PRELIMINARY TECHNICAL DATA MicroConverter ®, Dual 16-/24- Bit ADCs with Embedded 62KB FLASH MCU Preliminary Technical Data ADuC834 a FEATURES High Resolution Sigma-Delta ADCs Two Independent ADCs (16- and 24-Bit Resolution) 24-Bit No Missing Codes, Primary ADC 13-Bit p-p Resolution @ 20 Hz, 20 mV Range 18-Bit p-p Resolution @ 20 Hz, 2.56 V Range Memory 62Kbytes On-Chip Flash/EE Program Memory 4 KBytes On-Chip Flash/EE Data Memory Flash/EE, 100 Yr Retention, 100 Kcycles Endurance In Circuit Serial Download High Speed User Bootload (5s Download) 2304 Bytes On-Chip Data RAM 8051 Based Core 8051-Compatible Instruction Set (12.58 MHz Max) 32 kHz External Crystal, On-Chip Programmable PLL 11 Interrupt Sources, Two Priority Levels Dual Data Pointer Extended 11-bit Stack Pointer On-Chip Peripherals 12-Bit Voltage Output DAC Dual 16-Bit Σ∆ DACs/PWMs On-Chip Temperature Sensor Dual Excitation Current Sources Time Interval Counter (Real Time Clock/WakeUp Cct) UART and SPI® Serial I/O Timer 3 for high speed UART baud rates (incl 115,200) Watchdog Timer (WDT), Power Supply Monitor (PSM) Power Specified for 3 V and 5 V Operation Normal: 3 mA @ 3 V (Core CLK = 1.5 MHz) Power-Down: 20µA max with wake-up cct running GENERAL DESCRIPTION The ADuC834 is a complete smart transducer front-end, integrating two high-resolution sigma delta ADCs, an 8-bit MCU, and program/data Flash/EE Memory on a single chip. The two independent ADCs (Primary and Auxiliary) include a temperature sensor and a PGA (allowing direct measurement of low-level signals). The ADCs with on-chip digital filtering and programmable output data rates are intended for the measurement of wide dynamic range, low frequency signals, such as those in weigh scale, strain-gauge, pressure transducer, or temperature measurement applications. The device operates from a 32 kHz crystal with an on-chip PLL generating a high-frequency clock of 12.58 MHz. This clock is, routed through a programmable clock divider from which the MCU core clock operating frequency is generated. The microcontroller core is an 8052 and therefore 8051 instruction set compatible with 12 core clock periods per machine cycle. FUNCTIONAL BLOCK DIAGRAM A V DD A D uC 8 34 CU R RE N T S O UR CE A V DD A IN1 A IN2 BUF MUX PGA P R IM A R Y 24-B IT Σ ∆ A D C 12 -BI T DAC BUF IE X C1 IE X C2 DA C 1 6- BI T DAC Σ∆ A IN3 A IN4 1 6- BI T DAC A G ND PW M0 Σ∆ A UX IL IA RY 16-B IT Σ ∆ A D C MUX A IN5 MUX 16 -BI T PWM PW M1 16 -BI T PWM TE M P S EN S O R 805 1-B A S ED M CU W ITH A DD ITIO N A L P ER IP HE RA LS IN TE RN A L B AN DG A P VRE F P RO G . CL O C K DIV IDE R E X TE RN A L VRE F DE T E C T OSC & PLL RE FIN › RE FIN+ XTAL1 62 K BY TE S FLA S H/E E P R O G R A M M E M O RY 4 K B Y TE S F LA S H/E E DA TA M E M O RY 230 4 B Y TE S U S E R R A M 3 × 1 6 B IT T IM E RS 1 × RE A L TIM E CL O C K P O W E R S U P PL Y M O N W AT CH DO G TIM E R 4 × P A RA LLE L P O RT S UA R T A N D S P I S ERIA L I/O X TA L 2 62 Kbytes of nonvolatile Flash/EE program memory are provided on-chip. 4 Kbytes of nonvolatile Flash/EE data memory, 256 bytes RAM and 2 KBytes of extended RAM are also integrated on-chip. The program memory can be configured as data memory in datalogging applications. The ADuC834 also incorporates additional analog functionality with a 12-bit DAC, dual current sources, power supply monitor, and a bandgap reference. On-chip digital peripherals include two 16-bit Σ∆ DACs/PWM, watchdog timer, real time clock (time interval counter), four timers/counters, and two serial I/O ports (UART and SPI). On-chip factory firmware supports in-circuit serial download (via UART), as well as single-pin emulation mode via the EA pin. A functional block diagram of the ADuC834 is shown above with a more detailed block diagram shown in figure 11 (page 18). The part operates from a 3V or a 5V supply. When operating from 3V the power dissipation for the part is below 10mW. The ADuC834 is housed in a 52-lead MQFP package. APPLICATIONS Intelligent Sensors (IEEE1451.2-Compatible) Weigh Scales Portable Instrumentation Pressure Transducers 4–20 mA Transmitters REV. PrC (12 March 2002) MicroConverter is a registered trademark of Analog Devices, Inc. SPI is a registered trademark of Motorola Inc. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 2002 PRELIMINARY TECHNICAL DATA ADuC834 TABLE OF CONTENTS OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 TIMING SPECIFICATIONS . . . . . . . . . . . . . . . . . . . . . . . 8 ABSOLUTE MAXIMUM RATINGS . . . . . . . . . . . . . . . . 17 ORDERING GUIDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 PIN FUNCTION DESCRIPTIONS . . . . . . . . . . . . . . . . . 18 MEMORY ORGANIZATION . . . . . . . . . . . . . . . . . . . . . . 21 SPECIAL FUNCTION REGISTERS (SFRS) . . . . . . . . . . 22 Accumulator (ACC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 B SFR (B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Stack Pointer (SP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Data Pointer (DPTR) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Program Status Word (PSW) . . . . . . . . . . . . . . . . . . . . . 23 Power Control (PCON) . . . . . . . . . . . . . . . . . . . . . . . . . 23 ADuC834 Configuration SFR (CFG834) . . . . . . . . . . . . 23 Complete SFR Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 PRIMARY AND AUXILIARY ADCs . . . . . . . . . . . . . . . . 25 ADCSTAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 ADCMODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 ADC0CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADC1CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ADC0H/M/L / ADC1H/L . . . . . . . . . . . . . . . . . . . . . . . . 28 OF0H/M/L / OF1H/L . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 GN0H/M/L / GN1H/L . . . . . . . . . . . . . . . . . . . . . . . . . . 28 SF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 PRIMARY AND AUX ADC NOISE PERFORMANCE . . 30 PRIMARY AND AUXILIARY ADC DESCRIPTION . . . 31 Primary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Auxiliary ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Analog Input Channels . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Primary and Auxiliary ADC Inputs . . . . . . . . . . . . . . . . . 33 Analog Input Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Programmable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . 33 Bipolar/Unipolar Inputs . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Reference Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Burnout Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Excitation Currents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Reference Detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Sigma-Delta Modulator . . . . . . . . . . . . . . . . . . . . . . . . . . 34 Digital Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ADC Chopping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 NONVOLATILE FLASH/EE MEMORY . . . . . . . . . . . . . 37 Flash/EE Memory Overview . . . . . . . . . . . . . . . . . . . . . . 37 Flash/EE Memory and the ADuC834 . . . . . . . . . . . . . . . 37 ADuC834 Flash/EE Memory Reliability . . . . . . . . . . . . . 37 USING THE FLASH/EE PROGRAM MEMORY . . . . . . 38 Serial/Parallel Downloading . . . . . . . . . . . . . . . . . . . . . . . 38 User Download Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Flash/EE Program Memory Security . . . . . . . . . . . . . . . . 38 USING THE FLASH/EE DATA MEMORY . . . . . . . . . . . ECON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Programming the Flash/EE Data Memory . . . . . . . . . . . FLASH/EE MEMORY TIMING . . . . . . . . . . . . . . . . . . . . DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . DACCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the DAC Converter . . . . . . . . . . . . . . . . . . . . . . . . PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . PWMCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ON-CHIP PLL (PLLCON) . . . . . . . . . . . . . . . . . . . . . . . . TIME INTERVAL COUNTER (TIMECON) . . . . . . . . . . WATCHDOG TIMER (WDCON) . . . . . . . . . . . . . . . . . . POWER SUPPLY MONITOR (PSMCON) . . . . . . . . . . . SERIAL PERIPHERAL INTERFACE . . . . . . . . . . . . . . . . Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . SPICON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Using the SPI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . DUAL DATA POINTER (DPCON) . . . . . . . . . . . . . . . . . 8051-COMPATIBLE PERIPHERALS . . . . . . . . . . . . . . . . Parallel I/O Ports 0–3 . . . . . . . . . . . . . . . . . . . . . . . . . . . Additional High Current Digital Output Pins . . . . . . . . . TIMERS/COUNTERS . . . . . . . . . . . . . . . . . . . . . . . . . . TMOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Timer/Counter 0/1 Modes of Operation . . . . . . . . . . . Timer 2 Operating Modes . . . . . . . . . . . . . . . . . . . . . . T2CON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . SCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . UART Operating Modes . . . . . . . . . . . . . . . . . . . . . . . Baud Rate Generation using Timer 1 and Timer 2 . . . Baud Rate Generation using Timer 3 . . . . . . . . . . . . . INTERRUPT SYSTEM . . . . . . . . . . . . . . . . . . . . . . . . . . . HARDWARE DESIGN CONSIDERATIONS . . . . . . . . . . External Memory Interface . . . . . . . . . . . . . . . . . . . . . . . Power Supplies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-On Reset Operation . . . . . . . . . . . . . . . . . . . . . . . Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . Power-Saving Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . Grounding and Board Layout Recommendations . . . . . . System Self-Identification . . . . . . . . . . . . . . . . . . . . . . . . Clock Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OTHER HARDWARE CONSIDERATIONS . . . . . . . . . . In-Circuit Serial Download Access . . . . . . . . . . . . . . . . . Embedded Serial Port Debugger . . . . . . . . . . . . . . . . . . . Single-Pin Emulation Mode . . . . . . . . . . . . . . . . . . . . . . Enhanced-Hooks Emulation Mode . . . . . . . . . . . . . . . . . Typical System Configuration . . . . . . . . . . . . . . . . . . . . . QUICKSTART DEVELOPMENT SYSTEM . . . . . . . . . . OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . –2– 39 39 40 40 41 41 41 43 43 44 46 47 49 50 51 51 51 52 53 54 54 54 55 55 56 57 58 59 60 60 61 62 63 64 66 66 67 67 67 67 68 68 68 69 69 69 69 69 69 71 72 (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA REFIN(+) = 2.5 V, REFIN(–) = AGND; AGND = DGND = 0 V; XTAL1/XTAL2 = 32.768 kHz SPECIFICATIONS1 Crystal; all specifications T to T unless otherwise noted.) (AVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, MIN Parameter ADC SPECIFICATIONS Conversion Rate Primary ADC No Missing Codes2 Resolution Output Noise Integral Nonlinearity Offset Error3 Offset Error Drift Full-Scale Error4 Gain Error Drift5 ADC Range Matching Power Supply Rejection (PSR) Common-Mode DC Rejection On AIN On AIN On REFIN Common-Mode 50 Hz/60 Hz Rejection2 On AIN ADuC834BS Test Conditions/Comments Unit 5.4 105 On Both Channels Programmable in 0.732 ms Increments Hz min Hz max 24 13 18 See Table X and XI in ADuC834 ADC Description (pg 30) ±15 ±3 ±10 ±10 ±0.5 ±2 113 80 20 Hz Update Rate Range = ±20 mV, 20 Hz Update Rate Range = ±2.56 V, 20 Hz Update Rate Output Noise Varies with Selected Update Rate and Gain Range Bits min Bits p-p typ Bits p-p typ 1 LSB16 ppm of FSR max µV typ nV/°C typ µV typ ppm/°C typ µV typ dBs typ dBs min 95 113 125 At DC, AIN = 7.8 mV, Range = ±20 mV At DC, AIN = 1 V, Range = ±2.56 V At DC, AIN = 1 V, Range = ±2.56 V 20 Hz Update Rate 50 Hz/60 Hz ±1 Hz, AIN = 7.8 mV, Range = ±20 mV 50 Hz/60 Hz ±1 Hz, AIN = 1 V, Range = ±2.56 V 50 Hz/60 Hz ±1 Hz, AIN = 1 V, Range = ±2.56 V dBs min dBs typ dBs typ 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate dBs min dBs min 95 90 On REFIN Normal Mode 50 Hz/60 Hz Rejection2 On AIN On REFIN Auxiliary ADC No Missing Codes2 Resolution Output Noise Integral Nonlinearity Offset Error3 Offset Error Drift Full-Scale Error6 Gain Error Drift5 Power Supply Rejection (PSR) Normal Mode 50 Hz/60 Hz Rejection2 On AIN On REFIN DAC PERFORMANCE DC Specifications7 Resolution Relative Accuracy Differential Nonlinearity Offset Error Gain Error8 AC Specifications2, 7 Voltage Output Settling Time Digital-to-Analog Glitch Energy REV. PrC (12 March 2002) ADuC834 MAX 90 60 60 16 16 See Table XII in ADuC834 ADC Description (pg 30) ±15 –2 1 –2.5 ±0.5 80 60 60 AIN = 18 mV AIN = 7.8 mV, Range = ±20 mV AIN = 1 V, Range = ±2.56 V Range = ±2.5 V, 20 Hz Update Rate Output Noise Varies with Selected Update Rate dBs min dBs min dBs min Bits min Bits p-p typ AIN = 1 V, 20 Hz Update Rate ppm of FSR max LSB typ µV/°C typ LSB typ ppm/°C typ dBs min 50 Hz/60 Hz ±1 Hz 50 Hz/60 Hz ±1 Hz, 20 Hz Update Rate dBs min dBs min 12 ±3 –1 ±50 ±1 ±1 AVDD Range VREF Range Bits LSB typ LSB max mV max % max % typ 15 10 Settling Time to 1 LSB of Final Value 1 LSB Change at Major Carry µs typ nVs typ Guaranteed 12-Bit Monotonic –3– PRELIMINARY TECHNICAL DATA ADuC834–SPECIFICATIONS1 Parameter INTERNAL REFERENCE ADC Reference Reference Voltage Power Supply Rejection Reference Tempco DAC Reference Reference Voltage Power Supply Rejection Reference Tempco ADuC834BS Test Conditions/Comments Unit 1.25 ± 1% 45 100 Initial Tolerance @ 25°C, VDD = 5 V V min/max dBs typ ppm/°C typ 2.5 ± 1% 50 ±100 Initial Tolerance @ 25°C, VDD = 5 V V min/max dBs typ ppm/°C typ ANALOG INPUTS/REFERENCE INPUTS Primary ADC Differential Input Voltage Ranges9, 10 Bipolar Mode (ADC0CON3 = 0) Analog Input Current2 Analog Input Current Drift Absolute AIN Voltage Limits Auxiliary ADC Input Voltage Range9, 10 Average Analog Input Current Average Analog Input Current Drift2 Absolute AIN Voltage Limits11 External Reference Inputs REFIN(+) to REFIN(–) Range2 Average Reference Input Current Average Reference Input Current Drift ‘NO Ext. REF’ Trigger Voltage ADC SYSTEM CALIBRATION Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span ANALOG (DAC) OUTPUTS Voltage Range Resistive Load Capacitive Load Output Impedance ISINK TEMPERATURE SENSOR Accuracy Thermal Impedance (θJA) ±20 ±40 ±80 ±160 ±320 ±640 ±1.28 ±2.56 ±1 ±5 AGND + 100 mV AVDD – 100 mV 0 to VREF 125 ±2 AGND – 30 mV AVDD + 30 mV 1 AVDD 1 ±0.1 0.3 0.65 External Reference Voltage = 2.5 V RN2, RN1, RN0 of ADC0CON Set to 0 0 0 (Unipolar Mode 0 to 20 mV) 0 0 1 (Unipolar Mode 0 to 40 mV) 0 1 0 (Unipolar Mode 0 to 80 mV) 0 1 1 (Unipolar Mode 0 to 160 mV) 1 0 0 (Unipolar Mode 0 to 320 mV) 1 0 1 (Unipolar Mode 0 to 640 mV) 1 1 0 (Unipolar Mode 0 to 1.28 V) 1 1 1 (Unipolar Mode 0 to 2.56 V) Unipolar Mode, for Bipolar Mode V See Note 11 Input Current Will Vary with Input nA/V typ Voltage on the Unbuffered Auxiliary ADC pA/V/°C typ V min V max Both ADCs Enabled NOXREF Bit Active if VREF < 0.3 V NOXREF Bit Inactive if VREF > 0.65 V +1.05 × FS –1.05 × FS 0.8 × FS 2.1 × FS 0 to VREF 0 to AVDD 10 100 0.5 50 mV mV mV mV mV mV V V nA max pA/°C typ V min V max V min V max µA/V typ nA/V/°C typ V min V max V max V min V min V max DACRN = 0 in DACCON SFR DACRN = 1 in DACCON SFR From DAC Output to AGND From DAC Output to AGND ±2 90 V typ V typ Ω typ pF typ Ω typ µA typ °C typ °C/Ω typ –4– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter ADuC834BS TRANSDUCER BURNOUT CURRENT SOURCES AIN+ Current –100 AIN– Current +100 Initial Tolerance @ 25°C Drift ±10 0.03 EXCITATION CURRENT SOURCES Output Current Initial Tolerance @ 25°C Drift Initial Current Matching @ 25°C Drift Matching Line Regulation (AVDD) Load Regulation Output Compliance LOGIC INPUTS All Inputs Except SCLOCK, RESET, and XTAL1 VINL, Input Low Voltage VINH, Input High Voltage SCLOCK and RESET Only (Schmitt-Triggered Inputs)2 VT+ VT– VT+ – VT– Input Currents Port 0, P1.2–P1.7, EA SCLOCK, MOSI, MISO, SS12 RESET P1.0, P1.1, Ports 2 and 3 Input Capacitance Unit AIN+ is the Selected Positive Input to the Primary ADC AIN– is the Selected Negative Input to the Auxiliary ADC nA typ nA typ % typ %/°C typ –200 ±10 200 ±1 20 1 0.1 AVDD – 0.6 AGND Available from Each Current Source µA typ % typ ppm/°C typ Matching Between Both Current Sources % typ ppm/°C typ AVDD = 5 V + 5% µA/V typ µA/V typ V max Min 0.8 0.4 2.0 DVDD = 5 V DVDD = 3 V V max V max V min 1.3/3 0.95/2.5 0.8/1.4 0.4/1.1 0.3/0.85 0.3/0.85 DVDD = 5 V DVDD = 3 V DVDD = 5 V DVDD = 3 V DVDD = 5 V DVDD = 3 V V V V V V V ±10 –10 min, –40 max ±10 ±10 35 min, 105 max VIN = 0 V or VDD VIN = 0 V, DVDD = 5 V, Internal Pull-Up VIN = VDD, DVDD = 5 V VIN = 0 V, DVDD = 5 V VIN = VDD, DVDD = 5 V, Internal Pull-Down VIN = VDD, DVDD = 5 V VIN = 2 V, DVDD = 5 V µA max µA min/µA max µA max µA max µA min/µA max ±10 –180 –660 –20 –75 5 VIN = 450 mV, DVDD = 5 V All Digital Inputs CRYSTAL OSCILLATOR (XTAL1 AND XTAL2) Logic Inputs, XTAL1 Only VINL, Input Low Voltage 0.8 0.4 VINH, Input High Voltage 3.5 2.5 XTAL1 Input Capacitance 18 XTAL2 Output Capacitance 18 REV. PrC (12 March 2002) Test Conditions/Comments DVDD = 5 V DVDD = 3 V DVDD = 5 V DVDD = 3 V –5– min/V min/V min/V min/V min/V min/V µA max µA min µA max µA min µA max pF typ V max V max V min V min pF typ pF typ max max max max max max PRELIMINARY TECHNICAL DATA ADuC834–SPECIFICATIONS1 Parameter ADuC834BS Test Conditions/Comments Unit VDD = 5 V, ISOURCE = 80 µA VDD = 3 V, ISOURCE = 20 µA ISINK = 8 mA, SCLOCK/D0, MOSI/D1 ISINK = 10 mA, P1.0 and P1.1 ISINK = 1.6 mA, All Other Outputs V min V min V max 2 LOGIC OUTPUTS (Not Including XTAL2) VOH, Output High Voltage 2.4 2.4 VOL, Output Low Voltage13 0.4 Floating State Leakage Current Floating State Output Capacitance POWER SUPPLY MONITOR (PSM) AVDD Trip Point Selection Range AVDD Power Supply Trip Point Accuracy DVDD Trip Point Selection Range DVDD Power Supply Trip Point Accuracy WATCHDOG TIMER (WDT) Timeout Period MCU CORE CLOCK RATE MCU Clock Rate2 0.4 0.4 ±10 5 2.63 4.63 ±3.5 2.63 4.63 ±3.5 Four Trip Points Selectable in This Range V min Programmed via TPA1–0 in PSMCON V max % max Four Trip Points Selectable in This Range V min Programmed via TPD1–0 in PSMCON V max % max 0 2000 Nine Timeout Periods in This Range Programmed via PRE3–0 in WDCON 300 1 ms typ ms typ OSC_PD Bit = 0 in PLLCON SFR 1 1 1 3.4 ms ms ms ms Controlled via WDCON SFR DVDD, 3 V Nominal Operation DVDD, 5 V Nominal Operation sec typ ms typ ms typ 14 Cycles min Years min DVDD and AVDD Can Be Set Independently POWER REQUIREMENTS AVDD, 5 V Nominal Operation typ typ typ typ OSC_PD Bit = 1 in PLLCON SFR 0.9 3.3 3.3 FLASH/EE MEMORY RELIABILITY CHARACTERISTICS Endurance15 100,000 Data Retention16 100 Power Supply Voltages AVDD, 3 V Nominal Operation ms min ms max Clock Rate Generated via On-Chip PLL Programmable via CD2–0 Bits in kHz min PLLCON SFR MHz max 98.3 12.58 START-UP TIME At Power-On From Idle Mode From Power-Down Mode Oscillator Running Wakeup with INT0 Interrupt Wakeup with SPI Interrupt Wakeup with TIC Interrupt Wakeup with External RESET Oscillator Powered Down Wakeup with External RESET After External RESET in Normal Mode After WDT Reset in Normal Mode V max V max µA max pF typ 2.7 3.6 4.75 5.25 2.7 3.6 4.75 5.25 V min V max V min V max V min V max V min V max –6– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter POWER REQUIREMENTS (continued) Power Supply Currents Normal Mode17, 18 DVDD Current AVDD Current DVDD Current AVDD Current Power Supply Currents Idle Mode17, 18 DVDD Current AVDD Current DVDD Current AVDD Current Power Supply Currents Power-Down Mode17, 18 DVDD Current AVDD Current DVDD Current Typical Additional Power Supply Currents (AIDD and DIDD) PSM Peripheral Primary ADC Auxiliary ADC DAC Dual Current Sources ADuC834BS Test Conditions/Comments Unit 4 2.1 170 15 8 170 DVDD = 4.75 V to 5.25 V, Core CLK = 1.57 MHz DVDD = 2.7 V to 3.6 V, Core CLK = 1.57 MHz AVDD = 5.25 V, Core CLK = 1.57 MHz DVDD = 4.75 V to 5.25 V, Core CLK = 12.58 MHz DVDD = 2.7 V to 3.6 V, Core CLK = 12.58 MHz AVDD = 5.25 V, Core CLK = 12.58 MHz mA max mA max µA max mA max mA max µA max 1.2 750 140 2 1 140 DVDD = 4.75 V to 5.25 V, Core CLK = 1.57 MHz DVDD = 2.7 V to 3.6 V, Core CLK = 1.57 MHz Measured @ AVDD = 5.25 V, Core CLK = 1.57 MHz DVDD = 4.75 V to 5.25 V, Core CLK = 12.58 MHz DVDD = 2.7 V to 3.6 V, Core CLK = 12.58 MHz Measured at AVDD = 5.25 V, Core CLK = 12.58 MHz Core CLK = 1.57 MHz or 12.58 MHz DVDD = 4.75 V to 5.25 V, Osc. On, TIC On DVDD = 2.7 V to 3.6 V, Osc. On, TIC On Measured at AVDD = 5.25 V, Osc. On or Osc. Off DVDD = 4.75 V to 5.25 V, Osc. Off DVDD = 2.7 V to 3.6 V, Osc. Off Core CLK = 1.57 MHz, AVDD = DVDD = 5 V mA max µA typ µA typ mA typ mA typ µA typ 50 20 1 20 5 50 1 500 150 400 µA max µA max µA max µA max µA typ µA typ mA typ µA typ µA typ µA typ NOTES 1 Temperature Range –40°C to +85°C. 2 These numbers are not production tested but are guaranteed by Design and/or Characterization data on production release. 3 System Zero-Scale Calibration can remove this error. 4 The primary ADC is factory calibrated at 25°C with AVDD = DVDD = 5 V yielding this full-scale error of 10 µV. If user power supply or temperature conditions are significantly different than these, an Internal Full-Scale Calibration will restore this error to 10 µV. A system zero-scale and full-scale calibration will remove this error altogether. 5 Gain Error Drift is a span drift. To calculate Full-Scale Error Drift, add the Offset Error Drift to the Gain Error Drift times the full-scale input. 6 The auxiliary ADC is factory calibrated at 25°C with AVDD = DVDD = 5 V yielding this full-scale error of –2.5 LSB. A system zero-scale and full-scale calibration will remove this error altogether. 7 DAC linearity and AC Specifications are calculated using: reduced code range of 48 to 4095, 0 to VREF, reduced code range of 48 to 3995, 0 to VDD. 8 Gain Error is a measure of the span error of the DAC. 9 In general terms, the bipolar input voltage range to the primary ADC is given by RangeADC = ±(VREF 2RN)/125, where: VREF = REFIN(+) to REFIN(–) voltage and V REF = 1.25 V when internal ADC VREF is selected. RN = decimal equivalent of RN2, RN1, RN0, e.g., VREF = 2.5 V and RN2, RN1, RN0 = 1, 1, 0 the RangeADC = ±1.28 V. In unipolar mode the effective range is 0 V to 1.28 V in our example. 