AT89C5132 - Atmel Corporation

Features
• Programmable Audio Output for Interfacing with Common Audio DAC
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
– PCM Format Compatible
– I2S Format Compatible
8-bit MCU C51 Core-based (FMAX = 20 MHz)
2304 Bytes of Internal RAM
64K Bytes of Code Memory
– AT89C5132: Flash (100K Write/Erase Cycles)
4K Bytes of Boot Flash Memory (AT89C5132)
– ISP: Download from USB (standard) or UART (option)
USB Rev 1.1 Device Controller
– “Full Speed” Data Transmission
Built-in PLL
MultiMedia Card® Interface Compatibility
Atmel DataFlash® SPI Interface Compatibility
IDE/ATAPI Interface
2 Channels 10-bit ADC, 8 kHz (8 True Bits)
– Battery Voltage Monitoring
– Voice Recording Controlled by Software
Up to 44 Bits of General-purpose I/Os
– 4-bit Interrupt Keyboard Port for a 4 x n Matrix
– SmartMedia® Software Interface
Two Standard 16-bit Timers/Counters
Hardware Watchdog Timer
Standard Full Duplex UART with Baud Rate Generator
Two Wire Master and Slave Modes Controller
SPI Master and Slave Modes Controller
Power Management
– Power-on Reset
– Software Programmable MCU Clock
– Idle Mode, Power-down Mode
Operating Conditions
– 3V, ±10%, 25 mA Typical Operating at 25°C
– Temperature Range: -40°C to +85°C
Packages
– TQFP80, PLCC84 (Development Board Only)
– Dice
USB
Microcontroller
with 64K Bytes
Flash Memory
AT89C5132
1. Description
The AT89C5132 is a mass storage device controlling data exchange between various
Flash modules, HDD and CD-ROM.
The AT89C5132 includes 64K Bytes of Flash memory and allows In-System Programming through an embedded 4K Bytes of Boot Flash Memory.
The AT89C5132 include 2304 Bytes of RAM memory.
The AT89C5132 provides all the necessary features for man-machine interface
including, timers, keyboard port, serial or parallel interface (USB, SPI, IDE), ADC
input, I2S output, and all external memory interface (NAND or NOR Flash, SmartMedia, MultiMedia, DataFlash cards).
2. Typical Applications
•
•
•
Flash Recorder/Writer
PDA, Camera, Mobile Phone
PC Add-on
4173ES–USB–09/07
3. Block Diagram
Figure 3-1.
AT89C5132 Block Diagram
INT0
INT1
1
1
VDD VSS UVDD UVSS AVDD AVSS AREF AIN1:0
Interrupt
Handler Unit
TXD RXD
T0
1
1
1
T1
1
SS MISO MOSI SCK SCL SDA
2
2
2
2
1
1
Flash
RAM
2304 Bytes
64K Bytes
Flash Boot
4K Bytes
C51 (X2 CORE)
10-bit A-to-D
Converter
UART
and
BRG
Timers 0/1
Watchdog
SPI/DataFlash
Controller
TWI
Controller
8-BIT INTERNAL BUS
I2S/PCM
Audio Interface
Clock and PLL
Unit
USB
Controller
MMC
Interface
Keyboard
Interface
I/O
Ports
IDE
Interface
3
FILT
Notes:
2
X1
X2
RST
DOUT DCLK DSEL SCLK
D+
D-
MCLK MDAT MCMD
KIN3:0
P0 - P5
1. Alternate function of Port 3
2. Alternate function of Port 4
3. Alternate function of Port 1
AT89C5132
4173ES–USB–09/07
AT89C5132
4. Pin Description
AT89C5132 80-pin TQFP Package
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
P5.1
P5.0
P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
VSS
VDD
P0.6/AD6
P0.7/AD7
P4.3/SS
P4.2/SCK
P4.1/MOSI
P4.0/MISO
P2.0/A8
P2.1/A9
P4.7
P4.6
Figure 4-1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
TQFP80
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
P4.5
P4.4
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
VSS
VDD
MCLK
MDAT
MCMD
RST
SCLK
DSEL
DCLK
DOUT
VSS
VDD
D+
DVDD
VSS
P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1
P3.6/WR
P3.7/RD
AVDD
AVSS
AREFP
AREFN
AIN0
AIN1
P5.2
P5.3
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
ALE
ISP
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P1.4
P1.5
P1.6/SCL
P1.7/SDA
VDD
PVDD
FILT
PVSS
VSS
X2
X1
TST
UVDD
UVSS
3
4173ES–USB–09/07
AT89C5132 84-pin PLCC (1)
11
10
9
8
7
6
5
4
3
2
1
84
83
82
81
80
79
78
77
76
75
NC
P5.1
P5.0
P0.0/AD0
P0.1/AD1
P0.2/AD2
P0.3/AD3
P0.4/AD4
P0.5/AD5
VSS
VDD
P0.6/AD6
P0.7/AD7
P4.3/SS
P4.2/SCK
P4.1/MOSI
P4.0/MISO
P2.0/A8
P2.1/A9
P4.7
P4.6
Figure 4-2.
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
PLCC84
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
NC
P4.5
P4.4
P2.2/A10
P2.3/A11
P2.4/A12
P2.5/A13
P2.6/A14
P2.7/A15
VSS
VDD
MCLK
MDAT
MCMD
RST
SCLK
DSEL
DCLK
DOUT
VSS
VDD
D+
DVDD
VSS
P3.0/RXD
P3.1/TXD
P3.2/INT0
P3.3/INT1
P3.4/T0
P3.5/T1
P3.6/WR
P3.7/RD
AVDD
AVSS
AREFP
AREFN
AIN0
AIN1
P5.2
P5.3
NC
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
ALE
ISP
P1.0/KIN0
P1.1/KIN1
P1.2/KIN2
P1.3/KIN3
P1.4
P1.5
P1.6/SCL
P1.7/SDA
VDD
PAVDD
FILT
PAVSS
VSS
X2
NC
X1
TST
UVDD
UVSS
Note:
4.1
1. For development board only.
Signals
All the AT89C5132 signals are detailed by functionality in Table 1 to Table 14.
Table 1. Ports Signal Description
Signal
Name
4
Type
Alternate
Function
Description
P0.7:0
I/O
Port 0
P0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written
to them float and can be used as high impedance inputs. To avoid any parasitic
current consumption, floating P0 inputs must be polarized to VDD or VSS.
