ETC AT83SND1AXXX

Features
• MPEGI/II-Layer 3 Hardwired Decoder
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
– Stand-alone MP3 Decoder
– 48, 44.1, 32, 24, 22.05, 16 KHz Sampling Frequency
– Separated Digital Volume Control on Left and Right Channels (Software Control
Using 31 Steps)
– Bass, Medium, and Treble Control (31 Steps)
– Bass Boost Sound Effect
– Ancillary Data Extraction
– “CRC Error” and “MPEG Frame Synchronization” Indicators
Programmable Audio Output for Interfacing With Common Audio DAC
– PCM Format Compatible
– I2S Format Compatible
8-bit MCU C51 Core Based (FMAX = 20 MHz)
2304 bytes of Internal RAM
64 Kbytes of Code Memory
– Flash: AT89C51SND1A, ROM: AT83C51SND1A
4 Kbytes of Boot Flash Memory (AT89C51SND1A)
– ISP: Download from USB or UART to any External Memory Cards
USB Rev 1.1 Controller
– “Full Speed” Data Transmission
Built-in PLL
– MP3 Audio Clocks
– USB Clock
MultiMediaCard™ Interface Compatibility
Atmel DataFlash™ SPI Interface Compatibility
IDE/ATAPI Interface
2 Channels 10-bit ADC, 8 KHz (8 True Bit)
– Battery Voltage Monitoring
– Voice Recording Controlled by Software
Up to 44 bits of General-purpose I/Os for:
– 4-bit Interrupt Keyboard Port for a 4 x n Matrix
– Smartmedia™ Software Interface
Standard Two 16-bit Timers/Counters
Hardware Watchdog Timer
Standard Full Duplex UART with Baud Rate Generator
2-wire Master and Slave Modes Controller
SPI Master and Slave Modes Controller
Power Management
– Power-on reset
– Software Programmable MCU Clock
– Idle Mode, Power-down Mode
Operating Conditions:
– 3V, ±10%, 25 mA Typical Operating at 25°C
– Temperature Range: -40°C to +85°C
Packages
– TQFP80, PLCC84 (Development Board)
– Dice
Single Chip
Microcontroller
with MP3
Decoder and
Man Machine
Interface
AT8xC51SND1A
Preliminary
Description
The AT8xC51SND1A is a fully integrated stand-alone hardwired MPEGI/II-Layer 3
decoder with a C51 microcontroller core handling data flow and MP3-player control.
The AT89C51SND1A includes 64 Kbytes of Flash memory and allows In-System Programming through an embedded 4 Kbytes of Boot Flash Memory.
Rev. 4106E–8051–03/02
1
The AT83C51SND1A includes 64 Kbytes of ROM memory.
The AT8xC51SND1A includes 2304 bytes of RAM memory.
The AT8xC51SND1A provides all necessary features for man machine interface like
timers, keyboard port, serial or parallel interface (USB, 2-wire, SPI, IDE), ADC input, I2S
output, and all external memory interface (NAND or NOR Flash, SmartMedia,
MultiMedia).
Typical Applications
2
•
MP3 Player
•
PDA, Camera, Mobile Phone MP3
•
Car Audio/Multimedia MP3
•
Home Audio/Multimedia MP3
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Pin Description
Pinouts
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
P5.1
P5.0
P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
VSS
VDD
P0.6/AD6
P0.7/AD7
P4.3/SS#
P4.2/SCK
P4.1/MOSI
P4.0/MISO
P2.0/A8
P2.1/A9
P4.7
P4.6
Figure 1. AT8xC51SND1A 80-pin TQFP Package
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
AT89C51SND1A-RO (Flash)
AT83C51SND1A-RO (ROM)
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P4.5
P4.4
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
VSS
VDD
MCLK
MDAT
MCMD
RST
SCLK
DSEL
DCLK
DOUT
VSS
VDD
D+
DVDD
VSS
P3.0/RXD
P3.1/TXD
P3.2/INT0#
P3.3/INT1#
P3.4/T0
P3.5/T1
P3.6/WR#
P3.7/RD#
AVDD
AVSS
AREFP
AREFN
AIN0
AIN1
P5.2
P5.3
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ALE
ISP#
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P1.4
P1.5
P1.6/SCL
P1.7/SDA
VDD
PVDD
FILT
PVSS
VSS
X2
X1
TST#
UVDD
UVSS
3
4106E–8051–03/02
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
NC
P5.1
P5.0
P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
VSS
VDD
P0.6/AD6
P0.7/AD7
P4.3/SS#
P4.2/SCK
P4.1/MOSI
P4.0/MISO
P2.0/A8
P2.1/A9
P4.7
P4.6
Figure 2. AT8xC51SND1A 84-pin PLCC Package
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
AT89C51SND1A-SR (Flash)
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
NC
P4.5
P4.4
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
VSS
VDD
MCLK
MDAT
MCMD
RST
SCLK
DSEL
DCLK
DOUT
VSS
VDD
D+
DVDD
VSS
P3.0/RXD
P3.1/TXD
P3.2/INT0#
P3.3/INT1#
P3.4/T0
P3.5/T1
P3.6/WR#
P3.7/RD#
AVDD
AVSS
AREFP
AREFN
AIN0
AIN1
P5.2
P5.3
NC
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
ALE
ISP#
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P1.4
P1.5
P1.6/SCL
P1.7/SDA
VDD
PAVDD
FILT
PAVSS
VSS
X2
NC
X1
TST#
UVDD
UVSS
Signals
All AT8xC51SND1A signals are detailed by functionality in Table 1 to Table 14.
Table 1. Ports Signal Description
Signal
Name
4
Type
Alternate
Function
Description
P0.7:0
I/O
Port 0
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s
written to them float and can be used as high impedance inputs. To
avoid any parasitic current consumption, floating P0 inputs must be
polarized to V DD or VSS.
P1.7:0
I/O
Port 1
P1 is an 8-bit bidirectional I/O port with internal pull-ups.
AD7:0
KIN3:0
SCL
SDA
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 1. Ports Signal Description (Continued)
Signal
Name
Type
P2.7:0
I/O
Description
Port 2
P2 is an 8-bit bidirectional I/O port with internal pull-ups.
Alternate
Function
A15:8
RXD
TXD
INT0#
INT1#
T0
T1
WR#
RD#
P3.7:0
I/O
Port 3
P3 is an 8-bit bidirectional I/O port with internal pull-ups.
P4.7:0
I/O
Port 4
P4 is an 8-bit bidirectional I/O port with internal pull-ups.
MISO
MOSI
SCK
SS#
P5.3:0
I/O
Port 5
P5 is a 4-bit bidirectional I/O port with internal pull-ups.
-
Table 2. Clock Signal Description
Signal
Name
Type
Description
Alternate
Function
X1
I
Input to the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to
this pin. If an external oscillator is used, its output is connected to this
pin. X1 is the clock source for internal timing.
X2
O
Output of the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to
this pin. If an external oscillator is used, leave X2 unconnected.
-
FILT
I
PLL Low Pass Filter input
FILT receives the RC network of the PLL low pass filter.
-
-
Table 3. Timer 0 and Timer 1 Signal Description
Signal
Name
Type
Description
Alternate
Function
Timer 0 Gate Input
INT0# serves as external run control for timer 0, when selected by
GATE0 bit in TCON register.
INT0#
I
External Interrupt 0
INT0# input sets IE0 in the TCON register. If bit IT0 in this register is
set, bit IE0 is set by a falling edge on INT0#. If bit IT0 is cleared, bit IE0
is set by a low level on INT0#.
P3.2
Timer 1 Gate Input
INT1# serves as external run control for timer 1, when selected by
GATE1 bit in TCON register.
INT1#
I
External Interrupt 1
INT1# input sets IE1 in the TCON register. If bit IT1 in this register is
set, bit IE1 is set by a falling edge on INT1#. If bit IT1 is cleared, bit IE1
is set by a low level on INT1#.
P3.3
5
4106E–8051–03/02
Table 3. Timer 0 and Timer 1 Signal Description (Continued)
Signal
Name
Type
Alternate
Function
T0
I
Timer 0 External Clock Input
When timer 0 operates as a counter, a falling edge on the T0 pin
increments the count.
P3.4
T1
I
Timer 1 External Clock Input
When timer 1 operates as a counter, a falling edge on the T1 pin
increments the count.
P3.5
Description
Table 4. Audio Interface Signal Description
Signal
Name
Type
Alternate
Function
DCLK
O
DAC Data Bit Clock
-
DOUT
O
DAC Audio Data
-
DSEL
O
DAC Channel Select Signal
DSEL is the sample rate clock output.
-
SCLK
O
DAC System Clock
SCLK is the oversampling clock synchronized to the digital audio data
(DOUT) and the channel selection signal (DSEL).
-
Description
Table 5. USB Controller Signal Description
Signal
Name
Type
Alternate
Function
D+
I/O
USB Positive Data Upstream Port
This pin requires an external 1.5 kΩ pull-up to VDD for full speed
operation.
-
D-
I/O
USB Negative Data Upstream Port
-
Description
Table 6. MutiMediaCard Interface Signal Description
6
Signal
Name
Type
Alternate
Function
MCLK
O
MMC Clock output
Data or command clock transfer.
-
MCMD
I/O
MMC Command line
Bidirectional command channel used for card initialization and data
transfer commands. To avoid any parasitic current consumption,
unused MCMD input must be polarized to VDD or VSS.
-
MDAT
I/O
MMC Data line
Bidirectional data channel. To avoid any parasitic current consumption,
unused MDAT input must be polarized to V DD or VSS.
-
Description
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 7. UART Signal Description
Signal
Name
Type
RXD
I/O
Receive Serial Data
RXD sends and receives data in serial I/O mode 0 and receives data in
serial I/O modes 1, 2 and 3.
P3.0
TXD
O
Transmit Serial Data
TXD outputs the shift clock in serial I/O mode 0 and transmits data in
serial I/O modes 1, 2 and 3.
P3.1
Description
Alternate
Function
Table 8. SPI Controller Signal Description
Signal
Name
Type
MISO
I/O
SPI Master Input Slave Output Data Line
When in master mode, MISO receives data from the slave peripheral.
When in slave mode, MISO outputs data to the master controller.
P4.0
MOSI
I/O
SPI Master Output Slave Input Data Line
When in master mode, MOSI outputs data to the slave peripheral.