10 1.25 V is used as the reference voltage to the ADC when internal VREF is selected via XREF0 and XREF1 bits in ADC0CON and ADC1CON respectively. 11 In bipolar mode, the Auxiliary ADC can only be driven to a minimum of AGND – 30 mV as indicated by the Auxiliary ADC absolute AIN voltage limits. The bipolar range is still –VREF to +VREF; however, the negative voltage is limited to –30 mV. 12 Pins configured in SPI mode, pins configured as digital inputs during this test. 13 Pins configured in High Current Output mode only. 14 Flash/EE Memory Reliability Characteristics apply to both the Flash/EE program memory and Flash/EE data memory. 15 Endurance is qualified to 100 Kcycles as per JEDEC Std. 22 method A117 and measured at –40°C, +25°C and +85°C, typical endurance at 25°C is 700 Kcycles. 16 Retention lifetime equivalent at junction temperature (TJ) = 55°C as per JEDEC Std. 22, Method A117. Retention lifetime based on an activation energy of 0.6eV will derate with junction temperature as shown in Figure 27 in the Flash/EE Memory description section of this data sheet. 17 Power Supply current consumption is measured in Normal, Idle, and Power-Down Modes under the following conditions: Normal Mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, Core Executing internal software loop. Idle Mode: Reset = 0.4 V, Digital I/O pins = open circuit, Core Clk changed via CD bits in PLLCON, PCON.0 = 1, Core Execution suspended in idle mode. Power-Down Mode: Reset = 0.4 V, All P0 pins and P1.2–P1.7 pins = 0.4 V, All other digital I/O pins are open circuit, Core Clk changed via CD bits in PLLCON, PCON.1 = 1, Core Execution suspended in power-down mode, OSC turned ON or OFF via OSC_PD bit (PLLCON.7) in PLLCON SFR. 18 DVDD power supply current will increase typically by 3 mA (3 V operation) and 10 mA (5 V operation) during a Flash/EE memory program or erase cycle. Specifications subject to change without notice REV. PrC (12 March 2002) –7– PRELIMINARY TECHNICAL DATA ADuC834 (AVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V, DVDD = 2.7 V to 3.6 V or 4.75 V to 5.25 V; all MIN to TMAX unless otherwise noted.) TIMING SPECIFICATIONS1, 2, 3 specifications T 32.768 kHz External Crystal Min Typ Max Parameter CLOCK INPUT tCK tCKL tCKH tCKR tCKF 1/tCORE tCORE tCYC (External Clock Driven XTAL1) XTAL1 Period XTAL1 Width Low XTAL1 Width High XTAL1 Rise Time XTAL1 Fall Time ADuC834 Core Clock Frequency4 ADuC834 Core Clock Period5 ADuC834 Machine Cycle Time6 30.52 15.16 15.16 20 20 0.098 0.95 12.58 0.636 7.6 122.45 Unit Figure µs µs µs ns ns MHz µs µs 1 1 1 1 1 NOTES 1 AC inputs during testing are driven at DVDD – 0.5 V for a Logic 1, and 0.45 V for a Logic 0. Timing measurements are made at VIH min for a Logic 1, and VIL max for a Logic 0 as shown in Figure 2. 2 For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when a 100 mV change from the loaded VOH/V OL level occurs as shown in Figure 2. 3 CLOAD for Port0, ALE, PSEN outputs = 100 pF; CLOAD for all other outputs = 80 pF unless otherwise noted. 4 ADuC834 internal PLL locks onto a multiple (384 times) the external crystal frequency of 32.768 kHz to provide a Stable 12.583 MHz internal clock for the system. The core can operate at this frequency or at a binary submultiple called Core_Clk, selected via the PLLCON SFR. 5 This number is measured at the default Core_Clk operating frequency of 1.57 MHz. 6 ADuC834 Machine Cycle Time is nominally defined as 12/Core_CLK. tC K R t C HK t CK L tC K F tC K Figure 1. XTAL1 Input DV DD › 0.5 V V LO A D › 0.1V 0.2DV DD + 0 .9V TEST POINTS 0.2DV DD › 0.1V V LO A D V LO A D + 0.1V 0.45V TIMING REFERENCE POINTS V LO A D › 0.1V V LO A D V LO A D + 0.1V Figure 2. Timing Waveform Characteristics –8– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter EXTERNAL PROGRAM MEMORY ALE Pulsewidth tLHLL Address Valid to ALE Low tAVLL Address Hold after ALE Low tLLAX tLLIV ALE Low to Valid Instruction In tLLPL ALE Low to PSEN Low PSEN Pulsewidth tPLPH tPLIV PSEN Low to Valid Instruction In tPXIX Input Instruction Hold after PSEN Input Instruction Float after PSEN tPXIZ tAVIV Address to Valid Instruction In tPLAZ PSEN Low to Address Float tPHAX Address Hold after PSEN High 12.58 MHz Core_Clk Min Max Variable Core_Clk Min Max 119 39 49 2tCORE – 40 tCORE – 40 tCORE – 30 218 4tCORE – 100 49 193 tCORE – 30 3tCORE – 45 133 3tCORE – 105 0 0 54 292 25 tCORE – 25 5tCORE – 105 25 0 0 CO RE_C LK tLH LL A LE (O ) t A V LL tP L P H t LL P L t LL IV tP L IV P S E N (O) P O RT 0 (I/O) t P X IZ tP L A Z tLL A X tP XIX P CL (OUT) INSTRUCTION (IN) t A VIV tP H A X P CH P O RT 2 (O ) Figure 3. External Program Memory Read Cycle REV. PrC (12 March 2002) –9– Unit Figure ns ns ns ns ns ns ns ns ns ns ns ns 3 3 3 3 3 3 3 3 3 3 3 3 PRELIMINARY TECHNICAL DATA ADuC834 12.58 MHz Core_Clk Min Max Parameter EXTERNAL DATA MEMORY READ CYCLE tRLRH RD Pulsewidth tAVLL Address Valid after ALE Low tLLAX Address Hold after ALE Low RD Low to Valid Data In tRLDV tRHDX Data and Address Hold after RD tRHDZ Data Float after RD ALE Low to Valid Data In tLLDV tAVDV Address to Valid Data In tLLWL ALE Low to RD Low Address Valid to RD Low tAVWL tRLAZ RD Low to Address Float tWHLH RD High to ALE High 377 39 44 Variable Core_Clk Min Max 6tCORE – 100 tCORE – 40 tCORE – 35 232 0 5tCORE – 165 0 89 486 550 288 188 188 0 119 39 2tCORE – 70 8tCORE – 150 9tCORE – 165 3tCORE + 50 3tCORE – 50 4tCORE – 130 0 tCORE + 40 tCORE – 40 Unit Figure ns ns ns ns ns ns ns ns ns ns ns ns 4 4 4 4 4 4 4 4 4 4 4 4 CORE _C LK A LE (O ) tW HL H P S E N (O) t LL DV t LL W L t R LR H R D (O) tA V W L tR LD V t A V LL t LL A X tR HD X tR H DZ t R LA Z P O RT 0 (I/O) A0 › A 7 (OUT) DATA (IN) t A V DV P O RT 2 (O ) A1 6 › A 23 A8 › A15 Figure 4. External Data Memory Read Cycle –10– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter 12.58 MHz Core_Clk Min Max EXTERNAL DATA MEMORY WRITE CYCLE WR Pulsewidth tWLWH tAVLL Address Valid after ALE Low tLLAX Address Hold after ALE Low ALE Low to WR Low tLLWL tAVWL Address Valid to WR Low tQVWX Data Valid to WR Transition Data Setup before WR tQVWH tWHQX Data and Address Hold after WR tWHLH WR High to ALE High 377 39 44 188 188 29 406 29 39 288 119 Variable Core_Clk Min Max 6tCORE – 100 tCORE – 40 tCORE – 35 3tCORE – 50 4tCORE – 130 tCORE – 50 7tCORE – 150 tCORE – 50 tCORE – 40 3tCORE + 50 tCORE + 40 CORE _C LK A LE (O ) t W HL H P S E N (O) t LL W L tW L W H W R (O) tA V W L t A V LL tLL A X tQ V W X tW H Q X tQ V W H P O RT 0 (O ) A0 › A 7 P O RT 2 (O ) A16 › A23 DATA A8 › A15 Figure 5. External Data Memory Write Cycle REV. PrC (12 March 2002) –11– Unit Figure ns ns ns ns ns ns ns ns ns 5 5 5 5 5 5 5 5 5 PRELIMINARY TECHNICAL DATA ADuC834 Parameter 12.58 MHz Core_Clk Min Typ Max UART TIMING (Shift Register Mode) tXLXL Serial Port Clock Cycle Time tQVXH Output Data Setup to Clock tDVXH Input Data Setup to Clock Input Data Hold after Clock tXHDX tXHQX Output Data Hold after Clock 662 292 0 42 Min Variable Core_Clk Typ 0.95 Max 12tCORE 10tCORE – 133 2tCORE + 133 0 2tCORE – 117 Unit Figure µs ns ns ns ns 6 6 6 6 6 A LE (O ) tX L X L TX D (OUTP UT CLO CK ) 67 01 S E T RI OR S E T TI tQ V X H tX H Q X RX D (OUTP UT DA TA) MSB B IT 6 B IT 1 tD V X H RX D (INP UT DA TA ) MSB tX HD X B IT 6 B IT 1 LSB Figure 6. UART Timing in Shift Register Mode –12– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter Min SPI MASTER MODE TIMING (CPHA = 1) tSL SCLOCK Low Pulsewidth* tSH SCLOCK High Pulsewidth* Data Output Valid after SCLOCK Edge tDAV Data Input Setup Time before SCLOCK Edge tDSU tDHD Data Input Hold Time after SCLOCK Edge tDF Data Output Fall Time Data Output Rise Time tDR tSR SCLOCK Rise Time tSF SCLOCK Fall Time Typ Max 630 630 50 100 100 10 10 10 10 25 25 25 25 Unit Figure ns ns ns ns ns ns ns ns ns 7 7 7 7 7 7 7 7 7 NOTE *Characterized under the following conditions: a. Core clock divider bits CD2, CD1, and CD0 bits in PLLCON SFR set to 0, 1, and 1 respectively, i.e., core clock frequency = 1.57 MHz and b. SPI bit-rate selection bits SPR1 and SPR0 bits in SPICON SFR set to 0 and 0 respectively. S CLO CK (CP O L = 0) tS L tS H tS R S CLO CK (CP O L = 1) t DA V tD F tS F t DR M OS I B IT S 6 › 1 MSB M IS O B IT S 6 › 1 M S B IN t DS U t D HD Figure 7. SPI Master Mode Timing (CPHA = 1) REV. PrC (12 March 2002) –13– LS B LS B IN PRELIMINARY TECHNICAL DATA ADuC834 Parameter Min SPI MASTER MODE TIMING (CPHA = 0) tSL SCLOCK Low Pulsewidth* tSH SCLOCK High Pulsewidth* Data Output Valid after SCLOCK Edge tDAV Data Output Setup before SCLOCK Edge tDOSU tDSU Data Input Setup Time before SCLOCK Edge tDHD Data Input Hold Time after SCLOCK Edge Data Output Fall Time tDF tDR Data Output Rise Time tSR SCLOCK Rise Time tSF SCLOCK Fall Time Typ Max 630 630 50 150 100 100 10 10 10 10 25 25 25 25 Unit Figure ns ns ns ns ns ns ns ns ns ns 8 8 8 8 8 8 8 8 8 8 NOTE *Characterized under the following conditions: a. Core clock divider bits CD2, CD1 and CD0 bits in PLLCON SFR set to 0, 1, and 1 respectively, i.e., core clock frequency = 1.57 MHz and b. SPI bit-rate selection bits SPR1 and SPR0 bits in SPICON SFR set to 0 and 0 respectively. S CLO CK (CP O L = 0) tS H tS L tS R S CLO CK (CP O L = 1) tS F t DA V t DO S U M OS I M IS O tD F MSB M S B IN tD S U tD R B IT S 6 › 1 B IT S 6 › 1 LS B LS B IN tD H D Figure 8. SPI Master Mode Timing (CPHA = 0) –14– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Parameter Min SPI SLAVE MODE TIMING (CPHA = 1) SS to SCLOCK Edge tSS SCLOCK Low Pulsewidth tSL SCLOCK High Pulsewidth tSH tDAV Data Output Valid after SCLOCK Edge tDSU Data Input Setup Time before SCLOCK Edge Data Input Hold Time after SCLOCK Edge tDHD tDF Data Output Fall Time tDR Data Output Rise Time SCLOCK Rise Time tSR tSF SCLOCK Fall Time tSFS SS High after SCLOCK Edge Typ Max 0 330 330 50 100 100 10 10 10 10 25 25 25 25 0 SS tS F S t SS S CLO CK (CP O L = 0) tD F tS L tS H tS R tS F S CLO CK (CP O L = 1) t DA V tD F M IS O M OS I B IT S 6 › 1 MSB B IT S 6 › 1 M S B IN tD S U tD R tD H D Figure 9. SPI Slave Mode Timing (CPHA = 1) REV. PrC (12 March 2002) –15– LS B LS B IN Unit Figure ns ns ns ns ns ns ns ns ns ns ns 9 9 9 9 9 9 9 9 9 9 9 PRELIMINARY TECHNICAL DATA ADuC834 Parameter Min SPI SLAVE MODE TIMING (CPHA = 0) tSS SS to SCLOCK Edge tSL SCLOCK Low Pulsewidth SCLOCK High Pulsewidth tSH Data Output Valid after SCLOCK Edge tDAV tDSU Data Input Setup Time before SCLOCK Edge tDHD Data Input Hold Time after SCLOCK Edge Data Output Fall Time tDF tDR Data Output Rise Time tSR SCLOCK Rise Time SCLOCK Fall Time tSF tSSR SS to SCLOCK Edge tDOSS Data Output Valid after SS Edge tSFS SS High after SCLOCK Edge Typ Max 0 330 330 50 100 100 10 10 10 10 25 25 25 25 50 20 0 Unit Figure ns ns ns ns ns ns ns ns ns ns ns ns ns 10 10 10 10 10 10 10 10 10 10 10 10 10 SS tS F S tS S S CLO CK (CP O L = 0) tS H tS L tS F tS R S CLO CK (CP O L = 1) t DA V t DO S S tD F MSB M IS O M OS I M S B IN tD S U tD R B IT S 6 › 1 B IT S 6 › 1 LS B LS B IN tD H D Figure 10. SPI Slave Mode Timing (CPHA = 0) –16– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 ABSOLUTE MAXIMUM RATINGS1 PIN CONFIGURATION 52-Lead MQFP (TA = 25°C unless otherwise noted) AVDD to AGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V AVDD to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V DVDD to AGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V DVDD to DGND . . . . . . . . . . . . . . . . . . . . . . –0.3 V to +7 V AGND to DGND2 . . . . . . . . . . . . . . . . . . . –0.3 V to +0.3 V AVDD to DVDD . . . . . . . . . . . . . . . . . . . . . . . . . –2 V to +5 V Analog Input Voltage to AGND3 . . . –0.3 V to AVDD +0.3 V Reference Input Voltage to AGND . . –0.3 V to AVDD +0.3 V AIN/REFIN Current (Indefinite) . . . . . . . . . . . . . . . . 30 mA Digital Input Voltage to DGND . . . . –0.3 V to DVDD +0.3 V Digital Output Voltage to DGND . . . –0.3 V to DVDD +0.3 V Operating Temperature Range . . . . . . . . . . –40°C to +85°C Storage Temperature Range . . . . . . . . . . . –65°C to +150°C Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . 150°C θJA Thermal Impedance . . . . . . . . . . . . . . . . . . . . . 53.2°C/W Lead Temperature, Soldering Vapor Phase (60 sec) . . . . . . . . . . . . . . . . . . . . . . . . 215°C Infrared (15 sec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220°C 1 Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. 2 AGND and DGND are shorted internally on the ADuC834. 3 Applies to P1.2 to P1.7 pins operating in analog or digital input modes. ORDERING GUIDE Model Temperature Range Package Description Package Option ADuC834BS –40°C to +85°C 52-Lead Plastic Quad Flatpack S-52 QuickStart Development System Model Description EVAL-ADUC834QS Development System for the ADuC834 MicroConverter, Containing: Evaluation Board Serial Port Cable Windows® Serial Downloader (WSD) Windows Debugger/Emulator (with C source DeBug) Windows ADuC834 Simulator (ADSIM) Windows ADC Analysis Software Program (WASP) 8051 Assembler (Metalink) Example Code Documentation CAUTION ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADuC834 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Windows is a registered trademark of Microsoft Corporation. REV. PrC (12 March 2002) –17– PRELIMINARY TECHNICAL DATA ADuC834 1 2 3 4 9 10 11 28 29 30 31 36 A D u C 834 AIN M UX AIN2 PGA BU F AIN5 TEMP S E NS O R VR EF RE F IN ⴚ DE T E CT M CU CO R E P 3.6 (W R ) P 3.5 (T 1) P 3.4 (T 0) P 3.3 (IN T 1 ) P 3.2 (IN T 0 ) P 3.0 (RX D ) P 3.1 (T X D) P 3.7 (R D ) 25 BU F 3 DA C 16-BIT SD DAC 1 PWM0 2 PWM1 M UX 16-BIT P WM 22 T0 23 T1 1 T2 2 T 2E X 18 IN T 0 19 IN T 1 PLL S ING L E -P IN E M UL AT O R S P I S E RIAL IN TE R F ACE O SC 42 26 S CL O CK /D 0 40 EA 41 17 16-BIT CO U NT E R T IM ER S P O W E R S U P P LY M O N IT O R AL E 16 24 T IM E INT E RV A L CO U NT E R (W A KE UP C CT ) PSEN 15 22 23 P RO G . CL O CK DIVIDE R UA R T T IM ER TXD 35 RX D 21 RE S E T 47 DG N D DV D D 48 DG N D AG N D 34 DG N D 20 DV D D 6 POR DV D D 5 AV D D IE X C 2 UA R T S E RIA L P O R T 19 12-BIT V O L T AG E O UT P UT D AC W A T CH DO G T IM ER DO W N L O AD E R DE B UG G E R CU RR E NT S O U RC E M UX IE X C 1 P 2.7 (A 1 P 2.6 (A 1 8052 2 KB ytes US E R X RA M 200 A 18 256 BY T E S US E R RA M 2 X DA TA P O INT E RS 11-BIT S T AC K P O IN TE R 200 A 17 16-BIT P WM 4 KB Y TE S D AT A F L AS H/E E RE F IN ⴙ 16 PWM CO N TR O L 62 K BY T E S P RO G R AM F L AS H/E E IN CL U DIN G US E R DO W N L O A D M O D E BA ND G AP RE F E RE N CE 39 16-BIT SD DAC AD C C O NT R O L AN D CA L IBR A T IO N AU X IL IAR Y A DC 16-BIT ⌺⌬ A DC AIN M UX 38 AD C CO N TR O L AN D CA L IBR A T IO N AIN3 AIN4 37 DA C CO N TR O L P RIM A RY A DC 24-BIT ⌺⌬ A DC AIN1 P 2.5 (A 1 P 2.4 (A 1 P 2.3 (A1 1/A19) P 2.2 (A 1 0 / A 1 8 ) P 2.0 (A 8 12 P 2.1 (A9/ A17) P 1.7 (AIN 4/DA C ) P 1.6 (AIN3) P 1.5 (AIN2) P 1.4 (AIN1) P 1.3 (AIN5/IE X C 2) P 1.2 (DA C/IE XC 1) P 1.0 (T 2) 52 P 1.1 (T 2E X ) P 0.7 (AD 7) P 0.6 (AD 6) 51 27 14 13 32 33 X T AL 2 50 X T AL 1 49 SS 46 P 0.5 (AD 5) P 0.4 (AD 4) P 0.3 (AD 3) P 0.2 (AD 2) 45 M IS O 44 M OSI /D1 43 P 0.1 (AD 1) P 0.0 (AD 0) ADuC834 DETAILED BLOCK DIAGRAM * S HA DE D A RE A S RE PRE S E NT THE NE W FE A TURE S O F THE A DUC834 O V E R THE A DUC824 Figure 11. ADuC834 Detailed Block Diagram ADuC834 PIN BY PIN FUNCTION DESCRIPTION Pin No. Mnemonic Type* Description 1, 2 P1.0/P1.1 I/O P1.0/T2/PWM0 I/O P1.1/T2EX/PWM1 I/O P1.0 and P1.1 can function as a digital inputs or digital outputs and have a pull-up configuration as described below for Port 3. P1.0 and P1.1 have an increased current drive sink capability of 10 mA. P1.0 and P1.1 also have various secondary functions as described below. P1.0 can also be used to provide a clock input to Timer 2. When Enabled, counter 2 is incremented in response to a negative transition on the T2 input pin. If the PWM is enabled then the PWM0 output will appear at this pin. P1.1 can also be used to provide a control input to Timer 2. When Enabled, a negative transition on the T2EX input pin will cause a Timer 2 capture or reload event. If the PWM is enabled then the PWM1 output will appear at this pin. –18– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Pin No. Mnemonic Type* Description 3-4, 9-12 P1.2-P1.7 I P1.2/DAC/IEXC1 I/O P1.3/AIN5/IEXC2 P1.4/AIN1 P1.5/AIN2 P1.6/AIN3 P1.7/AIN4/DAC I/O I I I I/O Port 1.2 to Port 1.7 have no digital output driver; they can function as a digital input for which ‘0’ must be written to the port bit. As a digital input, these pins must be driven high or low externally. These pins also have the following analog functionality: The voltage output from the DAC or one or both current sources (200 µA or 2 x 200 µA) can be configured to appear at this pin. Auxiliary ADC Input or one or both current sources can be configured at this pin. Primary ADC, Positive Analog Input Primary ADC, Negative Analog Input Auxiliary ADC Input or muxed Primary ADC, Positive Analog Input Auxiliary ADC Input or muxed Primary ADC, Negative Analog Input. The voltage output from the DAC can also be configured to appear at this pin. 5 6 AVDD AGND S S Analog Supply Voltage, 3 V or 5 V Analog Ground. Ground reference pin for the analog circuitry. 7 8 REFIN(–) REFIN(+) I I Reference input, negative terminal. Reference input, positive terminal. 13 14 SS MISO I I/O Slave Select Input for the SPI Interface. A weak pull-up is present on this pin. Master Input/Slave Output for the SPI Interface. There is a weak pull-up on this input pin. 15 RESET I Reset Input. A high level on this pin for 16 core clock cycles while the oscillator is running resets the device. There is an internal weak pull-down and a Schmitt trigger input stage on this pin. 16–19, 22-25 P3.0–P3.7 I/O P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1 P3.4/T0 P3.5/T1 P3.6/WR I/O I/O I/O I/O I/O I/O I/O P3.7/RD I/O P3.0–P3.7 are bidirectional port pins with internal pull-up resistors. Port 3 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 3 pins being pulled externally low will source current because of the internal pull-up resistors. When driving a 0-to-1 output transition, a strong pull-up is active for two core clock periods of the instruction cycle. Port 3 pins also have various secondary functions described below. Receiver Data for UART serial Port Transmitter Data for UART serial Port External Interrupt 0. This pin can also be used as a gate control input to Timer0. External Interrupt 1. This pin can also be used as a gate control input to Timer1. Timer/Counter 0 External Input Timer/Counter 1 External Input External Data Memory Write Strobe. Latches the data byte from Port 0 into an external data memory. External Data Memory Read Strobe. Enables the data from an external data memory to Port 0. 20, 34, 48 21, 35, 47 DVDD DGND S S Digital supply, 3 V or 5 V. Digital ground, ground reference point for the digital circuitry. 26 SCLOCK/D0 I/O 27 MOSI/D1 I/O Serial interface clock for the SPI interface. As an input this pin is a Schmitt triggered input and a weak internal pull-up is present on this pin unless it is outputting logic low. This pin can also be controlled directly in software as a digital output pin. Serial master output/slave input data for the SPI interface. A weak internal pull-up is present on this pin unless it is outputting logic low. This pin can also be controlled directly in software as a digital output pin. REV. PrC (12 March 2002) –19– PRELIMINARY TECHNICAL DATA ADuC834 Pin No. Mnemonic Type* Description 28–31 36-39 P2.0–P2.7 (A8–A15) (A16–A23) I/O Port 2 is a bidirectional port with internal pull-up resistors. Port 2 pins that have 1s written to them are pulled high by the internal pull-up resistors, and in that state can be used as inputs. As inputs, Port 2 pins being pulled externally low will source current because of the internal pull-up resistors. Port 2 emits the high order address bytes during fetches from external program memory and middle and high order address bytes during accesses to the 24-bit external data memory space. 32 33 XTAL1 XTAL2 I O Input to the crystal oscillator inverter. Output from the crystal oscillator inverter. (see page 68 for description) 40 EA I/O External Access Enable, Logic Input. When held high, this input enables the device to fetch code from internal program memory locations 0000h to F800h. When held low this input enables the device to fetch all instructions from external program memory. To determine the mode of code execution, i.e., internal or external, the EA pin is sampled at the end of an external RESET assertion or as part of a device power cycle. EA may also be used as an external emulation I/O pin and therefore the voltage level at this pin must not be changed during normal mode operation as it may cause an emulation interrupt that will halt code execution. 41 PSEN O Program Store Enable, Logic Output. This output is a control signal that enables the external program memory to the bus during external fetch operations. It is active every six oscillator periods except during external data memory accesses. This pin remains high during internal program execution. PSEN can also be used to enable serial download mode when pulled low through a resistor at the end of an external RESET assertion or as part of a device power cycle. 42 ALE O Address Latch Enable, Logic Output. This output is used to latch the low byte (and page byte for 24-bit data address space accesses) of the address to external memory during external code or data memory access cycles. It is activated every six oscillator periods except during an external data memory access. It can be disabled by setting the PCON.4 bit in the PCON SFR. 43–46 49–52 P0.0–P0.7 (AD0–AD3) (AD4–AD7) I/O P0.0–P0.7, these pins are part of Port0 which is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written to them float and in that state can be used as high impedance inputs. An external pull-up resistor will be required on P0 outputs to force a valid logic high level externally. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application it uses strong internal pull-ups when emitting 1s. *I = Input, O = Output, S = Supply. NOTES 1. In the following descriptions, SET implies a Logic 1 state and CLEARED implies a Logic 0 state unless otherwise stated. 