE
DAC VOLTAGE DRIFT vs. DAC CODE
0.05
96
VCC CHANGED FROM 5.00V TO 5.25V
MAX2065 toc42
DAC VOLTAGE (V)
2.5
96
DAC CODE
DAC VOLTAGE vs. DAC CODE
3.0
DAC VOLTAGE CHANGE (V)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
0.0050
0.0025
0
-0.0025
-0.0050
-0.03
TC CHANGED FROM +25°C TO +85°C
-0.04
-0.05
-0.0100
0
32
64
96
128 160 192 224 256
DAC CODE
10
VCC CHANGED FROM 5.00V TO 4.75V
-0.0075
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
GAIN vs. RF FREQUENCY
(DIGITAL ATTENUATOR ONLY)
MAXIMUM GAIN SETTING
MAXIMUM GAIN SETTING
-1
TC = -40°C
VCC = 5.25V
TC = +25°C
-2
GAIN (dB)
GAIN (dB)
-1
0
MAX2065 toc43
0
MAX2065 toc44
GAIN vs. RF FREQUENCY
(DIGITAL ATTENUATOR ONLY)
-3
-2
-3
VCC = 5.00V
-4
-4
VCC = 4.75V
TC = +85°C
-5
250
450
650
850
1050
450
650
850
GAIN vs. RF FREQUENCY
(ANALOG ATTENUATOR ONLY)
GAIN vs. RF FREQUENCY
(ANALOG ATTENUATOR ONLY)
MAXIMUM GAIN SETTING
TC = -40°C
-1
-2
TC = +85°C
TC = +25°C
-4
1050
0
MAXIMUM GAIN SETTING
-1
GAIN (dB)
GAIN (dB)
250
RF FREQUENCY (MHz)
0
-3
50
RF FREQUENCY (MHz)
MAX2065 toc45
50
MAX2065 toc46
-5
-2
VCC = 4.75V, 5.00V, 5.25V
-3
-4
-5
-5
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
850
1050
RF FREQUENCY (MHz)
______________________________________________________________________________________
11
MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, attenuator only, maximum gain, PIN = -20dBm and TC = +25°C, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal reference
used, unless otherwise noted.)
TC = -40°C
TC = +25°C
TC = +85°C
TC = +85°C
16
15
5.000
5.125
50
250
450
650
850
50
1050
250
450
650
850
1050
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
INPUT MATCH vs. ANALOG ATTENUATOR
SETTING (LOW CURRENT MODE)
0dB, 8dB
1dB, 2dB
-15
-20
-25
8dB
-10
-15
-20
-5
16dB, 31dB
-25
4dB
50MHz
1000MHz
-15
200MHz
450MHz
-20
-25
-30
-30
250
-10
31dB
-30
50
MAX2065 toc52
0dB, 1dB, 2dB, 4dB
INPUT MATCH (dB)
OUTPUT MATCH (dB)
16dB
-10
-5
0
MAX2065 toc51
0
MAX2065 toc50
-5
450
650
850
1050
50
250
450
650
850
0
1050
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
DAC CODE
OUTPUT MATCH vs. ANALOG ATTENUATOR
SETTING (LOW CURRENT MODE)
NOISE FIGURE vs. RF FREQUENCY
(LOW CURRENT MODE)
NOISE FIGURE vs. RF FREQUENCY
(LOW CURRENT MODE)
NOISE FIGURE (dB)
-15
-20
TC = +25°C
9
8
7
5
-30
32
64
96
128 160 192 224 256
DAC CODE
8
7
4
4
0
VCC = 4.75V, 5.00V, 5.25V
9
5
TC = -40°C
200MHz
50MHz
10
6
6
-25
11
MAX2065 toc55
10
1000MHz
-10
TC = +85°C
NOISE FIGURE (dB)
450MHz
-5
11
MAX2065 toc53
0
MAX2065 toc54
INPUT MATCH (dB)
5.250
VCC (V)
0
12
14
14
4.857
18
16
15
55
4.750
19
17
17
65
VCC = 4.75V, 5.00V, 5.25V
20
19
18
21
GAIN (dB)
75
GAIN (dB)
SUPPLY CURRENT (mA)
21
20
22
MAX2065 toc48
TC = -40°C
TC = +25°C
22
MAX2065 toc47
85
GAIN vs. RF FREQUENCY
(LOW CURRENT MODE)
GAIN vs. RF FREQUENCY
(LOW CURRENT MODE)
MAX2065 toc49
SUPPLY CURRENT vs. VCC
(LOW CURRENT MODE)
OUTPUT MATCH (dB)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
RF FREQUENCY (MHz)
______________________________________________________________________________________
850
1050
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
15
14
TC = +25°C
VCC = 5.00V
40
OUTPUT IP3 (dBm)
16
VCC = 5.25V
17
OUTPUT P1dB (dBm)
TC = +25°C
45