When in slave mode, MOSI receives data from the master controller.
P4.1
SCK
I/O
SPI Clock Line
When in master mode, SCK outputs clock to the slave peripheral. When
in slave mode, SCK receives clock from the master controller.
P4.2
SS#
I
SPI Slave Select Line
When in controlled slave mode, SS# enables the slave mode.
P4.3
Description
Alternate
Function
Table 9. Two-wire Controller Signal Description
Signal
Name
Type
Description
SCL
I/O
2-wire Serial Clock
When 2-wire controller is in master mode, SCL outputs the serial clock
to the slave peripherals. When 2-wire controller is in slave mode, SCL
receives clock from the master controller.
SDA
I/O
2-wire Serial Data
SDA is the bidirectional 2-wire data line.
Alternate
Function
P1.6
P1.7
Table 10. A/D Converter Signal Description
Signal
Name
Type
AIN1:0
I
A/D Converter Analog Inputs
-
AREFP
I
Analog Positive Voltage Reference Input
-
AREFN
I
Analog Negative Voltage Reference Input
This pin is internally connected to AVSS.
-
Description
Alternate
Function
7
4106E–8051–03/02
Table 11. Keypad Interface Signal Description
Signal
Name
Type
KIN3:0
I
Alternate
Function
Description
Keypad Input Lines
Holding one of these pins high or low for 24 oscillator periods triggers a
keypad interrupt.
P1.3:0
Table 12. External Access Signal Description
Signal
Name
Type
Alternate
Function
A15:8
I/O
Address Lines
Upper address lines for the external bus.
Multiplexed higher address and data lines for the IDE interface.
P2.7:0
AD7:0
I/O
Address/Data Lines
Multiplexed lower address and data lines for the external memory or the
IDE interface.
P0.7:0
ALE
O
Address Latch Enable Output
ALE signals the start of an external bus cycle and indicates that valid
address information is available on lines A7:0. An external latch is used
to demultiplex the address from address/data bus.
-
ISP#
I/O
ISP Enable Input
This signal must be held to GND through a pull-down resistor at the
falling reset to force execution of the internal bootloader.
-
RD#
O
Read Signal
Read signal asserted during external data memory read operation.
P3.7
WR#
O
Write Signal
Write signal asserted during external data memory write operation.
P3.6
Description
Table 13. System Signal Description
Signal
Name
8
Type
Alternate
Function
Description
RST
I
Reset Input
Holding this pin high for 64 oscillator periods while the oscillator is
running resets the device. The Port pins are driven to their reset
conditions when a voltage lower than V IL is applied, whether or not the
oscillator is running.
This pin has an internal pull-down resistor which allows the device to be
reset by connecting a capacitor between this pin and VDD.
Asserting RST when the chip is in Idle mode or Power-down mode
returns the chip to normal operation.
TST#
I
Test Input
Test mode entry signal. This pin must be set to VDD.
-
-
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 14. Power Signal Description
Signal
Name
Type
Description
Alternate
Function
VDD
PWR
Digital Supply Voltage
Connect these pins to +3V supply voltage.
-
VSS
GND
Circuit Ground
Connect these pins to ground.
-
AVDD
PWR
Analog Supply Voltage
Connect this pin to +3V supply voltage.
-
AVSS
GND
Analog Ground
Connect this pin to ground.
-
PVDD
PWR
PLL Supply voltage
Connect this pin to +3V supply voltage.
-
PVSS
GND
PLL Circuit Ground
Connect this pin to ground.
-
UVDD
PWR
USB Supply Voltage
Connect this pin to +3V supply voltage.
-
UVSS
GND
USB Ground
Connect this pin to ground.
-
9
4106E–8051–03/02
Internal Pin Structure
Table 15. Detailed Internal Pin Structure
Circuit(1)
Type
Pins
Input
TST#
Input/Output
RST
Input/Output
P1(2)
P2(3)
P3
P4
P53:0
RTST
VDD
VDD
P
RRST
Watchdog Output
VSS
2 osc
periods
Latch Output
VDD
VDD
VDD
P1
P2
P3
N
VSS
VDD
P
Input/Output
N
P0
MCMD
MDAT
ISP#
VSS
ALE
SCLK
DCLK
VDD
P
Output
N
DOUT
DSEL
MCLK
VSS
D+
Input/Output
D+
D-
D-
Note:
1. For information on resistors value, input/output levels, and drive capability, refer to the Section “DC Characteristics”,
page 32.
2. When the 2-wire controller is enabled, P1, P2, and P3 transistors are disabled allowing pseudo open-drain structure.
3. In Port 2, P1 transistor is continuously driven when outputting a high level bit address (A15:8).
10
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Block Diagram
Figure 3. AT8xC51SND1A Block Diagram
INT0#
3
INT1#
VDD VSS UVDD UVSS AVDD AVSS AREF AIN1:0
3
Interrupt
Handler Unit
RAM
2304 bytes
C51 (X2 CORE)
Clock and PLL
Unit
Flash
ROM
64 Kbytes
Flash Boot
4 Kbytes
10-bit A to D
Converter
or
10-bit ADC
TXD RXD
T0
3
3
3
UART
and
BRG
T1
3
SS# MISO MOSI SCK
SCL SDA
4
1
Timers 0/1
Watchdog
4
4
4
SPI/DataFlash
Controller
1
2-wire
Controller
8-BIT INTERNAL BUS
MP3 Decoder
Unit
I2S / PCM
Audio Interface
USB
Controller
MMC
Interface
Keyboard
Interface
I/O
Ports
IDE
Interface
1
FILT
X1
X2
RST
ISP#
ALE
DOUT DCLK DSEL SCLK
D+
D-
MCLK MDAT MCMD
KIN3:0
P0-P5
1 Alternate function of Port 1
3 Alternate function of Port 3
4 Alternate function of Port 4
11
4106E–8051–03/02
Application Information
Battery
Figure 4. AT8xC51SND1A Typical Application with On-board Atmel DataFlash and 2-wire LCD
RST
VDD
AVDD
VREFP
VREFN
Ref.
AIN0
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P0.0
P0.1
P0.2
P0.3
AIN1
P1.6/SCL
P1.7/SDA
LCD
MMC1
MCLK
MDAT
MCMD
AT8xC51SND1A
UVDD
X1
D+
D-
USB PORT
AVSS
VSS
P1.4
DOUT
DCLK
DSEL
SCLK
P4.0/SI
DataFlash
Memories
P1.5
UVSS
P4.1/SO
P4n
FILT
P4.2/SCK
X2
PVSS
MMC2
Audio DAC
RST
AVDD
VDD
VREFP
Ref.
VREFN
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P0.0
P0.1
P0.2
P0.3
AIN1
P1.3
P0.4
P0.5
P0.6
P0.7
P1.6/SCL
P1.7/SDA
LCD
AIN0
Battery
Figure 5. AT8xC51SND1A Typical Application with On-board Atmel DataFlash and LCD
MCLK
MDAT
MCMD
AT8xC51SND1A
D+
D-
X2
DataFlash
Memories
USB PORT
AVSS
VSS
P1.5
P1.4
DOUT
DCLK
DSEL
SCLK
P4.0/SI
P4.1/SO
P4.n
FILT
P4.2/SCK
UVSS
12
MMC2
UVDD
X1
PVSS
MMC1
Audio DAC
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Battery
Figure 6. AT8xC51SND1A Typical Application with On-board SSFDC Flash
RST
VDD
AVDD
VREFP
VREFN
Ref.
AIN0
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P0.0
P0.1
P0.2
P0.3
AIN1
P4.0
P4.1
P4.2
P4.4
P4.5
P4.6
P4.7
LCD
MMC1
MCLK
MDAT
MCMD
AT8xC51SND1A
MMC2
UVDD
D+
D-
X1
USB PORT
X2
AVSS
VSS
P3.5
P3.4
DOUT
DCLK
DSEL
SCLK
PVSS
P0
P2
FILT
P3.7/RD#
P3.6/WR#
UVSS
Audio DAC
SSFDC Memories
or SmartMedia Cards
SmartMedia
RST
AVDD
VDD
VREFP
Ref.
VREFN
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P0.0
P0.1
P0.2
P0.3
AIN1
P4.0
P4.1
P4.2
P4.4
P4.5
P4.6
P4.7
P1.6/SCL
P1.7/SDA
LCD
AIN0
Battery
Figure 7. AT8xC51SND1A Typical Application with IDE CD-ROM Drive
MCLK
MDAT
MCMD
AT8xC51SND1A
MMC2
UVDD
X1
D+
D-
USB PORT
AVSS
VSS
P3.5
P3.4
UVSS
DOUT
DCLK
DSEL
SCLK
P3.7/RD#
P0
P2
FILT
P3.6/WR#
X2
PVSS
MMC1
Audio DAC
IDE CD-ROM
13
4106E–8051–03/02
Address Spaces
Code Memory
The AT8xC51SND1A derivatives implement four different address spaces:
•
Program/Code Memory
•
Boot Memory
•
Data Memory
•
Special Function Registers (SFRs)
The AT89C51SND1A and AT83C51SND1A implement 64 Kbytes of on-chip program/code memory. The AT83C51SND1A product provides the internal program/code
memory in ROM technology while the AT89C51SND1A product provides it in Flash
technology.
The Flash memory increases ROM functionality by enabling in-circuit electrical erasure
and programming. Thanks to the internal charge pump, the high voltage needed for programming or erasing Flash cells is generated on-chip using the standard VDD voltage.
Thus, the AT89C51SND1A can be programmed using only one voltage and allows in
application software programming commonly known as IAP. Hardware programming
mode is also available using specific programming tool.
Boot Memory
The AT89C51SND1A implements 4 Kbytes of on-chip boot memory provided in Flash
technology. This boot memory is delivered programmed with a standard boot loader
software allowing in system programming commonly known as ISP. It also contains
some Application Programming Interfaces routines commonly known as API allowing
user to develop his own boot loader.
Data Memory
The T89C51CC01 derivatives implement 2304 bytes of on-chip data RAM. This memory
is divided in two separate areas:
14
•
256 bytes of on-chip RAM memory (standard C51 memory).
•
2048 bytes of on-chip expanded RAM memory (ERAM accessible via MOVX
instructions).