2. In the following descriptions, SET and CLEARED also imply that the bit is set or automatically cleared by the ADuC834 hardware unless otherwise stated. 3. User software should not write 1s to reserved or unimplemented bits as they may be used in future products. –20– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 MEMORY ORGANIZATION The ADuC834 contains 4 different memory blocks namely: - 62kBytes of On-Chip Flash/EE Program Memory - 4kBytes of On-Chip Flash/EE Data Memory - 256 Bytes of General Purpose RAM - 2kBytes of Internal XRAM if one is going to use more than one register bank, the stack pointer should be initialized to an area of RAM not used for data storage. 7FH G ENE RA L-P URP OS E A RE A 30H (1) Flash/EE Program Memory The ADuC834 provides 62kBytes of Flash/EE program memory to run user code. The user can choose to run code from this internal memory or run code from an external program memory. If the user applies power or resets the device while the EA pin is pulled low, the part will execute code from the external program space, otherwise the part defaults to code execution from its internal 62kBytes of Flash/EE program memory. Unlike the ADuC824, where code execution can overflow from the internal code space to external code space once the PC becomes greater than 1FFFh, the ADuC834 does not support the rollover from F7FFh in internal code space to F800h in external code space. Instead the 2048 bytes between F800h and FFFFh will appear as NOP instructions to user code. This internal code space can be downloaded via the UART serial port while the device is in-circuit. 56kBytes of the program memory can be repogrammed during runtime hence the code space can be upgraded in the field using a user defined protocol or it can be used as a data memory. This will be discussed in more detail in the Flash/EE Memory section of the datasheet. (2) Flash/EE Data Memory 4kBytes of Flash/EE Data Memory are available to the user and can be accessed indirectly via a group of control registers mapped into the Special Function Register (SFR) area. Access to the Flash/EE Data memory is discussed in detail later as part of the Flash/EE memory section in this data sheet. 2FH B A NK S B IT-A DDRE S S A B LE (BIT A DDRE S S E S ) S E LE CTE D V IA 20H B ITS IN P S W 1FH 11 18H 17H 10 10H 0FH 01 08H 07H 00 RE S E T V ALUE OF S TACK P OINTE R 00H Figure 12. Lower 128 Bytes of Internal Data Memory The ADuC834 contains 2048 bytes of internal XRAM, 1792 bytes of which can be configured to be used as an extended 11bit stack pointer. By default the stack will operate exactly like an 8052 in that it will rollover from FFh to 00h in the general purpose RAM. On the ADuC834 however it is possible (by setting CFG834.7) to enable the 11-bit extended stack pointer. In this case the stack will rollover from FFh in RAM to 0100h in XRAM. The 11-bit stack pointer is visable in the SP and SPH SFRs. The SP SFR is located at 81h as with a standard 8052. The SPH SFR is located at B7h. The 3 LSBs of this SFR contain the 3 extra bits necessary to extend the 8-bit stack pointer into an 11-bit stack pointer. (3) General Purpose RAM 07FFH The general purpose RAM is divided into two seperate memories, namely the upper and the lower 128 bytes of RAM. The lower 128 bytes of RAM can be accessed through direct or indirect addressing while the upper 128 bytes of RAM can only be accessed through indirect addressing as it shares the same address space as the SFR space which can only be accessed through direct addressing. The lower 128 bytes of internal data memory are mapped as shown in Figure 12. The lowest 32 bytes are grouped into four banks of eight registers addressed as R0 through R7. The next 16 bytes (128 bits), locations 20Hex through 2FHex above the register banks, form a block of directly addressable bit locations at bit addresses 00H through 7FH. The stack can be located anywhere in the internal memory address space, and the stack depth can be expanded up to 2048 bytes. Reset initializes the stack pointer to location 07 hex and increments it once before loading the stack to start from locations 08 hex which is also the first register (R0) of register bank 1. Thus, REV. PrC (12 March 2002) FOUR B A NK S O F EIG HT RE G IS TE RS R0 R7 UP P E R 1792 B Y TES O F O N-CHIP X RA M (DA TA +S TA CK FOR E X S P =1, DA TA O NLY FOR E X S P =0) CFG 834.7 = 0 CFG 834.7 = 1 100H FFH LOW E R 256 B Y TES O F O N-CHIP X RA M (DA TA ONLY ) 256 B Y TES O F O N-CHIP DA TA RA M (DA TA + S TA CK ) 00H 00H Figure 13. Extended Stack Pointer Operation –21– PRELIMINARY TECHNICAL DATA ADuC834 SPECIAL FUNCTION REGISTERS (SFRs) External Data Memory (External XRAM) Just like a standard 8051 compatible core the ADuC834 can access external data memory using a MOVX instruction. The MOVX instruction automatically outputs the various control strobes required to access the data memory. The ADuC834 however, can access up to 16MBytes of extrenal data memory. This is an enhancement of the 64kBytes external data memory space available on a standard 8051 compatible core. The external data memory is discussed in more detail in the ADuC834 Hardware Design Considerations section. The SFR space is mapped into the upper 128 bytes of internal data memory space and accessed by direct addressing only. It provides an interface between the CPU and all on chip peripherals. A block diagram showing the programming model of the ADuC834 via the SFR area is shown in Figure 15. All registers except the Program Counter (PC) and the four general-purpose register banks, reside in the SFR area. The SFR registers include control, configuration, and data registers that provide an interface between the CPU and all on-chip peripherals. Internal XRAM 2kBytes of on-chip data memory exist on the ADuC834. This memory although on-chip is also accessed via the MOVX instruction. The 2kBytes of internal XRAM are mapped into the bottom 2kBytes of the external address space if the CFG834.0 bit is set, otherwise access to the external data memory will occur just like a standard 8051. 4 KB Y TE E LE CTRICA LLY REPRO GRA MM ABLE NO NV O LA TILE FLA S H/E E DA TA M EM O RY 62 K B Y TE E LECTRICA LLY REPRO GRA MM ABLE NO NV O LA TILE FLA S H/EE P RO GRAM M E MO RY 8051CO M PA TIB LE CO RE Even with the CFG834.0 bit set access to the external XRAM will occur once the 24 bit DPTR is greater than 0007FFH. When accessing the internal XRAM the P0, P2 port pins as well as the RD and WR strobes will not be output as per a standard 8051 MOVX instruction. This allows the user to use these port pins as standard I/O. 128-B Y TE S P ECIA L FUNCTION RE G IS TE R A RE A DUA L S IGM A -DE LTA A DCs O THER ON-CHIP P E RIP HE RALS 256 B YTE S RA M 2K X RAM TE MP SENSOR CURRENT S OURCE S 12-B IT DA C S E RIA L I/O W DT, PS M TIC, P LL FFFFFFH FFFFFFH Figure 15. Programming Model Accumulator SFR (ACC) E X TE RNA L DA TA M EM O RY S P A CE (24-B IT A DDRE S S S P A CE ) E X TE RNA L DA TA M EM O RY S P A CE (24-B IT A DDRE S S S P A CE ) 000800H 0007F FH 000000H 000000 H CFG 834.0=0 2 KB Y TE S O N-CHIP X RA M CFG 834.0=1 Figure 14. Internal and External XRAM ACC is the Accumulator register and is used for math operations including addition, subtraction, integer multiplication and division, and Boolean bit manipulations. The mnemonics for accumulator-specific instructions refer to the Accumulator as A. B SFR (B) The B register is used with the ACC for multiplication and division operations. For other instructions it can be treated as a general-purpose scratchpad register. Stack Pointer (SP and SPH) The SP SFR is the stack pointer and is used to hold an internal RAM address that is called the ‘top of the stack.’ The SP register is incremented before data is stored during PUSH and CALL executions. While the Stack may reside anywhere in on-chip RAM, the SP register is initialized to 07H after a reset. This causes the stack to begin at location 08H. As mentioned earlier the ADuC834 offers an extended 11-bit stack pointer. The 3 extra bits to make up the 11-bit stack pointer are the 3 LSBs of the SPH byte located at B7h. –22– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Data Pointer (DPTR) The Data Pointer is made up of three 8-bit registers, named DPP (page byte), DPH (high byte) and DPL (low byte). These are used to provide memory addresses for internal and external code access and external data access. It may be manipulated as a 16-bit register (DPTR = DPH, DPL), although INC DPTR instructions will automatically carry over to DPP, or as three independent 8-bit registers (DPP, DPH, DPL). The ADuC834 supports dual data pointers. Refer to the Dual Data Pointer section later in this datasheet. ADuC834 Configuration SFR (CFG834) The CFG834 SFR contains the necessary bits to configure the internal XRAM and the extended SP. By default it configures the user into 8051 mode. i.e. extended SP is disabled, internal XRAM is disabled. Program Status Word (PSW) The PSW SFR contains several bits reflecting the current status of the CPU as detailed in Table I. Bit Name Description 7 EXSP 6 5 4 3 2 1 0 ------------------XRAMEN Extended SP Enable If this bit is set then the stack will rollover from SPH/SP = 00FFh to 0100h. If this bit is clear then the SPH SFR will be disabled and the stack will rollover from SP=FFh to SP =00h ------------------XRAM Enable Bit If this bit is set then the internal XRAM will be mapped into the lower 2kBytes of the external address space. If this bit is clear then the internal XRAM will not be accessible and the external data memory will be mapped into the lower 2kBytes of external data memory. (see fig 14) SFR Address Power ON Default Value Bit Addressable SFR Address Power ON Default Value Bit Addressable Table III. CFG834 SFR Bit Designations D0H 00H Yes Table I. PSW SFR Bit Designations Bit Name Description 7 6 5 4 3 CY AC F0 RS1 RS0 2 1 0 OV F1 P Carry Flag Auxiliary Carry Flag General-Purpose Flag Register Bank Select Bits RS1 RS0 Selected Bank 0 0 0 0 1 1 1 0 2 1 1 3 Overflow Flag General-Purpose Flag Parity Bit Power Control SFR (PCON) The PCON SFR contains bits for power-saving options and general-purpose status flags as shown in Table II. SFR Address Power ON Default Value Bit Addressable . 87H 00H No Table II. PCON SFR Bit Designations Bit Name Description 7 6 SMOD SERIPD 5 INT0PD 4 3 2 1 0 ALEOFF GF1 GF0 PD IDL Double UART Baud Rate SPI Power-Down Interrupt Enable INT0 Power-Down Interrupt Enable Disable ALE Output General-Purpose Flag Bit General-Purpose Flag Bit Power-Down Mode Enable Idle Mode Enable REV. PrC (12 March 2002) AFhH 00H No –23– PRELIMINARY TECHNICAL DATA ADuC834 COMPLETE SFR MAP Figure 16 below shows a full SFR memory map and the SFR contents after RESET. NOT USED indicates unoccupied SFR locations. Unoccupied locations in the SFR address space are not implemented; i.e., no register exists at this location. If an unoccupied location is read, an unspecified value is returned. SFR locations that are reserved for future use are shaded (RESERVED) and should not be accessed by user software. *CALIBRATION COEFFICIENTS ARE PRECONFIGURED AT POWER-UP TO FACTORY CALIBRATED VALUES. SFR MAP KEY: THESE BITS ARE CONTAINED IN THIS BYTE. BIT MNEMONIC BIT BIT ADDRESS IE0 89H TCON IT0 0 88H 0 88H 00H DEFAULT BIT VALUE MNEMONIC DEFAULT VALUE SFR ADDRESS SFR NOTE: SFRs WHOSE ADDRESSES END IN 0H OR 8H ARE BIT-ADDRESSABLE. Figure 16. Special Function Register Locations and Reset Values –24– (12 March 2002) REV. prC PRELIMINARY TECHNICAL DATA ADuC834 USER INTERFACE TO THE PRIMARY AND AUXILIARY ADCS Both ADCs are controlled and configured via a number of SFRs that are mentioned here and described in more detail in the following pages. ADCSTAT: ADC Status Register. Holds general status of the Primary and Auxiliary ADCs. ADC0L/M/H: Primary ADC 24-bit conversion result held in these three 8-bit registers. ADCMODE: ADC Mode Register. Controls general modes of operation for Primary and Auxiliary ADCs. ADC1L/H: Auxiliary ADC 16-bit conversion result held in these two 8-bit registers. ADC0CON: Primary ADC Control Register. Controls specific configuration of Primary ADC. OF0L/M/H: Primary ADC 24-bit Offset Calibration Coefficient held in these three 8-bit registers. ADC1CON: Auxiliary ADC Control Register. Controls specific configuration of Auxiliary ADC. OF1L/H: Auxiliary ADC 16-bit Offset Calibration Coefficient held in these two 8-bit registers. SF: Sinc Filter Register. Configures the decimation factor for the Sinc3 filter and thus the Primary and Auxiliary ADC update rates. GN0L/M/H: Primary ADC 24-bit Gain Calibration Coefficient held in these three 8-bit registers. GN1L/H: ICON: Current Source Control Register. Allows user control of the various on-chip current source options. Auxiliary ADC 16-bit Gain Calibration Coefficient held in these two 8-bit registers. ADCSTAT—(ADC Status Register) This SFR reflects the status of both ADCs including data ready, calibration and various (ADC-related) error and warning conditions including reference detect and conversion overflow/underflow flags. SFR Address Power-On Default Value Bit Addressable D8H 00H Yes Table IV. ADCSTAT SFR Bit Designations Bit Name Description 7 RDY0 6 RDY1 5 CAL 4 NOXREF 3 ERR0 2 ERR1 1 0 ----- Ready Bit for Primary ADC. Set by hardware on completion of ADC conversion or calibration cycle. Cleared directly by the user or indirectly by write to the mode bits to start another Primary ADC conversion or calibration. The Primary ADC is inhibited from writing further results to its data or calibration registers until the RDY0 bit is cleared. Ready Bit for Auxiliary ADC. Same definition as RDY0 referred to the Auxiliary ADC. Calibration Status Bit. Set by hardware on completion of calibration. Cleared indirectly by a write to the mode bits to start another ADC conversion or calibration. No External Reference Bit (only active if Primary or Auxiliary ADC is active). Set to indicate that one or both of the REFIN pins is floating or the applied voltage is below a specified threshold. When Set conversion results are clamped to all ones, if using ext. reference. Cleared to indicate valid VREF. Primary ADC Error Bit. Set by hardware to indicate that the result written to the Primary ADC data registers has been clamped to all zeros or all ones. After a calibration this bit also flags error conditions that caused the calibration registers not to be written. Cleared by a write to the mode bits to initiate a conversion or calibration. Auxiliary ADC Error Bit. Same definition as ERR0 referred to the Auxiliary ADC. Reserved for Future use. Reserved for Future use. REV. PrC (12 March 2002) –25– PRELIMINARY TECHNICAL DATA ADuC834 ADCMODE (ADC Mode Register) Used to control the operational mode of both ADCs. SFR Address Power-On Default Value Bit Addressable D1H 00H No Table V. ADCMODE SFR Bit Designations Bit Name Description 7 6 5 ----ADC0EN 4 ADC1EN 3 2 1 0 --MD2 MD1 MD0 Reserved for Future Use. Reserved for Future Use. Primary ADC Enable. Set by the user to enable the Primary ADC and place it in the mode selected in MD2-MD0 below Cleared by the user to place the Primary ADC in power-down mode. Auxiliary ADC Enable. Set by the user to enable the Auxiliary ADC and place it in the mode selected in MD2-MD0 below Cleared by the user to place the Auxiliary ADC in power-down mode. Reserved for Future Use. Primary and Auxiliary ADC Mode bits. These bits select the operational mode of the enabled ADC as follows: MD2 MD1 MD0 0 0 0 ADC Power-Down Mode (Power-On Default) 0 0 1 Idle Mode In Idle Mode the ADC filter and modulator are held in a reset state although the modulator clocks are still provided. 0 1 0 Single Conversion Mode In Single Conversion Mode, a single conversion is performed on the enabled ADC. On completion of the conversion, the ADC data registers (ADC0H/M/L and/or ADC1H/L) are updated, the relevant flags in the ADCSTAT SFR are written, and power-down is re-entered with the MD2–MD0 accordingly being written to 000. 0 1 1 Continuous Conversion In continuous conversion mode the ADC data registers are regularly updated at the selected update rate (see SF register) 1 0 0 Internal Zero-Scale Calibration Internal short automatically connected to the enabled ADC(s) 1 0 1 Internal Full-Scale Calibration Internal or External VREF (as determined by XREF0 and XREF1 bits in ADC0/1CON) is automatically connected to the ADC input for this calibration. 1 1 0 System Zero-Scale Calibration User should connect system zero-scale input to the ADC input pins as selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON register. 1 1 1 System Full-Scale Calibration User should connect system full-scale input to the ADC input pins as selected by CH1/CH0 and ACH1/ACH0 bits in the ADC0/1CON register. NOTES 1. Any change to the MD bits will immediately reset both ADCs. A write to the MD2–0 bits with no change is also treated as a reset. (See exception to this in Note 3 below.) 2. If ADC0CON is written when ADC0EN = 1, or if ADC0EN is changed from 0 to 1, then both ADCs are also immediately reset. In other words, the Primary ADC is given priority over the Auxiliary ADC and any change requested on the primary ADC is immediately responded to. 3. On the other hand, if ADC1CON is written or if ADC1EN is changed from 0 to 1, only the Auxiliary ADC is reset. For example, if the Primary ADC is continuously converting when the Auxiliary ADC change or enable occurs, the primary ADC continues undisturbed. Rather than allow the Auxiliary ADC to operate with a phase difference from the primary ADC, the Auxiliary ADC will fall into step with the outputs of the primary ADC. The result is that the first conversion time for the Auxiliary ADC will be delayed up to three outputs while the Auxiliary ADC update rate is synchronized to the Primary ADC. 4. Once ADCMODE has been written with a calibration mode, the RDY0/1 bits (ADCSTAT) are immediately reset and the calibration commences. On completion, the appropriate calibration registers are written, the relevant bits in ADCSTAT are written, and the MD2–0 bits are reset to 000 to indicate the ADC is back in power-down mode. 5. Any calibration request of the Auxiliary ADC while the temperature sensor is selected will fail to complete. Although the RDY1 bit will be set at the end of the calibration cycle, no update of the calibration SFRs will take place and the ERR1 bit will be set. 6. Calibrations are performed at maximum SF (see SF SFR) value guaranteeing optimum calibration operation. –26– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 ADC0CON (Primary ADC Control Register) and ADC1CON (Auxiliary ADC Control Register) The ADC0CON and ADC1CON SFRs are used to configure the Primary and auxiliary ADC for reference and channel selection, unipolar or bipolar coding and in the case of the primary ADC for range (the aux ADC operates on a fixed input range of ±VREF.), ADC0CON Primary ADC Control SFR ADC1CON Auxiliary ADC Control SFR SFR Address D2H SFR Address D3H Power-On Default Value 07H Power-On Default Value 00H Bit Addressable No Bit Addressable No Table VI. ADC0CON SFR Bit Designations Bit Name Description 7 6 --XREF0 5 4 CH1 CH0 3 UNI0 2 1 0 RN2 RN1 RN0 Reserved for Future Use. Primary ADC External Reference Select Bit. Set by user to enable the Primary ADC to use the external reference via REFIN(+)/REFIN(–). Cleared by user to enable the Primary ADC to use the internal bandgap reference (VREF = 1.25 V). Primary ADC Channel Selection Bits. Written by the user to select the differential input pairs used by the Primary ADC as follows: CH1 CH0 Positive Input Negative Input 0 0 AIN1 AIN2 0 1 AIN3 AIN4 1 0 AIN2 AIN2 (Internal Short) 1 1 AIN3 AIN2 Primary ADC Unipolar Bit. Set by user to enable unipolar coding, i.e., zero differential input will result in 000000 hex output. Cleared by user to enable bipolar coding, zero differential input will result in 800000 hex output. Primary ADC Range Bits. Written by the user to select the Primary ADC input range as follows: RN2 RN1 RN0 Selected Primary ADC Input Range (VREF = 2.5 V) 0 0 0 ±20 mV (0-20mV in unipolar mode) 0 0 1 ±40 mV (0-40mV in unipolar mode) 0 1 0 ±80 mV (0-80mV in unipolar mode) 0 1 1 ±160 mV (0-160mV in unipolar mode) 1 0 0 ±320 mV (0-320mV in unipolar mode) 1 0 1 ±640 mV (0-640mV in unipolar mode) 1 1 0 ±1.28 V (0-1.28V in unipolar mode) 1 1 1 ±2.56 V (0-2.56V in unipolar mode) Table VII. ADC1CON SFR Bit Designations Bit Name Description 7 6 --XREF1 5 4 ACH1 ACH0 3 UNI1 2 1 0 ------- Reserved for Future Use. Auxiliary ADC External Reference Bit. Set by user to enable the Auxiliary ADC to use the external reference via REFIN(+)/REFIN(–). Cleared by user to enable the Auxiliary ADC to use the internal bandgap reference. Auxiliary ADC Channel Selection Bits. Written by the user to select the single-ended input pins used to drive the Auxiliary ADC as follows: ACH1 ACH0 Positive Input Negative Input 0 0 AIN3 AGND 0 1 AIN4 AGND 1 0 Temp Sensor* AGND (Temp. Sensor routed to the ADC input) 1 1 AIN5 AGND Auxiliary ADC Unipolar Bit. Set by user to enable unipolar coding, i.e., zero input will result in 0000 hex output. Cleared by user to enable bipolar coding, zero input will result in 8000 hex output. Reserved for Future Use. Reserved for Future Use. Reserved for Future Use. *NOTES 1. When the temperature sensor is selected, user code must select internal reference via XREF1 bit above and clear the UNI1 bit (ADC1CON.3) to select bipolar coding. 