MAX2065 toc57
TC = -40°C
OUTPUT P1dB (dBm)
18
MAX2065 toc56
18
17
OUTPUT IP3 vs. RF FREQUENCY
(LOW CURRENT MODE)
OUTPUT P1dB vs. RF FREQUENCY
(LOW CURRENT MODE)
MAX2065 toc58
OUTPUT P1dB vs. RF FREQUENCY
(LOW CURRENT MODE)
VCC = 4.75V
16
15
TC = -40°C
35
TC = +85°C
30
14
TC = +85°C
13
250
450
650
850
1050
450
650
850
250
50
1050
450
650
850
1050
RF FREQUENCY (MHz)
OUTPUT IP3 vs. RF FREQUENCY
(LOW CURRENT MODE)
OUTPUT IP3 vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
OUTPUT IP3 vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
45
OUTPUT IP3 (dBm)
35
VCC = 4.75V
POUT = -3dBm/TONE
RF = 200MHz
40
40
VCC = 5.25V
35
OUTPUT IP3 (dBm)
VCC = 5.00V
POUT = -3dBm/TONE
RF = 200MHz
TC = +25°C LSB, USB
MAX2065 toc60
MAX2065 toc59
45
MAX2065 toc61
RF FREQUENCY (MHz)
40
30
250
50
RF FREQUENCY (MHz)
45
OUTPUT IP3 (dBm)
25
13
50
TC = +85°C LSB, USB
TC = -40°C LSB, USB
35
30
30
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
25
250
450
650
850
1050
0
4
8
12
16
20
24
28
0
32
32
64
98
128 160 192 224 256
DIGITAL ATTENUATOR STATE (dB)
DAC CODE
2nd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
2nd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
2nd HARMONIC vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
60
TC = +25°C
50
MAX2065 toc63
VCC = 5.25V
70
80
POUT = 0dBm
RF = 200MHz
2nd HARMONIC (dBc)
TC = -40°C
POUT = 3dBm
VCC = 5.00V
2nd HARMONIC (dBc)
70
80
MAX2065 toc62
POUT = 3dBm
60
VCC = 4.75V
TC = -40°C
75
70
TC = +85°C
65
50
MAX2065 toc64
RF FREQUENCY (MHz)
80
2nd HARMONIC (dBc)
25
25
50
TC = +25°C
TC = +85°C
40
60
40
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
4
8
12
16
20
24
28
32
DIGITAL ATTENUATOR STATE (dB)
______________________________________________________________________________________
13
MAX2065
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal reference
used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +5.0V, LC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal reference
used, unless otherwise noted.)
65
TC = +25°C
80
70
64
96
80
VCC = 4.75V
60
32
VCC = 5.00V
TC = +85°C
60
0
VCC = 5.25V
90
70
TC = -40°C
TC = +85°C
128 160 192 224 256
60
250
50
450
650
850
1050
250
50
450
650
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
3rd HARMONIC vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
3rd HARMONIC vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
OIP2 vs. RF FREQUENCY
(LOW CURRENT MODE)
90
85
80
TC = -40°C
75
MAX2065 toc69
TC = +25°C
POUT = 0dBm/TONE
70
65
90
85
80
TC = -40°C
60
55
TC = +25°C
50
75
45
TC = +85°C
TC = +85°C
TC = -40°C
40
70
70
8
12
16
20
24
28
64
96
128
250
450
650
850
OIP2 vs. RF FREQUENCY
(LOW CURRENT MODE)
OIP2 vs. DIGITAL ATTENUATOR
STATE (LOW CURRENT MODE)
OIP2 vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
POUT = 0dBm/TONE
75
TC = -40°C
70
VCC = 5.25V
TC = +25°C
POUT = -3dBm/TONE
RF = 200MHz
55
45
40
65
60
55
60
55
50
50
45
45
40
450
POUT = -3dBm/TONE
RF = 200MHz
TC = -40°C
TC = +85°C
VCC = 4.75V
250
70
OIP2 (dBm)
60
1050
75
65
OIP2 (dBm)
65
50
50
160 192 224 256
RF FREQUENCY (MHz)
VCC = 5.00V
50
32
DAC CODE
75
70
0
32
DIGITAL ATTENUATOR STATE (dB)
MAX2065 toc72
4
MAX2065 toc71
0
1050
75
OIP2 (dBm)
TC = +85°C
POUT = 0dBm
RF = 200MHz