P1.7:0
I/O
Port 1
P1 is an 8-bit bidirectional I/O port with internal pull-ups.
AD7:0
KIN3:0
SCL
SDA
AT89C5132
4173ES–USB–09/07
AT89C5132
Signal
Name
Type
P2.7:0
I/O
Description
Port 2
P2 is an 8-bit bidirectional I/O port with internal pull-ups.
Alternate
Function
A15:8
RXD
TXD
INT0
INT1
T0
T1
WR
RD
I/O
Port 3
P3 is an 8-bit bidirectional I/O port with internal pull-ups.
P4.7:0
I/O
Port 4
P4 is an 8-bit bidirectional I/O port with internal pull-ups.
MISO
MOSI
SCK
SS
P5.3:0
I/O
Port 5
P5 is a 4-bit bidirectional I/O port with internal pull-ups.
-
P3.7:0
Table 2. Clock Signal Description
Signal
Name
Type
Description
Alternate
Function
X1
I
Input to the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to this pin.
If an external oscillator is used, its output is connected to this pin. X1 is the
clock source for internal timing.
X2
O
Output of the on-chip inverting oscillator amplifier
To use the internal oscillator, a crystal/resonator circuit is connected to this pin.
If an external oscillator is used, leave X2 unconnected.
-
FILT
I
PLL Low Pass Filter input
FILT receives the RC network of the PLL low pass filter.
-
-
Table 3. Timer 0 and Timer 1 Signal Description
Signal
Name
Type
Description
Alternate
Function
Timer 0 Gate Input
INT0 serves as external run control for timer 0, when selected by GATE0 bit in
TCON register.
INT0
I
External Interrupt 0
INT0 input sets IE0 in the TCON register. If bit IT0 in this register is set, bit IE0
is set by a falling edge on INT0. If bit IT0 is cleared, bit IE0 is set by a low level
on INT0.
P3.2
Timer 1 Gate Input
INT1 serves as external run control for timer 1, when selected by GATE1 bit in
TCON register.
INT1
I
External Interrupt 1
INT1 input sets IE1 in the TCON register. If bit IT1 in this register is set, bit IE1
is set by a falling edge on INT1. If bit IT1 is cleared, bit IE1 is set by a low level
on INT1.
P3.3
5
4173ES–USB–09/07
Signal
Name
Type
Alternate
Function
T0
I
Timer 0 External Clock Input
When timer 0 operates as a counter, a falling edge on the T0 pin increments
the count.
P3.4
T1
I
Timer 1 External Clock Input
When timer 1 operates as a counter, a falling edge on the T1 pin increments
the count.
P3.5
Description
Table 4. Audio Interface Signal Description
Signal
Name
Type
Alternate
Function
DCLK
O
DAC Data Bit Clock
-
DOUT
O
DAC Audio Data
-
DSEL
O
DAC Channel Select Signal
DSEL is the sample rate clock output.
-
SCLK
O
DAC System Clock
SCLK is the oversampling clock synchronized to the digital audio data (DOUT)
and the channel selection signal (DSEL).
-
Description
Table 5. USB Controller Signal Description
Signal
Name
Type
Alternate
Function
D+
I/O
USB Positive Data Upstream Port
This pin requires an external 1.5 KΩ pull-up to VDD for full speed operation.
-
D-
I/O
USB Negative Data Upstream Port
-
Description
Table 6. MutiMediaCard Interface Signal Description
6
Signal
Name
Type
Alternate
Function
MCLK
O
MMC Clock output
Data or command clock transfer.
-
MCMD
I/O
MMC Command line
Bidirectional command channel used for card initialization and data transfer
commands. To avoid any parasitic current consumption, unused MCMD input
must be polarized to VDD or VSS.
-
MDAT
I/O
MMC Data line
Bidirectional data channel. To avoid any parasitic current consumption, unused
MDAT input must be polarized to VDD or VSS.
-
Description
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 7. UART Signal Description
Signal
Name
Type
RXD
I/O
Receive Serial Data
RXD sends and receives data in serial I/O mode 0 and receives data in serial
I/O modes 1, 2 and 3.
P3.0
TXD
O
Transmit Serial Data
TXD outputs the shift clock in serial I/O mode 0 and transmits data in serial I/O
modes 1, 2 and 3.
P3.1
Description
Alternate
Function
Table 8. SPI Controller Signal Description
Signal
Name
Type
MISO
I/O
SPI Master Input Slave Output Data Line
When in master mode, MISO receives data from the slave peripheral. When in
slave mode, MISO outputs data to the master controller.
P4.0
MOSI
I/O
SPI Master Output Slave Input Data Line
When in master mode, MOSI outputs data to the slave peripheral. When in
slave mode, MOSI receives data from the master controller.
P4.1
SCK
I/O
SPI Clock Line
When in master mode, SCK outputs clock to the slave peripheral. When in
slave mode, SCK receives clock from the master controller.
P4.2
SS
I
SPI Slave Select Line
When in controlled slave mode, SS enables the slave mode.
P4.3
Description
Alternate
Function
Table 9. TWI Controller Signal Description
Signal
Name
Type
Description
SCL
I/O
TWI Serial Clock
When TWI controller is in master mode, SCL outputs the serial clock to the
slave peripherals. When TWI controller is in slave mode, SCL receives clock
from the master controller.
SDA
I/O
TWI Serial Data
SDA is the bidirectional Two Wire data line.
Alternate
Function
P1.6
P1.7
Table 10. A/D Converter Signal Description
Signal
Name
Type
AIN1:0
I
A/D Converter Analog Inputs
-
AREFP
I
Analog Positive Voltage Reference Input
-
AREFN
I
Analog Negative Voltage Reference Input
This pin is internally connected to AVSS.
-
Description
Alternate
Function
7
4173ES–USB–09/07
Table 11. Keypad Interface Signal Description
Signal
Name
Type
KIN3:0
I
Alternate
Function
Description
Keypad Input Lines
Holding one of these pins high or low for 24 oscillator periods triggers a
keypad interrupt.
P1.3:0
Table 12. External Access Signal Description
Signal
Name
Type
Alternate
Function
A15:8
I/O
Address Lines
Upper address lines for the external bus.
Multiplexed higher address and data lines for the IDE interface.
P2.7:0
AD7:0
I/O
Address/Data Lines
Multiplexed lower address and data lines for the external memory or the IDE
interface.