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Special Function
Registers
The Special Function Registers (SFRs) of the T89C51CC01 derivatives fall into the categories detailed in Table 16 to Table 32. The relative addresses of these SFRs are
provided together with their reset values in Table 33. In this table, the bit-addressable
registers are identified by Note 1.
Table 16. C51 Core SFRs
Mnemonic
Add
Name
ACC
E0h
Accumulator
B
F0h
B Register
PSW
D0h
Program Status
Word
SP
81h
Stack Pointer
DPL
82h
Data Pointer Low
byte
DPH
83h
Data Pointer High
byte
7
6
5
4
3
2
1
0
CY
AC
F0
RS1
RS0
OV
F1
P
7
6
5
4
3
2
1
0
SMOD1
SMOD0
-
-
GF1
GF0
PD
IDL
Table 17. System Management SFRs
Mnemonic
Add
Name
PCON
87h
Power Control
AUXR
8Eh
Auxiliary Register 0
-
EXT16
M0
DPHDIS
XRS1
XRS0
EXTRAM
AO
AUXR1
A2h
Auxiliary Register 1
-
-
ENBOOT
-
GF3
0
-
DPS
NVERS
FBh Version Number
NV7
NV6
NV5
NV4
NV3
NV2
NV1
NV0
7
6
5
4
3
2
1
0
-
-
-
-
-
-
-
X2
R1
R0
-
-
PLLRES
-
PLLEN
PLOCK
Table 18. PLL and System Clock SFRs
Mnemonic
Add
Name
CKCON
8Fh
Clock Control
PLLCON
E9h
PLL Control
PLLNDIV
EEh PLL N Divider
-
N6
N5
N4
N3
N2
N1
N0
PLLRDIV
EFh PLL R Divider
R9
R8
R7
R6
R5
R4
R3
R2
15
4106E–8051–03/02
Table 19. Interrupt SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
IEN0
A8h
Interrupt Enable
Control 0
EA
EAUD
EMP3
ES
ET1
EX1
ET0
EX0
IEN1
B1h
Interrupt Enable
Control 1
-
EUSB
-
EKB
EADC
ESPI
EI2C
EMMC
IPH0
B7h
Interrupt Priority
Control High 0
-
IPHAUD
IPHMP3
IPHS
IPHT1
IPHX1
IPHT0
IPHX0
IPL0
B8h
Interrupt Priority
Control Low 0
-
IPLAUD
IPLMP3
IPLS
IPLT1
IPLX1
IPLT0
IPLX0
IPH1
B3h
Interrupt Priority
Control High 1
-
IPHUSB
-
IPHKB
IPHADC
IPHSPI
IPHI2C
IPHMMC
IPL1
B2h
Interrupt Priority
Control Low 1
-
IPLUSB
-
IPLKB
IPLADC
IPLSPI
IPLI2C
IPLMMC
7
6
5
4
3
2
1
0
-
-
-
-
Table 20. Port SFRs
Mnemonic
Add
Name
P0
80h
8-bit Port 0
P1
90h
8-bit Port 1
P2
A0h
8-bit Port 2
P3
B0h
8-bit Port 3
P4
C0h 8-bit Port 4
P5
D8h 4-bit Port 5
Table 21. Flash Memory SFR
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
FCON
D1h Flash Control
FPL3
FPL2
FPL1
FPL0
FPS
FMOD1
FMOD0
FBUSY
7
6
5
4
3
2
1
0
Table 22. Timer SFRs
Mnemonic
Add
Name
TCON
88h
Timer/Counter 0 and
1 Control
TF1
TR1
TF0
TR0
IE1
IT1
IE0
IT0
TMOD
89h
Timer/Counter 0 and
1 Modes
GATE1
C/T1#
M11
M01
GATE0
C/T0#
M10
M00
TL0
8Ah
Timer/Counter 0 Low
Byte
TH0
8Ch
Timer/Counter 0
High Byte
TL1
8Bh
Timer/Counter 1 Low
Byte
16
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 22. Timer SFRs (Continued)
Mnemonic
Add
Name
TH1
8Dh
Timer/Counter 1
High Byte
WDTRST
A6h
WatchDog Timer
Reset
WDTPRG
A7h
WatchDog Timer
Program
7
6
5
4
3
2
1
0
-
-
-
-
-
WTO2
WTO1
WTO0
Table 23. MP3 Decoder SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
MP3CON
AAh MP3 Control
MPEN
MPBBST
CRCEN
MSKANC
MSKREQ
MSKLAY
MSKSYN
MSKCRC
MP3STA
C8h MP3 Status
MPANC
MPREQ
ERRLAY
ERRSYN
ERRCRC
MPFS1
MPFS0
MPVER
MP3STA1
AFh MP3 Status 1
-
-
-
MPFREQ
MPBREQ
-
-
-
MP3DAT
ACh MP3 Data
MPD7
MPD6
MPD5
MPD4
MPD3
MPD2
MPD1
MPD0
MP3ANC
ADh MP3 Ancillary Data
AND7
AND6
AND5
AND4
AND3
AND2
AND1
AND0
MP3VOL
9Eh
MP3 Audio Volume
Control Left
-
-
-
VOL4
VOL3
VOL2
VOL1
VOL0
MP3VOR
9Fh
MP3 Audio Volume
Control Right
-
-
-
VOR4
VOR3
VOR2
VOR1
VOR0
MP3BAS
B4h
MP3 Audio Bass
Control
-
-
-
BAS4
BAS3
BAS2
BAS1
BAS0
MP3MED
B5h
MP3 Audio Medium
Control
-
-
-
MED4
MED3
MED2
MED1
MED0
MP3TRE
B6h
MP3 Audio Treble
Control
-
-
-
TRE4
TRE3
TRE2
TRE1
TRE0
MP3CLK
EBh MP3 Clock Divider
-
-
-
MPCD4
MPCD3
MPCD2
MPCD1
MPCD0
7
6
5
4
3
2
1
0
Table 24. Audio Interface SFRs
Mnemonic
Add
Name
AUDCON0
9Ah
Audio Control 0
JUST4
JUST3
JUST2
JUST1
JUST0
POL
DSIZ
HLR
AUDCON1
9Bh
Audio Control 1
SRC
DRQEN
MSREQ
MUDRN
-
DUP1
DUP0
AUDEN
AUDSTA
9Ch Audio Status
SREQ
UDRN
AUBUSY
-
-
-
-
-
AUDDAT
9Dh Audio Data
AUD7
AUD6
AUD5
AUD4
AUD3
AUD2
AUD1
AUD0
AUDCLK
ECh Audio Clock Divider
-
-
-
AUCD4
AUCD3
AUCD2
AUCD1
AUCD0
7
6
5
4
3
2
1
0
USBE
SUSPCLK
SDRMWUP
-
UPRSM
RMWUPE
CONFG
FADDEN
Table 25. USB Controller SFRs
Mnemonic
Add
Name
USBCON
BCh USB Global Control
17
4106E–8051–03/02
Table 25. USB Controller SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
USBADDR
C6h USB Address
FEN
UADD6
UADD5
UADD4
UADD3
UADD2
UADD1
UADD0
USBINT
BDh USB Global Interrupt
-
-
WUPCPU
EORINT
SOFINT
-
-
SPINT
USBIEN
BEh
USB Global Interrupt
Enable
-
-
EWUPCPU
EEORINT
ESOFINT
-
-
ESPINT
UEPNUM
C7h
USB Endpoint
Number
-
-
-
-
-
-
EPNUM1
EPNUM0
UEPCONX
D4h
USB Endpoint X
Control
EPEN
-
-
-
DTGL
EPDIR
EPTYPE1
EPTYPE0
UEPSTAX
CEh
USB Endpoint X
Status
DIR
-
STALLRQ
TXRDY
STLCRC
RXSETUP
RXOUT
TXCMP
UEPRST
D5h USB Endpoint Reset
-
-
-
-
EP3RST
EP2RST
EP1RST
EP0RST
UEPINT
F8h
USB Endpoint
Interrupt
-
-
-
-
EP3INT
EP2INT
EP1INT
EP0INT
UEPIEN
C2h
USB Endpoint
Interrupt Enable
-
-
-
-
EP3INTE
EP2INTE
EP1INTE
EP0INTE
UEPDATX
CFh
USB Endpoint X Fifo
Data
FDAT7
FDAT6
FDAT5
FDAT4
FDAT3
FDAT2
FDAT1
FDAT0
UBYCTX
E2h
USB Endpoint X Byte
Counter
-
BYCT6
BYCT5
BYCT4
BYCT3
BYCT2
BYCT1
BYCT0
UFNUML
BAh
USB Frame Number
Low
FNUM7
FNUM6
FNUM5
FNUM4
FNUM3
FNUM2
FNUM1
FNUM0
UFNUMH
BBh
USB Frame Number
High
-
-
CRCOK
CRCERR
-
FNUM10
FNUM9
FNUM8
USBCLK
EAh USB Clock Divider
-
-
-
-
-
-
USBCD1
USBCD0
7
6
5
4
3
2
1
0
Table 26. MMC Controller SFRs
Mnemonic
Add
MMCON0
E4h MMC Control 0
DRPTR
DTPTR
CRPTR
CTPTR
MBLOCK
DFMT
RFMT
CRCDIS
MMCON1
E5h MMC Control 1
BLEN3
BLEN2
BLEN1
BLEN0
DATDIR
DATEN
RESPEN
CMDEN
MMCON2
E6h MMC Control 2
MMCEN
DCR
CCR
-
-
DATD1
DATD0
FLOWC
MMSTA
DEh
-
-
CBUSY
CRC16S
DATFS
CRC7S
RESPFS
CFLCK
MMINT
E7h MMC Interrupt
MCBI
EORI
EOCI
EOFI
F2FI
F1FI
F2EI
F1EI
MMMSK
DFh
MMC Interrupt
Mask
MCBM
EORM
EOCM
EOFM
F2FM
F1FM
F2EM
F1EM
MMCMD
DDh MMC Command
MC7
MC6
MC5
MC4
MC3
MC2
MC1
MC0
MMDAT
DCh MMC Data
MD7
MD6
MD5
MD4
MD3
MD2
MD1
MD0
MMCLK
EDh MMC Clock Divider
MMCD7
MMCD6
MMCD5
MMCD4
MMCD3
MMCD2
MMCD1
MMCD0
18
Name
MMC Control and
Status
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 27. IDE Interface SFR
Mnemonic
DAT16H
Add
F9h
Name
High Order Data
Byte
7
6
5
4
3
2
1
0
D15
D14
D13
D12
D11
D10
D9
D8
Table 28. Serial I/O Port SFRs
Mnemonic
Add
Name
SCON
98h
Serial Control
SBUF
99h
Serial Data Buffer
SADEN
B9h Slave Address Mask
SADDR
A9h Slave Address
BDRCON
92h
Baud Rate Control
BRL
91h
Baud Rate Reload
7
6
5
4
3
2
1
0
FE/SM0
SM1
SM2
REN
TB8
RB8
TI
RI
BRR
TBCK
RBCK
SPD
SRC
Table 29. SPI Controller SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
SPCON
C3h SPI Control
SPR2
SPEN
SSDIS
MSTR
CPOL
CPHA
SPR1
SPR0
SPSTA
C4h SPI Status
SPIF
WCOL
-
MODF
-
-
-
-
SPDAT
C5h SPI Data
SPD7
SPD6
SPD5
SPD4
SPD3
SPD2
SPD1
SPD0
7
6
5
4
3
2
1
0
Table 30. 2-wire Controller SFRs
Mnemonic
Add
Name
SSCON
93h
Synchronous Serial
Control
SSCR2
SSPE
SSSTA
SSSTO
SSI
SSAA
SSCR1
SSCR0
SSSTA
94h
Synchronous Serial
Status
SSC4
SSC3
SSC2
SSC1
SSC0
0
0
0
SSDAT
95h
Synchronous Serial
Data
SSD7
SSD6
SSD5
SSD4
SSD3
SSD2
SSD1
SSD0
SSADR
96h
Synchronous Serial
Address
SSA7
SSA6