95
3rd HARMONIC (dBc)
TC = +25°C
100
MAX2065 toc68
POUT = 0dBm
RF = 200MHz
95
650
RF FREQUENCY (MHz)
14
850
DAC CODE
100
3rd HARMONIC (dBc)
100
MAX2065 toc70
70
90
POUT = 3dBm
MAX2065 toc73
TC = +25°C
MAX2065 toc67
100
110
3rd HARMONIC (dBc)
TC = -40°C
75
POUT = 3dBm
3rd HARMONIC (dBc)
2nd HARMONIC (dBc)
POUT = 0dBm
RF = 200MHz
3rd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
110
MAX2065 toc65
80
3rd HARMONIC vs. RF FREQUENCY
(LOW CURRENT MODE)
MAX2065 toc66
2nd HARMONIC vs. ANALOG ATTENUATOR
STATE (LOW CURRENT MODE)
OIP2 (dBm)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
850
1050
TC = +85°C
TC = +25°C
40
0
4
8
12
16
20
24
DIGITAL ATTENUATOR STATE (dB)
28
32
0
32
64
96
128 160 192 224
DAC CODE
______________________________________________________________________________________
256
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
GAIN vs. RF FREQUENCY
TC = -40°C
20
VCC = 3.6V
19
19
VCC = 3.0V
TC = +25°C
18
GAIN (dB)
17
TC = +25°C
TC = +85°C
TC = +85°C
14
13
3.00
3.15
3.30
3.45
3.60
VCC = 3.3V
15
14
45
17
16
16
55
18
13
50
250
450
650
850
1050
50
250
450
650
850
1050
VCC (V)
RF FREQUENCY (MHz)
RF FREQUENCY (MHz)
INPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
OUTPUT MATCH OVER DIGITAL ATTENUATOR
SETTING vs. RF FREQUENCY
INPUT MATCH
vs. ANALOG ATTENUATOR SETTING
1dB, 2dB
16dB
-5
-15
-20
0dB, 1dB, 2dB, 4dB
0
VCC = 3.3V
-5
INPUT MATCH (dB)
0dB, 8dB
-10
VCC = 3.3V
OUTPUT MATCH (dB)
-5
0
MAX2065 toc78
VCC = 3.3V
MAX2065 toc77
0
-10
-15
-20
-10
MAX2065 toc79
65
15
INPUT MATCH (dB)
21
MAX2065 toc75
MAX2065 toc74
VCC = 3.3V
20
GAIN (dB)
SUPPLY CURRENT (mA)
TC = -40°C
GAIN vs. RF FREQUENCY
21
MAX2065 toc76
SUPPLY CURRENT vs. VCC
75
1000MHz
50MHz
-15
200MHz
450MHz
-20
8dB
-25
16dB, 31dB
-25
-30
-30
250
450
650
850
1050
0
200
RF FREQUENCY (MHz)
800
VCC = 3.3V
-5
TC = +85°C
9
8
7
6
200MHz
96
128 160 192
DAC CODE
224 256
VCC = 3.0V
9
8
7
VCC = 3.6V
5
TC = -40°C
4
64
224 256
VCC = 3.3V
6
TC = +25°C
5
-30
128 160 192
10
NOISE FIGURE (dB)
-20
96
NOISE FIGURE vs. RF FREQUENCY
VCC = 3.3V
10
NOISE FIGURE (dB)
-15
32
64
11
1000MHz
50MHz
32
DAC CODE
NOISE FIGURE vs. RF FREQUENCY
-10
0
0
1000
11
MAX2065 toc80
0
-25
600
RF FREQUENCY (MHz)
OUTPUT MATCH
vs. ANALOG ATTENUATOR SETTING
450MHz
400
MAX2065 toc81
50
MAX2065 toc82
-30
OUTPUT MATCH (dB)
-25
31dB
4dB
4
50
250
450
650
RF FREQUENCY (MHz)
850
1050
50
250
450
650
850
RF FREQUENCY (MHz)
______________________________________________________________________________________
15
MAX2065
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
OUTPUT P1dB vs. RF FREQUENCY
13
TC = +85°C
14
13
12
11
10
10
9
9
250
450
650
850
1050
TC = -40°C
35
30
VCC = 3.0V
25
TC = +85°C
20
250
50
450
650
850
1050
50
250
450
650
OUTPUT IP3
vs. DIGITAL ATTENUATOR STATE
OUTPUT IP3
vs. ANALOG ATTENUATOR STATE
38
30
37
36
30
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
34
250
450
650
850
25
0
1050
35
TC = -40°C, +25°C, +85°C
TONE = LSB, USB
VCC = 3.0V
20
POUT = -3dBm/TONE
RF = 200MHz
VCC = 3.3V
40
35
25
45
OUTPUT IP3 (dBm)
OUTPUT IP3 (dBm)
35
POUT = -3dBm/TONE
RF = 200MHz
VCC = 3.3V
MAX2065 toc87
39
MAX2065 toc86
VCC = 3.6V
4
8
12
16
20
24
28
32
0
32
64
96
128 160 192 224 256
RF FREQUENCY (MHz)