P0.7:0
ALE
O
Address Latch Enable Output
ALE signals the start of an external bus cycle and indicates that valid address
information is available on lines A7:0. An external latch is used to demultiplex
the address from address/data bus.
-
ISP
I/O
ISP Enable Input
This signal must be held to GND through a pull-down resistor at the falling
reset to force execution of the internal bootloader.
-
RD
O
Read Signal
Read signal asserted during external data memory read operation.
P3.7
WR
O
Write Signal
Write signal asserted during external data memory write operation.
P3.6
Description
Table 13. System Signal Description
Signal
Name
8
Type
Alternate
Function
Description
RST
I
Reset Input
Holding this pin high for 64 oscillator periods while the oscillator is running
resets the device. The Port pins are driven to their reset conditions when a
voltage lower than VIL is applied, whether or not the oscillator is running.
This pin has an internal pull-down resistor which allows the device to be reset
by connecting a capacitor between this pin and VDD.
Asserting RST when the chip is in Idle mode or Power-Down mode returns the
chip to normal operation.
TST
I
Test Input
Test mode entry signal. This pin must be set to VDD.
-
-
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 14. Power Signal Description
Signal
Name
Type
Description
Alternate
Function
VDD
PWR
Digital Supply Voltage
Connect these pins to +3V supply voltage.
-
VSS
GND
Circuit Ground
Connect these pins to ground.
-
AVDD
PWR
Analog Supply Voltage
Connect this pin to +3V supply voltage.
-
AVSS
GND
Analog Ground
Connect this pin to ground.
-
PVDD
PWR
PLL Supply voltage
Connect this pin to +3V supply voltage.
-
PVSS
GND
PLL Circuit Ground
Connect this pin to ground.
-
UVDD
PWR
USB Supply Voltage
Connect this pin to +3V supply voltage.
-
UVSS
GND
USB Ground
Connect this pin to ground.
-
9
4173ES–USB–09/07
4.2
Internal Pin Structure
Table 15. Detailed Internal Pin Structure
Circuit(1)
Type
Pins
Input
TST
Input/Output
RST
Input/Output
P1(2)
P2(3)
P3
P4
P53:0
RTST
VDD
VDD
P
RRST
Watchdog Output
VSS
2 osc
periods
Latch Output
VDD
VDD
VDD
P1
P2
P3
N
VSS
VDD
P
Input/Output
P0
MCMD
MDAT
ISP
N
PSEN
VSS
ALE
SCLK
DCLK
VDD
P
Output
DOUT
DSEL
MCLK
N
VSS
D+
Input/Output
D+
D-
D-
Notes:
10
1. For information on resistors value, input/output levels, and drive capability, refer to the
Section “DC Characteristics”, page 183.
2. When the Two Wire controller is enabled, P1, P2, and P3 transistors are disabled allowing
pseudo open-drain structure.
3. In Port 2, P1 transistor is continuously driven when outputting a high level bit address (A15:8).
AT89C5132
4173ES–USB–09/07
AT89C5132
5. Address Spaces
The AT8xC5132 derivatives implement four different address spaces:
5.0.1
•
Program/Code Memory
•
Boot Memory
•
Data Memory
•
Special Function Registers (SFRs)
Code Memory
The AT89C5132 implements 64K Bytes of on-chip program/code memory in Flash technology.
The Flash memory increases ROM functionality by enabling in-circuit electrical erasure and programming. Thanks to the internal charge pump, the high voltage needed for programming or
erasing Flash cells is generated on-chip using the standard VDD voltage. Thus, the AT89C5132
can be programmed using only one voltage and allows in application software programming
commonly known as IAP. Hardware programming mode is also available using specific programming tools.
5.0.2
Boot Memory
The AT89C5132 implements 4K Bytes of on-chip boot memory provided in Flash technology.
This boot memory is delivered programmed with a standard bootloader software allowing in system programming commonly known as ISP. It also contains some Application Programming
Interfaces routines commonly known as API allowing user to develop his own bootloader.
5.0.3
Data Memory
The AT89C5132 derivatives implement 2304 bytes of on-chip data RAM. This memory is divided
in two separate areas:
•
256 bytes of on-chip RAM memory (standard C51 memory).
•
2048 bytes of on-chip expanded RAM memory (ERAM accessible via MOVX instructions).
11
4173ES–USB–09/07
Peripherals
The AT8xC5132 peripherals are briefly described in the following sections. For further
details on how to interface (hardware and software) to these peripherals, please refer to
the AT8xC5132 complete datasheet.
Clock Generator System
The AT8xC5132 internal clocks are extracted from an on-chip PLL fed by an on-chip
oscillator. Four clocks are generated respectively for the C51 core, the audio interface,
and the other peripherals. The C51 and peripheral clocks are derived from the oscillator
clock. The audio interface sample rates are also obtained by dividing the PLL output
clock.
Ports
The AT8xC5132 implement five 8-bit ports (P0 to P4) and one 4-bit port (P5). In addition
to performing general-purpose I/Os, some ports are capable of external data memory
operations; others allow for alternate functions. All I/O Ports are bidirectional. Each Port
contains a latch, an output driver and an input buffer. Port 0 and Port 2 output drivers
and input buffers facilitate external memory operations. Some Port 1, Port 3 and Port 4
pins serve for both general-purpose I/Os and alternate functions.
Timers/Counters
The AT8xC5132 implement the two general-purpose, 16-bit Timers/Counters of a standard C51. They are identified as Timer 0, Timer 1, and can independently be configured
each to operate in a variety of modes as a Timer or as an event Counter. When operating as a Timer, a Timer/Counter runs for a programmed length of time, then issues an
interrupt request. When operating as a Counter, a Timer/Counter counts negative transitions on an external pin. After a preset number of counts, the Counter issues an interrupt
request.
Watchdog Timer
The AT8xC5132 implement a hardware Watchdog Timer that automatically resets the
chip if it is allowed to time out. The WDT provides a means of recovering from routines
that do not complete successfully due to software or hardware malfunctions.
Audio Output Interface
The AT8xC5132 implements an audio output interface allowing the decoded audio bitstream to be output in various formats. They are compatible with right and left
justification PCM and I2S formats and the on-chip PLL allows connection of almost all
commercial audio DAC families available on the market.
Universal Serial Bus
Interface
The AT8xC5132 implements a full-speed Universal Serial Bus Interface. The USB interface can be used for the following purposes:
•
Download of files by supporting the USB mass storage class.
