Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Features General Description: • PT8A995 works as encoder and PT8A996 work The PT8A995 and PT8A996 provide a simple and as decoders economic solution for basic Digital Proportional R/C • Supply voltage: 3.0V to 6.4V car toys. The chipset uses CMOS LSI Analog and • Internal auto-shutdown function Mixed Signal technology. They provide high quality • Internal over-load protection to meet HD271 safety encoder/decoder circuit. specification (996) PT8A995 severs as an encoder. When it is applied in • Integrated RF circuit (995) R/C car, the built-in AD converter samples the external • Two analog channels, one for tachospeed and the tachospeed and steering inputs and converts them into other for steering 5-bit digital signals. The internal coder assembles these • 32 steps for each of two analog channels signals into a multi-frame. It contains header, data and • Fine tuning selection for two analog channels CRC value. To obtain accurate timing easily, Manches- • Few external components needed ter encoding is employed. Some digital modulation • Closed loop adjustment for servo motor (996) scheme can be used, e.g., general ASK, OOK, FSK and • Built-in voltage regulator (996) QPSK. OOK is easy to implement and low cost. • Package: 16-pin DIP (995P), 20-pin DIP (996P) PT8A996 works as a decoder. Demodulated RF sig- and 20-pin SOIC (996S) nal will be amplified and filtered in 996 to get baseband signal. DPLL is adopted to generate sam- Applications pling clock. The decoder logic can extract F/B, L/R • Remote Controller and functional bits from received signal. The outputs • Toys are pulse-width-modulated. When motors are blocked, • Remote Measurement the built-in over-load protection mechanism will work to meet Toy Safety Requirement. Figure 1: Application Diagram Transmitter PT8A995 PT0072(05/02) Receiver RF Transmitter RF Receiver 1 PT8A996 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Block Diagram Figure 2. Block Diagram of PT8A995 OSCI OSCO Timing Generator Oscillator F1 F/B L/R Offset1 Offset2 PC Encoder & Logic Control IRout/SC F2 AD SC CA1 CA2 RFout RF Osc Figure 3. Block Diagram of PT8A996 SI OSCI Timing Generator OSC OSCO VT1 VT2 V CC PT0072(05/02) Right Left Forward PWM & Logic Backward F1 F2 FC Current Limiter REF VI1 Serial To Parallel CRC Check DPLL Filter Vref SRV VO1 VI2 2 AD VO2 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Pin Configuration PT8A996P 20-Pin DIP 20-Pin SOIC PT8A995P 16-Pin DIP 1 2 3 4 5 6 7 8 F2 F1 IRout GND RFout CA1 CA2 SC 16 15 14 13 12 11 10 9 Forward Backward Right Left GND VT2 VT1 VO2 VI2 VO1 PC L/R F/B OSCI OSCO VCC Offset2 Offset1 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 F2 F1 PC SRV OSCI OSCO V CC SI FC VI1 Top View Pin Description Table 1. Pin Description of PT8A995 P in No. P in n a me 1 F2 F2 function control pin 2 F1 F1 function control pin 3 IRout Output code with 38KHz carries 4 GND Ground 5 RFout Output code with 27M or 49MHz carries 6 CA1 27M or 49MHz crystal oscillator input 7 CA2 27M or 49MHz crystal oscillator output 8 SC 9 Offset1 Used for offset adjustment of speed input 10 Offset2 Used for offset adjustment of steering input 11 VCC 12 OSCO Crystal oscillator output 13 OSCI Crystal oscillator input 14 F/B