DIGITAL ATTENUATOR STATE (dB)
DAC CODE
2nd HARMONIC vs. RF FREQUENCY
2nd HARMONIC vs. RF FREQUENCY
2nd HARMONIC
vs. DIGITAL ATTENUATOR STATE
50
VCC = 3.3V
70
70
VCC = 3.6V
60
50
POUT = 0dBm
RF = 200MHz
VCC = 3.3V
TC = +85°C
2nd HARMONIC (dBc)
TC = +85°C
60
POUT = 3dBm
MAX2065 toc90
TC = +25°C
80
2nd HARMONIC (dBc)
POUT = 3dBm
VCC = 3.3V
MAX2065 toc89
80
65
60
TC = +25°C
55
40
TC = -40°C
TC = -40°C
VCC = 3.0V
30
250
450
650
RF FREQUENCY (MHz)
16
50
30
50
1050
OUTPUT IP3 vs. RF FREQUENCY
40
40
850
RF FREQUENCY (MHz)
VCC = 3.3V
70
TC = +25°C
RF FREQUENCY (MHz)
45
50
40
RF FREQUENCY (MHz)
50
OUTPUT IP3 (dBm)
15
11
50
VCC = 3.3V
45
850
1050
MAX2065 toc88
14
12
VCC = 3.6V
MAX2065 toc91
15
VCC = 3.3V
16
OUTPUT IP3 (dBm)
TC = +25°C
OUTPUT P1dB (dBm)
OUTPUT P1dB (dBm)
TC = -40°C
50
MAX2065 toc84
MAX2065 toc83
VCC = 3.3V
16
OUTPUT IP3 vs. RF FREQUENCY
17
MAX2065 toc85
OUTPUT P1dB vs. RF FREQUENCY
17
2nd HARMONIC (dBc)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
50
250
450
650
RF FREQUENCY (MHz)
850
1050
0
4
8
12
16
20
24
DIGITAL ATTENUATOR STATE (dB)
______________________________________________________________________________________
28
32
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
3rd HARMONIC vs. RF FREQUENCY
TC = +85°C
40
80
70
64
96
128 160 192 224 256
50
250
450
650
850
3rd HARMONIC
vs. DIGITAL ATTENUATOR STATE
3rd HARMONIC
vs. ANALOG ATTENUATOR STATE
MAX2065 toc95
75
60
80
16
20
24
28
TC = -40°C
32
64
96
128 160 192 224 256
50
250
DAC CODE
70
MAX2065 toc98
POUT = 0dBm/TONE
POUT = 0dBm/TONE
RF = 200MHz
TC = +85°C
VCC = 3.3V
60
450
650
850
1050
RF FREQUENCY (MHz)
OIP2 vs. DIGITAL ATTENUATOR STATE
OIP2 vs. RF FREQUENCY
70
OIP2 vs. ANALOG ATTENUATOR STATE
70
POUT = -3dBm/TONE
RF = 200MHz
VCC = 3.3V
TC = +85°C
60
50
40
OIP2 (dBm)
VCC = 3.6V
OIP2 (dBm)
VCC = 3.3V
50
30
0
32
DIGITAL ATTENUATOR STATE (dB)
60
TC = +85°C
TC = +85°C
MAX2065 toc99
12
TC = +25°C
TC = -40°C
50
8
1050
70
60
70
4
850
40
TC = -40°C
0
650
POUT = 0dBm/TONE
VCC = 3.3V
OIP2 (dBm)
80
450
70
TC = +25°C
90
250
OIP2 vs. RF FREQUENCY
POUT = 0dBm
RF = 200MHz
VCC = 3.3V
100
50
RF FREQUENCY (MHz)
110
3rd HARMONIC (dBc)
TC = +25°C, +85°C
85
70
1050
RF FREQUENCY (MHz)
POUT = 0dBm
RF = 200MHz
VCC = 3.3V
80
VCC = 3.0V
DAC CODE
90
VCC = 3.6V
50
MAX2065 toc96
32
VCC = 3.3V
90
60
TC = -40°C
50
0
OIP2 (dBm)
MAX2065 toc93
TC = +85°C
60
30
3rd HARMONIC (dBc)
90
MAX2065 toc100
TC = -40°C
TC = +25°C
POUT = 3dBm
100
MAX2065 toc97
50
110
3rd HARMONIC (dBc)
60
POUT = 3dBm
VCC = 3.3V
100
3rd HARMONIC (dBc)
70
2nd HARMONIC (dBc)
POUT = 0dBm
RF = 200MHz
VCC = 3.3V
TC = +25°C
3rd HARMONIC vs. RF FREQUENCY
110
MAX2065 toc92
80
MAX2065 toc94
2nd HARMONIC
vs. ANALOG ATTENUATOR STATE
50
TC = +25°C
TC = +25°C
40
50
40
TC = -40°C
TC = -40°C
VCC = 3.0V
30
30
50
250
450
650
RF FREQUENCY (MHz)
850
1050
30
0
4
8
12
16
20
24
DIGITAL ATTENUATOR STATE (dB)
28
32
0
32
64
96
128 160 192 224 256
DAC CODE
______________________________________________________________________________________
17
MAX2065
Typical Operating Characteristics (continued)
(VCC = +3.3V, HC mode, both attenuators set for maximum gain, PIN = -20dBm, fRF = 200MHz, and TC = +25°C, internal DAC reference used, unless otherwise noted.)