SSA5
SSA4
SSA3
SSA2
SSA1
SSGC
7
6
5
4
3
2
1
0
Table 31. Keyboard Interface SFRs
Mnemonic
Add
Name
KBCON
A3h
Keyboard Control
KINL3
KINL2
KINL1
KINL0
KINM3
KINM2
KINM1
KINM0
KBSTA
A4h
Keyboard Status
KPDE
-
-
-
KINF3
KINF2
KINF1
KINF0
19
4106E–8051–03/02
Table 32. A/D Controller SFRs
Mnemonic
Add
Name
7
6
5
4
3
2
1
0
ADCON
F3h
ADC Control
-
ADIDL
ADEN
ADEOC
ADSST
-
-
ADCS
ADCLK
F2h
ADC Clock Divider
-
-
-
ADCD4
ADCD3
ADCD2
ADCD1
ADCD0
ADDL
F4h
ADC Data Low Byte
-
-
-
-
-
-
ADAT1
ADAT0
ADDH
F5h
ADC Data High Byte
ADAT9
ADAT8
ADAT7
ADAT6
ADAT5
ADAT4
ADAT3
ADAT2
20
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 33. SFR Addresses and Reset Values
0/8
1/9
F8h
UEPINT
0000 0000
DAT16H
XXXX XXXX
F0h
B1
0000 0000
PLLCON
0000 1000
E8h
E0h
ACC 1
0000 0000
D8h
P51
XXXX 1111
D0h
PSW1
0000 0000
C8h
MP3STA1
0000 0001
C0h
P41
1111 1111
B8h
IPL01
X000 0000
B0h
2/A
3/B
4/C
5/D
6/E
7/F
NVERS2
1000 0010
FFh
ADCLK
0000 0000
ADCON
0000 0000
ADDL
0000 0000
ADDH
0000 0000
USBCLK
0000 0000
MP3CLK
0000 0000
AUDCLK
0000 0000
MMCLK
0000 0000
PLLNDIV
0000 0000
PLLRDIV
0000 0000
EFh
MMCON0
0000 0000
MMCON1
0000 0000
MMCON2
0000 0000
MMINT
0000 0011
E7h
MMDAT
1111 1111
MMCMD
1111 1111
MMSTA
0000 0000
MMMSK
1111 1111
DFh
UEPCONX
0000 0000
UEPRST
0000 0000
UBYCTLX
0000 0000
FCON 3
1111 00004
F7h
D7h
UEPSTAX
0000 0000
UEPDATX
0000 0000
CFh
UEPNUM
0000 0000
C7h
UEPIEN
0000 0000
SPCON
0001 0100
SPSTA
0000 0000
SPDAT
XXXX XXXX
USBADDR
1000 0000
SADEN
0000 0000
UFNUML
0000 0000
UFNUMH
0000 0000
USBCON
0000 0000
USBINT
0000 0000
USBIEN
0001 0000
P31
1111 1111
IEN1
0000 0000
IPL1
0000 0000
IPH1
0000 0000
MP3BAS
0000 0000
MP3MED
0000 0000
MP3TRE
0000 0000
A8h
IEN01
0000 0000
SADDR
0000 0000
MP3CON
0011 1111
MP3DAT
0000 0000
MP3ANC
0000 0000
A0h
P21
1111 1111
98h
SCON
0000 0000
90h
IPH0
X000 0000
B7h
MP3STA1
0100 0001
AFh
WDTRST
0000 1000
WDTPRG
0000 1000
A7h
MP3VOR
0000 0000
9Fh
AUXR1
XXXX 00X0
KBCON
0000 1111
KBSTA
0000 0000
SBUF
XXXX XXXX
AUDCON0
0000 1000
AUDCON1
1011 0010
AUDSTA
1100 0000
AUDDAT
1111 1111
MP3VOL
0000 0000
P11
1111 1111
BRL
0000 0000
BDRCON
XXX0 0000
SSCON
0000 0000
SSSTA
1111 1000
SSDAT
1111 1111
SSADR
1111 1110
88h
TCON 1
0000 0000
TMOD
0000 0000
TL0
0000 0000
TL1
0000 0000
TH0
0000 0000
TH1
0000 0000
AUXR
X000 1101
80h
P01
1111 1111
SP
0000 0111
DPL
0000 0000
DPH
0000 0000
0/8
1/9
2/A
3/B
4/C
5/D
BFh
6/E
97h
CKCON
0000 000X5
8Fh
PCON
XXXX 0000
87h
7/F
Reserved
Notes:
1.
2.
3.
4.
5.
SFR registers with least significant nibble address equal to 0 or 8 are bit-addressable.
NVERS reset value depends on the silicon version.
FCON register is only available in AT89C51SND1A product.
FCON reset value is 00h in case of reset with hardware condition.
CKCON reset value depends on the X2B bit (programmed or unprogrammed) in the Hardware Byte.
21
4106E–8051–03/02
In-System and
In-application
Programming
As described in the section “Program/Code Memory” of the AT8xC51SND1A design
guide, The AT89C51SND1A implements a 4 Kbytes Flash boot memory. This boot
memory is delivered programmed with a standard boot loader software allowing In-System Programming (ISP). It also contains some Application Programming Interface
routines named API routines allowing In Application Programming (IAP) by using user’s
own boot loader.
In-System Programming
The ISP boot process is divided in two different processes: the hardware and software
boot process detailed in the following sections.
Hardware Boot Process
As detailed in Figure 8 there are two hardware conditions that allow the user to execute
the boot loader: the hardware and the programmed conditions.
Hardware Condition
The hardware condition is based on the ISP# pin. When driving this pin to low level, the
chip reset forces the execution of the boot loader software.
The hardware condition takes precedence on the programmed condition and always
allows in-system recovery when the user’s memory has been corrupted.
Programmed Condition
The programmed condition is based on the Boot Loader Jump Bit (BLJB) in the hardware security bytes (HSB). When this bit is programmed (by hardware or software
programming mode), the chip reset forces the execution of the boot loader software.
Software Boot Process
Whatever the physical medium may be, the boot loader software always starts execution by testing FCON to know if execution comes from hardware or programmed
condition. If it is from hardware condition, Atmel’s boot loader is executed. If it is from
programmed condition, the Software Boot Vector (SBV) is used to build a 16-bit
address, SBV content being the MSB and the LSB at 00h. If this address is valid (<
F000h), a jump occurs at this address to execute the user’s boot loader. Otherwise,
jump is performed to Atmel’s boot loader. This implies that the user’s boot loader does
not execute any code mapped from F000h to FFFFh.
22
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Figure 8. Boot Process Algorithm
RESET
Hardware
Process
Hard Cond?
ISP#= L?
Prog Cond?
BLJB= P?
Standard Init
ENBOOT= 0
PC= 0000h
FCON= F0h
Hard Cond Init
ENBOOT= 1
PC= F000h
FCON= 00h
Prog Cond Init
ENBOOT= 1
PC= F000h
FCON= F0h
Software
Process
Hard Cond?
FCON= 00h?
User Vector?
SBV< F0h?
User Init
PCH= SBV
PCL= 00h
User’s
Application
User’s
Boot Loader
Atmel’s
Boot Loader
23
4106E–8051–03/02
Serial Boot Loader
Configuration
The serial boot loader is based on the internal UART and needs only 3 pins: the TXD
and RXD pins of the UART and the VSS pin.
The data transmission format on the serial link must be set to 8 data bits with 1 stop bit.
The baud rate is automatically recognized during the synchronization phase.
Synchronization Phase
Before any data may be sent to the boot loader, a synchronization must be achieved
with the host so that both sides converse at the same baud rate. This is done by sending
the “U” character (ASCII 35h) to the boot loader. The boot loader acknowledges the synchronization by responding the same “U” character.
At this time, the boot loader is able to receive data, then all data received are echoed to
the host.
Command Protocol
Definition
The protocol is based on the INTEL‚ HEX type records. These records are composed of
seven fields of ASCII characters as detailed in Table 34. All fields except SOR (Start Of
Record) end EOR (End Of Record) are ASCII coded hexadecimal values. The SOR field
is always a “:” character. The EOR field is always a Carriage Return (ASCII 13h) followed by a Line Feed (ASCII 0Ah). The SIZE field is the size of the DATA field. The
ADDRESS field is the address where to store data contained in the DATA field. The
TYPE field is the record type detailed in Table 35. The DATA field contains the data and
must never exceed 128 data bytes (256 ASCII characters). The CKSUM field is the
checksum computed on the SIZE, ADDRESS, TYPE, DATA fields.