Input for forward & backward speed 15 L/R Input for steering angle left & right 16 PC Power control output PT0072(05/02) Descr ip t ion Output code power 3 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Table 2. Pin Description of PT8A996 P in No. P in Na me 1 Forward 2 Backward 3 Right Right output 4 Left Left output 5 GND GND 6 VT2 F/B motor current limit protection input 7 VT1 L/R motor current limit protection input 8 VO2 The second stage amplify output 9 VI2 The second stage amplify input 10 VO1 The first stage amplify output 11 VI1 The first stage amplify input 12 FC Futaba connection output 13 SI Encode signal input 14 VCC 15 OSCO Crystal oscillator output 16 OSCI Crystal oscillator input 17 SRV Servo motor feedback input 18 PC Auto power off control 19 F1 Function1 control 20 F2 Function2 control PT0072(05/02) Descr ip t ion Forward output Backward output Power 4 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Functional Description Encoder Functional Description of PT8A995 Oscillator Circuit Each time the transmitter is active, the chip will assemble SPEED value and STEERING value into a multi-frame as shown in Figure 6. The multi-frame has two sub-frames, denoted as odd frame and even frame. A fundamental crystal or ceramic resonator can be used as oscillator resonator. The central frequency is 455kHz. The frequency tolerance can be up to 1.5%. After data are assembled, the bit stream is Manchester encoded. It is illustrated in Figure 7. A rising edge denotes 1, and a falling edge denotes 0. Internal A/D Converter The maximum encoding delay can be calculated by using following formula Tmax = (48+5) * Tclock = 53/1.18kHz = 45 (ms) 5-bit A/D converter is built-in. It has four input channels. To get stable analog input, the level should be within 3/8 VCC to 5/8 VCC. The four channels are switched in turn. Refer to Fig. 3. When a 455kHz quartz is used, CLK is 1.18kHz. F/B and L/ R are converted into 5-bit. OffsetX is converted into 3-bit. No external load capacitor is needed. RF Circuit RF circuit is integrated for easy application. A fundamental crystal or third-tune crystal is required. The RF frequency can be 27MHz or 49MHz. On-Off-Keying (OOK) scheme is adopted for low cost and easy implementation. The analog input voltage and the corresponding digitalized values are shown in Figure 5. Auto-Shutdown Function When the chipset is applied in R/C car, there are gross tuning joysticks and fine tuning joysticks for SPEED and STEERING respectively. We denote them SPEEDO, speedo, STEERINGO, steeringo, corresponding to F/B, Offset1, L/R, Offset2 respectively. Offset1 and offset2 complement F/B and L/R offset respectively. Auto-shutdown function is adopted to lower power consumption. Once input signal (joysticks, or F1 and F2) are silent for at least 5 minutes, the chip will enter Shutdown Operation mode, during which most circuits, including RF, are powered down. The chip will exit Shutdown Operation mode and enter Normal Operation mode when F1 and F2 are active again. For power dissipation, refer to Table 3. If current conversion values are Vsp, Vspo, Vst, Vsto, corresponding to SPEEDO, speedo, STEERINGO, steeringo respectively, we can describe the SPEED value to be transmitted as Vspeed = Vsp + Vspo. The STEERING