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
Pin Description
PIN
NAME
1, 16, 19, 22,
24–28, 30,
31, 33–36
GND
2
VREF_SELECT
3
VDAC_EN
4
DATA
5
CLK
SPI Clock Digital Input
6
CS
SPI Chip-Select Digital Input
7
VDD_LOGIC
8
SER/PAR
Digital Attenuator SPI or Parallel Control Selection Logic Input. Logic 0 = parallel control,
Logic 1 = serial control.
9
STATE_A
Digital Attenuator Preprogrammed Attenuation State Logic Input
10
Ground
DAC Reference Voltage Selection Logic Input. Logic 1 = internal DAC reference voltage,
Logic 0 = external DAC reference voltage. Logic input disabled (don’t care) when VDAC_EN = Logic 0.
DAC Enable/Disable Logic Input. Logic 0 = disable DAC circuit, Logic 1 = enable DAC circuit.
SPI Data Digital Input
Digital Logic Supply Input
State A
State B
Digital Attenuator
Logic = 0
Logic = 0
Preprogrammed State 1
Logic = 1
Logic = 0
Preprogrammed State 2
Logic = 0
Logic = 1
Preprogrammed State 3
Logic = 1
Logic = 1
Preprogrammed State 4
11
D4
16dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
12
D3
8dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
13
D2
4dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
14
D1
2dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
15
D0
1dB Attenuator Logic Input. Logic 0 = disable, Logic 1 = enable.
17
AMP_OUT
18
RSET
Driver Amplifier Output (50Ω)
Driver Amplifier Bias-Setting. See the External Bias section.
20
AMP_IN
21
VCC_AMP
Driver Amplifier Supply Voltage Input
23
ATTEN2_OUT
5-Bit Digital Attenuator Output (50Ω)
29
ATTEN2_IN
32
ATTEN1_OUT
37
ATTEN1_IN
38
39
18
STATE_B
DESCRIPTION
VCC_ANALOG
Driver Amplifier Input (50Ω)
5-Bit Digital Attenuator Input (50Ω)
Analog Attenuator Output (50Ω)
Analog Attenuator Input (50Ω)
Analog Bias and Control Supply Voltage Input
ANALOG_VCTRL Analog Attenuator Voltage Control Input
40
VREF_IN
—
EP
External DAC Voltage Reference Input
Exposed Pad. Internally connected to GND. Connect EP to GND for proper RF performance and
enhanced thermal dissipation.
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
The MAX2065 high-linearity analog/digital variable-gain
amplifier is a general-purpose, high-performance
amplifier designed to interface with 50Ω systems operating in the 50MHz to 1000MHz frequency range.
The MAX2065 integrates one digital attenuator and one
analog attenuator to provide 62dB of total gain control,
as well as a driver amplifier optimized to provide high
gain, high IP3, low noise figure, and low power consumption. For applications that do not require high linearity, the
bias current of the amplifier can be adjusted by an external resistor to further reduce power consumption.
The digital attenuator is controlled as a slave peripheral
using either the SPI-compatible interface or a parallel
bus with 31dB total adjustment range in 1dB steps. An
added feature allows “rapid-fire” gain selection
between each of the four unique steps (preprogrammed by the user through the SPI-compatible interface). The 2-pin control allows the user to quickly
access any one of four customized attenuation states
without reprogramming the SPI bus. The analog attenuator is controlled using an external voltage or through
the SPI-compatible interface using an on-chip DAC.
Because each of the three stages has its own external
RF input and RF output, this component can be configured to either optimize NF (amplifier configured first),
OIP3 (amplifier last), or a compromise of NF and OIP3.
The device’s performance features include 22dB standalone amplifier gain (amplifier only), 6.5dB NF at maximum gain (includes attenuator insertion loss for both
attenuators), and a high OIP3 level of +42dBm. Each of
these features makes the MAX2065 an ideal VGA for
numerous receiver and transmitter applications.