2. The temperature sensor is factory calibrated to yield conversion results 8000H at 0°C. 3. A +1°C change in temperature will result in a +1 LSB change in the ADC1H register ADC conversion result. REV. PrC (12 March 2002) –27– PRELIMINARY TECHNICAL DATA ADuC834 ADC0H/ADC0M/ADC0L (Primary ADC Conversion Result Registers) These three 8-bit registers hold the 24-bit conversion result from the Primary ADC. SFR Address Power-On Default Value Bit Addressable ADC0H ADC0M ADC0L 00H No High Data Byte Middle Data Byte Low Data Byte Both registers Both registers DBH DAH D9H ADC1H/ADC1L (Auxiliary ADC Conversion Result Registers) These two 8-bit registers hold the 16-bit conversion result from the Auxiliary ADC. SFR Address Power-On Default Value Bit Addressable ADC1H ADC1L 00H No High Data Byte Low Data Byte Both Registers Both Registers DDH DCH OF0H/OF0M/OF0L (Primary ADC Offset Calibration Registers1) These three 8-bit registers hold the 24-bit offset calibration coefficient for the Primary ADC. These registers are configured at power-on with a factory default value of 800000Hex. However, these bytes will be automatically overwritten if an internal or system zero-scale calibration is initiated by the user via MD2–0 bits in the ADCMODE register. SFR Address Power-On Default Value Bit Addressable OF0H OF0M OF0L 800000H No Primary ADC Offset Coefficient High Byte Primary ADC Offset Coefficient Middle Byte Primary ADC Offset Coefficient Low Byte OF0H and OF0M Respectively Both Registers E3H E2H E1H OF1H/OF1L (Auxiliary ADC Offset Calibration Registers1) These two 8-bit registers hold the 16-bit offset calibration coefficient for the Auxiliary ADC. These registers are configured at poweron with a factory default value of 8000Hex. However, these bytes will be automatically overwritten if an internal or system zero-scale calibration is initiated by the user via the MD2–0 bits in the ADCMODE register. SFR Address Power-On Default Value Bit Addressable OF1H OF1L 8000H No Auxiliary ADC Offset Coefficient High Byte Auxiliary ADC Offset Coefficient Low Byte OF1H and OF1L Respectively Both Registers E5H E4H GN0H/GN0M/GN0L (Primary ADC Gain Calibration Registers1) These three 8-bit registers hold the 24-bit gain calibration coefficient for the Primary ADC. These registers are configured at power-on with a factory-calculated internal full-scale calibration coefficient. Every device will have an individual coefficient. However, these bytes will be automatically overwritten if an internal or system full-scale calibration is initiated by the user via MD2–0 bits in the ADCMODE register. SFR Address Power-On Default Value Bit Addressable GN0H GN0M GN0L No Primary ADC Gain Coefficient High Byte Primary ADC Gain Coefficient Middle Byte Primary ADC Gain Coefficient Low Byte Configured at factory final test, see notes above. Both Registers EBH EAH E9H GN1H/GN1L (Auxiliary ADC Gain Calibration Registers1) These two 8-bit registers hold the 16-bit gain calibration coefficient for the Auxiliary ADC. These registers are configured at poweron with a factory calculated internal full-scale calibration coefficient. Every device will have an individual coefficient. However, these bytes will be automatically overwritten if an internal or system full-scale calibration is initiated by the user via MD2–0 bits in the ADCMODE register. SFR Address Power-On Default Value Bit Addressable GN1H GN1L No Auxiliary ADC Gain Coefficient High Byte Auxiliary ADC Gain Coefficient Low Byte Configured at factory final test, see notes above. Both Registers EDH ECH NOTE 1 These registers can be overwritten by user software only if Mode bits MD0–2 (ADCMODE SFR) are zero. –28– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 SF (Sinc Filter Register) fault ADC update rate of just under 20 Hz. Both ADC inputs are chopped to minimize offset errors, which means that the settling time for a single conversion or the time to a first conversion result in continuous conversion mode is 2 × tADC. As mentioned earlier, all calibration cycles will be carried out automatically with a maximum, i.e., FFhex, SF value to ensure optimum calibration performance. Once a calibration cycle has completed, the value in the SF register will be that programmed by user software. The number in this register sets the decimation factor and thus the output update rate for the Primary and Auxiliary ADCs. This SFR cannot be written by user software while either ADC is active. The update rate applies to both Primary and Auxiliary ADCs and is calculated as follows: f ADC = Where: fADC = fMOD = SF = 1 3 × 1 8.SF × f MOD ADC Output Update Rate Modulator Clock Frequency = 32.768 kHz Decimal Value of SF Register Table VIII. SF SFR Bit Designations The allowable range for SF is 0Dhex to FFhex. Examples of SF values and corresponding conversion update rate (fADC) and conversion time (tADC) are shown in Table VIII, the power-on default value for the SF register is 45 hex, resulting in a de- SF(dec) SF(hex) fADC(Hz) tADC(ms) 13 69 255 0D 45 FF 105.3 19.79 5.35 9.52 50.34 186.77 ICON (Current Sources Control Register) Used to control and configure the various excitation and burnout current source options available on-chip. SFR Address Power-On Default Value Bit Addressable D5H 00H No Table IX. ICON SFR Bit Designations Bit Name Description 7 6 --BO 5 ADC1IC 4 ADC0IC 3 I2PIN1 2 I1PIN1 1 I2EN 0 I1EN Reserved for Future Use. Burnout Current Enable Bit. Set by user to enable both transducer burnout current sources in the primary ADC signal paths. Cleared by user to disable both transducer burnout current sources. Auxiliary ADC Current Correction Bit. Set by user to allow scaling of the Auxiliary ADC by an internal current source calibration word. Primary ADC Current Correction Bit. Set by user to allow scaling of the Primary ADC by an internal current source calibration word. Current Source-2 Pin Select Bit. Set by user to enable current source-2 (200 µA) to external pin 3 (P1.2/DAC/IEXC1). Cleared by user to enable current source-2 (200 µA) to external pin 4 (P1.3/AIN5/IEXC2). Current Source-1 Pin Select Bit. Set by user to enable current source-1 (200 µA) to external pin 4 (P1.3/AIN5/IEXC2). Cleared by user to enable current source-1 (200 µA) to external pin 3 (P1.2/DAC/IEXC1). Current Source-2 Enable Bit. Set by user to turn on excitation current source-2 (200 µA). Cleared by user to turn off excitation current source-2 (200 µA). Current Source-1 Enable Bit. Set by user to turn on excitation current source-1 (200 µA). Cleared by user to turn off excitation current source-1 (200 µA). NOTE 1 Both current sources can be enabled to the same external pin, yielding a 400 µA current source. REV. PrC (12 March 2002) –29– PRELIMINARY TECHNICAL DATA ADuC834 PRIMARY AND AUXILIARY ADC NOISE PERFORMANCE Tables X, XI and XII below show the output rms noise in µV and output peak-to-peak resolution in bits (rounded to the nearest 0.5 LSB) for some typical output update rates on both the Primary and Auxiliary ADCs. The numbers are typical and are generated at a differential input voltage of 0V. The output update rate is selected via the Sinc Filter (SF) SFR. It is important to note that the peak-to-peak resolution figures represent the resolution for which there will be no code flicker within a six-sigma limit. The QuickStart Development system PC software comes complete with an ADC noise evaluation tool. This tool can be easily used with the evalustion board to see these figures from silicon. V) Table X. Primary ADC, Typical Output RMS Noise ( Typical Output RMS Noise vs. Input Range and Update Rate; Output RMS Noise in V SF Word Data Update Rate (Hz) ⴞ20 mV ⴞ40 mV ⴞ80 mV Input Range ⴞ160 mV ⴞ320 mV ⴞ640 mV ±1.28 V ±2.56 V 13 69 255 105.3 19.79 5.35 1.50 0.60 0.35 1.50 0.65 0.35 1.60 0.65 0.37 1.75 0.65 0.37 3.50 0.65 0.37 4.50 0.95 0.51 6.70 1.40 0.82 11.75 2.30 1.25 Table XI. Primary ADC, Peak-to-Peak Resolution (Bits) Peak-to-Peak Resolution vs. Input Range and Update Rate; Peak-to-Peak Resolution in Bits SF Word Data Update Rate (Hz) ⴞ20 mV ⴞ40 mV ⴞ80 mV Input Range ⴞ160 mV ⴞ320 mV ⴞ640 mV ⴞ1.28 V ⴞ2.56 V 13 69 255 105.3 19.79 5.35 12 13 14 13 14 15 14 15 16 15 16 17 15 17 18 15.5 17.5 18.5 16 18 18.8 16 18.5 19.2 Table XII. Auxiliary ADC Typical Output RMS Noise vs. Update Rate1 Output RMS Noise in V SF Peak-to-Peak Resolution vs. Update Rate1 Peak-to-Peak Resolution in Bits Data Update Rate (Hz) Input Range Word 2.5 V SF Word Data Update Rate (Hz) Input Range 2.5 V 13 69 255 105.3 19.79 5.35 10.75 2.00 1.15 13 69 255 105.3 19.79 5.35 162 16 16 NOTE 1 ADC converting in bipolar mode. NOTES 1 ADC converting in bipolar mode. 2 In unipolar mode peak-to-peak resolution at 105 Hz is 15 bits. –30– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 PRIMARY AND AUXILIARY ADC CIRCUIT DESCRIPTION Overview The ADuC834 incorporates two independent sigma-delta ADCs (Primary and Auxiliary) with on-chip digital filtering intended for the measurement of wide dynamic range, low frequency signals such as those in weigh-scale, strain-gauge, pressure transducer or temperature measurement applications. Primary ADC This ADC is intended to convert the primary sensor input. The input is buffered and can be programmed for one of 8 input ranges from ±20 mV to ±2.56 V being driven from one of three differential input channel options AIN1/2, AIN3/4, or AIN3/2. The input channel is internally buffered allowing the part to handle significant source impedances on the analog input, allowing R/C filtering (for noise rejection or RFI reduction) to be placed on the analog inputs if required. On-chip burnout currents can also be turned on. These currents can be used to check that a transducer on the selected channel is still operational before attempting to take measurements. The ADC employs a sigma-delta conversion technique to realize up to 24 bits of no missing codes performance. The sigma-delta modulator converts the sampled input signal into a digital pulse train whose duty cycle contains the digital information. A Sinc3 programmable low-pass filter is then employed to decimate the modulator output data stream to give a valid data conversion result at programmable output rates from 5.35 Hz (186.77 ms) to 105.03 Hz (9.52 ms). A Chopping scheme is also employed to minimize ADC offset errors. A block diagram of the Primary ADC is shown in Figure 17. D IF FE R E N T I A L RE FE RE N C E P R O G R A M M A B LE G A IN A M P LI F IE R A N A L O G IN P U T C H O P P IN G BU RNO U T C U R RE N TS TW O 1 00 nA B U RN O U T CUR RE NT S A L LO W TH E US E R TO E A S ILY DE TE CT IF A TR A N S D UC E R H A S B UR NE D O UT O R G O N E O P E N -C IR CU IT TH E IN P U TS A R E A L TE R N A T E L Y R E V E R S E D TH R O U G H TH E C O N V E R S IO N C Y C LE . C H O P P IN G Y IE L D S E X C E LL E N T A D C O F F S E T A N D O F FS E T D R IF T PE RFO R M A NCE S EE P A G E 36 TH E P R O G R A M M A B LE G A IN A M P L IF IE R A LL O W S E IG H T U N IP O LA R A N D E IG H T B IP O L A R IN P U T R A N G E S FR O M 20 m V T O 2.5 6V (E X T V R E F = + 2. 5V ) S EE P A G E 33 TH E E X TE R N A L R E FE R E N C E IN P U T T O TH E A D uC 8 34 I S D IFF E R E N T IA L A N D FA C ILI TA TE S R A TI O M E TR IC O P E R A TI O N . TH E E X TE R N A L R E F E R E N C E V O L TA G E IS S E L E C TE D V I A TH E X R E F0 B IT IN A D C 0 C O N . R E FE R E N C E D E T E C T C IR C U IT R Y TE S TS FO R O P E N O R S H O R T E D R E F E R E N C E S IN P U TS S EE P A G E 34 S IG M A -D E L TA A D C O U TP U T A V E R A G E TH E S IG M A -D E LT A A R C H IT E C TU R E E N S U R E S 24 B IT S N O M IS S IN G C O D E S . T H E E N TIR E S IG M A D E LT A A D C IS C H O P PE D TO R E M O V E D R IF T E R R O R S EE P A G E 35 A S P A R T O F T H E C H O P P IN G IM P L E M E N TA TI O N , E A C H D A TA W O R D O U TP U T FR O M TH E FI LT E R I S S U M M E D A N D A V E R A G E D W ITH ITS P R E D E C E S SO R TO N U L L A D C C H A N N E L O FF S E T E R R O R S S EE P A G E 35 S EE P A G E 29 A ND 3 4 R E F IN ( -) R E F IN (+) A V DD DIG TAL O UTPUT R E S U LT W R IT TE N TO A D C 0H /M /L S FR s S IG M A -D E LT A A /D C O N V E R T E R A IN1 B U F FE R A IN2 MUX PGA SIGM A DE LTA M O D U LA T O R P R O G R A M M A B LE D IG IT A L FI L T E R O U TP UT AV E RA G E O U TP UT S C A LI N G A IN3 CH O P A IN4 CH O P AG N D O U TP U T S C A L IN G A N A L O G M U L T IP L E X E R A D I FF E R E N TI A L M U LT IP LE X E R A LL O W S S E LE C TI O N O F T H R E E FU L LY D IF FE R E N T IA L P A IR O P T IO N S A N D A D D IT IO N A L IN TE R N A L S H O R T O P TI O N (A I N 2 ›A IN 2).T H E M U L TI P L E X E R IS C O N T R O LL E D V IA T H E C H A N N E L S EL E C TI O N B IT S IN A D C 0 C O N S EE P A G E S 2 7 A N D 3 3 B U F FE R A M P L IF IE R TH E B U FF E R A M P L IF IE R P R E S E N T S A H IG H IM P E D A N C E IN P U T S TA G E FO R T H E A N A LO G IN P U T S , A LL O W IN G S IG N I FI C A N T E X TE R N A L S O U R C E IM P E D A N C E S S EE P A G E 33 P R O G R A M M A B LE D IG I T A L FI L TE R S IG M A -D E L TA M O D U LA T O R TH E M O D U L A T O R P R O V ID E S A H I G H -F R E Q U E N C Y 1-B I T D A TA S TR E A M (T H E O U T P U T O F W H I C H IS A LS O C H O P P E D ) TO TH E D IG IT A L F IL TE R , TH E D U T Y C Y C L E O F W H I C H R E P R E S E N TS T H E S A M P LE D A N A LO G IN P U T V O L TA G E S EE P A G E 34 TH E S IN C 3 F ILT E R R E M O V E S Q U A N T IZ A T IO N N O IS E IN T R O D U C E D B Y T H E M O D U L A T O R . TH E U P D A TE R A TE A N D B A N D W ID TH O F T H IS FI LT E R A R E P R O G R A M M A B L E V IA T H E S F S F R Figure 17. Primary ADC Block Diagram REV. PrC (12 March 2002) –31– S EE P A G E 35 TH E O U P U T W O R D F R O M TH E D IG IT A L F IL TE R IS S C A L E D B Y TH E C A LI B R A TI O N C O E FF IC IE N T S B E FO R E B E I N G P R O V ID E D A S TH E C O N V E R S IO N R E S U L T S EE P A G E 36 PRELIMINARY TECHNICAL DATA ADuC834 Auxiliary ADC The Auxiliary ADC is intended to convert supplementary inputs such as those from a cold junction diode or thermistor. This ADC is not buffered and has a fixed input range of 0 V to 2.5 V (assuming an external 2.5 V reference). The single-ended inputs can be driven from AIN3, AIN4 or AIN5 pins or directly from the on-chip temperature sensor voltage. A block diagram of the Auxiliary ADC is shown in Figure 18. DIFFERENTIAL REFERENCE ANALOG INPUT CHOPPING THE INPUTS ARE ALTERNATELY REVERSED THROUGH THE CONVERSION CYCLE. CHOPPING YIELDS EXCELLENT ADC OFFSET AND OFFSET DRIFT PERFORMANCE THE EXTERNAL REFERENCE INPUT TO THE ADuC834 IS DIFFERENTIAL AND FACILITATES RATIOMETRIC OPERATION. THE EXTERNAL REFERENCE VOLTAGE IS SELECTED VIA THE XREF1 BIT IN ADC1CON. REFERENCE DETECT CIRCUITRY TESTS FOR OPEN OR SHORTED REFERENCES INPUTS SEE PAGE 35 SIGMA-DELTA ADC OUTPUT AVERAGE THE SIGMA-DELTA ARCHITECTURE ENSURES 16 BITS NO MISSING CODES. THE ENTIRE SIGMA-DELTA ADC IS CHOPPED TO REMOVE DRIFT ERRORS SEE PAGE 35 AS PART OF THE CHOPPING IMPLEMENTATION EACH DATA WORD OUTPUT FROM THE FILTER IS SUMMED AND AVERAGED WITH ITS PREDECESSOR TO NULL ADC CHANNEL OFFSET ERRORS SEE PAGE 35 SEE PAGE 36 R E F IN (› ) R E F IN (+) S IG M A -D E LT A A /D C O N V E R T E R A IN 3 S IG M A DE LTA M O D U LA T O R A IN 4 MU X M UX P R O G R A M M A B LE D I G IT A L FI L T E R O U TP UT AV E RA G E O U TP UT S C A LI N G D I G TA L O U TP U T R E S U L T W R IT T E N TO A D C 1 H /L S FR s A IN 5 O N -C H IP TE M P E R A T U R E SE NS O R CH O P CH O P OUTPUT SCALING ANALOG MULTIPLEXER A DIFFERENTIAL MULTIPLEXER ALLOWS SELECTION OF THREE EXTERNAL SINGLE ENDED INPUTS OR THE ON-CHIP TEMP. SENSOR. THE MULTIPLEXER IS CONTROLLED VIA THE CHANNEL SELECTION BITS IN ADC1CON SEE PAGE 28 AND 33 PROGRAMMABLE DIGITAL FILTER SIGMA DELTA MODULATOR THE MODULATOR PROVIDES A HIGH FREQUENCY 1-BIT DATA STREAM (THE OUTPUT OF WHICH IS ALSO CHOPPED) TO THE DIGITAL FILTER, THE DUTY CYCLE OF WHICH REPRESENTS THE SAMPLED ANALOG INPUT VOLTAGE SEE PAGE 34 THE SINC3 FILTER REMOVES QUANTIZATION NOISE INTRODUCED BY THE MODULATOR. THE UPDATE RATE AND BANDWIDTH OF THIS FILTER ARE PROGRAMMABLE VIA THE SF SFR SEE PAGE 35 THE OUPUT WORD FROM THE DIGITAL FILTER IS SCALED BY THE CALIBRATION COEFFICIENTS BEFORE BEING PROVIDED AS THE CONVERSION RESULT SEE PAGE 36 Figure 18. Auxiliary ADC Block Diagram –32– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 The auxiliary ADC does not incorporate a PGA and is configured for a fixed single input range of 0 to VREF. 19.372 Primary and Auxiliary ADC Inputs 19.371 A DC INP UT V O LTA GE › mV The output of the primary ADC multiplexer feeds into a high impedance input stage of the buffer amplifier. As a result, the primary ADC inputs can handle significant source impedances and are tailored for direct connection to external resistive-type sensors like strain gauges or Resistance Temperature Detectors (RTDs). The auxiliary ADC, however, is unbuffered resulting in higher analog input current on the auxiliary ADC. It should be noted that this unbuffered input path provides a dynamic load to the driving source. Therefore, resistor/capacitor combinations on the input pins can cause dc gain errors depending on the output impedance of the source that is driving the ADC inputs. The absolute input voltage range on the auxiliary ADC is restricted to between AGND – 30 mV to AVDD + 30 mV. The slightly negative absolute input voltage limit does allow the possibility of monitoring small signal bipolar signals using the single-ended auxiliary ADC front end. Programmable Gain Amplifier The output from the buffer on the primary ADC is applied to the input of the on-chip programmable gain amplifier (PGA). The PGA can be programmed through eight different unipolar input ranges and bipolar ranges. The PGA gain range is programmed via the range bits in the ADC0CON SFR. With the external reference select bit set in the ADC0CON SFR and an external 2.5V reference, the unipolar ranges are 0 mV to +20 mV, 0 mV to 40 mV, 0 mV to 80 mV, 0 mV to 160 mV, 0 mV to 320 mV, 0 mV to 640 mV and 0 V to 1.28 V and 0 to 2.56 V while the bipolar ranges are ±20 mV, ±40 mV, ±80 mV, ±160 mV, ±320 mV, ±640 mV, ±1.28 V and ±2.56 V. These are the nominal ranges that should appear at the input to the on-chip PGA. An ADC range matching specification of 0.5 LSB (typ) across all ranges means that calibration REV. PrC (12 March 2002) 19.369 19.368 19.367 19.366 19.365 19.364 300 400 500 600 700 800 ⴞ2.56V 200 ⴞ1.28V 100 ⴞ640V A DC RA NG E ⴞ320mV SAMPLE CO UNT 0 Analog Input Ranges The absolute input voltage range on the primary ADC is restricted to between AGND + 100 mV to AVDD –100 mV. Care must be taken in setting up the common-mode voltage and input voltage range so that these limits are not exceeded, otherwise there will be a degradation in linearity performance. 19.370 ⴞ160mV Two input multiplexers switch the selected input channel to the on-chip buffer amplifier in the case of the primary ADC and directly to the sigma-delta modulator input in the case of the auxiliary ADC. When the analog input channel is switched, the settling time of the part must elapse before a new valid word is available from the ADC. Typical matching across ranges is shown in Figure 19 below. Here, the primary ADC is configured in bipolar mode with an external 2.5 V reference, while just greater than 19 mV is forced on its inputs. The ADC continuously converts the DC input voltage at an update rate of 5.35 Hz, i.e., SF = FFhex. In total, 800 conversion results are gathered. The first 100 results are gathered with the primary ADC operating in the ±20 mV range. The ADC range is then switched to ±40 mV and 100 more conversion results are gathered, and so on until the last group of 100 samples are gathered with the ADC configured in the ±2.56 V range. From Figure 19, The variation in the sample mean through each range, i.e., the range matching, is seen to be of the order of 2 µV. ⴞ80m V The auxiliary ADC has three external input pins (labelled AIN3 to AIN5) as well as an internal connection to the internal on-chip temperature sensor. All inputs to the auxiliary ADC are single-ended inputs referenced to the AGND on the part. Channel selection bits in the ADC1CON SFR detailed previously in Table VII allow selection of one of four inputs. need only be carried out at a single gain range and does not have to be repeated when the PGA gain range is changed. ⴞ40m V The primary ADC has four associated analog input pins (labelled AIN1 to AIN4) which can be configured as two fully differential input channels. Channel selection bits in the ADC0CON SFR detailed in Table VI allow three combinations of differential pair selection as well as an additional shorted input option (AIN2–AIN2). ⴞ20m V Analog Input Channels Figure 19. Primary ADC Range Matching Bipolar/Unipolar Inputs The analog inputs on the ADuC834 can accept either unipolar or bipolar input voltage ranges. Bipolar input ranges do not imply that the part can handle negative voltages with respect to system AGND. Unipolar and bipolar signals on the AIN(+) input on the primary ADC are referenced to the voltage on the respective AIN(–) input. For example, if AIN(–) is 2.5 V and the primary ADC is configured for an analog input range of 0 mV to +20 mV, the input voltage range on the AIN(+) input is 2.5 V to 2.52 V. If AIN(–) is 2.5 V and the ADuC834 is configured for an analog input range of 1.28 V, the analog input range on the AIN(+) input is 1.22 V to 3.78 V (i.e., 2.5 V ± 1.28 V). As mentioned earlier, the auxiliary ADC input is a singleended input with respect to the system AGND. In this context a bipolar signal on the auxiliary ADC can only span 30 mV negative with respect to AGND before violating the voltage input limits for this ADC. Bipolar or unipolar options are chosen by programming the Primary and Auxiliary Unipolar enable bits in the ADC0CON and ADC1CON SFRs respectively. This programs the relevant ADC for either unipolar or bipolar operation. Programming for either unipolar or bipolar operation does not change any of the –33– PRELIMINARY TECHNICAL DATA ADuC834 input signal conditioning; it simply changes the data output coding and the points on the transfer function where calibrations occur. When an ADC is configured for unipolar operation, the output coding is natural (straight) binary with a zero differential input voltage resulting in a code of 000 . . . 000, a midscale voltage resulting in a code of 100 . . . 000, and a fullscale input voltage resulting in a code of 111 . . . 111. When an ADC is configured for bipolar operation, the coding is offset binary with a negative full-scale voltage resulting in a code of 000 . . . 000, a zero differential voltage resulting in a code of 100 . . . 000, and a positive full-scale voltage resulting in a code of 111 . . . 