value is Vsteering = Vst + Vsto. When the chip enters Shutdown Operation mode, PC will output LOW level, which will switch off external circuit. If it operates normally, PC maintains HIGH level. If PC is forced to HIGH level, the chip will not be auto-shut down forever. Figure 4. Internal A/D Converter of PT8A995 F/B SA L/R MUX A/D Offset1 Offset2 CLK PT0072(05/02) 5 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Figure 5. Analog Voltage and Digitalized Values QAZ 11111 10000 01111 00000 47/128V VDD 1/2 V DD 1/2V CC CC 81/128V VDD CC SA Figure 6. Multi-Frame Structure Odd Frame 0 1 1 1 1 1 1 0 1 1 1 FB4 FB3 0 4 FB2-FB0 F1 F3 0 Even Frame 0 1 1 1 1 1 1 0 0 0 0 RL4 RL3 0 CRC 4 RL2-RL0 F1 F3 0 FB4-FB0: F/B values RL4-RL0: R/L values F4-F1: function value F4/F3 are reserved CRC Figure 7. Manchester Modulation scheme 1 0 1 0 1 1 0 0 0 Manchester Table 3 Mod e Ma ximu m Su p p ly Dr a in C u r r en t (I CC ) CC Power Dissip a t ion (P d) Normal Operation 20 mA 100 mW Shutdown Operation 20 uA 100 uW PT0072(05/02) 6 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| justed by input on transmitter side. The average level is proportional to analog input. Functional Description of PT8A996 When a baseband signal is applied to VI1 pin, it will be amplified and then filtered by the FILTER and sent to digital phaselock-loop (DPLL). The pulse frequency is 37.8KHz. Duty ratio ranges from 1/64 to 1. The F/B controller works as a proportional adjuster with 32 steps. The L/R controller is made up of position control loop and speed control loop to ensure high accuracy and speed. Once the loop is locked into input signal, HEADER in multiframe structure is detected. Data in bit stream are converted into parallel output by Serial-to-Parallel module. If no CRC error is found, the data are valid. At final step, FB and RL will be pulse-width-modulated. Internal A/D Converter 5-bit A/D converter is built-in. It has two input channels. To get stable analog input, the level should be within 3/8 VCC to 5/8 VCC. The scale is linear. A time-division multiplexing method is used as a simple way to switch between two channels in PT8A996. When a 455kHz quartz is used, CLK is 1.18KHz. SRV is converted into 5-bit. Offset is converted into 3-bit to complement L/R offset (Offset2 on transmitter). An internal A/D converter is required to make servo motor work well. The inputs are SRV and Offset. When an R/C car is out of control, over-load protection is provided by Current Limiter. If the R/C car is blocked by some barriers, Forward and Backward are disabled. If servo motor encounters troublesome, Left and Right are disabled. If current conversion values are Vsv and Vfd with regarding to SRV and Offset respectively, we can describe the servo FEEDBACK value to be transmitted as Vsrv = Vsv + Vfd. Timing Generator Timing Generator produces frequency signals of 151kHz and 37.8kHzfrom a 455kHz master clock. Servo Feedback System Internal Amplifier For more accurate motor position, servo feedback is necessary. The baseband signal is amplified in two stages. An active bandpass filter is applied externally. It can be achieved by RC filter. Overload Protection Function Over-load protection function is shown in Figure 9. Once VT keeps effective more than Te and ineffective less than Tm, the chip enters over-load protection mode. It will disable all output. The device will exit over-load protection mode when VT is not effective more than 200ms. DPLL A digital PLL is built in PT8A996 to ensures 1.5 percent carrier frequency tolerance. 