In addition, the MAX2065 operates from a single +5V
supply, or a single +3.3V supply with slightly reduced
performance, and has adjustable bias to trade current
consumption for linearity performance.
Analog and 5-Bit Digital
Attenuator Control
The MAX2065 integrates one analog attenuator and
one 5-bit digital attenuator to achieve a high level of
dynamic range. The analog attenuator has a 31dB
range and is controlled using an external voltage or
through the 3-wire serial peripheral interface (SPI) using
an on-chip 8-bit DAC. The digital attenuator has a 31dB
control range, a 1dB step size, and is programmed
through the 3-wire SPI. See the Applications Information
section and Table 1 for attenuator programming details.
The attenuators can be used for both static and dynamic power control.
Driver Amplifier
The MAX2065 includes a high-performance driver with
a fixed gain of 22dB. The driver amplifier circuit is optimized for high linearity for the 50MHz to 1000MHz frequency range.
Applications Information
SPI Interface and Attenuator Settings
The digital attenuator is programmed through the 3-wire
SPI/MICROWIRE™-compatible serial interface using
5-bit words. Twenty-eight bits of data are shifted in MSB
first and is framed by CS. When CS is low, the clock is
active and data is shifted on the rising edge of the
clock. When CS transitions high, the data is latched
and the attenuator setting changes (Figure 1). See
Table 2 for details on the SPI data format.
Table 1. Control Logic
ANALOG
ATTENUATOR
DIGITAL
ATTENUATOR
D/A CONVERTER
VDAC_EN
SER/PAR
VREF_SELECT
0
0
X
Controlled by external
control voltage
Parallel controlled
Disabled
1
0
1
Controlled by on-chip
DAC
Parallel controlled
Enabled (DAC uses onchip voltage reference)
0
1
X
Controlled by external
control voltage
SPI controlled
Disabled
1
1
0
Controlled by on-chip
DAC
SPI controlled
Enabled (DAC uses
external voltage
reference)
X = Don’t care.
MICROWIRE is a trademark of National Semiconductor Corp.
______________________________________________________________________________________
19
MAX2065
Detailed Description
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
MSB
LSB
DN
DATA
D(N-1)
D1
D0
CLOCK
tCW
tCS
tCH
CS
tES
tEWS
tEW
Figure 1. MAX2065 SPI Timing Diagram
Table 2. SPI Data Format
FUNCTION
BIT
D27 (MSB)
Digital Attenuator State 4
DESCRIPTION
16dB step (MSB of the 5-bit word used to program the digital attenuator state 4)
D26
8dB step
D25
4dB step
D24
2dB step
D23
1dB step (LSB)
D22
D21
Digital Attenuator State 3
D20
5-bit word used to program the digital attenuator state 3 (see the description for digital
attenuator state 4)
D19
D18
D17
D16
Digital Attenuator State 2
D15
5-bit word used to program the digital attenuator state 2 (see the description for digital
attenuator state 4)
D14
D13
D12
D11
Digital Attenuator State 1
D10
5-bit word used to program the digital attenuator state 1 (see the description for digital
attenuator state 4)
D9
D8
20
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
MAX2065
Table 2. SPI Data Format (continued)
FUNCTION
On-Chip DAC
BIT
DESCRIPTION
D7
Bit 7 (MSB) of on-chip DAC used to program the analog attenuator
D6
Bit 6 of DAC
D5
Bit 5 of DAC
D4
Bit 4 of DAC
D3
Bit 3 of DAC
D2
Bit 2 of DAC
D1
Bit 1 of DAC
D0 (LSB)
Bit 0 (LSB) of the on-chip DAC
Attenuator and DAC Operation
The analog attenuator is controlled by an external control voltage applied at ANALOG_VCTRL (pin 39) or by
the on-chip 8-bit DAC, while the digital attenuator is controlled through the SPI-compatible interface or parallel
bus. The DAC enable/disable logic-input pin
(VDAC_EN), digital attenuator SPI or parallel control
selection logic-input pin (SER/PAR), and the DAC reference voltage selection logic-input pin (VREF_SELECT)
determine how the attenuators are controlled. The onchip DAC can also be enabled or disabled. When the
DAC is enabled, either the on-chip voltage reference or
the external voltage reference can be selected. See
Table 1 for the attenuator and DAC operation truth table.
Digital Attenuator Settings
Using the Parallel Control Bus
To capitalize on its fast 25ns switching capability, the
MAX2065 offers a supplemental 5-bit parallel control
interface. The digital logic attenuator-control pins
(D0–D4) enable the attenuator stages (Table 3).