Table 34. Hex Record Format
Error Handling
SOR
SIZE
ADDRESS
TYPE
DATA
CKSUM
EOR
:
NN
AAAA
RR
DD…DD
CC
CR LF
All received records that present a checksum error, a data length greater than 128 bytes
or a bad type record are immediately acknowledged to the host by sending an “X” character followed by a CRLF sequence.
Command Description
Table 35. Hex Record Commands
TYPE
00h
01h
24
SIZE
01h to 80h
00h
ADDRESS
0000h to
FFFFh
0000h
Description
Program Data
Program the data in the DATA field at the address contained in the ADDRESS field.
Return
“.”Done.
“P”Not done. Part protected (secured by level 1 or 2).
End of File
No operation.
Return
“.”
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 35. Hex Record Commands (Continued)
TYPE
SIZE
02h
ADDRESS
XXXX
Description
Block Erase: DATA[0] = 01h
DATA[1] = 00h
Erase block 0 from address 0000h to 1FFFh.
DATA[1] = 20h
Erase block 1 from address 2000h to 3FFFh.
DATA[1] = 40h
Erase block 2 from address 4000h to 7FFFh.
DATA[1] = 80h
Erase block 3 from address 8000h to BFFFh.
DATA[1] = C0h
Erase block 4 from address C000h to FFFFh.
Return
“.”Done.
“P”Not done. Part protected (secured by level 1 or 2).
Reset Software Boot Vector and Boot Status Byte: DATA[0] = 04h
Set SBV to F0h and BSB to FFh.
01h
02h
XXXX
XXXX
Return
“.”Done.
“P”Not done. Part protected (secured by level 1 or 2).
Program Software Security Bits: DATA[0] = 05h
DATA[1] = 00h
Program level 1. Disable Flash programming.
DATA[1] = 01h
Program level 2. Disable Flash programming and verifying.
Return
“.”Done.
“P”Not done. Part protected (secured by level 1 or 2).
03h
03h
XXXX
Program Software Boot Vector or Boot Status Byte: DATA[0] = 06h
DATA[1] = 00h
Program BSB with DATA[2].
DATA[1] = 01h
Program SBV with DATA[2].
Return
“.”Done.
“P”Not done. Part already protected (secured by level 2).
01h
XXXX
Full Chip Erase: DATA[0] = 07h
Erase user memory from address 0000h to FFFFh.
Set SBV to F0h and BSB to FFh.
Program software security to level 0.
Return
“.”
03h
XXXX
Program Fuse bits: DATA[0] = 0Ah
DATA[1] = 04h
DATA[2] = 00h
Program BLJB bit.
DATA[2] = 01h
Erase BLJB bit.
DATA[1] = 08h
DATA[2] = 00h
Program X2 bit.
DATA[2] = 01h
Erase X2 bit.
Return
“.”Done.
“P”Not done. Part protected (secured by level 1 or 2).
25
4106E–8051–03/02
Table 35. Hex Record Commands (Continued)
TYPE
SIZE
05h
ADDRESS
XXXX
Description
Read Data: DATA[4] = 00h
Read data from address given by DATA[1:0] (start address) to address given by DATA[3:2] (end
address).
Return
“AAAA=DD…DD” up to 16 data bytes by line.
04h
05h
02h
XXXX
XXXX
Blank Check: DATA[4] = 01h
Check blanked data from address given by DATA[1:0] (start address) to address given by
DATA[3:2] (end address).
Return
“.”Done.
“XXXX”First address not blanked.
Read Id: DATA[0] = 00h
DATA[1] = 00h
Return manufacturer id.
DATA[1] = 01h
Return device id 1.
DATA[1] = 02h
Return device id 2.
DATA[1] = 03h
Return device id 3.
Return
“XX”Selected id value.
02h
XXXX
05h
Read Special Bytes: DATA[0] = 07h
DATA[1] = 00h
Return SSB.
DATA[1] = 01h
Return BSB.
DATA[1] = 02h
Return SBV.
Return
“XX”Selected byte value.
01h
02h
XXXX
XXXX
Read HSB: DATA[0] = 0Bh
Return HSB.
Return
“XX”HSB value.
Read Boot Id: DATA[0] = 0Eh
DATA[1] = 00h
Return boot id 1.
DATA[1] = 01h
Return boot id 1.
Return
“XX”Selected id value.
01h
26
XXXX
Read Boot Loader Version: DATA[0] = 0Fh
Return boot loader version.
Return
“XX”Boot loader version.
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
In-application
Programming
The IAP is based on several Application Program Interface routines (APIs) that may be
called by the user’s boot loader to allow programming of the Flash memory.
The APIs are executed by calling the API_CALL function at address FFF0h and by
passing the API routine number in R1 register. Some other parameters may also be
passed in registers as detailed in Table 36.
Table 36. API Routines and Parameters
R1
Description
PROGRAM DATA BYTE
Program data in the Flash memory at a given address.
02h
Parameters
DPTRAddress of the byte to program.
ACCData to program.
Return
None.
PROGRAM DATA PAGE
Program a page of data in the Flash memory at a given page address.
09h
Parameters
DPTR0Address of the page to program.
DPTR1Address in ERAM of the first data to program.
ACCNumber of bytes to program limited to 128.
Return
None.
PROGRAM SOFTWARE SECURITY BYTE
Program SSB.
05h
Parameters
DPL00hProgram level 1. Disable Flash programming.
01hProgram level 2. Disable Flash programming and verifying.
Return
None.
PROGRAM BOOT STATUS BYTE
Program BSB.
06h
Parameters
DPL00hSelect BSB programming.
ACCData to program in BSB.
Return
None.
PROGRAM SOFTWARE BOOT VECTOR
Program SBV.
06h
Parameters
DPL01hSelect SBV programming.
ACCData to program in SBV.
Return
None.
PROGRAM BOOT LOADER JUMP BIT
Program BLJB.
06h
Parameters
DPL04hSelect BLJB programming.
ACC00hProgram BLJB.
01hErase BLJB.
Return
None.
27
4106E–8051–03/02
Table 36. API Routines and Parameters (Continued)
R1
Description
PROGRAM X2 BIT
Program X2B.
06h
Parameters
DPL08hSelect X2B programming.
ACC00hProgram X2B.
01hErase X2B.
Return
None.
Erase BLOCK
Erase one of the 5 available blocks.
01h
Parameters
DPH00hErase block 0 from address 0000h to 1FFFh.
20hErase block 1 from address 2000h to 3FFFh.
40hErase block 2 from address 4000h to 7FFFh.
80hErase block 3 from address 8000h to BFFFh.
C0hErase block 4 from address C000h to FFFFh.
Return
None.
ERASE SOFTWARE BOOT VECTOR and BOOT STATUS BYTE
Erase SBV and BSB.
04h
Parameters
None.
Return
None.
READ DATA BYTE
Read data at a given address.
03h
Parameters
DPTRAddress of the byte to program.
Return
ACCData read.
READ MANUFACTURER ID
Read manufacturer Id.
00h
Parameters
DPL00hSelect manufacturer Id.
Return
ACCId value.
READ DEVICE ID 1
Read device Id 1
00h
Parameters
DPL01hSelect device Id 1.
Return
ACCId value.
READ DEVICE ID 2
Read device Id 2.
00h
Parameters
DPL02hSelect device Id 2.
Return
ACCId value.
28
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 36. API Routines and Parameters (Continued)
R1
Description
READ DEVICE ID 3
Read device Id 3.
00h
Parameters
DPL03hSelect device Id 3.
Return
ACCId value.
READ SOFTWARE SECURITY BYTE
Read SSB.
07h
Parameters
DPL00hSelect SSB.
Return
ACCSSB value.
READ BOOT STATUS BYTE
Read BSB.
07h
Parameters
DPL01hSelect BSB.
Return
ACCBSB value.
READ SOFTWARE BOOT VECTOR
Read SBV.
07h
Parameters
DPL02hSelect SBV.
Return
ACCSBV value.
READ HARDWARE SECURITY BYTE
Read HSB.
0Bh
Parameters
None.
Return
ACCHSB value.
READ BOOT ID 1
Read boot Id 1.
0Eh
Parameters
DPL00hSelect boot Id 1.
Return
ACCId value.
READ BOOT ID 2
Read boot Id 2.
0Eh
Parameters
DPL01hSelect boot Id 2.
Return
ACCId value.
READ BOOT LOADER VERSION
Read BLV.
0Fh
Parameters
None.
Return
ACCBLV value.
29
4106E–8051–03/02
Peripherals
The AT8xC51SND1A peripherals are briefly described in the following sections. For further details on how to interface (hardware and software) to these peripherals, please
refer to the AT8xC51SND1A design guide.
Clock Generator System
The AT8xC51SND1A internal clocks are extracted from an on-chip PLL fed by an onchip oscillator. Four clocks are generated respectively for the C51 core, the MP3
decoder, the audio interface, and the other peripherals. The C51 and peripheral clocks
are derived from the oscillator clock. The MP3 decoder clock is generated by dividing
the PLL output clock. The audio interface sample rates are also obtained by dividing the
PLL output clock.
Ports
The AT8xC51SND1A implements five 8-bit ports (P0 to P4) and one 4-bit port (P5). In
addition to performing general-purpose I/O, some ports are capable of external data
memory operations; others allow for alternate functions. All I/O Ports are bidirectional.
Each Port contains a latch, an output driver and an input buffer. Port 0 and Port 2 output
drivers and input buffers facilitate external memory operations. Some Port 1, Port 3 and
Port 4 pins serve for both general-purpose I/O and alternate functions.
Timers/Counters
The AT8xC51SND1A implements the two general-purpose, 16-bit Timers/Counters of a
standard C51. They are identified as Timer 0, Timer 1, and can independently be configured each to operate in a variety of modes as a Timer or as an event Counter. When
operating as a Timer, a Timer/Counter runs for a programmed length of time, then
issues an interrupt request. When operating as a Counter, a Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues
an interrupt request.
Watchdog Timer
The AT8xC51SND1A implements a hardware Watchdog Timer that automatically resets
the chip if it is allowed to time out. The WDT provides a means of recovering from routines that do not complete successfully due to software or hardware malfunctions.
MP3 Decoder
The AT8xC51SND1A implements a MPEG I/II audio layer 3 decoder (known as MP3
decoder).