•
In-System Programming by supporting the USB firmware upgrade class.
MultiMedia Card
Interface
The AT8xC5132 implements a MultiMedia Card (MMC) interface compliant to the V2.2
specification in MultiMedia Card mode. The MMC allows storage of files in removable
Flash memory cards that can be easily plugged or removed from the application. It can
also be used for In-System Programming.
IDE/ATAPI Interface
The AT8xC5132 provide an IDE/ATAPI interface allowing connection of devices such as
CD-ROM reader, CompactFlash™ cards, Hard Disk Drive, etc. It consists of a 16-bit bidirectional bus part of the low-level ANSI ATA/ATAPI specification. It is provided for mass
storage interface but could be used for In-System Programming using CD-ROM.
12
AT89C5132
4173ES–USB–09/07
AT89C5132
Serial I/O Interface
Serial Peripheral
Interface
Two-wire Controller
The AT89C5132 implements a serial port with its own baud rate generator providing one
single synchronous communication mode and three full-duplex Universal Asynchronous
Receiver Transmitter (UART) communication modes. It is provided for the following
purposes:
•
In System Programming.
•
Remote control of the AT89C5132 by a host.
The AT89C5132 implements a Serial Peripheral Interface (SPI) supporting master and
slave modes. It is provided for the following purposes:
•
Remote control of the AT89C5132 by a host.
•
In System Programming.
The AT89C5132 implements a 2-wire controller supporting the four standard master and
slave modes with multimaster capability. It is provided for the following purposes:
•
A/D Controller
Connection of slave devices like LCD controller, audio DAC…
•
Remote control of the AT89C5132 by a host.
•
In System Programming.
The AT89C5132 implements a 2-channel 10-bit (8 true bits) analog to digital converter
(ADC). It is provided for the following purposes:
•
Battery monitoring.
•
Voice recording.
•
Corded remote control.
13
4173ES–USB–09/07
6. Electrical Characteristics
6.1
Absolute Maximum Ratings
Storage Temperature ..................................... -65°C to +150°C
Voltage on any other Pin to VSS
*NOTICE:
..................................... -0.3 to +4.0V
IOL per I/O Pin ................................................................. 5 mA
Power Dissipation ............................................................. 1 W
Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.
These are stress ratings only. Operation beyond
the “operating conditions” is not recommended
and extended exposure beyond the “Operating
Conditions” may affect device reliability.
Ambient Temperature Under Bias.................... -40°C to +85°C
VDD
....................................................................................... 2.7V
6.2
to 3.3V
DC Characteristics
6.2.1
Digital Logic
Table 1. Digital DC Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
VIL
Input Low Voltage
VIH1
Input High Voltage (except RST, X1)
VIH2
Input High Voltage (RST, X1)
VOL1
Max
Units
-0.5
0.2·VDD - 0.1
V
0.2·VDD + 1.1
VDD
V
0.7·VDD(2)
VDD + 0.5
V
Output Low Voltage
(except P0, ALE, MCMD, MDAT, MCLK,
SCLK, DCLK, DSEL, DOUT)
0.45
V
IOL= 1.6 mA
VOL2
Output Low Voltage
(P0, ALE, MCMD, MDAT, MCLK, SCLK,
DCLK, DSEL, DOUT)
0.45
V
IOL= 3.2 mA
VOH1
Output High Voltage
(P1, P2, P3, P4 and P5)
VDD - 0.7
V
IOH= -30 μA
VOH2
Output High Voltage
(P0, P2 address mode, ALE, MCMD,
MDAT, MCLK, SCLK, DCLK, DSEL,
DOUT, D+, D-)
VDD - 0.7
V
IOH= -3.2 mA
μA
Vin = 0.45 V
IIL
14
Typ(1)
Logical 0 Input Current (P1, P2, P3, P4
and P5)
-50
Test Conditions
AT89C5132
4173ES–USB–09/07
AT89C5132
Table 1. Digital DC Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
ILI
Input Leakage Current (P0, ALE, MCMD,
MDAT, MCLK, SCLK, DCLK, DSEL,
DOUT)
ITL
Logical 1 to 0 Transition Current
(P1, P2, P3, P4 and P5)
RRST
CIO
VRET
IDD
Typ(1)
Min
Pull-Down Resistor
50
90
Pin Capacitance
Max
Units
10
μA
0.45< VIN< VDD
-650
μA
Vin = 2.0 V
200
kΩ
10
VDD Data Retention Limit
pF
1.8
Operating Current
mA
μA
Idle Mode Current
(3)
IPD
Power-Down Mode Current
20
500
Notes:
6.2.2
VDD < 3.3 V
X1 / X2 mode
6.5 / 10.5
8 / 13.5
9.5 / 17
IDL
TA= 25°C
V
(3)
X1 / X2 mode
5.3 / 8.1
6.4 / 10.3
7.5 / 13
Test Conditions
mA
12 MHz
16 MHz
20 MHz
VDD < 3.3 V
12 MHz
16 MHz
20 MHz
VRET < VDD < 3.3 V
1. Typical values are obtained using VDD= 3 V and TA= 25°C. They are not tested and there is no
guarantee on these values.
2. Flash retention is guaranteed with the same formula for VDD min down to 0V.
3. See Table 154 for typical consumption in player mode.
IDD, IDL and IPD Test Conditions
Figure 6-1.
IDD Test Condition, Active Mode
VDD
VDD
RST
(NC)
Clock Signal
VDD
PVDD
UVDD
AVDD
X2
X1
IDD
VDD
P0
VSS
PVSS
UVSS
AVSS
VSS
TST
All other pins are unconnected
15
4173ES–USB–09/07
Figure 6-2.
IDL Test Condition, Idle Mode
VDD
VDD
PVDD
UVDD
AVDD
RST
VSS
(NC)
Clock Signal
X2
X1
IDL
VDD
P0
VSS
PVSS
UVSS
AVSS
VSS
Figure 6-3.