151kHz is used as local high frequency. Futaba compatible connection PWM Modulation Scheme The PT8A996 has a FC pin, whose output signal can directly control Futaba’s servo-motor or other compatible servo-motor. The signal is illustrated in Figure 10. The outputs of PT8A996 are pulse-width modulated for proportional output. The duty-ratio of output is variable and adFigure 9. Over-Load Protection Function VT1 or VT2 0.4V Tm < 200ms 200ms VT VT is effective PT0072(05/02) Te >= 3s 7 Enters over-load protection state VT is not effective and exists over-load protection Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Figure 10. Output from FC Pin t1 t2 t1 =0.85ms~1.66ms (Pulsewidth Adjustment Step = 27us) t2 =13.5ms Figure 11. Application of PT8A995 with Internal Modulation Vcc SW RV1 5.1k RV2 5.1k C11 0.1u D1 C14 LED IN4148 BAT 4-6v R9 1K 1 F2 2 F1 3 4 5 C9 20p 6 X1 27M 7 CS 8 PC F1 L/R IRout F/B GND OSCI RFout OSCO CA1 Vcc C A 2 Offset2 SC Offset1 16 Vcc 15 14 12 11 CI X2 13 RO 455K 20k CO 33p Vcc 33p 10 9 PT8A995 0.1u LOSC F2 ANT C10 20p 3u L02 C01 240 PT0072(05/02) 0.27 C02 150p C03 15p C04 39p 8 L04 L03 0.22u L01 0.36u C05 120p 2.4u C06 47p C07 27p Ver:1 PT0072(05/02) 9 LOSC 3uH C9 20p F1 F2 C10 20p X1 27M CS 0.1u 8 7 6 5 4 3 2 1 PC Vcc RF 330 Vcc RE2 51 RE1 51 Q2 9018 Offset1 PT8A995 SC C A 2 Offset2 CA1 RFout OSCO F/B OSCI GND L/R IRout F1 F2 9 10 11 12 13 14 15 430p CE 1K RB2 RB1 1K 20k RO RV2 5k CF 0.15u Vcc 16 Vcc 5k RV1 Figure 12. Application of PT8A995 with External Modulation Q1 L2 1.5mH R2 10 VRF C11 0.1u Vcc 3 V1 2 C3 1n C4 15n CO 33p X2 455K CP 4.7u Vout CI 33p Vin C2 150p GND 78L05 68p C1 1 R9 3k L1B LED C14 VRF C6 68p SW LA 3.3u ANT 7.212V BAT Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Ver:1 PT0072(05/02) L3 4.7u 10 * R11 FeedBack SI C19 0.1u VCC2 C1 10p 20 19 18 17 16 15 14 13 12 11 C3 3300p VT2 C38 0 R5 430 R15 2.2k R6 470 VCC2 C14 0.01u R8 10k G1 455k C20 25p R17 5k R7 10k C7 100p VCC 2 R18 5k A1 Forward F2 F 2 Function Loading F 1Function Loading PT8A996 Right Backward Left SRV F1 GND OSCI PC VT2 VT1 OSCO Vcc VO2 VI2 FC SI VO1 2.2M R12 C16 470p C5 C4 0.01u 4.7u VI1 R1 560p L1 8.2u C2 27p 1 2 3 4 5 6 7 8 9 10 VT1 R3 22k VT1 C945 R14 2.2k C9 0.1u L2 Forward Backward R16 2.2k C17 330p C6 27p Right Left C15 0.01u R2 22k C8 0.1u R10 200 R4 3.3k Left C11 0.1u VCC2 R19 2k Forward C18 4700p SI 2.2M R13 Figure 13. Supper-Regeneration Application Circuit of PT8A996 VT9 8050 R26 300 300 R27 R23 300 VT7 8050 R31 3k R21 2k C21 100u R33 16k R9 10k C23 4.7u VT1 VT6 IRF4905 VT12 8050 VT4 1.3k R34 IRFZ48N R29 0.2 M1 C10 0.1u VT13 BD237 BD238 VT15 D2 NJM431 R32 110 VT3 IRFZ48N M2 C13 0.1u C22 470u VT5 IRF4905 VT14 BD237 VT16 BD238 C12 0.1u L4 22u VT8 8050 R24 300 VT11 8050 VCC1 VT10 8050 R30 3k R28 300 R25 300 VCC1 Right VCC1 SW 1 R20 2k Backward R22 2k B2 3.6v B1 3.6v Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Ver:1 PT0072(05/02) A 1 T1 1.2u L2 5.1u C11 27p 11 R5 5k R1 0~5k R4 5k Vcc2 150p 150p C23 C6 R23 2.7k R22 6.8k 6:10 T1 FeedBack D2 D3 