111. Reference Input The ADuC834’s reference inputs, REFIN(+) and REFIN(–), provide a differential reference input capability. The common-mode range for these differential inputs is from AGND to AVDD. The nominal reference voltage, VREF (REFIN(+) – REFIN(–)), for specified operation is 2.5 V with the primary and auxiliary reference enable bits set in the respective ADC0CON and/or ADC1CON SFRs. The part is also functional (although not specified for performance) when the XREF0 or XREF1 bits are ‘0,’ which enables the on-chip internal bandgap reference. In this mode, the ADCs will see the internal reference of 1.25 V, therefore halving all input ranges. As a result of using the internal reference voltage, a noticeable degradation in peak-to-peak resolution will result. Therefore, for best performance, operation with an external reference is strongly recommended. In applications where the excitation (voltage or current) for the transducer on the analog input also drives the reference voltage for the part, the effect of the low-frequency noise in the excitation source will be removed as the application is ratiometric. If the ADuC834 is not used in a ratiometric application, a low noise reference should be used. Recommended reference voltage sources for the ADuC834 include the AD780, REF43, and REF192. flow in the external transducer circuit, and a measurement of the input voltage on the analog input channel can be taken. If the resultant voltage measured is full-scale, this indicates that the transducer has gone open-circuit. If the voltage measured is 0 V, it indicates that the transducer has short circuited. For normal operation, these burnout currents are turned off by writing a 0 to the BO bit in the ICON SFR. The current sources work over the normal absolute input voltage range specifications. Excitation Currents The ADuC834 also contains two identical, 200 µA constant current sources. Both source current from AVDD to Pin #3 (IEXC1) or Pin #4 (IEXC2) These current sources are controlled via bits in the ICON SFR shown in Table IX. They can be configured to source 200 µA individually to both pins or a combination of both currents, i.e., 400 µA to either of the selected pins. These current sources can be used to excite external resistive bridge or RTD sensors. Reference Detect The ADuC834 includes on-chip circuitry to detect if the part has a valid reference for conversions or calibrations. If the voltage between the external REFIN(+) and REFIN(–) pins goes below 0.3 V or either the REFIN(+) or REFIN(–) inputs is open circuit, the ADuC834 detects that it no longer has a valid reference. In this case, the NOXREF bit of the ADCSTAT SFR is set to a 1. If the ADuC834 is performing normal conversions and the NOXREF bit becomes active, the conversion results revert to all 1s. Therefore, it is not necessary to continuously monitor the status of the NOXREF bit when performing conversions. It is only necessary to verify its status if the conversion result read from the ADC Data Register is all 1s. If the ADuC834 is performing either an offset or gain calibration and the NOXREF bit becomes active, the updating of the respective calibration registers is inhibited to avoid loading incorrect coefficients to these registers, and the appropriate ERR0 or ERR1 bits in the ADCSTAT SFR are set. If the user is concerned about verifying that a valid reference is in place every time a calibration is performed, the status of the ERR0 or ERR1 bit should be checked at the end of the calibration cycle. It should also be noted that the reference inputs provide a high impedance, dynamic load. Because the input impedance of each reference input is dynamic, resistor/capacitor combinations on these inputs can cause dc gain errors depending on the output impedance of the source that is driving the reference inputs. Reference voltage sources, like those recommended above (e.g., AD780) will typically have low output impedances and therefore decoupling capacitors on the REFIN(+) input would be recommended. Deriving the reference input voltage across an external resistor, as shown in Figure 60, will mean that the reference input sees a significant external source impedance. External decoupling on the REFIN(+) and REFIN(-) pins would not be recommended in this type of circuit configuration. Sigma-Delta Modulator A sigma-delta ADC generally consists of two main blocks, an analog modulator and a digital filter. In the case of the ADuC834 ADCs, the analog modulators consist of a difference amplifier, an integrator block, a comparator, and a feedback DAC as illustrated in Figure 20. A NA LOG INPUT DIFFE RE NCE AMP CO M P ARA TO R INTE G RA TOR Burnout Currents The primary ADC on the ADuC834 contains two 100 nA constant current generators, one sourcing current from AVDD to AIN(+), and one sinking from AIN(–) to AGND. The currents are switched to the selected analog input pair. Both currents are either on or off, depending on the Burnout Current Enable (BO) bit in the ICON SFR (see Table IX). These currents can be used to verify that an external transducer is still operational before attempting to take measurements on that channel. Once the burnout currents are turned on, they will HIGHFRE Q UE NCY B ITS TRE AM TO DIGITA L FILTE R DA C Figure 20. Sigma-Delta Modulator Simplified Block Diagram In operation, the analog signal sample is fed to the difference amplifier along with the output of the feedback DAC. The difference between these two signals is integrated and fed to the comparator. The output of the comparator provides the input to the feedback DAC so the system functions as a negative feedback loop that tries to minimize the difference signal. The –34– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 The response of the filter, however, will change with SF word as can be seen in Figure 22, which shows >90 dB NMR at 50 Hz and >70 dB NMR at 60 Hz when SF = 255 dec. 0 ›10 ›20 ›30 ›40 Digital Filter The output of the sigma-delta modulator feeds directly into the digital filter. The digital filter then band-limits the response to a frequency significantly lower than one-half of the modulator frequency. In this manner, the 1-bit output of the comparator is translated into a band-limited, low noise output from the ADuC834 ADCs. The ADuC834 filter is a low-pass, Sinc3 or (sinx/x)3 filter whose primary function is to remove the quantization noise introduced at the modulator. The cutoff frequency and decimated output data rate of the filter are programmable via the SF (Sinc Filter) SFR as described in Table VIII. ›50 G AIN › dB digital data that represents the analog input voltage is contained in the duty cycle of the pulse train appearing at the output of the comparator. This duty cycle data can be recovered as a data word using a subsequent digital filter stage. The sampling frequency of the modulator loop is many times higher than the bandwidth of the input signal. The integrator in the modulator shapes the quantization noise (which results from the analog-to-digital conversion) so that the noise is pushed toward one-half of the modulator frequency. ›60 ›70 ›80 ›90 ›10 0 ›11 0 ›12 0 0 10 20 30 40 50 60 70 80 90 110 FRE Q UE NCY › Hz Figure 22. Filter Response, SF = 255 dec Figures 23 and 24 show the NMR for 50 Hz and 60 Hz across the full range of SF word, i.e., SF = 13 dec to SF = 255 dec. Figure 21 shows the frequency response of the ADC channel at the default SF word of 69 dec or 45 hex, yielding an overall output update rate of just under 20 Hz. 0 ›10 ›20 It should be noted that this frequency response allows frequency components higher than the ADC Nyquist frequency to pass through the ADC, in some cases without significant attenuation. These components may, therefore, be aliased and appear in-band after the sampling process. ›30 G A IN › dB ›40 It should also be noted that rejection of mains-related frequency components, i.e., 50 Hz and 60 Hz, is seen to be at level of >65 dB at 50 Hz and >100 dB at 60 Hz. This confirms the data sheet specifications for 50 Hz/60 Hz Normal Mode Rejection (NMR) at a 20 Hz update rate. ›50 ›60 ›70 ›80 ›90 ›10 0 ›11 0 ›12 0 10 30 50 70 90 0 130 150 170 190 210 230 250 S F › Decim al ›10 Figure 23. 50 Hz Normal Mode Rejection vs. SF ›20 ›30 0 ›40 ›10 ›50 ›20 ›60 ›30 ›70 ›40 ›80 ›50 G AIN › dB G AIN › dB 110 ›90 ›10 0 ›11 0 ›60 ›70 ›80 ›12 0 0 10 20 30 40 50 60 70 80 90 100 ›90 110 FRE QUE NCY › Hz ›100 ›110 Figure 21. Filter Response, SF = 69 dec ›120 10 30 50 70 90 110 130 150 170 190 210 230 250 S F › Decim al Figure 24. 60 Hz Normal Mode Rejection vs. SF REV. PrC (12 March 2002) –35– PRELIMINARY TECHNICAL DATA ADuC834 ADC Chopping Both ADCs on the ADuC834 implement a chopping scheme whereby the ADC repeatability reverses its inputs. The decimated digital output words from the Sinc3 filters therefore have a positive offset and negative offset term included. As a result, a final summing stage is included in each ADC so that each output word from the filter is summed and averaged with the previous filter output to produce a new valid output result to be written to the ADC data SFRs. In this way, while the ADC throughput or update rate is as discussed earlier and illustrated in Table VIII, the full settling time through the ADC (or the time to a first conversion result), will actually be given by 2 × tADC. The chopping scheme incorporated in the ADuC834 ADC results in excellent dc offset and offset drift specifications and is extremely beneficial in applications where drift, noise rejection, and optimum EMI rejection are important factors. Calibration The ADuC834 provides four calibration modes that can be programmed via the mode bits in the ADCMODE SFR detailed in Table V. In fact, every ADuC834 has already been factory calibrated. The resultant Offset and Gain calibration coefficients for both the primary and auxiliary ADCs are stored on-chip in manufacturing-specific Flash/EE memory locations. At power-on, these factory calibration coefficients are automatically downloaded to the calibration registers in the ADuC834 SFR space. Each ADC (primary and auxiliary) has dedicated calibration SFRs, these have been described earlier as part of the general ADC SFR description. However, the factory calibration values in the ADC calibration SFRs will be overwritten if any one of the four calibration options are initiated and that ADC is enabled via the ADC enable bits in ADCMODE. Even though an internal offset calibration mode is described below, it should be recognized that both ADCs are chopped. This chopping scheme inherently minimizes offset and means that an internal offset calibration should never be required. Also, because factory 5 V/25°C gain calibration coefficients are automatically present at power-on, an internal full-scale cali- bration will only be required if the part is being operated at 3 V or at temperatures significantly different from 25°C. The ADuC834 offers “internal” or “system” calibration facilities. For full calibration to occur on the selected ADC, the calibration logic must record the modulator output for two different input conditions. These are “zero-scale” and “fullscale” points. These points are derived by performing a conversion on the different input voltages provided to the input of the modulator during calibration. The result of the “zero-scale” calibration conversion is stored in the Offset Calibration Registers for the appropriate ADC. The result of the “full-scale” calibration conversion is stored in the Gain Calibration Registers for the appropriate ADC. With these readings, the calibration logic can calculate the offset and the gain slope for the input-to-output transfer function of the converter. During an “internal” zero-scale or full-scale calibration, the respective “zero” input and “full-scale” input are automatically connected to the ADC input pins internally to the device. A “system” calibration, however, expects the system zero-scale and system full-scale voltages to be applied to the external ADC pins before the calibration mode is initiated. In this way external ADC errors are taken into account and minimized as a result of system calibration. It should also be noted that to optimize calibration accuracy, all ADuC834 ADC calibrations are carried out automatically at the slowest update rate. Internally in the ADuC834, the coefficients are normalized before being used to scale the words coming out of the digital filter. The offset calibration coefficient is subtracted from the result prior to the multiplication by the gain coefficient. All ADuC834 ADC specifications will only apply after a zero-scale and full-scale calibration at the operating point (supply voltage/temperature) of interest. From an operational point of view, a calibration should be treated like another ADC conversion. A zero-scale calibration (if required) should always be carried out before a full-scale calibration. System software should monitor the relevant ADC RDY0/1 bit in the ADCSTAT SFR to determine end of calibration via a polling sequence or interrupt driven routine. –36– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 NONVOLATILE FLASH/EE MEMORY Flash/EE Memory Overview The ADuC834 incorporates Flash/EE memory technology onchip to provide the user with nonvolatile, in-circuit reprogrammable, code and data memory space. Flash/EE memory is a relatively recent type of nonvolatile memory technology and is based on a single transistor cell architecture. This technology is basically an outgrowth of EPROM technology and was developed through the late 1980s. Flash/EE memory takes the flexible in-circuit reprogrammable features of EEPROM and combines them with the space efficient/density features of EPROM (see Figure 25). Because Flash/EE technology is based on a single transistor cell architecture, a Flash memory array, like EPROM, can be implemented to achieve the space efficiencies or memory densities required by a given design. Like EEPROM, Flash memory can be programmed in-system at a byte level, although it must first be erased; the erase being performed in page blocks. Thus, Flash memory is often and more correctly referred to as Flash/EE memory. E P RO M T E CHN O L O G Y E E P RO M T E CHN O L O G Y S P AC E E F F ICIENT / DE N S ITY IN-C IRCU I T RE P R O G RAM M ABL E F LA S H/E E M EM O RY T E CHN O L O G Y Figure 25. Flash/EE Memory Development Endurance quantifies the ability of the Flash/EE memory to be cycled through many Program, Read, and Erase cycles. In real terms, a single endurance cycle is composed of four independent, sequential events. These events are defined as: a. initial page erase sequence b. read/verify sequence c. byte program sequence d. second read/verify sequence In reliability qualification, every byte in both the program and data Flash/EE memory is cycled from 00 hex to FFhex until a first fail is recorded signifying the endurance limit of the on-chip Flash/EE memory. As indicated in the specification pages of this data sheet, the ADuC834 Flash/EE Memory Endurance qualification has been carried out in accordance with JEDEC Specification A117 over the industrial temperature range of –40°C, +25°C, and +85°C. The results allow the specification of a minimum endurance figure over supply and temperature of 100,000 cycles, with an endurance figure of 700,000 cycles being typical of operation at 25°C. Retention quantifies the ability of the Flash/EE memory to retain its programmed data over time. Again, the ADuC834 has been qualified in accordance with the formal JEDEC Retention Lifetime Specification (A117) at a specific junction temperature (TJ = 55°C). As part of this qualification procedure, the Flash/EE memory is cycled to its specified endurance limit described above, before data retention is characterized. This means that the Flash/EE memory is guaranteed to retain its data for its full specified retention lifetime every time the Flash/EE memory is reprogrammed. It should also be noted that retention lifetime, based on an activation energy of 0.6 eV, will derate with TJ as shown in Figure 26. Overall, Flash/EE memory represents a step closer to the ideal memory device that includes nonvolatility, in-circuit programmability, high density and low cost. Incorporated in the ADuC834, Flash/EE memory technology allows the user to update program code space in-circuit, without the need to replace one-time programmable (OTP) devices at remote operating nodes. 300 250 200 A DI S P EC IF IC A TIO N 100 Y E AR S M IN . A T T J = 55 ⴗC RE T E N T 150 Flash/EE Memory and the ADuC834 The ADuC834 provides two arrays of Flash/EE memory for user applications. 62kBytes of Flash/EE Program space are provided on-chip to facilitate code execution without any external discrete ROM device requirements. The program memory can be programmed in-circuit, using the serial download mode provided, using conventional third party memory programmers or via a user defined protocol who can configure it as data if required. A 4kByte Flash/EE Data Memory space is also provided on-chip. This may be used as a general-purpose nonvolatile scratchpad area. User access to this area is via a group of six SFRs. This space can be programmed at a byte level, although it must first be erased in 4-byte pages. 100 50 0 40 50 60 70 80 90 100 110 T J JU NC TIO N TE M P E RA TURE › ⴗC Figure 26. Flash/EE Memory Data Retention ADuC834 Flash/EE Memory Reliability The Flash/EE Program and Data Memory arrays on the ADuC834 are fully qualified for two key Flash/EE memory characteristics, namely Flash/EE Memory Cycling Endurance and Flash/EE Memory Data Retention. REV. PrC (12 March 2002) A single Flash/EE Memory Endurance Cycle –37– PRELIMINARY TECHNICAL DATA ADuC834 USING THE FLASH/EE PROGRAM MEMORY (3) User Download Mode (ULOAD) The 62kByte Flash/EE Program Memory array is mapped into the lower 62kBytes of the 64 Kbytes program space addressable by the ADuC834, and is used to hold user code in typical applications. As shown in figure 28 the 62kBytes of user program memory is split into two seperate blocks. The upper 6kBytes of the program memory (E000h to F7FFh) is only programmable via serial download or parallel programming. The lower 56kBytes (0000h to DFFFh) is also programmable by a third method, user download (ULOAD) mode. The program memory Flash/EE memory arrays can be programmed in three ways, namely: Programming the flash/EE program memory via is described in more detail in the description of ECON and also in technote uC0XX. (1) Serial Downloading (In-Circuit Programming) The ADuC834 facilitates code download via the standard UART serial port. The ADuC834 will enter serial download mode after a reset or power cycle if the PSEN pin is pulled low through an external 1kΩ resistor. Once in serial download mode, the user can download code to the full 62kBytes of flash/ EE program memory while the device is in circuit in its target application hardware. A PC serial download executable is provided as part of the ADuC834 QuickStart development system. The Serial Download protocol is detailed in a MicroConverter Applications Note uC004. KE R NE L P RO G RA M THE K E RNE L P RO G RA M CA N DOW NLOA D CODE TO THE FULL 62 K B Y TE S O F FLASH/EE PROG RA M M E MO RY . FF F F H 2 K BYTE F8 00 H F7 F F H US E R BO O T L O A DE R S P A CE . THE USE R B OO TLO ADE R CA N B E P ROG RA M ME D VIA THE KE RNE L PROGRA M O R P A RA LLE L P RO GRAM M ING B UT IS RE A DONLY TO US E R CODE 6 K BYTE E 0 00 H DF F F H 62 K B Y TES O F US E R CO DE US E R DO W NL O AD S P AC E E ITHE R THE KE RNE L P ROG RA M O R US E R CO DE (IN ULO A D M O DE ) CA N W RITE TO THIS S P A CE . 56 K B Y TE (2) Parallel Programming The parallel programming mode is fully compatible with conventional third party Flash or EEPROM device programmers. A block diagram of the external pin configuration required to support parallel programming is shown in Figure 27. In this mode, Ports 0, 1, and 2 operate as the external data and address bus interface, ALE operates as the Write Enable strobe, and Port 3 is used as a general configuration port that configures the device for various program and erase operations during parallel programming. Table XIII. Flash/EE Memory Parallel Programming Modes Port 3 Pins Programming 0.7 0.6 0.5 0.4 0.3 0.2 0.1 Mode X X X X X X X X X X X X X X X X All other X X X X X X X X codes X 0 0 0 X 1 0 1 0 X X 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 0 1 Erase Flash/EE Program, Data, and Security Modes Read Device Signature/ID Program Code Byte Program Data Byte Read Code Byte Read Data Byte Program Security Modes Read/Verify Security Modes Redundant 5V VDD P0 G ND P RO GRA M DA TA (D0 ›D7) ADuC83 4 PRO GRA M M O DE (SE E TA B LE X III) CO M MA ND E NA B LE NE G A TIV E E DG E E NTRY S E QUE NCE G ND VDD P3 P 3.0 P1 P2 P 3.6 PSEN A LE P RO GRA M A DDRE S S (A0›A 13 ) (P2.0 = A 0) (P1.7 = A 13) W RITE ENA BLE S TRO BE RE S E T Figure 27. Flash/EE Memory Parallel Programming 00 00 H Figure 28. Flash/EE Program Memory Map Flash/EE Program Memory Security The ADuC834 facilitates three modes of Flash/EE program memory security. These modes can be independently activated, restricting access to the internal code space. These security modes can be enabled as part of serial download protocol as described in technote uC004 or via parallel programming. The security modes available on the ADuC834 are described as follows: Lock Mode This mode locks the code memory, disabling parallel programming of the program memory. However, reading the memory in parallel mode and reading the memory via a MOVC command from extrenal memory is still allowed. This mode is deactivated by initiating a ‘code-erase’ command in serial download or parallel programming modes. Secure Mode This mode locks the code memory, disabling parallel programming of the program memory. Reading/Verifying the memory in parallel mode and reading the internal memory via a MOVC command from external memory is also disabled. This mode is deactivated by initiating a “code-erase” command in serial download or parallel programming modes. Serial Safe Mode This mode disables serial download capability on the device. If Serial Safe mode is activated and an attempt is made to reset the part into serial download mode, i.e., RESET asserted and de-asserted with PSEN low, the part will interpret the serial download reset as a normal reset only. It will therefore not enter serial download mode but only execute a normal reset sequence. Serial Safe mode can only be disabled by initiating a codeerase command in parallel programming mode. –38– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 USING THE FLASH/EE DATA MEMORY Byte 1 Byte 2 Byte 3 Byte 4 3FEh Byte 1 Byte 2 Byte 3 Byte 4 03h Byte 1 Byte 2 Byte 3 Byte 4 02h Byte 1 Byte 2 Byte 3 Byte 4 01h Byte 1 Byte 2 Byte 3 Byte 4 00h Byte 1 Byte 2 Byte 3 Byte 4 PAGE ADDRESS (EADRH/ The 4kBytes of Flash/EE data memory is configured as 1024 pages, each of 4 bytes. As with the other ADuC834 peripherals, the interface to this memory space is via a group of registers mapped in the SFR space. A group of four data registers (EDATA1–4) are used to hold the 4 bytes of data at each page. The page is addressed via the two registers EADRH and EADRL. Finally, ECON is an 8-bit control register that may be written with one of nine Flash/EE memory access commands to trigger various read, write, erase, and verify functions. 