TST
All other pins are unconnected
IPD Test Condition, Power-Down Mode
VDD
VDD
PVDD
UVDD
AVDD
RST
VSS
(NC)
X2
X1
6.2.3
MCMD
MDAT
TST
All other pins are unconnected
A-to-D Converter
Table 2. A-to-D Converter DC Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
Parameter
Min
AVDD
Analog Supply Voltage
2.7
AIDD
Analog Operating Supply Current
AIPD
Analog Standby Current
AVIN
Analog Input Voltage
AVREF
Reference Voltage
AREFN
AREFP
RREF
AREF Input Resistance
CIA
16
VDD
P0
VSS
PVSS
UVSS
AVSS
VSS
IPD
Analog Input capacitance
Typ
Max
Units
Test Conditions
3.3
V
600
μA
AVDD = 3.3V
AIN1:0 = 0 to AVDD
2
μA
AVDD = 3.3V
ADEN = 0 or PD = 1
AVSS
AVDD
V
AVSS
2.4
AVDD
V
V
10
30
kΩ
TA = 25°C
10
pF
TA = 25°C
AT89C5132
4173ES–USB–09/07
AT89C5132
6.2.4
6.2.4.1
Oscillator and Crystal
Schematic
Figure 6-4.
Crystal Connection
X1
C1
Q
C2
VSS
Note:
6.2.4.2
X2
For operation with most standard crystals, no external components are needed on X1 and X2. It
may be necessary to add external capacitors on X1 and X2 to ground in special cases (max 10
pF). X1 and X2 may not be used to drive other circuits.
Parameters
Table 3. Oscillator and Crystal Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
6.2.5.1
Min
Typ
Max
Unit
CX1
Internal Capacitance (X1 - VSS)
10
pF
CX2
Internal Capacitance (X2 - VSS)
10
pF
CL
Equivalent Load Capacitance (X1 - X2)
5
pF
DL
Drive Level
50
μW
Crystal Frequency
20
MHz
RS
Crystal Series Resistance
40
Ω
CS
Crystal Shunt Capacitance
6
pF
F
6.2.5
Parameter
Phase Lock Loop
Schematic
Figure 6-5.
PLL Filter Connection
FILT
R
C2
C1
VSS
VSS
17
4173ES–USB–09/07
6.2.5.2
Parameters
Table 4. PLL Filter Characteristics
VDD = 2.7 to 3.3V , TA = -40 to +85°C
Symbol
6.2.6
6.2.6.1
Parameter
Min
Typ
Max
Unit
R
Filter Resistor
100
Ω
C1
Filter Capacitance 1
10
nF
C2
Filter Capacitance 2
2.2
nF
USB Connection
Schematic
Figure 6-6.
USB Connection
VDD
To Power
Supply
VBUS
D+
RFS
D+
RUSB
D-
D-
RUSB
GND
VSS
6.2.6.2
Parameters
Table 16. USB Characteristics
VDD = 3 to 3.3 V, TA = -40 to +85°C
Symbol
6.2.7
6.2.7.1
Parameter
Min
Typ
Max
Unit
RUSB
USB Termination Resistor
27
Ω
RFS
USB Full Speed Resistor
1.5
KΩ
In-system Programming
Schematic
Figure 6-7.
ISP Pull-down Connection
ISP
RISP
VSS
6.2.7.2
Parameters
Table 5. ISP Pull-Down Characteristics
VDD = 3 to 3.3V , TA = -40 to +85°C
Symbol
RISP
18
Parameter
ISP Pull-Down Resistor
Min
Typ
2.2
Max
Unit
kΩ
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3
6.3.1
6.3.1.1
AC Characteristics
External 8-bit Bus Cycles
Definition of Symbols
Table 6. External 8-bit Bus Cycles Timing Symbol Definitions
Signals
6.3.1.2
Conditions
A
Address
H
High
D
Data In
L
Low
L
ALE
V
Valid
Q
Data Out
X
No Longer Valid
R
RD
Z
Floating
W
WR
Timings
Test conditions: capacitive load on all pins = 50 pF.
Table 7. External 8-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLRL
ALE Low to RD Low
3·TCLCL-30
1.5·TCLCL-30
ns
TRLRH
RD Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TRHLH
RD high to ALE High
TAVDV
Address Valid to Valid Data In
TAVRL
Address Valid to RD Low
TRLDV
RD Low to Valid Data
TRLAZ
RD Low to Address Float
TRHDX
Data Hold After RD High
TRHDZ
Instruction Float After RD High
TCLCL-20
TCLCL+20
0.5·TCLCL-20
9·TCLCL-65
4·TCLCL-30
0.5·TCLCL+20
ns
4.5·TCLCL-65
ns
2·TCLCL-30
ns
5·TCLCL-30
2.5·TCLCL-30
ns
0
0
ns
0
0
2·TCLCL-25
ns
TCLCL-25
ns
19
4173ES–USB–09/07
Table 8. External 8-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
6.3.1.3
Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLWL
ALE Low to WR Low
3·TCLCL-30
1.5·TCLCL-30
ns
TWLWH
WR Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TWHLH
WR High to ALE High
TAVWL
Address Valid to WR Low
4·TCLCL-30
2·TCLCL-30
ns
TQVWH
Data Valid to WR High
7·TCLCL-20
3.5·TCLCL-20
ns
TWHQX
Data Hold after WR High
TCLCL-15
0.5·TCLCL-15
ns
TCLCL-20
TCLCL+20
0.5·TCLCL-20
0.5·TCLCL+20
ns
Waveforms
Figure 6-8.
External 8-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD
TRLDV
TRHDZ
TRLAZ
TAVLL
P0
TLLAX
TRHDX
A7:0
D7:0
TAVRL
Data In
TAVDV
P2
20
A15:8
AT89C5132
4173ES–USB–09/07
AT89C5132
Figure 6-9.
External 8-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TLLWL
TWHLH
TWLWH
WR
TAVWL
TAVLL
P0
TLLAX
TQVWH
A7:0
TWHQX
D7:0
Data Out
P2
6.3.2
6.3.2.1
A15:8
External IDE 16-bit Bus Cycles
Definition of Symbols
Table 9. External IDE 16-bit Bus Cycles Timing Symbol Definitions
Signals
6.3.2.2
Conditions
A
Address
H
High
D
Data In
L
Low
L
ALE
V
Valid
Q
Data Out
X
No Longer Valid
R
RD
Z
Floating
W
WR
Timings
Test conditions: capacitive load on all pins = 50 pF.