In MPEG I (ISO 11172-3) three layers of compression have been standardized supporting three sampling frequencies: 48, 44.1, and 32 KHz. Among these layers, layer 3
allows highest compression rate of about 12:1 while still maintaining CD audio quality.
For example, 3 minutes of CD audio (16-bit PCM, 44.1 KHz) data, which needs about 32
MBytes of storage, can be encoded into only 2.7 MBytes of MPEG I audio layer 3 data.
In MPEG II (ISO 13818-3), three additional sampling frequencies: 24, 22.05, and 16
KHz are supported for low bit rates applications.
The AT8xC51SND1A can decode in real-time the MPEG I audio layer 3 encoded data
into a PCM audio data, and also supports MPEG II audio layer 3 additional frequencies.
Additional features are supported by the AT8xC51SND1A MP3 decoder such as volume, bass, medium, and treble controls, bass boost effect and ancillary data extraction.
Audio Output Interface
The AT8xC51SND1A implements an audio output interface allowing the decoded audio
bitstream to be output in various formats. It is compatible with right and left justification
PCM and I2S formats and the on-chip PLL (see Section ) allows connection of almost all
of the commercial audio DAC families available on the market.
Universal Serial Bus
Interface
The AT8xC51SND1A implements a full-speed Universal Serial Bus Interface. It can be
used for the following purposes:
30
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
•
Download of MP3 encoded audio files by supporting the USB mass storage class.
•
In-System Programming by supporting the USB firmware upgrade class.
MultiMediaCard Interface The AT8xC51SND1A implements a MultiMediaCard (MMC) interface compliant to the
V2.2 specification in MultiMediaCard Mode. The MMC allows storage of MP3 encoded
audio files in removable flash memory cards that can be easily plugged or removed from
the application. It can also be used for In-System Programming.
IDE/ATAPI interface
The AT8xC51SND1A provides an IDE/ATAPI interface allowing connexion of devices
such as CD-ROM reader, CompactFlash™ cards, Hard Disk Drive, etc. It consists in a
16-bit bidirectional bus part of the low-level ANSI ATA/ATAPI specification. It is provided
for mass storage interface but could be used for In-System Programming using CDROM.
Serial I/O Interface
The AT8xC51SND1A implements a serial port with its own baud rate generator providing one single synchronous communication mode and three full-duplex Universal
Asynchronous Receiver Transmitter (UART) communication modes. It is provided for
the following purposes:
Serial Peripheral
Interface
Two-wire Controller
A/D Controller
Keyboard Interface
•
In-System Programming.
•
Remote control of the AT8xC51SND1A by a host.
The AT8xC51SND1A implements a Serial Peripheral Interface (SPI) supporting master
and slave modes. It is provided for the following purposes:
•
Interfacing DataFlash memory for MP3 encoded audio files storage.
•
Remote control of the AT8xC51SND1A by a host.
•
In-System Programming.
The AT8xC51SND1A implements a two-wire controller supporting the four standard
master and slave modes with multimaster capability. It is provided for the following
purposes:
•
Connection of slave devices like LCD controller, audio DAC…
•
Remote control of the AT8xC51SND1A by a host.
•
In-System Programming.
The AT8xC51SND1A implements a 2-channel 10-bit (8 true bits) analog to digital converter (ADC). It is provided for the following purposes:
•
Battery monitoring.
•
Voice recording.
•
Corded remote control.
The AT8xC51SND1A implements a keyboard interface allowing connection of 4 x n
matrix keyboard. It is based on 4 inputs with programmable interrupt capability on both
high or low level. These inputs are available as alternate function of P1.3:0 and allow
exit from idle and power down modes.
31
4106E–8051–03/02
Electrical Characterstics
Absolute Maximum Rating and Operating Conditions
Storage Temperature ......................................... -65 to +150°C
Voltage on any other Pin to VSS
*NOTICE:
...................................... -0.3 to +4.0V
IOL per I/O Pin ................................................................. 5 mA
Power Dissipation ............................................................. 1 W
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond
the “operating conditions” is not recommended
and extended exposure beyond the “Operating
Conditions” may affect device reliability.
Ambient Temperature Under Bias........................ -40 to +85°C
VDD
........................................................................................... 2.7
to 3.3V
DC Characteristics
Digital Logic
Table 37. Digital DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol Parameter
32
VIL
Input Low Voltage
VIH1
Input High Voltage (except
RST)
VIH2
Input High Voltage (RST)
Min
Typ(1)
Max
Units Test Conditions
-0.5
0.2·V DD - 0.1
V
0.2·VDD + 0.9
VDD
V
0.7·VDD
VDD + 0.5
V
VOL1
Output Low Voltage
(except P0, ALE, MCMD,
MDAT, MCLK, SCLK, DCLK,
DSEL, DOUT)
0.45
V
IOL = 1.6 mA
VOL2
Output Low Voltage
(P0, ALE, MCMD, MDAT,
MCLK, SCLK, DCLK, DSEL,
DOUT)
0.45
V
IOL = 3.2 mA
VOH1
Output High Voltage
(P1, P2, P3, P4 and P5)
V DD - 0.7
V
IOH = -30 µA
VOH2
Output High Voltage
(P0, P2 address mode, ALE,
MCMD, MDAT, MCLK,
SCLK, DCLK, DSEL, DOUT,
D+, D-)
V DD - 0.7
V
IOH = -3.2 mA
IIL
Logical 0 Input Current (P1,
P2, P3, P4 and P5)
µA
Vin = 0.45V
-50
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Table 37. Digital DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol Parameter
Min
ILI
Input Leakage Current (P0,
ALE, MCMD, MDAT, MCLK,
SCLK, DCLK, DSEL, DOUT)
ITL
Logical 1 to 0 Transition
Current
(P1, P2, P3, P4 and P5)
RRST
Pull-Down Resistor
C IO
50
Pin Capacitance
VRET
Typ(1)
Max
90
Units Test Conditions
10
µA
0.45 < VIN < VDD
-650
µA
Vin = 2.0V
200
kΩ
10
pF
VDD Data Retention Limit
1.8
V
TA = 25°C
IDD
Operating Current
TBD
TBD
mA
12 MHz, VDD < 3.3V
16 MHz, VDD < 3.3V
20 MHz, VDD < 3.3V
IDL
Idle Mode Current
TBD
TBD
mA
12 MHz, VDD < 3.3V
16 MHz, VDD < 3.3V
20 MHz, VDD < 3.3V
IPD
Power-Down Current
TBD
TBD
µA
VRET < VDD < 3.3V
Note:
1. Typical values are obtained using VDD = 3V and TA = 25°C. They are not tested and
there is no guarantee on these values.
Figure 9. IDD/IDL Versus XTAL Frequency; VDD = 2.7 to 3.3V
IDD/IDL (mA)
TBD
TBD
TBD
0
2
4
max Active mode (mA)
typ Active mode (mA)
max Idle mode (mA)
typ Idle mode (mA)
6
8
10
12
14
16
18
20
Frequency at XTAL (MHz)
33
4106E–8051–03/02
IDD, IDL and IPD Test Conditions
Figure 10. IDD Test Condition, Active Mode
VDD
VDD
IDD
VDD
RST
VDD
P0
(NC)
Clock Signal
X2
X1
TST#
VSS
VSS
All other pins are unconnected
Figure 11. IDL Test Condition, Idle Mode
VDD
RST
IDL
VDD
VSS
VDD
P0
(NC)
Clock Signal
X2
X1
TST#
VSS
VSS
All other pins are unconnected
Figure 12. IPD Test Condition, Power-Down Mode
VDD
RST
VDD
VSS
IPD
VDD
P0
(NC)
X2
X1
VSS
MCMD
MDAT
TST#
VSS
All other pins are unconnected
34
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
A to D Converter
Table 38. A to D Converter DC Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol
Parameter
Min
Typ
Max
Units
3.3
V
Test Conditions
AVDD
Analog Supply Voltage
AIDD
Analog Operating Supply
Current
600
µA
AVDD = 3.3V
AIN1:0 = 0 to AVDD
AIPD
Analog Standby Current
2
µA
AVDD = 3.3V
ADEN = 0 or PD = 1
AVIN
Analog Input Voltage
AVSS
AVDD
V
Reference Voltage
AREFN
AREFP
AVSS
2.4
AVDD
V
V
10
30
kΩ
TA = 25°C
10
pF
TA = 25°C
AVREF
RREF
2.7
AREF Input Resistance
C IA
Analog Input capacitance
Oscillator and Crystal
Schematic
Figure 13. Crystal Connection
X1
C1
Q
C2
VSS
Note:
Parameters
X2
For operation with most standard crystals, no external components are needed on X1
and X2. It may be necessary to add external capacitors on X1 and X2 to ground in special cases (max 10 pF). X1 and X2 may not be used to drive other circuits.
Table 39. Oscillator and Crystal Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol
Parameter
Min
Typ
Max
Unit
C X1
Internal Capacitance (X1 - VSS)
10
pF
C X2
Internal Capacitance (X2 - VSS)
10
pF
CL
Equivalent Load Capacitance (X1 - X2)
5
pF
DL
Drive Level
50
µW
Crystal Frequency
20
MHz
RS
Crystal Series Resistance
40
Ω
CS
Crystal Shunt Capacitance
6
pF
F
35
4106E–8051–03/02
Phase Lock Loop
Schematic
Figure 14. PLL Filter Connection
PFILT
R
C2
C1
VSS
Parameters
VSS
Table 40. PLL Filter Characteristics
VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol
Parameter
Min
Typ
Max
Unit
Filter Resistor
100
Ω
C1
Filter Capacitance 1
10
nF
C2
Filter Capacitance 2
2.2
nF
R
In-System Programming
Schematic
Figure 15. ISP Pull-down Connection
ISP#
RISP
VSS
Parameters
Table 41. ISP Pull-Down Characteristics VDD = 2.7 to 3.3V , TA = -40° to +85°C
Symbol
RISP
36
Parameter
ISP Pull-Down Resistor
Min
Typ
2.2
Max
Unit
kΩ
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
AC Characteristics
External 8-bit Bus Cycles
Definition of Symbols
Table 42. External 8-bit Bus Cycles Timing Symbol Definitions
Signals
Timings
Conditions
A
Address
H
High
D
Data In
L
Low
L
ALE
V
Valid
Q
Data Out
X
No Longer Valid
R
RD#
Z
Floating
W
WR#
Test conditions: capacitive load on all pins = 50 pF.