3FFh A block diagram of the SFR interface to the flash/EE data memory array is shown in figure 29. ECON—Flash/EE Memory Control SFR Programming of either the flash/EE data memory or the flash/ EE program memory is done through the flash/EE memory control SFR (ECON). This SFR allows the user to read, write, erase or verify the 4 KBytes of flash/EE data memory or the 54 KBytes of flash/EE program memory Figure 29. Flash/EE Data Memory Control and Configuration Table XIV. Flash/EE Memory Parallel Programming Modes ECON VALUE COMMAND DESCRIPTION (NORMAL MODE) (power on default) COMMAND DESCRIPTION (ULOAD MODE) 01H READ Results in 4 bytes in the flash/EE data memory, addressed by the page address EADRH/L, being read into EDATA 1 to 4. Not Implemented. Use the MOVC instruction 02H WRITE Results in 4 bytes in EDATA1-4 being written to the flash/EE data memory, at the page address EADRH/L (0≤EADRH/L<0400h) Note: The 4 bytes in the page being addressed must be pre-erased. Results in bytes 0-255 of internal XRAM being written to the 256 bytes of flash/EE program memory at the page address EADRH. (0≤EADRH<E0H) Note: The 256 bytes in the page being addressed must be pre-erased. 03H Reserved Command Reserved Command 04H VERIFY Verifies if the data in EDATA1-4 is contained in the page address given by EADRH/L. A subsequent read of the ECON SFR will result in a 0 being read if the verification is valid, or a nonzero value being read to indicate an invalid verification. Not Implemented. Use the MOVC and MOVX Instructions to verify the WRITE in software 05H Results in the Erase of the 4 byte page of flash/EE data Results in the 64 Byte page of flash/EE program ERASE PAGE memory addressed by the page address EADRH/L memory, addressed by the byte address EADRH/L being erased. EADRL can equal any of 64 locations within the page. A new page starts whenever EADRL is equal to 00h, 40h, 80h or C0h 06H ERASE ALL Results in the erase of entire 4kBytes of flash/EE data memory. Results in the Erase of the entire 56kBytesof ULOAD flash/EE program memory. 81H READBYTE Results in the byte in the flash/EE data memory, addressed by the byte address EADRH/L, being read into EDATA1. (0≤EADRH/L≤0FFFh.) Results in the byte in the flash/EE program memory, addressed by the byte address EADRH/L, being read into EDATA1. (0≤EADRH/L≤F7FFh.) 81H WRITEBYTE Results in the byte in EDATA1 being written into flash/EE data memory, at the byte address EADRH/L. Results in the byte in EDATA1 being written into flash/EE prog memory, at the byte address EADRH/L. 0FH EXULOAD Leaves the ECON instructions operate on the flash/EE data memory. Enters NORMAL mode allowing subsequent ECON instructions operate on the flash/EE program memory. F0H ULOAD Enters ULOAD mode allowing subsequent ECON instructions operate on the flash/EE data memory. Leaves the ECON instructions operate on the flash/EE program memory. REV. PrC (12 March 2002) –39– PRELIMINARY TECHNICAL DATA ADuC834 Example: Programming the flash/EE data memory Flash/EE Memory Timing A user wishes to write F3H into the second byte on Page 03H of the Flash/EE Data Memory space while preserving the other three bytes already in this page. Typical program and erase times for the ADuC834 are as follows: NORMAL MODE (operating on flash/EE data memory) A typical access to the Flash/EE Data array will involve setting up the page address of the page to be accessed in the EADRH/ L SFRs, configuring the EDATA1–4 SFRs with data to be programmed to the array (the EDATA SFRs will not be written for read accesses) and finally, writing the ECON command word which initiates one of the nine modes shown in Table XIV. Step 1: Set up the page address: The two address registers EADRH and EADRL hold the high byte address and the low byte address of the page to be addressed. To set the address up in assembly language would appear as follows. MOV EADRH,#0 MOV EADRL,#03H READPAGE (4 bytes) WRITEPAGE (4 bytes) VERIFYPAGE (4 bytes) ERASEPAGE (4 bytes) ERASEALL (4kBytes) READBYTE (1 byte) WRITEBYTE (1 byte) ULOAD MODE (operating on flash/EE program memory) ; Set Page Address Pointer WRITEPAGE (256 bytes) ERASEPAGE (64 bytes) ERASEALL (56kBytes) READBYTE (1 byte) Step 2: Set up the EDATA registers: We must now write the 4 values to be written into the page into the 4 SFRs EDATA1-4. Unfortunately we do not know 3 of them. Hence we must read the current page and overwrite the second byte. WRITEBYTE (1 byte) MOV ECON,#1 ; Read Page into EDATA1-4 MOV EDATA2,#0F3H ; Overwrite byte 2 Step 3:Program Page: A byte in the Flash/EE array can only be programmed if it has previously been erased. To be more specific, a byte can only be programmed if it already holds the value FFH. Because of the Flash/EE architecture, this erasure must happen at a page level; therefore, a minimum of four bytes (1 page) will be erased when an erase command is initiated. Once the page is erased we can program the 4 bytes in page and then perform a verification of the data. MOV MOV MOV MOV JNZ ECON,#5 ECON,#2 ECON,#4 A, ECON ERROR ; ; ; ; – instruction time + 3 machine cycles – 380µs – instruction time + 3 machine cycles – 2ms – 2ms – instruction time + 1 machine cycle – 200µs ERASE Page WRITE Page VERIFY Page Check if ECON=0 (OK!) – 15ms – 2 ms – 2 ms – instruction time + 1 machine cycle – 200µs It should be noted that a given mode of operation is initiated as soon as the command word is written to the ECON SFR. The core microcontroller operation on the ADuC834 is idled until the requested Program/Read or Erase mode is completed. In practice, this means that even though the Flash/EE memory mode of operation is typically initiated with a twomachine cycle MOV instruction (to write to the ECON SFR), the next instruction will not be executed until the Flash/EE operation is complete. This means that the core will not respond to Interrupt requests until the Flash/EE operation is complete, although the core peripheral functions like Counter/ Timers will continue to count and time as configured throughout this period. Note: As with all Flash/EE memory architectures, the array can be programmed in-system at a byte level, although it must be erased first; the erasure being performed in page blocks (4byte pages in this case). Although the 4kBytes of Flash/EE data memory is shipped from the factory pre-erased, i.e., Byte locations set to FFH, it is nonetheless good programming practice to include an erase-all routine as part of any configuration/setup code running on the ADuC834. An “ERASE-ALL” command consists of writing “06H” to the ECON SFR, which initiates an erase of the 4kByte Flash/EE array. This command coded in 8051 assembly would appear as: MOV ECON,#06H ; Erase all Command ; 2 ms Duration –40– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 DAC The ADuC834 incorporates a 12-bit, voltage output DAC onchip. It has a rail-to-rail voltage output buffer capable of driving 10 kΩ/100 pF. It has two selectable ranges, 0 V to VREF (the internal bandgap 2.5 V reference) and 0 V to AVDD. It can operate in 12-bit or 8-bit mode. The DAC has a control register, DACCON, and two data registers, DACH/L. The DAC output can be programmed to appear at Pin 3 or Pin 12. It should be noted that in 12-bit mode, the DAC voltage output will be updated as soon as the DACL data SFR has been written; therefore, the DAC data registers should be updated as DACH first followed by DACL.5The 12-bit DAC data should be written into DACH/L right-justified such that DACL contains the lower eight bits, and the lower nibble of DACH contains the upper four bits. Table XV. DACCON SFR Bit Designations Bit Name Description 7 6 5 4 ------DACPIN 3 DAC8 2 DACRN 1 DACCLR 0 DACEN Reserved for Future Use. Reserved for Future Use. Reserved for Future Use. DAC Output Pin Select. Set by the user to direct the DAC output to Pin 12 (P1.7/AIN4/DAC). Cleared by user to direct the DAC output to Pin 3 (P1.2/DAC/IEXC1). DAC 8-bit Mode Bit. Set by user to enable 8-bit DAC operation. In this mode the 8-bits in DACL SFR are routed to the 8 MSBs of the DAC and the 4 LSBs of the DAC are set to zero. Cleared by user to operate the DAC in its normal 12-bit mode of operation. DAC Output Range Bit. Set by user to configure DAC range of 0 – AVDD. Cleared by user to configure DAC range of 0 – 2.5V (VREF). DAC Clear Bit. Set to ‘1’ by user to enable normal DAC operation. Cleared to ‘0’ by user to reset DAC data registers DACl/H to zero. DAC Enable Bit. Set to ‘1’ by user to enable normal DAC operation. Cleared to ‘0’ by user to power-down the DAC. DACH/L DAC Data Registers Function SFR Address DAC Data Registers, written by DACL (DAC Data Low Byte) DACH (DAC Data High Byte) 00H No Power-On Default Value Bit Addressable Using the D/A Converter The on-chip D/A converter architecture consists of a resistor string DAC followed by an output buffer amplifier, the functional equivalent of which is illustrated in Figure 30. AVD D V R EF A DuC 834 R OUTPUT B U F FE R R 2 0 DA C 0 R H IGH Z D IS A B L E (F RO M MC U) R R Figure 30. Resistor String DAC Functional Equivalent REV. PrC (12 March 2002) user to update the DAC output. –>FBH –>FCH –>Both Registers –>Both Registers Features of this architecture include inherent guaranteed monotonicity and excellent differential linearity. As illustrated in Figure 30, the reference source for each DAC is user selectable in software. It can be either AVDD or VREF. In 0-to-AVDD mode, the DAC output transfer function spans from 0V to the voltage at the AVDD pin. In 0-to-VREF mode, the DAC output transfer function spans from 0V to the internal VREF (2.5V). The DAC output buffer amplifier features a true rail-to-rail output stage implementation. This means that, unloaded, each output is capable of swinging to within less than 100mV of both AVDD and ground. Moreover, the DAC’s linearity specification (when driving a 10KΩ resistive load to ground) is guaranteed through the full transfer function except codes 0 to 48, and, in 0to-AVDD mode only, codes 3945 to 4095. Linearity degradation near ground and VDD is caused by saturation of the output amplifier, and a general representation of its effects (neglecting offset & gain error) is illustrated in Figure 31. The dotted line in Figure 31 indicates the ideal transfer function, and the solid line represents what the transfer function might look like with endpoint non-linearities due to saturation of the output amplifier. –41– PRELIMINARY TECHNICAL DATA ADuC834 Note that Figure 31 represents a transfer function in 0-to-VDD mode only. In 0-to-VREF mode (with VREF < VDD) the lower non-linearity would be similar, but the upper portion of the transfer function would follow the “ideal” line right to the end, showing no signs of endpoint linearity errors. 3 output voltage [V] DAC loaded with 0FFF hex VDD V D D - 5 0m V V DD - 1 00 m V 2 1 DAC loaded with 0000 hex 0 0 5 10 15 source/sink current [mA] 10 0m V Figure 33. Source & Sink Current Capability with VREF = VDD = 3V 50m V 0V FF F H ex 00 0 Hex For larger loads the current drive capability may not be sufficient. In order to increase the Source & Sink current capability of the DACs an external buffer should be added, as shown in figure 34. Figure 31. Endpoint Non-linearities due to Amplifier Saturation. The endpoint non-linearities conceptually illustrated in Figure 31 get worse as a function of output loading. Most of the ADuC834’s datasheet specifications assume a 10KΩ resistive load to ground at the DAC output. As the output is forced to source or sink more current, the nonlinear regions at the top or bottom (respectively) of Figure 31 become larger. With larger current demands, this can significantly limit output voltage swing. Figure 32 & Figure 33 illustrate this behavior. It should be noted that the upper trace in each of these figures is only valid for an output range selection of 0-to-AVDD. In 0to-VREF mode, DAC loading will not cause high-side voltage drops as long as the reference voltage remains below the upper trace in the corresponding figure. For example, if AVDD=3V & VREF=2.5V, the high-side voltage will not be affected by loads less than 5mA. But somewhere around 7mA the upper curve in Figure 33 drops below 2.5V (VREF) indicating that at these higher currents the output will not be capable of reaching VREF. 5 20 A D u C 8 34 + 21 Figure 34. Buffering the DAC outputs The DAC output buffer also features a high-impedance disable function. In the chip’s default power-on state, both DACs are disabled, and their outputs are in a high-impedance state (or “tri-state”) where they remain inactive until enabled in software. This means that if a zero output is desired during power-up or power-down transient conditions, then a pull-down resistor must be added to each DAC output. Assuming this resistor is in place, the DAC outputs will remain at ground potential whenever the DAC is disabled. D A C lo ad ed w ith 0F F F h ex o u tp u t v o lta g e [V ] + 4 3 2 1 D A C lo a d e d w ith 0 00 0 he x 0 0 5 10 15 s o u rce /s in k c u rren t [m A ] Figure 32. Source and Sink Current Capability with VREF = VDD = 5V –42– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 PULSE WIDTH MODULATOR BLOCK (PWM) CL K SE L 0 The PWM is one of the new features of the ADuC834 over the ADuC824. The PWM can be configured as a Σ∆ DAC with up to 16-bits of resolution or as a PWM with variable resolution. The PWM is widely programmable in terms input clock, clock dividers and PWM mode to produce a highly flexible PWM. A block diagram of the PWM is shown in figure X, with each of the modes explained overleaf. CL K SE L 1 CL K DIV 0 CL K DIV 1 12.583M Hz T0 CL O C K S E LE C T 32.768kH z P RO G DIV ID E R 32.768kHz /15 16 B IT PW M C O U NT E R The PWM uses 5 extra SFRs; the control SFR, PWMCON, and 4 data SFRs PWM0H, PWM0L, PWM1H and PWM1L. P 1.0 PWMCON (as described below) controls the different modes as well as the clock frequency. CO M PA RE P 1.1 PWM0H/L and PWM1H/L are the data regaisters that determine the outputs at P1.0 and P1.1. M D2 M D1 M D0 M ODE P W M 0H /L P W M 1H /L Figure 35. PWM Block Diagram PWMCON SFR Address Power-On Default Value Bit Addressable PWM Control SFR AEh 00h No Table XVI. PWMCON SFR Bit Designations Bit Name Description 7 - Reserved for future use 6 5 4 MD2 MD1 MD0 PWM Mode Bits The MD2/1/0 bits choose MD2 MD1 MD0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 3 2 CDIV1 CDIV0 PWM Clock Divider Scale the clock source for the PWM counter as shown below. CDIV1 CDIV0 Description 0 0 PWM Counter = Selected Clock /1 0 1 PWM Counter = Selected Clock /4 1 0 PWM Counter = Selected Clock /16 1 1 PWM Counter = Selected Clock /64 1 0 CSEL1 CSEL0 PWM Clock Divider Select the clock source for the PWM as shown below. CSEL1 CSEL0 Description 0 0 PWM Clock = fXTAL/15 0 1 PWM Clock = fXTAL 1 0 PWM Clock = External Interrupt on P3.4/T0 1 1 PWM Clock = fVCO(12.58MHz) REV. PrC (12 March 2002) the PWM mode as follows Mode Mode 0: PWM Disabled Mode 1: Single variable resolution PWM Mode 2: Twin 8-bit PWM Mode 3: Twin 16-bit PWM Mode 4: Dual NRZ 16-bit Σ∆ DAC Mode 5: Dual 8-bit PWM Mode 6: Dual RZ 16-bit Σ∆ DAC Reserved for future use –43– PRELIMINARY TECHNICAL DATA ADuC834 PWM MODES OF OPERATION P W M 1L P W M CO UN TE R MODE 0: PWM disblabled P W M 0H P W M 0L The PWM is disabled allowing P1.0 and P1.1 be used as normal. P W M 1H 0 P 1.0 MODE 1: Single Variable resolution PWM P 1.1 In this mode both the pulse length and the cycle time (period) are programmable in user code allowing the resolution of the PWM to be variable. Figure 37. PWM Mode 2 PWM1H/L sets the period of the output waveform. Setting PWM1H/L to 65536 gives a 16-bit PWM with a maximum output rate of 192Hz (12.583MHz/65536). Setting PWM1H/L to 4096 gives a 12-bit PWM with a maximum output rate of 3072Hz (12.583MHz/4096).Reducing PWM1H/L reduces the resolution but increases the maximum output rate of the PWM. MODE 3: Twin 16-bit PWM In this mode the pulse is programmable but the cycle time (period) is fixed. The PWM counter is fixed to count from 0 to 65536 giving a fixed 16-bit resolution. This means that the maximum output of the PWM is 192Hz. PWM0H/L sets the width of the output waveform as shown in the diagram below. As shown below while the PWM counter is less than PWM0H/L then the output of PWM0 (P1.0) is high. Once the PWM counter equals PWM0H/L then PWM0 (P1.0) goes low and remains low until the PWM counter is rolls over. P W M 1H /L P W M CO UN TE R Similarly while the PWM counter is less than PWM1H/L then the output of PWM1 (P1.1) is high. Once the PWM counter equals PWM1H/L then PWM1 (P1.1) goes low and remains low until the PWM counter is rolls over. P W M 0H /L 0 In this mode PWMs must be synchronised. i.e. Both PWM0 (P1.0) and PWM1 (P1.1) go high at the same time. P 1.0 Figure 36. ADuC834 PWM in Mode 1 655 36 MODE 2: Twin 8-bit PWM P W M C O U NT E R P W M 1H/L In this mode both the pulse and cycle time (period) are programmable however the maximum resolution of the PWM output is 8-bits. P W M 0H/L 0 PWM1L sets the period for both PWM outputs. Typically this will be set to 255 (FFh) to give an 8-bit PWM although it is possible to reduce this as necessary. A value of 100 is loaded here to give a percentage PWM (i.e. the PWM is accurate to 1%). P 1.0 P 1.1 Figure 38. PWM Mode 3 The ouputs of the PWM at P1.0 and P1.1 are shown in the diagram below. As can be seen the output of PWM0 (P1.0) goes low when the PWM counter equals PWM0L. The output of PWM1 (P1.1) goes high when the PWM counter equals PWM1H and goes low again when the PWM counter equals PWM0H. Often PWM1H will be set to 0 so that both outputs start simultaneously. –44– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 MODE 4: Dual NRZ 16-bit Σ∆ DAC P W M 1L P W M C O U NT E RS Mode 4 provides a high speed PWM output similar to that of a Σ∆ DAC. Typically this mode will be used with the 12.58MHz clock. P W M 1H P W M 0L P W M 0H In this mode P1.0 and P1.1 are updated every PWM clock (80ns in the case of 12.58MHz). Over any 65536 cycles (16 bit PWM) PWM0 (P1.0) is high for PWM0H/L cycles and low for 65536 - PWM0H/L. Similarly PWM1 (P1.1) is high for PWM1H/L cycles during this same time. 0 P 1.0 P 1.1 For lower resolution, higher speed DAC outputs write 0’s to the LSBs that are not required. If for example only 12 bit performance is required then write 0’s to the 4LSBs. This means that 12 bit accuracy in the PWM output can occur at 3kHz. Similary writing 0’s to the 8LSBs gives 8 bit accuracy at 49kHz. e.g. if PWM0H was set to 4010H (slightly above one quater of FS) then typically P1.0 will be low for three clocks and high for one clock (each clock is 80ns appox). Over every 65536 clocks the PWM will compromise for the fact that the output should be slightly above one quater of fullscale by leaving the output high for two clocks in four every so often. Figure 40. PWM Mode 5 MODE 6: Dual RZ 16-bit Σ∆ DAC Mode 6 provides the exact same functionality as mode 4 except that in this mode the PWM output is ANDed with the PWM clock. i.e. every output 1 is only high for half a clock and low for the other half clock. This return to zero (RZ) mode reduces any errors due to mismatch between rise time and fall time of the PWM outputs and is recommended over mode 4 for accurate PWM outputs. The disadvantage of this mode is that the dynamic range of the PWM output is halved from 0->DVDD to 0->DVDD/2. PWM0H/L e.g. if PWM0H was set to 4010H (slightly above one quater of FS) then typically P1.0 will be low for three full clocks (3 x 80ns), high for half a clock (40ns) and then low again for half a clock (40ns) before repeating itself. Over every 65536 clocks the PWM will compromise for the fact that the output should be slightly above one quater of fullscale by leaving the output high for two half clocks in four every so often. CA RR Y O UT A T P 1.0 0 16 B IT 0, , ‰, …, 0 1 1 0 1 0 0 1 0 0 0 1 1 + 80u s 16 B IT 16 B IT L A TC H 12.583MHz 16 B IT 16 B IT PWM0H/L 0, , ‰, …, 0 … 0 CA RRY O UT AT P 1.0 CA RR Y O UT A T P 1.1 0 1 1 1 0 1 0 0 1 0 0 0 1 16 B IT 16 B IT 0, , ‰, …, 0 + 80u s PWM1H/L 80u s 16 B IT 16 B IT Figure 39. PWM Mode 4 12.583MHz L A TC H 16 B IT 16 B IT MODE 5: Dual 8-bit PWM 0 0, In this mode both the pulse and cycle time (period) are independently programmable by using the high and low bytes of the PWM counters independently. The output resolution and period are set by the PWM1L and PWM1H registers for the P1.0 and P1.1 outputs respectively. PWM0L and PWM0H will set the width of the high pulse for the P1.0 and P1.1 outputs respectively. Both channels have same clock source and clock divider. REV. PrC (12 March 2002) –45– , ‰, …, 0 … CA RRY O UT AT P 1.1 16 B IT 80u s PWM1H/L Figure 41. PWM Mode 6 PRELIMINARY TECHNICAL DATA ADuC834 ON-CHIP PLL The ADuC834 is intended for use with a 32.768 kHz watch crystal. A PLL locks onto a multiple (384) of this to provide a stable 12.582912 MHz clock for the system. The core can operate at this frequency or at binary submultiples of it to allow power saving in cases where maximum core performance is not required. The default core clock is the PLL PLLCON PLL Control Register SFR Address Power-On Default Value Bit Addressable D7H 03H No clock divided by 8 or 1.572864 MHz. The ADC clocks are also derived from the PLL clock, with the modulator rate being the same as the crystal oscillator frequency. The above choice of frequencies ensures that the modulators and the core will be synchronous, regardless of the core clock rate. The PLL control register is PLLCON. Table XVII. PLLCON SFR Bit Designations Bit Name Description 7 OSC_PD 6 LOCK 5 4 3 --LTEA FINT 2 1 0 CD2 CD1 CD0 Oscillator Power-down Bit. Set by user to halt the 32 kHz oscillator in power-down mode. Cleared by user to enable the 32 kHz oscillator in power-down mode. This feature allows the TIC to continue counting even in power-down mode. PLL Lock Bit. This is a read only bit. Set automatically at power-on to indicate the PLL loop is correctly tracking the crystal clock. If the external crystal becomes subsequently disconnected the PLL will rail and the core will halt. Cleared automatically at power-on to indicate the PLL is not correctly tracking the crystal clock. This may be due to the absence of a crystal clock or an external crystal at power-on. In this mode, the PLL output can be 12.58 MHz ± 20%. Reserved for future use; should be written with ‘0.’ Reading this bit returns the state of the external EA pin latched at reset or power-on. Fast Interrupt Response Bit. Set by user enabling the response to any interrupt to be executed at the fastest core clock frequency, regardless of the configuration of the CD2–0 bits (see below). After user code has returned from an interrupt, the core resumes code execution at the core clock selected by the CD2–0 bits. Cleared by user to disable the fast interrupt response feature. CPU (Core Clock) Divider Bits. This number determines the frequency at which the microcontroller core will operate. CD2 CD1 CD0 Core Clock Frequency (MHz) 0 0 0 12.582912 0 0 1 6.291456 0 1 0 3.145728 0 1 1 1.572864 (Default Core Clock Frequency) 1 0 0 0.786432 1 0 1 0.393216 1 1 0 0.196608 1 1 1 0.098304 –46– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 TIME INTERVAL COUNTER (TIC) A time interval counter is provided on-chip for: - counting longer intervals than the standard 8051-compatible timers are capable of - periodically the part up from power down - implementing a Real Time Clock The TIC is capable of timeout intervals ranging from 1/128th second to 255 hours. Furthermore, this counter is clocked by the crystal oscillator rather than the PLL and thus has the ability to remain active in power-down mode and time long power-down intervals. This has obvious applications for remote battery-powered sensors where regular widely spaced readings are required. to the TIC interrupt service vector address at 0053 hex. The TIC-related SFRs are described in Table XVIII. Note also that the timebase SFRs can be written initially with the current time, the TIC can then be controlled and accessed by user software. In effect, this facilitates the implementation of a real-time clock. A block diagram of the TIC is shown in Figure 42. TCE N 32.768kHz E XTE RNA L CRY S TA L ITS 0, 1 8-B IT P RE S CA LE R HUNDRE DTHS CO UNT E R HTHSE C If the TIC is being used as a real time clock (TCEN is set) then the TCEN bit itself and the HTHSEC, SEC, MIN and HOUR registers do not get reset after a hardware or watchdog timer reset. This is to prevent the need to recalibrate the real time clock after a reset. However, these registers will get reset to 00h after a power cycle (independent of TCEN) or after any reset if TCEN is clear. S E CO ND C O UNTE R SEC INTE RVA L TIM EBA S E S E LE CTIO N M UX TIE N M INUTE COUNTE R M IN Six SFRs are associated with the time interval counter, TIMECON being its control register. Depending on the configuration of the IT0 and IT1 bits in TIMECON, the selected time counter register overflow will clock the interval counter. When this counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) is set and generates an interrupt if enabled (See IEIP2 SFR description under Interrupt System later in this data sheet.) If the ADuC834 is in power-down mode, again with TIC interrupt enabled, the TII bit will wake up the device and resume code execution by vectoring directly HO UR C O UNTE R HO U R INTE RVA L TIME O UT TIM E INTE RV A L COUNTE R INTERRUP T 8-B IT INTE RVA L CO UNTER E QUA L? INTV A L S FR Figure 42. TIC, Simplified Block Diagram Table XVIII. TIMECON SFR Bit Designations Bit Name Description 7 6 5 4 ----ITS1 ITS0 3 STI 2 TII 1 TIEN 0 TCEN Reserved for Future Use. Reserved for Future Use. For future product code compatibility this bit should be written as a ‘1.’ Interval Timebase Selection Bits. Written by user to determine the interval counter update rate. ITS1 ITS0 Interval Timebase 0 0 1/128 Second 0 1 Seconds 1 0 Minutes 1 1 Hours Single Time Interval Bit. Set by user to generate a single interval timeout. If set, a timeout will clear the TIEN bit. Cleared by user to allow the interval counter to be automatically reloaded and start counting again at each interval timeout. TIC Interrupt Bit. Set when the 8-bit Interval Counter matches the value in the INTVAL SFR. Cleared by user software. Time Interval Enable Bit. Set by user to enable the 8-bit time interval counter. Cleared by user to disable and clear the contents of the interval counter. Time Clock Enable Bit. Set by user to enable the time clock to the time interval counters. Cleared by user to disable the clock to the time interval counters and clear the time interval SFRs. The time registers (HTHSEC, SEC, MIN and HOUR) can be written while TCEN is low. REV. PrC (12 March 2002) –47– PRELIMINARY TECHNICAL DATA ADuC834 INTVAL User Time Interval Select Register Function User code writes the required time interval to this register. When the 8-bit interval counter is equal to the time interval value loaded in the INTVAL SFR, the TII bit (TIMECON.2) bit is set and generates an interrupt if enabled. (See IEIP2 SFR description under Interrupt System later in this data sheet.) A6H 00H No 0 to 255 decimal SFR Address Power-On Default Value Bit Addressable Valid Value HTHSEC Hundredths Seconds Time Register Function This register is incremented in (1/128) second intervals once TCEN in TIMECON is active. The HTHSEC SFR counts from 0 to 127 before rolling over to increment the SEC time register. A2H 00H No 0 to 127 decimal SFR Address Power-On Default Value Bit Addressable Valid Value SEC Seconds Time Register Function This register is incremented in 1-second intervals once TCEN in TIMECON is active. The SEC SFR counts from 0 to 59 before rolling over to increment the MIN time register. A3H 00H No 0 to 59 decimal SFR Address Power-On Default Value Bit Addressable Valid Value MIN Minutes Time Register Function This register is incremented in 1-minute intervals once TCEN in TIMECON is active. The MIN counts from 0 to 59 before rolling over to increment the HOUR time register. A4H 00H No 0 to 59 decimal SFR Address Power-On Default Value Bit Addressable Valid Value HOUR Hours Time Register Function This register is incremented in 1-hour intervals once TCEN in TIMECON is active. The HOUR SFR counts from 0 to 23 before rolling over to 0. A5H 00H No 0 to 23 decimal SFR Address Power-On Default Value Bit Addressable Valid Value –48– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 WATCHDOG TIMER The purpose of the watchdog timer is to generate a device reset or interrupt within a reasonable amount of time if the ADuC834 enters an erroneous state, possibly due to a programming error, electrical noise, or RFI. The Watchdog function can be disabled by clearing the WDE (Watchdog Enable) bit in the Watchdog Control (WDCON) SFR. When enabled; the watchdog circuit will generate a system reset or interrupt (WDS) if the user program fails to set the watchdog (WDE) bit within a predeter- mined amount of time (see PRE3–0 bits in WDCON). The watchdog timer itself is a 16-bit counter that is clocked at 32.768 kHz. The watchdog time-out interval can be adjusted via the PRE3–0 bits in WDCON. Full Control and Status of the watchdog timer function can be controlled via the watchdog timer control SFR (WDCON). The WDCON SFR can only be written by user software if the double write sequence described in WDWR below is initiated on every write access to the WDCON SFR. WDCON Watchdog Timer Control Register SFR Address Power-On Default Value Bit Addressable C0H 10H Yes Table XIX. WDCON SFR Bit Designations Bit Name Description 7 6 5 4 PRE3 PRE2 PRE1 PRE0 3 WDIR 2 WDS 1 WDE 0 WDWR Watchdog Timer Prescale Bits. The Watchdog timeout period is given by the equation: tWD = (2PRE × (29/fPLL)) (0 ≤ PRE ≤ 7; fPLL = 32.768 kHz) PRE3 PRE2 PRE1 PRE0 Timout Period (ms) Action 0 0 0 0 15.6 Reset or Interrupt 0 0 0 1 31.2 Reset or Interrupt 0 0 1 0 62.5 Reset or Interrupt 0 0 1 1 125 Reset or Interrupt 0 1 0 0 250 Reset or Interrupt 0 1 0 1 500 Reset or Interrupt 0 1 1 0 1000 Reset or Interrupt 0 1 1 1 2000 Reset or Interrupt 1 0 0 0 0.0 Immediate Reset PRE3–0 > 1001 Reserved Watchdog Interrupt Response Enable Bit. If this bit is set by the user, the watchdog will generate an interrupt response instead of a system reset when the watchdog timeout period has expired. This interrupt is not disabled by the CLR EA instruction and it is also a fixed, high-priority interrupt. If the watchdog is not being used to monitor the system, it can alternatively be used as a timer. The prescaler is used to set the timeout period in which an interrupt will be generated. (See also Note 1, Table XXXIX in the Interrupt System section.) Watchdog Status Bit. Set by the Watchdog Controller to indicate that a watchdog timeout has occurred. Cleared by writing a ‘0’ or by an external hardware reset. It is not cleared by a watchdog reset. Watchdog Enable Bit. Set by user to enable the watchdog and clear its counters. If a ‘1’ is not written to this bit within the watchdog timeout period, the watchdog will generate a reset or interrupt, depending on WDIR. Cleared under the following conditions, User writes ‘0,’ Watchdog Reset (WDIR = ‘0’); Hardware Reset; PSM Interrupt. Watchdog Write Enable Bit. To write data into the WDCON SFR involves a double instruction sequence. The WDWR bit must be set and the very next instruction must be a write instruction to the WDCON SFR. e.g., CLR EA ; disable interrupts while writing ; to WDT SETB WDWR ; allow write to WDCON MOV WDCON, #72h ; enable WDT for 2.0s timeout SETB EA ; enable interrupts again (if rqd) REV. PrC (12 March 2002) –49– PRELIMINARY TECHNICAL DATA ADuC834 POWER SUPPLY MONITOR As its name suggests, the Power Supply Monitor, once enabled, monitors both supplies (AVDD or DVDD) on the ADuC834. It will indicate when any of the supply pins drop below one of four user-selectable voltage trip points from 2.63 V to 4.63 V. For correct operation of the Power Supply Monitor function, AVDD must be equal to or greater than 2.7 V. Monitor function is controlled via the PSMCON SFR. If enabled via the IEIP2 SFR, the monitor will interrupt the core using the PSMI bit in the PSMCON SFR. This bit will not be cleared until the failing power supply has returned above the trip point for at least 250 ms. This monitor function allows the user to save working registers to avoid possible data loss due to the low supply condition, and also ensures that normal code execution will not resume until a safe supply level has been well established. The supply monitor is also protected against spurious glitches triggering the interrupt circuit. PSMCON Power Supply Monitor Control Register SFR Address Power-On Default Value Bit Addressable DFH DEH No Table XX. PSMCON SFR Bit Designations Bit Name Description 7 CMPD 6 CMPA 5 PSMI 4 3 TPD1 TPD0 2 1 TPA1 TPA0 0 PSMEN DVDD Comparator Bit This is a read-only bit and directly reflects the state of the DVDD comparator. Read ‘1’ indicates the DVDD supply is above its selected trip point. Read ‘0’ indicates the DVDD supply is below its selected trip point. AVDD Comparator Bit. This is a read-only bit and directly reflects the state of the AVDD comparator. Read ‘1’ indicates the AVDD supply is above its selected trip point. Read ‘0’ indicates the AVDD supply is below its selected trip point. Power Supply Monitor Interrupt Bit. This bit will be set high by the MicroConverter if either CMPA or CMPD are low, indicating low analog or digital supply. The PSMI bit can be used to interrupt the processor. Once CMPD and/or CMPA return (and remain) high, a 250 ms counter is started. When this counter times out, the PSMI interrupt is cleared. PSMI can also be written by the user. However, if either comparator output is low, it is not possible for the user to clear PSMI. DVDD Trip Point Selection Bits. These bits select the DVDD trip-point voltage as follows: TPD1 TPD0 Selected DVDD Trip Point (V) 0 0 4.63 0 1 3.08 1 0 2.93 1 1 2.63 AVDD Trip Point Selection Bits. These bits select the AVDD trip-point voltage as follows: TPA1 TPA0 Selected AVDD Trip Point (V) 0 0 4.63 0 1 3.08 1 0 2.93 1 1 2.63 Power Supply Monitor Enable Bit. Set to ‘1’ by the user to enable the Power Supply Monitor Circuit. Cleared to ‘0’ by the user to disable the Power Supply Monitor Circuit. –50– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 SERIAL PERIPHERAL INTERFACE The ADuC834 integrates a complete hardware Serial Peripheral Interface (SPI) interface on-chip. SPI is an industry standard synchronous serial interface that allows eight bits of data to be synchronously transmitted and received simultaneously, i.e., full duplex. It should be noted that the SPI pins SCLOCK and MOSI are multiplexed with the digital output pins D0 and D1. This pins are controlled via the DCON SFR only if SPE is clear. SPI can be configured for Master or Slave operation and typically consists of four pins, namely: MISO (Master In, Slave Out Data I/O Pin), Pin#14 The MISO (master in slave out) pin is configured as an input line in master mode and an output line in slave mode. The MISO line on the master (data in) should be connected to the MISO line in the slave device (data out). The data is transferred as byte wide (8-bit) serial data, MSB first. MOSI (Master Out, Slave In Pin), Pin#27 The MOSI (master out slave in) pin is configured as an output line in master mode and an input line in slave mode. The MOSI line on the master (data out) should be connected to the MOSI line in the slave device (data in). The data is transferred as byte wide (8-bit) serial data, MSB first. SCLOCK (Serial Clock I/O Pin), Pin#26 SS (Slave Select Input Pin), Pin#13 The master clock (SCLOCK) is used to synchronize the data being transmitted and received through the MOSI and MISO data lines. A single data bit is transmitted and received in each SCLOCK period. Therefore, a byte is transmitted/received after eight SCLOCK periods. The SCLOCK pin is configured as an output in master mode and as an input in slave mode. In master mode the bit-rate, polarity and phase of the clock are controlled by the CPOL, CPHA, SPR0 and SPR1 bits in the SPICON SFR (see Table XXI below). In slave mode the SPICON register will have to be configured with the phase and polarity (CPHA and CPOL) as the master as for both master and slave mode the data is transmitted on one edge of the SCLOCK signal and sampled on the other. The Slave Select (SS) input pin is only used when the ADuC834 is configured in SPI slave mode. This line is active low. Data is only received or transmitted in slave mode when the SS pin is low, allowing the ADuC834 to be used in single master, multislave SPI configurations. If CPHA = 1 then the SS input may be permanently pulled low. With CPHA = 0 then the SS input must be driven low before the first bit in a byte wide transmission or reception and return high again after the last bit in that byte wide transmission or reception. In SPI Slave Mode, the logic level on the external SS pin (Pin# 13), can be read via the SPR0 bit in the SPICON SFR. The following SFR registers are used to control the SPI interface. Table XXI. SPICON SFR Bit Designations Bit Name Description 7 ISPI 6 WCOL 5 SPE 4 SPIM 3 CPOL 2 CPHA 1 0 SPR1 SPR0 SPI Interrupt Bit. Set by MicroConverter at the end of each SPI transfer. Cleared directly by user code or indirectly by reading the SPIDAT SFR Write Collision Error Bit. Set by MicroConverter if SPIDAT is written to while an SPI transfer is in progress. Cleared by user code. SPI Interface Enable Bit. Set by user to enable the SPI interface. Cleared by user to allow the DCON SFR control the digital output pins D0 and D1 SPI Master/Slave Mode Select Bit. Set by user to enable Master Mode operation (SCLOCK is an output). Cleared by user to enable Slave Mode operation (SCLOCK is an input). Clock Polarity Select Bit. Set by user if SCLOCK idles high. Cleared by user if SCLOCK idles low. Clock Phase Select Bit. Set by user if leading SCLOCK edge is to transmit data. Cleared by user if trailing SCLOCK edge is to transmit data. SPI Bit-Rate Select Bits. These bits select the SCLOCK rate (bit-rate) in Master Mode as follows: SPR1 SPR0 Selected Bit Rate 0 0 fCORE/2 0 1 fCORE/4 1 0 fCORE/8 1 1 fcore/16 In SPI Slave Mode, i.e., SPIM = 0, the logic level on the external SS pin (Pin# 13), can be read via the SPR0 bit. NOTE The CPOL and CPHA bits should both contain the same values for master and slave devices. REV. PrC (12 March 2002) –51– PRELIMINARY TECHNICAL DATA ADuC834 SPIDAT SPI Data Register Function The SPIDAT SFR is written by the user to transmit data over the SPI interface or read by user code to read data just received by the SPI interface. F7H 00H No SFR Address Power-On Default Value Bit Addressable Using the SPI Interface Depending on the configuration of the bits in the SPICON SFR shown in Table XXI, the ADuC834 SPI interface will transmit or receive data in a number of possible modes. Figure 43 shows all possible ADuC834 SPI configurations and the timing relationships and synchronization between the signals involved. Also shown in this figure is the SPI interrupt bit (ISPI) and how it is triggered at the end of each byte-wide communication. S CLOCK (CP OL = 1) S CLOCK (CP OL = 0) SS S A M P LE INP UT DA TA OUTP UT ? MSB B IT 6 B IT 5 B IT 4 B IT 3 B IT 2 B IT 1 LS B (CP HA = 1) SPI Interface—Master Mode In master mode, the SCLOCK pin is always an output and generates a burst of eight clocks whenever user code writes to the SPIDAT register. The SCLOCK bit rate is determined by SPR0 and SPR1 in SPICON. It should also be noted that the SS pin is not used in master mode. If the ADuC834 needs to assert the SS pin on an external slave device, a Port digital output pin should be used. In master mode a byte transmission or reception is initiated by a write to SPIDAT. Eight clock periods are generated via the SCLOCK pin and the SPIDAT byte being transmitted via MOSI. With each SCLOCK period a data bit is also sampled via MISO. After eight clocks, the transmitted byte will have been completely transmitted and the input byte will be waiting in the input shift register. The ISPI flag will be set automatically and an interrupt will occur if enabled. The value in the shift register will be latched into SPIDAT. SPI Interface—Slave Mode IS P I FLAG S A M P LE INP UT DA TA OUTP UT MSB B IT 6 B IT 5 B IT 4 B IT 3 B IT 2 B IT 1 LS B (CP HA = 0) IS P I FLAG Figure 43. ADuC834, SPI Timing, All Modes ? In slave mode the SCLOCK is an input. The SS pin must also be driven low externally during the byte communication. Transmission is also initiated by a write to SPIDAT. In slave mode, a data bit is transmitted via MISO and a data bit is received via MOSI through each input SCLOCK period. After eight clocks, the transmitted byte will have been completely transmitted and the input byte will be waiting in the input shift register. The ISPI flag will be set automatically and an interrupt will occur if enabled. The value in the shift register will be latched into SPIDAT only when the transmission/reception of a byte has been completed. The end of transmission occurs after the eighth clock has been received, if CPHA = 1 or when SS returns high if CPHA = 0. –52– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 DUAL DATA POINTER The ADuC834 incorporates two data pointers. The second data pointer is a shadow data pointer and is selected via the data pointer control SFR (DPCON). DPCON also includes some nice features such as automatic hardware post increment and post decrement as well as automatic data pointer toggle. DPCON is described below. DPCON SFR Address Power-On Default Value Bit Addressable Data Pointer Control SFR A7h 00h No Table XXII. DPCON SFR Bit Designations Bit Name Description 7 - Reserved for future use 6 DPT Data Pointer automatic toggle enable Cleared by user to disable auto swapping of the DPTR. Set in user software to enable automatic toggling of the DPTR after each each MOVX or MOVC instruction. 5 4 DP1m1 DP1m0 Shadow Data Pointer Mode These two bits enable extra modes of the shadow data pointer operation allowing for more compact and more efficient code size and execution. m1 m0 Behaviour of the Shadow Data Pointer 0 0 8052 Behaviour 0 1 DPTR is post incremented after a MOVX or a MOVC instruction 1 0 DPTR is post decremented after a MOVX or MOVC instruction 1 1 DPTR LSB is toggled after a MOVX or MOVC instruction (This instruction can be useful for moving 8 bit blocks to/from 16-bit devices) 3 2 DP0m1 DP0m0 Main Data Pointer Mode These two bits enable extra modes of the main data pointer operation allowing for more compact and more efficient code size and execution. m1 m0 Behaviour of the Main Data Pointer 0 0 8052 Behaviour 0 1 DPTR is post incremented after a MOVX or a MOVC instruction 1 0 DPTR is post decremented after a MOVX or MOVC instruction 1 1 DPTR LSB is toggled after a MOVX or MOVC instruction (This instruction can be useful for moving 8 bit blocks to/from 16-bit devices) 1 - Not implemented to allow the INC DPCON instruction toggle the data pointer 0 DPSEL Data Pointer select Cleared by user to select the main data pointer. This means that the contents of this 24 bit register is placed into the 3 SFRs DPL, DPH and DPP. Set by the user to select the shadow data pointer. This means that the contents of a separate 24 bit register appears in the 3 SFRs DPL, DPH and DPP. Note 1: This is the only place where the main and shadow data pointers are distinguished. Everywhere else in this datasheet wherever the DPTR is mentioned, operation on the active DPTR is implied. Note 2: Only MOVC/MOVX @DPTR instructions are relevant above. MOVC/MOVX PC/@Ri instructions will not cause the DPTR to automatically post increment/decrement etc. To illustrate the operation of DPCON, the following code will copy 256 bytes of code memory at address D000h into XRAM starting from address 0000h. The following piece of code uses 16 bytes and 2054 cycles. To perform this on a standard 8051 requires approximately 33 bytes and 7172 cycles (depending on how its implemented). REV. PrC (12 March 2002) MOV DPTR,#0 MOV DPCON,#55h ; ; ; ; ; MOV DPTR,#0D000h ; MOVELOOP: CLR A MOVC A,@A+DPTR ; ; ; MOVX @DPTR,A ; ; ; MOV A, DPL JNZ MOVELOOP –53– Main DPTR = 0 Select shadow DPTR DPTR1 increment mode, DPTR0 increment mode DPTR auto toggling ON Shadow DPTR = D000h Get data Post Inc DPTR Swap to Main DPTR (Data) Put ACC in XRAM Increment main DPTR Swap Shadow DPTR (Code) PRELIMINARY TECHNICAL DATA ADuC834 high order address bytes during fetches from external program memory and middle and high order address bytes during accesses to the 16-bit external data memory space. 