Direct access to this 5-bit bus enables the user to avoid
any programming delays associated with the SPI
interface. One of the limitations of any SPI bus is the
speed at which commands can be clocked into each
peripheral device. By offering direct access to the 5-bit
parallel interface, the user can quickly shift between
digital attenuator states needed for critical “fast-attack”
automatic gain control (AGC) applications.
“Rapid-Fire” Preprogrammed
Attenuation States
The MAX2065 has an added feature that provides
“rapid fire” gain selection between four preprogrammed attenuation steps. As with the supplemental
5-bit bus mentioned above, this “rapid fire” gain selection allows the user to quickly access any one of four
customized digital attenuation states without incurring
the delays associated with reprogramming the device
through the SPI bus.
The switching speed is comparable to that achieved
using the supplemental 5-bit parallel bus. However, by
employing this specific feature, the digital attenuator
I/O is further reduced by a factor of either 5 or 2.5 (5
control bits vs. 1 or 2, respectively) depending on the
number of states desired.
Table 3. Digital Attenuator Settings (Parallel Control)
INPUT
LOGIC = 0 (OR GROUND)
LOGIC = 1
D0
Disable 1dB attenuator, or when SPI is default programmer
Enable 1dB attenuator
D1
Disable 2dB attenuator, or when SPI is default programmer
Enable 2dB attenuator
D2
Disable 4dB attenuator, or when SPI is default programmer
Enable 4dB attenuator
D3
Disable 8dB attenuator, or when SPI is default programmer
Enable 8dB attenuator
D4
Disable 16dB attenuator, or when SPI is default programmer
Enable 16dB attenuator
______________________________________________________________________________________
21
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
The user can employ the STATE_A and STATE_B logicinput pins to apply each step as required (Table 4).
Toggling just the STATE_A pin (one control bit) yields
two preprogrammed attenuation states; toggling both
the STATE_A and STATE_B pins together (two control
bits) yield four preprogrammed attenuation states.
As an example, assume that the AGC application
requires a static attenuation adjustment to trim out gain
inconsistencies within a receiver lineup. The same AGC
circuit can also be called upon to dynamically attenuate
an unwanted blocker signal that could de-sense the
receiver and lead to an ADC overdrive condition. In this
example, the MAX2065 would be preprogrammed
(through the SPI bus) with two customized attenuation
states—one to address the static gain trim adjustment,
the second to counter the unwanted blocker condition.
Table 4. Preprogrammed Attenuation
State Settings
STATE_A
STATE_B
DIGITAL ATTENUATOR
0
0
Preprogrammed attenuation state 1
1
0
Preprogrammed attenuation state 2
0
1
Preprogrammed attenuation state 3
1
1
Preprogrammed attenuation state 4
Toggling just the STATE_A control bit enables the user
to switch quickly between the static and dynamic attenuation settings with only one I/O pin.
If desired, the user can also program two additional
attenuation states by using the STATE_B control bit as
a second I/O pin. These two additional attenuation settings are useful for software-defined radio applications
where multiple static gain settings may be needed to
account for different frequencies of operation, or where
multiple dynamic attenuation settings are needed to
account for different blocker levels (as defined by multiple wireless standards).
Cascaded OIP3 Considerations
Due to both attenuator’s finite IP3 performance, the
cascaded OIP3 degrades when both attenuators are
set at higher attenuation states.
External Bias
Bias currents for the driver amplifier are set and optimized through external resistors. Resistors R1 and R1A
connected to RSET (pin 18) set the bias current for the
amplifier. The external biasing resistor values can be
increased for reduced current operation at the expense
of performance.
Table 5. Typical Application Circuit Component Values (HC Mode)
DESIGNATION
VALUE
SIZE
VENDOR
DESCRIPTION
C1, C2, C7, C11
10nF
0402
Murata Mfg. Co., Ltd.
X7R
C3, C4, C6, C8, C9, C10
1000pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitor
C12, C13
150pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitor
L1
470nH
1008
Coilcraft, Inc.
1008CS-471XJLC
R1, R1A
10Ω
0402
Panasonic Corp.
1%
R2 (+3.3V applications only)
1kΩ
0402
Panasonic Corp.
1%
R3 (+3.3V applications only)
2kΩ
0402
Panasonic Corp.
1%
R4 (+5V applications and
using internal DAC only)
47kΩ
0402
Panasonic Corp.
1%
U1
—
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2065ETL+
22
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
DESIGNATION
VALUE
SIZE
VENDOR
DESCRIPTION
C1, C2, C7, C11
10nF
0402
Murata Mfg. Co., Ltd.
X7R
C3, C4, C6, C8, C9, C10
1000pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitor
C12, C13
150pF
0402
Murata Mfg. Co., Ltd.