Table 43. External 8-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL -15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLRL
ALE Low to RD# Low
3·TCLCL-30
1.5·TCLCL-30
ns
TRLRH
RD# Pulse Width
6·TCLCL-25
3·TCLCL -25
ns
TRHLH
RD# high to ALE High
TAVDV
Address Valid to Valid Data In
TAVRL
Address Valid to RD# Low
TRLDV
RD# Low to Valid Data
TRLAZ
RD# Low to Address Float
TRHDX
Data Hold After RD# High
TRHDZ
Instruction Float After RD#
High
TCLCL-20
TCLCL+20
0.5·TCLCL-20
9·TCLCL-65
4·TCLCL-30
0.5·TCLCL+20
ns
4.5·TCLCL-65
ns
2·TCLCL -30
ns
5·TCLCL-30
2.5·TCLCL-30
ns
0
0
ns
0
0
2·TCLCL-25
ns
TCLCL-25
ns
37
4106E–8051–03/02
Table 44. External 8-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
Waveforms
Parameter
Min
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE
Low
TCLCL-20
0.5·TCLCL-20
ns
TLLWL
ALE Low to WR# Low
3·TCLCL-30
1.5·TCLCL-30
ns
TWLWH
WR# Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TWHLH
WR# High to ALE High
TCLCL-20
TAVWL
Address Valid to WR#
Low
4·TCLCL-30
2·TCLCL-30
ns
TQVWH
Data Valid to WR# High
7·TCLCL-20
3.5·TCLCL-20
ns
TWHQX
Data Hold after WR# High
TCLCL-15
0.5·TCLCL-15
ns
TCLCL+20
0.5·TCLCL-20
0.5·TCLCL+20
ns
Figure 16. External 8-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD#
TRLDV
TRHDZ
TRLAZ
TAVLL
P0
TLLAX
TRHDX
A7:0
D7:0
TAVRL
Data In
TAVDV
P2
38
A15:8
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Figure 17. External 8-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TLLWL
TWLWH
TWHLH
WR#
TAVWL
TAVLL
P0
TLLAX
TQVWH
A7:0
TWHQX
D7:0
Data Out
P2
A15:8
External IDE 16-bit Bus Cycles
Definition of Symbols
Table 45. External IDE 16-bit Bus Cycles Timing Symbol Definitions
Signals
Timings
Conditions
A
Address
H
High
D
Data In
L
Low
L
ALE
V
Valid
Q
Data Out
X
No Longer Valid
R
RD#
Z
Floating
W
WR#
Test conditions: capacitive load on all pins = 50 pF.
39
4106E–8051–03/02
Table 46. External IDE 16-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLRL
ALE Low to RD# Low
3·TCLCL-30
1.5·TCLCL-30
ns
TRLRH
RD# Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TRHLH
RD# high to ALE High
TAVDV
Address Valid to Valid Data In
TAVRL
Address Valid to RD# Low
TRLDV
RD# Low to Valid Data
TRLAZ
RD# Low to Address Float
TRHDX
Data Hold After RD# High
TRHDZ
Instruction Float After RD#
High
TCLCL-20
TCLCL+20
0.5·TCLCL-20
9·TCLCL-65
4·TCLCL-30
0.5·TCLCL+20
ns
4.5·TCLCL -65
ns
2·TCLCL-30
ns
5·TCLCL-30
2.5·TCLCL -30
ns
0
0
ns
0
0
2·TCLCL-25
ns
TCLCL-25
ns
Table 47. External IDE 16-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol Parameter
40
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL -20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL -20
ns
TLLWL
ALE Low to WR# Low
3·TCLCL-30
1.5·TCLCL -30
ns
TWLWH
WR# Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TWHLH
WR# High to ALE High
TAVWL
Address Valid to WR# Low
4·TCLCL-30
2·TCLCL-30
ns
TQVWH
Data Valid to WR# High
7·TCLCL-20
3.5·TCLCL -20
ns
TWHQX
Data Hold after WR# High
TCLCL-15
0.5·TCLCL -15
ns
TCLCL-20
TCLCL+20
0.5·TCLCL -20
0.5·TCLCL +20
ns
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Waveforms
Figure 18. External IDE 16-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD#
TRLDV
TRHDZ
TRLAZ
TAVLL
P0
TLLAX
TRHDX
A7:0
D7:0
TAVRL
Data In
TAVDV
P2
A15:8
D15:81
Data In
Note:
D15:8 is written in DAT16H SFR.
Figure 19. External IDE 16-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TLLWL
TWLWH
TWHLH
WR#
TAVWL
TAVLL
P0
TLLAX
TQVWH
A7:0
TWHQX
D7:0
Data Out
P2
A15:8
D15:81
Data Out
Note:
D15:8 is the content of DAT16H SFR.
SPI Interface
Definition of Symbols
Table 48. SPI Interface Timing Symbol Definitions
Signals
Conditions
C
Clock
H
High
I
Data In
L
Low
O
Data Out
V
Valid
X
No Longer Valid
Z
Floating
41
4106E–8051–03/02
Timings
Test conditions: capacitive load on all pins = 100 pF
Table 49. SPI Interface Master AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
Parameter
Min
Max
Unit
Slave mode
TCHCH
Clock Period
TCHCX
8
TOSC
Clock High Time
3.2
TOSC
TCLCX
Clock Low Time
3.2
TOSC
TSLCH, TSLCL
SS# Low to Clock edge
200
ns
TIVCL, TIVCH
Input Data Valid to Clock Edge
100
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
100
ns
TCLOV, TCHOV
Output Data Valid after Clock Edge
TCLOX, TCHOX
Output Data Hold Time after Clock Edge
0
ns
TCLSH, TCHSH
SS# High after Clock Edge
0
ns
TIVCL, TIVCH
Input Data Valid to Clock Edge
100
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
100
ns
TSLOV
SS# Low to Output Data Valid
130
ns
TSHOX
Output Data Hold after SS# High
130
ns
TSHSL
SS# High to SS# Low
TILIH
Input Rise Time
2
µs
TIHIL
Input Fall Time
2
µs
TOLOH
Output Rise time
100
ns
TOHOL
Output Fall Time
100
ns
100
ns
(1)
Master mode
TCHCH
Clock Period
TCHCX
4
TOSC
Clock High Time
1.6
TOSC
TCLCX
Clock Low Time
1.6
TOSC
TIVCL, TIVCH
Input Data Valid to Clock Edge
50
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
50
ns
TCLOV, TCHOV
Output Data Valid after Clock Edge
TCLOX, TCHOX
Output Data Hold Time after Clock Edge
TILIH
Input Data Rise Time
2
µs
TIHIL
Input Data Fall Time
2
µs
TOLOH
Output Data Rise time
50
ns
TOHOL
Output Data Fall Time
50
ns
Note:
42
65
0
ns
ns
1. Value of this parameter depends on software.
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Waveforms
Figure 20. SPI Slave Waveforms (SSCPHA = 0)
SS#
(input)
TSLCH
TSLCL
SCK
(SSCPOL = 0)
(input)
TCHCH
TCHCX
TCLCH
TCLSH
TCHSH
TSHSL
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCLOV
TCHOV
TSLOV
MISO
(output)
SLAVE MSB OUT
BIT 6
TCLOX
TCHOX
TSHOX
SLAVE LSB OUT
1
TIVCH TCHIX
TIVCL TCLIX
MOSI
(input)
Note:
MSB IN
BIT 6
LSB IN
Not Defined but generally the MSB of the character which has just been received.
Figure 21. SPI Slave Waveforms (SSCPHA = 1)
SS#1
(output)
TCHCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCH
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH TCHIX
TIVCL TCLIX
SI
(input)
MSB IN
BIT 6
LSB IN
TCLOX
TCLOV
TCHOV
SO
(output)
Note:
Port Data
MSB OUT
BIT 6
TCHOX
LSB OUT
Port Data
Not Defined but generally the LSB of the character which has just been received.
43
4106E–8051–03/02
Figure 22. SPI Master Waveforms (SSCPHA = 0)
SS#1
(input)
TSLCH
TSLCL
SCK
(SSCPOL = 0)
(input)
TCHCH
TCHCX
TCLCH
TCLSH
TCHSH
TSHSL
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCHOV
TCLOV
TSLOV
MISO
(output)
1
SLAVE MSB OUT
BIT 6
TCHOX
TCLOX
TSHOX
SLAVE LSB OUT
TIVCH TCHIX
TIVCL TCLIX
MOSI
(input)
Note:
MSB IN
BIT 6
LSB IN
SS# handled by software using general purpose port pin.
Figure 23. SPI Master Waveforms (SSCPHA = 1)
SS#1
(output)
TCHCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCH
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH TCHIX
TIVCL TCLIX
SI
(input)
MSB IN
TCLOV
SO
(output)
Note:
44
TCHOV
Port Data
MSB OUT
BIT 6
LSB IN
TCLOX
TCHOX
BIT 6
LSB OUT
Port Data
SS# handled by software using general purpose port pin.
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Two-wire Interface
Timings
Table 50. Two-wire Interface AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
INPUT
Min
Max
OUTPUT
Min
Max
Symbol
Parameter
THD; STA
Start condition hold time
14·TCLCL(4)
4.0 µs(1)
TLOW
SCL low time
16·TCLCL(4)
4.7 µs(1)
THIGH
SCL high time
14·TCLCL(4)
4.0 µs(1)
TRC
SCL rise time
1 µs
-(2)
TFC
SCL fall time
0.3 µs
0.3 µs(3)
TSU; DAT1
Data set-up time
250 ns
20·TCLCL(4)- TRD
TSU; DAT2
SDA set-up time (before repeated START condition)
250 ns
1 µs(1)
TSU; DAT3
SDA set-up time (before STOP condition)
250 ns
8·TCLCL(4)
THD; DAT
Data hold time
0 ns
8·TCLCL(4) - TFC
TSU; STA
Repeated START set-up time
14·TCLCL(4)
4.7 µs(1)
TSU; STO
STOP condition set-up time
14·TCLCL(4)
4.0 µs(1)
TBUF
Bus free time
14·TCLCL(4)
4.7 µs(1)
TRD
SDA rise time
1 µs
-(2)
TFD
SDA fall time
0.3 µs
0.3 µs(3)
Notes:
1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of
100 kbit/s.