21
4173ES–USB–09/07
Table 10. External IDE 16-bit Bus Cycle – Data Read AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLRL
ALE Low to RD Low
3·TCLCL-30
1.5·TCLCL-30
ns
TRLRH
RD Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TRHLH
RD high to ALE High
TAVDV
Address Valid to Valid Data In
TAVRL
Address Valid to RD Low
TRLDV
RD Low to Valid Data
TRLAZ
RD Low to Address Float
TRHDX
Data Hold After RD High
TRHDZ
Instruction Float After RD High
TCLCL-20
TCLCL+20
0.5·TCLCL-20
9·TCLCL-65
4·TCLCL-30
0.5·TCLCL+20
ns
4.5·TCLCL-65
ns
2·TCLCL-30
ns
5·TCLCL-30
2.5·TCLCL-30
ns
0
0
ns
0
0
ns
2·TCLCL-25
TCLCL-25
ns
Table 11. External IDE 16-bit Bus Cycle – Data Write AC Timings
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Variable Clock
Standard Mode
Symbol
22
Parameter
TCLCL
Clock Period
TLHLL
ALE Pulse Width
TAVLL
Min
Max
Variable Clock
X2 Mode
Min
Max
Unit
50
50
ns
2·TCLCL-15
TCLCL-15
ns
Address Valid to ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLAX
Address hold after ALE Low
TCLCL-20
0.5·TCLCL-20
ns
TLLWL
ALE Low to WR Low
3·TCLCL-30
1.5·TCLCL-30
ns
TWLWH
WR Pulse Width
6·TCLCL-25
3·TCLCL-25
ns
TWHLH
WR High to ALE High
TAVWL
Address Valid to WR Low
4·TCLCL-30
2·TCLCL-30
ns
TQVWH
Data Valid to WR High
7·TCLCL-20
3.5·TCLCL-20
ns
TWHQX
Data Hold after WR High
TCLCL-15
0.5·TCLCL-15
ns
TCLCL-20
TCLCL+20
0.5·TCLCL-20
0.5·TCLCL+20
ns
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.2.3
Waveforms
Figure 6-10. External IDE 16-bit Bus Cycle – Data Read Waveforms
ALE
TLHLL
TLLRL
TRLRH
TRHLH
RD
TRLDV
TRHDZ
TRLAZ
TAVLL
P0
TLLAX
TRHDX
A7:0
D7:0
TAVRL
Data In
TAVDV
P2
A15:8
D15:81
Data In
Note:
D15:8 is written in DAT16H SFR.
Figure 6-11. External IDE 16-bit Bus Cycle – Data Write Waveforms
ALE
TLHLL
TLLWL
TWHLH
TWLWH
WR
TAVWL
TAVLL
P0
TLLAX
A7:0
TQVWH
TWHQX
D7:0
Data Out
P2
A15:8
D15:81
Data Out
Note:
6.3.3
6.3.3.1
D15:8 is the content of DAT16H SFR.
SPI Interface
Definition of Symbols
Table 12. SPI Interface Timing Symbol Definitions
Signals
Conditions
C
Clock
H
High
I
Data In
L
Low
O
Data Out
V
Valid
X
No Longer Valid
Z
Floating
23
4173ES–USB–09/07
6.3.3.2
Timings
Table 13. SPI Interface Master AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
Parameter
Min
Max
Unit
Slave Mode
TCHCH
Clock Period
TCHCX
8
TOSC
Clock High Time
3.2
TOSC
TCLCX
Clock Low Time
3.2
TOSC
TSLCH, TSLCL
SS Low to Clock edge
200
ns
TIVCL, TIVCH
Input Data Valid to Clock Edge
100
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
100
ns
TCLOV, TCHOV
Output Data Valid after Clock Edge
TCLOX, TCHOX
Output Data Hold Time after Clock Edge
0
ns
TCLSH, TCHSH
SS High after Clock Edge
0
ns
TIVCL, TIVCH
Input Data Valid to Clock Edge
100
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
100
ns
TSLOV
SS Low to Output Data Valid
130
ns
TSHOX
Output Data Hold after SS High
130
ns
TSHSL
SS High to SS Low
TILIH
Input Rise Time
2
μs
TIHIL
Input Fall Time
2
μs
TOLOH
Output Rise Time
100
ns
TOHOL
Output Fall Time
100
ns
100
ns
(1)
Master Mode
TCHCH
Clock Period
TCHCX
4
TOSC
Clock High Time
1.6
TOSC
TCLCX
Clock Low Time
1.6
TOSC
TIVCL, TIVCH
Input Data Valid to Clock Edge
50
ns
TCLIX, TCHIX
Input Data Hold after Clock Edge
50
ns
TCLOV, TCHOV
Output Data Valid after Clock Edge
TCLOX, TCHOX
Output Data Hold Time after Clock Edge
TILIH
Input Data Rise Time
2
μs
TIHIL
Input Data Fall Time
2
μs
TOLOH
Output Data Rise Time
50
ns
TOHOL
Output Data Fall Time
50
ns
Notes:
24
65
0
ns
ns
1. Value of this parameter depends on software.
2. Test conditions: capacitive load on all pins = 100 pF
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.3.3
Waveforms
Figure 6-12. SPI Slave Waveforms (SSCPHA = 0)
SS
(input)
TSLCH
TSLCL
SCK
(SSCPOL = 0)
(input)
TCHCH
TCHCX
TCLCH
TCLSH
TCHSH
TSHSL
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCLOV
TCHOV
TSLOV
MISO
(output)
SLAVE MSB OUT
BIT 6
TCLOX
TCHOX
TSHOX
SLAVE LSB OUT
1
TIVCH TCHIX
TIVCL TCLIX
MOSI
(input)
Note:
MSB IN
BIT 6
LSB IN
1. Not Defined but generally the MSB of the character which has just been received.
Figure 6-13. SPI Slave Waveforms (SSCPHA = 1)
SS1
(output)
TCHCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCH
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH TCHIX
TIVCL TCLIX
SI
(input)
MSB IN
BIT 6
LSB IN
TCLOX
TCLOV
TCHOV
SO
(output)
Note:
Port Data
MSB OUT
BIT 6
TCHOX
LSB OUT
Port Data
1. Not Defined but generally the LSB of the character which has just been received.
25
4173ES–USB–09/07
Figure 6-14. SPI Master Waveforms (SSCPHA = 0)
SS1
(input)
TSLCH
TSLCL
SCK
(SSCPOL = 0)
(input)
TCHCH
TCHCX
TCLCH
TCLSH
TCHSH
TSHSL
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(input)
TCHOV
TCLOV
TSLOV
MISO
(output)
1
SLAVE MSB OUT
BIT 6
TCHOX
TCLOX
TSHOX
SLAVE LSB OUT
TIVCH TCHIX
TIVCL TCLIX
MOSI
(input)
Note:
MSB IN
BIT 6
LSB IN
1. SS handled by software using general purpose port pin.
Figure 6-15. SPI Master Waveforms (SSCPHA = 1)
SS1
(output)
TCHCH
SCK
(SSCPOL = 0)
(output)
TCHCX
TCLCH
TCLCX
TCHCL
SCK
(SSCPOL = 1)
(output)
TIVCH TCHIX
TIVCL TCLIX
SI
(input)
SO
(output)
Note:
6.3.4
6.3.4.1
MSB IN
BIT 6
TCLOV
TCLOX
TCHOX
TCHOV
Port Data
MSB OUT
BIT 6
LSB IN
LSB OUT
Port Data
1. SS handled by software using general purpose port pin.
Two-wire Interface
Timings
Table 17. TWI Interface AC Timing
26
AT89C5132
4173ES–USB–09/07
AT89C5132
VDD = 2.7 to 3.3 V, TA = -40 to +85°C
INPUT
Min
Max
OUTPUT
Min
Max
Start condition hold time
14·TCLCL(4)
4.0 μs(1)
TLOW
SCL low time
16·TCLCL(4)
4.7 μs(1)
THIGH
SCL high time
14·TCLCL(4)
4.0 μs(1)
TRC
SCL rise time
1 μs
-(2)
TFC
SCL fall time
0.3 μs
0.3 μs(3)
TSU; DAT1
Data set-up time
250 ns
20·TCLCL(4)- TRD
TSU; DAT2
SDA set-up time (before repeated START condition)
250 ns
1 μs(1)
TSU; DAT3
SDA set-up time (before STOP condition)
250 ns
8·TCLCL(4)
THD; DAT
Data hold time
0 ns
8·TCLCL(4) - TFC
TSU; STA
Repeated START set-up time
14·TCLCL(4)
4.7 μs(1)
TSU; STO
STOP condition set-up time
14·TCLCL(4)
4.0 μs(1)
TBUF
Bus free time
14·TCLCL(4)
4.7 μs(1)
TRD
SDA rise time
1 μs
-(2)
TFD
SDA fall time
0.3 μs
0.3 μs(3)
Symbol
Parameter
THD; STA
Notes:
6.3.4.2
1. At 100 kbit/s. At other bit-rates this value is inversely proportional to the bit-rate of 100 kbit/s.
2. Determined by the external bus-line capacitance and the external bus-line pull-up resistor, this
must be < 1 μs.
3. Spikes on the SDA and SCL lines with a duration of less than 3·TCLCL will be filtered out. Maximum capacitance on bus-lines SDA and
SCL= 400 pF.
4. TCLCL= TOSC= one oscillator clock period.
Waveforms
Figure 6-16. Two Wire Waveforms
Repeated START condition
START or Repeated START condition
START condition
STOP condition
Trd
Tsu;STA
0.7 VDD
0.3 VDD
SDA
(INPUT/OUTPUT)
Tsu;STO
Tfd
Trc
Tfc
Tbuf
Tsu;DAT3
0.7 VDD
0.3 VDD
SCL
(INPUT/OUTPUT)
Thd;STA
Tlow Thigh Tsu;DAT1
Thd;DAT
Tsu;DAT2
27
4173ES–USB–09/07
6.3.5
6.3.5.1
MMC Interface
Definition of Symbols
Table 14. MMC Interface Timing Symbol Definitions
Signals
6.3.5.2
Conditions
C
Clock
H
High
D
Data In
L
Low
O
Data Out
V
Valid
X
No Longer Valid
Min
Max
Timings
Table 15. MMC Interface AC Timings
VDD = 2.7 to 3.3 V, TA = -40 to +85°C, CL ≤ 100pF (10 cards)
Symbol
6.3.5.3
Parameter
Unit
TCHCH
Clock Period
50
ns
TCHCX
Clock High Time
10
ns
TCLCX
Clock Low Time
10
ns
TCLCH
Clock Rise Time
10
ns
TCHCL
Clock Fall Time
10
ns
TDVCH
Input Data Valid to Clock High
3
ns
TCHDX
Input Data Hold after Clock High
3
ns
TCHOX
Output Data Hold after Clock High
5
ns
TOVCH
Output Data Valid to Clock High
5
ns
Waveforms
Figure 6-17. MMC Input Output Waveforms
TCHCH
TCHCX
TCLCX
MCLK
TCHCL
TCHIX
TCLCH
TIVCH
MCMD Input
MDAT Input
TCHOX
TOVCH
MCMD Output
MDAT Output
28
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.6
6.3.6.1
Audio Interface
Definition of Symbols
Table 16. Audio Interface Timing Symbol Definitions
Signals
6.3.6.2
Conditions
C
Clock
H
High
O
Data Out
L
Low
S
Data Select
V
Valid
X
No Longer Valid
Timings
Table 17. Audio Interface AC timings
VDD = 2.7 to 3.3V, TA = -40 to +85°C, CL ≤ 30pF
Symbol
Parameter
TCHCH
Clock Period
TCHCX
Clock High Time
30
ns
TCLCX
Clock Low Time
30
ns
TCLCH
Clock Rise Time
10
ns
TCHCL
Clock Fall Time
10
ns
TCLSV
Clock Low to Select Valid
10
ns
Clock Low to Data Valid
10
ns
TCLOV
Note:
6.3.6.3
Min
Max
Unit
325.5(1)
ns
32-bit format with Fs = 48 kHz.
Waveforms
Figure 6-18. Audio Interface Waveforms
TCHCH
TCHCX
TCLCX
DCLK
TCHCL
TCLCH
TCLSV
DSEL
Right
Left
TCLOV
DDAT
29
4173ES–USB–09/07
6.3.7
6.3.7.1
Analog to Digital Converter
Definition of Symbols
Table 18. Analog to Digital Converter Timing Symbol Definitions
Signals
6.3.7.2
Conditions
C
Clock
H
High
E
Enable (ADEN bit)
L
Low
S
Start Conversion
(ADSST bit)
Characteristics
Table 18. Analog to Digital Converter AC Characteristics
VDD = 2.7 to 3.3 V, TA = -40 to +85°C
Symbol
TCLCL
Clock Period
TEHSH
Start-up Time
TSHSL
Min
Max
Unit
μs
4
4
μs
Conversion Time
11·TCLCL
μs
DLe
Differential nonlinearity error(1)(2)
1
LSB
ILe
Integral non-linearity
errorss(1)(3)
2
LSB
OSe
Offset error(1)(4)
4
LSB
Ge
Gain error(1)(5)
4
LSB
Notes:
30
Parameter
1. AVDD= AVREFP= 3.0 V, AVSS= AVREFN= 0 V. ADC is monotonic with no missing code.
2. The differential non-linearity is the difference between the actual step width and the ideal step
width (see Figure 6-20).