C0G ceramic capacitor
L1
470nH
1008
Coilcraft, Inc.
1008CS-471XJLC
R1
24Ω
0402
Vishay
1%
R1A
0.01µF
0402
Murata Mfg. Co., Ltd.
X7R
R2 (+3.3V applications only)
1kΩ
0402
Panasonic Corp.
1%
R3 (+3.3V applications only)
2kΩ
0402
Panasonic Corp.
1%
R4 (+5V applications and
using internal DAC only)
47kΩ
0402
Panasonic Corp.
1%
U1
—
40-pin thin QFN-EP
(6mm x 6mm)
Maxim Integrated
Products, Inc.
MAX2065ETL+
+5V and +3.3V Supply Voltage
The MAX2065 features an optional +3.3V supply voltage
operation with slightly reduced linearity performance.
Layout Considerations
The pin configuration of the MAX2065 has been optimized to facilitate a very compact physical layout of the
device and its associated discrete components.
The exposed paddle (EP) of the MAX2065’s 40-pin thin
QFN-EP package provides a low thermal-resistance
path to the die. It is important that the PCB on which the
MAX2065 is mounted be designed to conduct heat
from the EP. In addition, provide the EP with a lowinductance path to electrical ground. The EP must be
soldered to a ground plane on the PCB, either directly
or through an array of plated via holes.
26
25
GND
GND
L
24
23
22
C
GND
ATTEN2_OUT
C8
GND
VCC
21
VCC_AMP
Amplitude Overshoot Reduction
To reduce amplitude overshoot during digital attenuator state change, connect a bandpass filter (parallel
LC type) from ATTEN2_OUT (pin 23) to ground. L =
18nH and C = 47pF are recommended for 169MHz
operation (Figure 2). Contact the factory for recommended components for other operating frequencies.
C6
C7
Figure 2. Bandpass Filter to Reduce Amplitude Overshoot
______________________________________________________________________________________
23
MAX2065
Table 6. Typical Application Circuit Component Values (LC Mode)
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
MAX2065
Typical Application Circuit
VCC
C11
C12
R4
RF INPUT
+
STATE_B
GND
ATTEN1_OUT
GND
GND
GND
GND
28
DIGITAL
ATTENUATOR
VREF
4
5
DAC
6
7
8
27
26
25
24
23
DRIVER AMP
EP
9
22
10
21
D4
11
12
13
14
15
16
17
18
19
GND
ATTEN2_IN
C9
GND
GND
GND
GND
GND
ATTEN2_OUT
C8
GND
VCC
VCC_AMP
20
AMP_IN
STATE_A
31
30
GND
SER/PAR
32
RSET
C1
33
3
AMP_OUT
VDD_LOGIC
34
GND
CS
VDD
35
29
D0
CLK
36
2
D1
DATA
37
ANALOG ATTENUATOR
D2
VDAC_EN
38
39
D3
VREF_SELECT
40
1
SPI INTERFACE
GND
ATTEN1_IN
VREF_IN
C13
VCC_ANALOG
VREF_IN
ANALOG_VCTRL
C10
C6
R2
R1
R3
VCC
L1
C2
C3
R1A
C4
RF OUTPUT
24
______________________________________________________________________________________
C7
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
VREF_IN
ANALOG_VCTRL
VCC_ANALOG
ATTEN1_IN
GND
GND
GND
GND
ATTEN1_OUT
GND
40
39
38
37
36
35
34
33
32
31
TOP VIEW
+
GND 1
30 GND
ANALOG ATTENUATOR
VREF_SELECT 2
29 ATTEN2_IN
VDAC_EN 3
28 GND
DATA 4
DIGITAL
ATTENUATOR
VREF
CLK 5
DAC
SPI INTERFACE
CS 6
VDD_LOGIC 7
SER/PAR 8
27 GND
26 GND
25 GND
24 GND
23 ATTEN2_OUT
DRIVER AMP
STATE_A 9
22 GND
15
16
17
18
19
20
AMP_OUT
RSET
GND
AMP_IN
D2
14
GND
13
D0
12
D1
11
D3
21 VCC_AMP
D4
STATE_B 10
TQFN
EXPOSED PADDLE ON BOTTOM.
CONNECT EP TO GND.
Chip Information
PROCESS: SiGe BiCMOS
______________________________________________________________________________________
25
MAX2065
Pin Configuration/Functional Block Diagram
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
QFN THIN.EPS
MAX2065
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
26
______________________________________________________________________________________
50MHz to 1000MHz High-Linearity, Serial/
Parallel-Controlled Analog/Digital VGA
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 27
© 2008 Maxim Integrated Products
is a registered trademark of Maxim Integrated Products, Inc.
MAX2065
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)