2. Determined by the external bus-line capacitance and the external bus-line pull-up
resistor, this must be < 1 µs.
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered
out. Maximum capacitance on bus-lines SDA and
SCL = 400 pF.
4. TCLCL = TOSC = one oscillator clock period.
Waveforms
Figure 24. Two-wire Waveforms
Repeated START condition
START or Repeated START condition
START condition
STOP condition
Trd
Tsu;STA
0.7 VDD
0.3 VDD
SDA
(INPUT/OUTPUT)
Tsu;STO
Tfd
Trc
Tfc
Tbuf
Tsu;DAT3
0.7 VDD
0.3 VDD
SCL
(INPUT/OUTPUT)
Thd;STA
Tlow Thigh Tsu;DAT1
Thd;DAT
Tsu;DAT2
45
4106E–8051–03/02
MMC Interface
Definition of Symbols
Table 51. MMC Interface Timing Symbol Definitions
Signals
Timings
Conditions
C
Clock
H
High
D
Data In
L
Low
O
Data Out
V
Valid
X
No Longer Valid
Table 52. MMC Interface AC timings
VDD = 2.7 to 3.3V, TA = 0 to 70°C, CL ≤ 100pF (10 cards)
Symbol
Waveforms
Parameter
Min
Max
Unit
TCHCH
Clock Period
50
ns
TCHCX
Clock High Time
10
ns
TCLCX
Clock Low Time
10
ns
TCLCH
Clock Rise Time
10
ns
TCHCL
Clock Fall Time
10
ns
TDVCH
Input Data Valid to Clock High
3
ns
TCHDX
Input Data Hold after Clock High
3
ns
TCHOX
Output Data Hold after Clock High
5
ns
TOVCH
Output Data Valid to Clock High
5
ns
Figure 25. MMC Input-Output Waveforms
TCHCH
TCHCX
TCLCX
MCLK
TCHCL
TCHIX
TCLCH
TIVCH
MCMD Input
MDAT Input
TCHOX
TOVCH
MCMD Output
MDAT Output
46
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Audio Interface
Definition of Symbols
Table 53. Audio Interface Timing Symbol Definitions
Signals
Timings
Conditions
C
Clock
H
High
O
Data Out
L
Low
S
Data Select
V
Valid
X
No Longer Valid
Table 54. Audio Interface AC timings
VDD = 2.7 to 3.3V, TA = 0 to 70°C, CL ≤ 30pF
Symbol
Min
Max
Unit
(1)
TCHCH
Clock Period
TCHCX
Clock High Time
30
ns
TCLCX
Clock Low Time
30
ns
TCLCH
Clock Rise Time
10
ns
TCHCL
Clock Fall Time
10
ns
TCLSV
Clock Low to Select Valid
10
ns
TCLOV
Clock Low to Data Valid
10
ns
Note:
Waveforms
Parameter
325.5
ns
32-bit format with Fs = 48 KHz.
Figure 26. Audio Interface Waveforms
TCHCH
TCHCX
TCLCX
DCLK
TCHCL
TCLCH
TCLSV
DSEL
Right
Left
TCLOV
DDAT
47
4106E–8051–03/02
Analog to Digital Converter
Definition of Symbols
Table 55. Analog to Digital Converter Timing Symbol Definitions
Signals
Characteristics
Conditions
C
Clock
H
High
E
Enable (ADEN bit)
L
Low
S
Start Conversion
(ADSST bit)
Table 56. Analog to Digital Converter AC Characteristics
VDD = 2.7 to 3.3V, TA = 0 to 70°C
Symbol
Parameter
Min
TCLCL
Clock Period
1.43
TEHSH
Start-up Time
TSHSL
Max
Unit
µs
4
µs
Conversion Time
11·TCLCL
µs
DLe
Differential nonlinearity error1, 2
TBD
LSB
ILe
Integral nonlinearity error1, 3
TBD
LSB
OSe
Offset error1, 4
TBD
LSB
TBD
%
1, 5
Ge
Note:
Gain error
1. AVDD = AVREFP = 3.0 V, AVSS = AVREFN = 0 V. ADC is monotonic with no missing code.
2. The differential non-linearity is the difference between the actual step width and the
ideal step width (see Figure 28).
3. The integral non-linearity is the peak difference between the center of the actual step
and the ideal transfer curve after appropriate adjustment of gain and offset errors
(see Figure 28).
4. The offset error is the absolute difference between the straight line which fits the
actual transfer curve (after removing of gain error), and the straight line which fits the
ideal transfer curve (see Figure 28).
5. The gain error is the relative difference in percent between the straight line which fits
the actual transfer curve (after removing of offset error), and the straight line which
fits the ideal transfer curve (see Figure 28).
Waveforms
Figure 27. Analog to Digital Converter Internal Waveforms
CLK
TCLCL
ADEN Bit
TEHSH
ADSST Bit
TSHSL
48
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Figure 28. Analog to Digital Converter Characteristics
Offset Gain
Error Error
Ge
OSe
Code Out
1023
1022
1021
1020
1019
1018
Ideal Transfer curve
7
Example of an actual transfer curve
6
5
Center of a step
4
Integral non-linearity (ILe)
3
Differential non-linearity (DLe)
2
1
0
0
1 LSB
(ideal)
AVIN (LSBideal)
1
2
3
4
5
6
7
1018 1019 1020 1021 1022 1023 1024
Offset
Error
OSe
Flash Memory
Definition of Symbols
Table 57. Flash Memory Timing Symbol Definitions
Signals
Timings
Conditions
S
ISP#
L
Low
R
RST
V
Valid
B
FBUSY flag
X
No Longer Valid
Table 58. Flash Memory AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
Parameter
Min
Typ
TSVRL
Input ISP# Valid to RST Edge
50
ns
TRLSX
Input ISP# Hold after RST Edge
50
ns
TBHBL
Flash Internal Busy (Programming) Time
10
Max
Unit
ms
49
4106E–8051–03/02
Waveforms
Figure 29. Flash Memory – ISP Waveforms
RST
TSVRL
TRLSX
ISP#1
Note:
ISP# must be driven through a pull-down resistor (see Section “In-System Programming”, page 36).
Figure 30. Flash Memory – Internal Busy Waveforms
FBUSY bit
TBHBL
External Clock Drive and Logic Level References
Definition of Symbols
Table 59. External Clock Timing Symbol Definitions
Signals
C
Timings
Conditions
Clock
H
High
L
Low
X
No Longer Valid
Table 60. External Clock AC Timings
VDD = 2.7 to 3.3V, TA= 0 to 70°C
Symbol
Parameter
Unit
Clock Period
50
ns
TCHCX
High Time
10
ns
TCLCX
Low Time
10
ns
TCLCH
Rise Time
3
ns
TCHCL
Fall Time
3
ns
Cyclic Ratio in X2 mode
40
60
%
Figure 31. External Clock Waveform
TCLCH
V DD - 0.5
0.45 V
VIH1
TCHCX
TCLCX
VIL
TCHCL
50
Max
TCLCL
TCR
Waveforms
Min
TCLCL
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Figure 32. AC Testing Input/Output Waveforms
INPUTS
V DD - 0.5
0.45 V
Note:
OUTPUTS
0.7 VDD
VIH min
0.3 VDD
VIL max
1. During AC testing, all inputs are driven at VDD -0.5V for a logic 1 and 0.45V for a logic 0.
2. Timing measurements are made on all outputs at VIH min for a logic 1 and VIL max for a logic 0.
Figure 33. Float Waveforms
VLOAD
VLOAD + 0.1 V
VLOAD - 0.1 V
Note:
Timing Reference Points
VOH - 0.1 V
VOL + 0.1 V
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a
100 mV change from the loading V OH/VOL level occurs with IOL/IOH = ±20 mA.
51
4106E–8051–03/02
Ordering Information
Table 61. Ordering Information
Part Number
Memory Size
Supply
Voltage
Temperature
Range
Max Frequency
Package
AT89C51SND1A-ROTIL
64K Flash
3V
Industrial
40 MHz
TQFP80
Tray
AT83SND1Axxx(1)-ROTIL
64K ROM
3V
Industrial
40 MHz
TQFP80
Tray
Note:
(1)
Packing
Refers to ROM code.
PLCC84 package only available for development board.
52
AT8xC51SND1A
4106E–8051–03/02
AT8xC51SND1A
Package Information
TQFP80
53
4106E–8051–03/02
Package Information
PLCC84
54
AT8xC51SND1A
4106E–8051–03/02
Atmel Headquarters
Atmel Operations
Corporate Headquarters
Memory
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 441-0311
FAX 1(408) 487-2600
Europe
Atmel SarL
Route des Arsenaux 41
Casa Postale 80
CH-1705 Fribourg
Switzerland
TEL (41) 26-426-5555
FAX (41) 26-426-5500
Asia
Atmel Asia, Ltd.
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimhatsui
East Kowloon
Hong Kong
TEL (852) 2721-9778
FAX (852) 2722-1369
Japan
Atmel Japan K.K.
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
TEL (81) 3-3523-3551
FAX (81) 3-3523-7581
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314
Microcontrollers
Atmel Corporate
2325 Orchard Parkway
San Jose, CA 95131
TEL 1(408) 436-4270
FAX 1(408) 436-4314
Atmel Nantes
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
TEL (33) 2-40-18-18-18
FAX (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Atmel Rousset
Zone Industrielle
13106 Rousset Cedex, France
TEL (33) 4-42-53-60-00
FAX (33) 4-42-53-60-01
RF/Automotive
Atmel Heilbronn
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
TEL (49) 71-31-67-0
FAX (49) 71-31-67-2340
Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Atmel Grenoble
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
TEL (33) 4-76-58-30-00
FAX (33) 4-76-58-34-80
Atmel Colorado Springs
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906
TEL 1(719) 576-3300
FAX 1(719) 540-1759
Atmel Smart Card ICs
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
TEL (44) 1355-803-000
FAX (44) 1355-242-743
e-mail
[email protected]
Web Site
http://www.atmel.com
© Atmel Corporation 2002.
Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty
which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors
which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does
not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted
by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical
components in life support devices or systems.
Atmel®, DataFlash ™ are trademarks and/or registered trademarks of Atmel.
Other terms and product names may be the trademarks of others.
Printed on recycled paper.
4106E–8051–03/02
/0M