3. The integral non-linearity is the peak difference between the center of the actual step and the
ideal transfer curve after appropriate adjustment of gain and offset errors (see Figure 6-20).
4. The offset error is the absolute difference between the straight line which fits the actual transfer curve (after removing of gain error), and the straight line which fits the ideal transfer curve
(see Figure 6-20).
5. The gain error is the relative difference in percent between the straight line which fits the actual
transfer curve (after removing of offset error), and the straight line which fits the ideal transfer
curve (see Figure 6-20).
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.7.3
Waveforms
Figure 6-19. Analog-to-Digital Converter Internal Waveforms
CLK
TCLCL
ADEN Bit
TEHSH
ADSST Bit
TSHSL
Figure 6-20. Analog-to-Digital Converter Characteristics
Offset Gain
Error Error
OSe
Ge
Code Out
1023
1022
1021
1020
1019
1018
Ideal Transfer Curve
7
Example of an Actual Transfer Curve
6
5
Center of a Step
4
Integral Non-linearity (ILe)
3
Differential Non-linearity (DLe)
2
1
0
0
1 LSB
(Ideal)
AVIN (LSBideal)
1
2
3
4
5
6
7
1018 1019 1020 1021 1022 1023 1024
Offset
Error
OSe
31
4173ES–USB–09/07
6.3.8
6.3.8.1
Flash Memory
Definition of Symbols
Table 19. Flash Memory Timing Symbol Definitions
Signals
6.3.8.2
Conditions
S
ISP
L
Low
R
RST
V
Valid
B
FBUSY flag
X
No Longer Valid
Timings
Table 20. Flash Memory AC Timing
VDD = 2.7 to 3.3V, TA = -40° to +85°C
Symbol
6.3.8.3
Parameter
Min
Typ
Max
Unit
TSVRL
Input ISP Valid to RST Edge
50
ns
TRLSX
Input ISP Hold after RST Edge
50
ns
TBHBL
FLASH Internal Busy (Programming) Time
NFCY
Number of Flash Write Cycles
TFDR
Flash Data Retention Time
10
ms
100K
Cycle
10
Year
Waveforms
Figure 6-21. Flash Memory – ISP Waveforms
RST
TSVRL
TRLSX
ISP(1)
Note:
1. ISP must be driven through a pull-down resistor (see Section “In-system Programming”,
page 18).
Figure 6-22. Flash Memory – Internal Busy Waveforms
FBUSY bit
6.3.9
6.3.9.1
TBHBL
External Clock Drive and Logic Level References
Definition of Symbols
Table 21. External Clock Timing Symbol Definitions
Signals
C
32
Clock
Conditions
H
High
L
Low
X
No Longer Valid
AT89C5132
4173ES–USB–09/07
AT89C5132
6.3.9.2
Timings
Table 22. External Clock AC Timings
VDD = 2.7 to 3.3V, TA= -40 to +85°C
Symbol
Parameter
Max
Unit
TCLCL
Clock Period
50
ns
TCHCX
High Time
10
ns
TCLCX
Low Time
10
ns
TCLCH
Rise Time
3
ns
TCHCL
Fall Time
3
ns
Cyclic Ratio in X2 Mode
40
TCR
6.3.9.3
Min
60
%
Waveforms
Figure 6-23. External Clock Waveform
TCLCH
VDD - 0.5
0.45 V
VIH1
TCHCX
TCLCX
VIL
TCHCL
TCLCL
Figure 6-24. AC Testing Input/Output Waveforms
INPUTS
VDD - 0.5
0.45 V
Notes:
OUTPUTS
0.7
VDD
VIH min
0.3
VDD
VIL max
1. During AC testing, all inputs are driven at VDD -0.5V for a logic 1 and 0.45V for a logic 0.
2. Timing measurements are made on all outputs at VIH min for a logic 1 and VIL max for a logic 0.
Figure 6-25. Float Waveforms
VLOAD
VLOAD + 0.1V
VLOAD - 0.1V
Note:
Timing Reference Points
VOH - 0.1V
VOL + 0.1V
For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs and begins to float when a
100 mV change from the loading VOH/VOL level occurs with IOL/IOH = ±20 mA.
33
4173ES–USB–09/07
7. Ordering Information
Possible Order Entries(1)
Max
Frequency
(MHz)
3V
Industrial
40
TQFP80
Tray
895132-IL
3V
Industrial &
Green
40
TQFP80
Tray
895132-UL
Part Number
Supply
Voltage
AT89C5132-ROTIL
64K Flash
AT89C5132-ROTUL
Note:
34
Temperature
Range
Memory Size
(Bytes)
64K Flash
Package
Packing
Product
Marking
1. PLCC84 package only available for development board.
AT89C5132
4173ES–USB–09/07
AT89C5132
8. Package Information
8.1
TQFP80
35
4173ES–USB–09/07
8.2
36
PLCC84
AT89C5132
4173ES–USB–09/07
AT89C5132
9. Datasheet Revision History for AT89C5132
9.1
Changes from 4173A-08/02 to 4173B-03/04
1. Suppression of ROM product version.
2. Suppression of TQFP64 package.
9.2
Changes from 4173B-03/04 - 4173C - 07/04
1. Add USB connection schematic in USB section.
2. Add USB termination characteristics in DC Characteristics section.
3. Page access mode clarification in Data Memory section.
9.3
Changes from 4173C-07/04 - 4173D - 01/05
1. Interrupt priority number clarification to match number defined by development tools.
9.4
Changes from to 4317D - 01/05 to 4173E - 09/07
1. Added green product ordering information.
2. Removed ‘Preliminary’ status. Product now fully Industrialised.
37
4173ES–USB–09/07
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Regional Headquarters
Europe
Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Atmel Operations
Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT
OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically providedotherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
©2007 Atmel Corporation. All rights reserved. Atmel ®, logo and combinations thereof, and Everywhere You Are ® are the trademarks or registered trademarks, of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.
Printed on recycled paper.
4173ES–USB–09/07