1N60 1N60 C12 0.01u C15 0.01u T3 2u 14 13 12 11 Vcc2 20 19 18 17 15 G1 455k 16 Vcc2 SI VT1 5 9018 C17 20p R25 120 Vcc2 82 70 C14 680p D5 1N60 VI2 Forward Backward Right Left GND VT2 VT1 VO2 7 F2 Function Loading T2 R27 510 1 L3 2.2u VO1 F1 Function Loading F2 F1 PC SRV OSCI OSCO Vcc SI FC VI1 PT8A996 D4 1N60 C16 0.01u 1 2 3 4 5 6 7 8 9 10 C19 0.047u VT 1 3 5 C18 3-10p Figure 14. Supper-Heterodyne Application Circuit of PT8A996 11 C 1 3 0.1u C4 330p Forward Backward Right Left 180p C21 C1 C20 3.3u 6 T2 R3 2.2k R2 2.2M R 2 4 0.1u 2.2k 8 PT8A201 G2 27M R26 220 Vcc2 R8 2k Forward C5 4700p SI D6 1N4148 7 10 FL1 455k 13 Left VT5 8050 R15 300 R10 300 C8 0.1u R12 300 VT3 8050 R18 3k R6 2k Vcc2 C22 47u VT1 VT14 IRF4905 VT2 8050 C7 100u 1.3k R28 R16 0.2 M2 Motor2 C3 0.1u VT7 BD237 MMo1t o r 1 C2 0.1u VT11 IRFZ48N D1 NJM431 VT9 BD238 VT12 IRFZ48N R21 16k R20 10k R19 110 VT13 IRF4905 VT8 BD237 VT10 BD238 C10 470u C9 0.1u VT4 8050 R13 300 SW1 VT6 8050 R17 3k R14 300 Vcc1 Right R11 300 Vcc1 Switch Vcc1 VT1 8050 L1 22u R9 2k Backwar R7 2k B2 3.6v B1 3.6v Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Ver:1 PT0072(05/02) L3 4.7u 12 R18 5k R11 * FeedBack C18 0.1u F C S I V CC2 C1 10p L 8.2 1 u C2 27p 20 19 18 17 16 15 14 13 12 11 F2 F1 PC PT8A996 Forward Backward Right Left GND VT2 VT1 VO2 VI2 VO1 F2 Function Loading F1 Function Loading SRV OSCI OSCO V CC SI FC VI1 2.2M R12 C15 470p C3 R1 C5 C4 3 3 0 0 p 5 6 0 p 0.01u 4.7u VT2 C380 R5 430 R15 2.2k R6 470 V CC2 C13 0.01u R8 10k G1 455k C19 25p R17 5k V CC2 R7 10k C7 100p A1 1 2 3 4 5 6 7 8 9 10 VT1 R3 22k VT1 C945 R14 2.2k C9 0.1u L2 Right Left R16 2.2k C16 330p C6 27p Forward Backward C14 0.01u R2 22k C8 0.1u R10 200 R4 3.3k R19 2k C11 0.1u V CC2 Forward C17 4700p SI R13 2.2M Figure 15. Futaba-S3003 Servo Application Circuit of PT8A996 VT9 8050 R24 300 C20 100u VT7 8050 R27 3k R21 300 V CC1 R29 16k R9 10k 1 2 3 C22 4.7u 1.3k R30 M1 VT3 IRFZ48N C21 470u R25 0.2 C10 0.1u SI V CC GND VT4 IRFZ48N VT1 VT6 IRF4905 FC Servo1 Futaba_S3003 D1 NJM431 R28 110 VT5 IRF4905 C12 0.1u L4 22u VT8 8050 R22 300 V CC1 VT10 8050 R26 3k V CC1 R23 300 SW1 R20 2k Backward B2 3.6v B1 3.6v Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Figure 16. Mechanical Diagram of 20-pin SOIC PT0072(05/02) 13 Ver:1 Data Sheet PT8A995/996 Digital Proportional Remote Controller with 2 Analog CHs & 2 Digital CHs ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| Notes Pericom Technology Inc. Email: [email protected] Web Site: www.pti.com.cn, www.pti-ic.com China: No. 20 Building, 3/F, 481 Guiping Road, Shanghai, 200233, China Tel: (86)-21-6485 0576 Fax: (86)-21-6485 2181 Asia Pacific: Unit 1517, 15/F, Chevalier Commercial Centre, 8 Wang Hoi Rd, Kowloon Bay, Hongkong Tel: (852)-2243 3660 Fax: (852)- 2243 3667 U.S.A.: 2380 Bering Drive, San Jose, California 95131, USA Tel: (1)-408-435 0800 Fax: (1)-408-435 1100 Pericom Technology Incorporation reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. Pericom Technology does not assume any responsibility for use of any circuitry described other than the circuitry embodied in Pericom Technology product. The company makes no representations that circuitry described herein is free from patent infringement or other rights, of Pericom Technology Incorporation. PT0072(05/02) 14 Ver:1