8051-COMPATIBLE ON-CHIP PERIPHERALS This section gives a brief overview of the various secondary peripheral circuits are also available to the user on-chip. These remaining functions are fully 8051-compatible and are controlled via standard 8051 SFR bit definitions. Parallel I/O Ports 0–3 The ADuC834 uses four input/output ports to exchange data with external devices. In addition to performing general-purpose I/O, some ports are capable of external memory operations; others are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin. Port 0 is an 8-bit open drain bidirectional I/O port that is directly controlled via the Port 0 SFR (SFR address = 80 hex). Port 0 pins that have 1s written to them via the Port 0 SFR will be configured as open drain and will therefore float. In that state, Port 0 pins can be used as high impedance inputs. An external pull-up resistor will be required on Port 0 outputs to force a valid logic high level externally. Port 0 is also the multiplexed low-order address and data bus during accesses to external program or data memory. In this application it uses strong internal pull-ups when emitting 1s. Port 1 is also an 8-bit port directly controlled via the P1 SFR (SFR address = 90 hex). The Port 1 pins are divided into two distinct pin groupings. P1.0 and P1.1 pins on Port 1 are bidirectional digital I/O pins with internal pull-ups. If P1.0 and P1.1 have 1s written to them via the P1 SFR, these pins are pulled high by the internal pull-up resistors. In this state they can also be used as inputs; as input pins being externally pulled low, they will source current because of the internal pull-ups. With 0s written to them, both these pins will drive a logic low output voltage (VOL) and will be capable of sinking 10 mA compared to the standard 1.6 mA sink capability on the other port pins. These pins also have various secondary functions described in Table XXIII. Port 3 is a bidirectional port with internal pull-ups directly controlled via the P2 SFR (SFR address = B0 hex). Port 3 pins that have 1s written to them are pulled high by the internal pull-ups and in that state they can be used as inputs. As inputs, Port 3 pins being pulled externally low will source current because of the internal pull-ups. Port 3 pins also have various secondary functions described in Table XXIV. Table XXIV. Port 3, Alternate Pin Functions Pin Alternate Function P3.0 RXD (UART Input Pin) (or Serial Data I/O in Mode 0) TXD (UART Output Pin) (or Serial Clock Output in Mode 0) INT0 (External Interrupt 0) INT1 (External Interrupt 1) T0 (Timer/Counter 0 External Input) T1 (Timer/Counter 1 External Input) WR (External Data Memory Write Strobe) RD (External Data Memory Read Strobe) P3.1 P3.2 P3.3 P3.4 P3.5 P3.6 P3.7 The alternate functions of P1.0, P1.1, and Port 3 pins can only be activated if the corresponding bit latch in the P1 and P3 SFRs contains a 1. Otherwise, the port pin is stuck at 0. In the case of the PWM outputs at P1.0 and P1.1, the PWM outputs will overwrite anything written to P1.0 or P1.1. Additional Digital Ouput Pins Pins P1.0 and P1.1 can be used to provide high current (10mA sink) general purpose I/O. In addition to P1.0 and P1.1, two more high current (8mA sink) outputs are provided at D0 and D1. If the SPE bit (in SPICON) is clear, the two extra high current digital ouputs, D0 and D1, are controlled via the DCON SFR as follows: Table XXV. DCON SFR description Table XXIII. Port 1, Alternate Pin Functions Pin Alternate Function P1.0 T2 (Timer/Counter 2 External Input) PWM0 (PWM0 output at this pin) T2EX (Timer/Counter 2 Capture/Reload Trigger) PWM1 (PWM1 output at this pin) P1.1 Bit The remaining Port 1 pins (P1.2–P1.7) can only be configured as Analog Input (ADC), Analog Output (DAC) or Digital Input pins. By (power-on) default these pins are configured as Analog Inputs, i.e., ‘1’ written in the corresponding Port 1 register bit. To configure any of these pins as digital inputs, the user should write a ‘0’ to these port bits to configure the corresponding pin as a high impedance digital input. Port 2 is a bidirectional port with internal pull-up resistors directly controlled via the P2 SFR (SFR address = A0 hex). Port 2 pins that have 1s written to them are pulled high by the internal pullup resistors and, in that state, they can be used as inputs. As inputs, Port 2 pins being pulled externally low will source current because of the internal pull-up resistors. Port 2 emits the –54– Name Description 7 D1 6 D1EN 5 D0 4 3 ---D0EN 2 1 0 ---------- Data written to this bit will be outputted on the D1 pin if D1EN is set. Set to enable the D1 bit as an ouput. Data written to this bit will be outputted on the DC0 pin if D0EN is set. ---Set to enable the D0 bit as an ouput. ---------- (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 TIMERS/COUNTERS The ADuC834 has three 16-bit Timer/Counters: Timer 0, Timer 1, and Timer 2. The Timer/Counter hardware has been included on-chip to relieve the processor core of the overhead inherent in implementing timer/counter functionality in software. Each Timer/Counter consists of two 8-bit registers THx and TLx (x = 0, 1 and 2). All three can be configured to operate either as timers or event counters. In ‘Timer’ function, the TLx register is incremented every machine cycle. Thus one can think of it as counting machine cycles. Since a machine cycle consists of 12 core clock periods, the maximum count rate is 1/12 of the core clock frequency. In ‘Counter’ function, the TLx register is incremented by a 1-to0 transition at its corresponding external input pin, T0, T1, or T2. In this function, the external input is sampled during S5P2 of every machine cycle. When the samples show a high in one cycle and a low in the next cycle, the count is incremented. The new count value appears in the register during S3P1 of the cycle following the one in which the transition was detected. Since it takes two machine cycles (16 core clock periods) to recognize a 1-to-0 transition, the maximum count rate is 1/16 of the core clock frequency. There are no restrictions on the duty cycle of the external input signal, but to ensure that a given level is sampled at least once before it changes, it must be held for a minimum of one full machine cycle. Remember that the core clock frequency is programmed via the CD0–2 selection bits in the PLLCON SFR. User configuration and control of the timers is achieved via three main SFRs. TMOD and TCON control the configuration of timers 0 and 1 while T2CON configures timer 2. TMOD Timer/Counter 0 and 1 Mode Register SFR Address Power-On Default Value Bit Addressable 89H 00H No Table XXVI. TMOD SFR Bit Designations Bit Name Description 7 Gate 6 C/T 5 4 M1 M0 3 Gate 2 C/T 1 0 M1 M0 Timer 1 Gating Control. Set by software to enable timer/counter 1 only while INT1 pin is high and TR1 control bit is set. Cleared by software to enable timer 1 whenever TR1 control bit is set. Timer 1 Timer or Counter Select Bit. Set by software to select counter operation (input from T1 pin). Cleared by software to select timer operation (input from internal system clock). Timer 1 Mode Select Bit 1 (Used with M0 Bit). Timer 1 Mode Select Bit 0. M1 M0 0 0 TH1 operates as an 8-bit timer/counter. TL1 serves as 5-bit prescaler. 0 1 16-Bit Timer/Counter. TH1 and TL1 are cascaded; there is no prescaler. 1 0 8-Bit Auto-Reload Timer/Counter. TH1 holds a value which is to be reloaded into TL1 each time it overflows. 1 1 Timer/Counter 1 Stopped. Timer 0 Gating Control. Set by software to enable timer/counter 0 only while INT0 pin is high and TR0 control bit is set. Cleared by software to enable Timer 0 whenever TR0 control bit is set. Timer 0 Timer or Counter Select Bit. Set by software to select counter operation (input from T0 pin). Cleared by software to select timer operation (input from internal system clock). Timer 0 Mode Select Bit 1. Timer 0 Mode Select Bit 0. M1 M0 0 0 TH0 operates as an 8-bit timer/counter. TL0 serves as 5-bit prescaler. 0 1 16-Bit Timer/Counter. TH0 and TL0 are cascaded; there is no prescaler 1 0 8-Bit Auto-Reload Timer/Counter. TH0 holds a value which is to be reloaded into TL0 each time it overflows. 1 1 TL0 is an 8-bit timer/counter controlled by the standard timer 0 control bits. TH0 is an 8-bit timer only, controlled by Timer 1 control bits. REV. PrC (12 March 2002) –55– PRELIMINARY TECHNICAL DATA ADuC834 TCON: Timer/Counter 0 and 1 Control Register SFR Address Power-On Default Value Bit Addressable 88H 00H Yes Table XXVII. TCON SFR Bit Designations Bit Name Description 7 TF1 6 TR1 5 TF0 4 TR0 3 IE11 2 IT11 1 IE01 0 IT01 Timer 1 Overflow Flag. Set by hardware on a timer/counter 1 overflow. Cleared by hardware when the Program Counter (PC) vectors to the interrupt service routine. Timer 1 Run Control Bit. Set by user to turn on timer/counter 1. Cleared by user to turn off timer/counter 1. Timer 0 Overflow Flag. Set by hardware on a timer/counter 0 overflow. Cleared by hardware when the PC vectors to the interrupt service routine. Timer 0 Run Control Bit. Set by user to turn on timer/counter 0. Cleared by user to turn off timer/counter 0. External Interrupt 1 (INT1) Flag. Set by hardware by a falling edge or zero level being applied to external interrupt pin INT1, depending on bit IT1 state. Cleared by hardware when the when the PC vectors to the interrupt service routine only if the interrupt was transition-activated. If level-activated, the external requesting source controls the request flag, rather than the on-chip hardware. External Interrupt 1 (IE1) Trigger Type. Set by software to specify edge-sensitive detection (i.e., 1-to-0 transition). Cleared by software to specify level-sensitive detection (i.e., zero level). External Interrupt 0 (INT0) Flag. Set by hardware by a falling edge or zero level being applied to external interrupt pin INT0, depending on bit IT0 state. Cleared by hardware when the PC vectors to the interrupt service routine only if the interrupt was transition-activated. If level-activated, the external requesting source controls the request flag, rather than the on-chip hardware. External Interrupt 0 (IE0) Trigger Type. Set by software to specify edge-sensitive detection (i.e., 1-to-0 transition). Cleared by software to specify level-sensitive detection (i.e., zero level). NOTE 1 These bits are not used in the control of timer/counter 0 and 1, but are used instead in the control and monitoring of the external INT0 and INT1 interrupt pins. Timer/Counter 0 and 1 Data Registers Both timer 0 and timer 1 consists of two 8-bit registers. These can be used as independent registers or combined to be a single 16bit register depending on the timer mode configuration. TH0 and TL0 Timer 0 high byte and low byte. SFR Address = 8Chex, 8Ahex respectively. TH1 and TL1 Timer 1 high byte and low byte. SFR Address = 8Dhex, 8Bhex respectively. –56– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 TIMER/COUNTER 0 AND 1 OPERATING MODES Mode 2 (8-Bit Timer/Counter with Auto Reload) The following paragraphs describe the operating modes for timer/counters 0 and 1. Unless otherwise noted, it should be assumed that these modes of operation are the same for timer 0 as for timer 1. Mode 2 configures the timer register as an 8-bit counter (TL0) with automatic reload, as shown in Figure 46. Overflow from TL0 not only sets TF0, but also reloads TL0 with the contents of TH0, which is preset by software. The reload leaves TH0 unchanged. Mode 0 (13-Bit Timer/Counter) Mode 0 configures an 8-bit timer/counter with a divide-by-32 prescaler. Figure 44 shows mode 0 operation. CORE CLK* CORE CLK* ⴜ 12 C/T = 0 TL0 (8 BITS) ⴜ 12 INTERRUPT TF0 C/T = 1 P3.4/T0 C/T = 0 TL0 (5 BITS) TH0 (8 BITS) INTERRUPT CONTROL TF0 TR0 C/T = 1 P3.4/T0 RELOAD TH0 (8 BITS) GATE CONTROL P3.2/INT0 TR0 *THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 46 Figure 46. Timer/Counter 0, Mode 2 GATE P3.2/INT0 *THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 46 Mode 3 (Two 8-Bit Timer/Counters) Figure 44. Timer/Counter 0, Mode 0 In this mode, the timer register is configured as a 13-bit register. As the count rolls over from all 1s to all 0s, it sets the timer overflow flag TF0. The overflow flag, TF0, can then be used to request an interrupt. The counted input is enabled to the timer when TR0 = 1 and either Gate = 0 or INT0 = 1. Setting Gate = 1 allows the timer to be controlled by external input INT0, to facilitate pulsewidth measurements. TR0 is a control bit in the special function register TCON; Gate is in TMOD. The 13-bit register consists of all eight bits of TH0 and the lower five bits of TL0. The upper three bits of TL0 are indeterminate and should be ignored. Setting the run flag (TR0) does not clear the registers. Mode 3 has different effects on timer 0 and timer 1. Timer 1 in Mode 3 simply holds its count. The effect is the same as setting TR1 = 0. Timer 0 in Mode 3 establishes TL0 and TH0 as two separate counters. This configuration is shown in Figure 47. TL0 uses the timer 0 control bits: C/T, Gate, TR0, INT0, and TF0. TH0 is locked into a timer function (counting machine cycles) and takes over the use of TR1 and TF1 from timer 1. Thus, TH0 now controls the “timer 1” interrupt. Mode 3 is provided for applications requiring an extra 8-bit timer or counter. When timer 0 is in Mode 3, timer 1 can be turned on and off by switching it out of, and into, its own Mode 3, or can still be used by the serial interface as a Baud Rate Generator. In fact, it can be used, in any application not requiring an interrupt from timer 1 itself. Mode 1 (16-Bit Timer/Counter) CORE CLK* Mode 1 is the same as Mode 0, except that the timer register is running with all 16 bits. Mode 1 is shown in Figure 45. CORE CLK/12 ⴜ 12 C/T = 0 INTERRUPT TL0 (8 BITS) TF0 TH0 (8 BITS) TF1 C/T = 1 CORE CLK* ⴜ 12 P3.4/T0 TR0 C/T = 0 TL0 TH0 (8 BITS) (8 BITS) CONTROL INTERRUPT TF0 GATE C/T = 1 P3.2/INT0 P3.4/T0 CONTROL TR0 CORE CLK/12 TR1 GATE INTERRUPT CONTROL *THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 46 P3.2/INT0 *THE CORE CLOCK IS THE OUTPUT OF THE PLL AS DESCRIBED ON PAGE 46 Figure 47. Timer/Counter 0, Mode 3 Figure 45. Timer/Counter 0, Mode 1 REV. PrC (12 March 2002) –57– PRELIMINARY TECHNICAL DATA ADuC834 TIMER/COUNTER 2 OPERATING MODES 16-Bit Capture Mode In the ‘Capture’ mode, there are again two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or counter which, upon overflowing, sets bit TF2, the Timer 2 overflow bit, which can be used to generate an interrupt. If EXEN2 = 1, then Timer 2 still performs the above, but a l-to-0 transition on external input T2EX causes the current value in the Timer 2 registers, TL2 and TH2, to be captured into registers RCAP2L and RCAP2H, respectively. In addition, the transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2, like TF2, can generate an interrupt. The Capture Mode is illustrated in Figure 49. The following paragraphs describe the operating modes for timer/counter 2. The operating modes are selected by bits in the T2CON SFR as shown in Table XXIX. Table XXVIII. Timer 2 Operating modes RCLK (or) TCLK CAP2 TR2 MODE 0 0 1 X 0 1 X X 1 1 1 0 16-Bit Autoreload 16-Bit Capture Baud Rate OFF The baud rate generator mode is selected by RCLK = 1 and/or TCLK = 1. 16-Bit Autoreload Mode In ‘Autoreload’ mode, there are two options, which are selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2 rolls over it not only sets TF2 but also causes the Timer 2 registers to be reloaded with the 16-bit value in registers RCAP2L and RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2 still performs the above, but with the added feature that a 1-to-0 transition at external input T2EX will also trigger the 16-bit reload and set EXF2. The autoreload mode is illustrated in Figure 48 below. CO RE CLK * 12 In either case if Timer 2 is being used to generate the baud rate, the TF2 interrupt flag will not occur. Hence Timer 2 interrupts will not occur so they do not have to be disabled. In this mode the EXF2 flag, however, can still cause interrupts and this can be used as a third external interrupt. Baud rate generation will be described as part of the UART serial port operation in the following pages. C/T 2 = 0 TL2 (8-B ITS ) TH2 (8-B ITS ) RCA P 2L RCA P 2H C/T 2 = 1 T2 P IN CO NTR O L TR2 RE LO A D TRA NS ITION DE TE CTO R TF2 TIM E R INTE RRUP T T2E X P IN E X F2 CO NTR O L E X E N2 * THE CORE CLO CK IS THE OUTP UT OF THE P LL A S DE S CRIB E D ON P A GE 46 Figure 48. Timer/Counter 2, 16-Bit Autoreload Mode CO RE CLK * 12 C/T 2 = 0 TL2 (8-B ITS ) TH2 (8-B ITS ) TF2 C/T 2 = 1 T2 P IN CO NTR O L TR2 TIM E R INTE RRUP T CA P TURE TRA NS ITION DE TE CTO R RCA P 2L RCA P 2H T2E X P IN E X F2 CO NTR O L E X E N2 * THE CORE CLO CK IS THE OUTP UT OF THE P LL A S DE S CRIB E D ON P A GE 46 Figure 49. Timer/Counter 2, 16-Bit Capture Mode –58– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 T2CON Timer/Counter 2 Control Register SFR Address Power-On Default Value Bit Addressable C8H 00H Yes Table XXIX. T2CON SFR Bit Designations Bit Name Description 7 TF2 6 EXF2 5 RCLK 4 TCLK 3 EXEN2 2 TR2 1 CNT2 0 CAP2 Timer 2 Overflow Flag. Set by hardware on a timer 2 overflow. TF2 will not be set when either RCLK or TCLK = 1. Cleared by user software. Timer 2 External Flag. Set by hardware when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. Cleared by user user software. Receive Clock Enable Bit. Set by user to enable the serial port to use timer 2 overflow pulses for its receive clock in serial port Modes 1 and 3. Cleared by user to enable timer 1 overflow to be used for the receive clock. Transmit Clock Enable Bit. Set by user to enable the serial port to use timer 2 overflow pulses for its transmit clock in serial port Modes 1 and 3. Cleared by user to enable timer 1 overflow to be used for the transmit clock. Timer 2 External Enable Flag. Set by user to enable a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not being used to clock the serial port. Cleared by user for Timer 2 to ignore events at T2EX. Timer 2 Start/Stop Control Bit. Set by user to start timer 2. Cleared by user to stop timer 2. Timer 2 timer or counter function select bit. Set by user to select counter function (input from external T2 pin). Cleared by user to select timer function (input from on-chip core clock). Timer 2 Capture/Reload Select Bit. Set by user to enable captures on negative transitions at T2EX if EXEN2 = 1. Cleared by user to enable auto-reloads with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to autoreload on Timer 2 overflow. Timer/Counter 2 Data Registers Timer/Counter 2 also has two pairs of 8-bit data registers associated with it. These are used as both timer data registers and timer capture/reload registers. TH2 and TL2 Timer 2, data high byte and low byte. SFR Address = CDhex, CChex respectively. RCAP2H and RCAP2L Timer 2, Capture/Reload byte and low byte. SFR Address = CBhex, CAhex respectively. REV. PrC (12 March 2002) –59– PRELIMINARY TECHNICAL DATA ADuC834 UART SERIAL INTERFACE The serial port is full duplex, meaning it can transmit and receive simultaneously. It is also receive-buffered, meaning it can commence reception of a second byte before a previously received byte has been read from the receive register. However, if the first byte still has not been read by the time reception of the second byte is complete, the first byte will be lost. The physical interface to the serial data network is via Pins RXD(P3.0) and TXD(P3.1) while the SFR interface to the UART is comprised of the following registers. SBUF The serial port receive and transmit registers are both accessed through the SBUF SFR (SFR address = 99 hex). Writing to SBUF loads the transmit register and reading SBUF accesses a physically separate receive register. SCON UART Serial Port Control Register SFR Address Power-On Default Value Bit Addressable 98H 00H Yes Table XXX. SCON SFR Bit Designations Bit Name Description 7 6 SM0 SM1 5 SM2 4 REN 3 TB8 2 RB8 1 TI 0 RI UART Serial Mode Select Bits. These bits select the Serial Port operating mode as follows: SM0 SM1 Selected Operating Mode 0 0 Mode 0: Shift Register, fixed baud rate (Core_Clk/2) 0 1 Mode 1: 8-bit UART, variable baud rate 1 0 Mode 2: 9-bit UART, fixed baud rate (Core_Clk/64) or (Core_Clk/32) 1 1 Mode 3: 9-bit UART, variable baud rate Multiprocessor Communication Enable Bit. Enables multiprocessor communication in Modes 2 and 3. In Mode 0, SM2 should be cleared. In Mode 1, if SM2 is set, RI will not be activated if a valid stop bit was not received. If SM2 is cleared, RI will be set as soon as the byte of data has been received. In Modes 2 or 3, if SM2 is set, RI will not be activated if the received ninth data bit in RB8 is 0. If SM2 is cleared, RI will be set as soon as the byte of data has been received. Serial Port Receive Enable Bit. Set by user software to enable serial port reception. Cleared by user software to disable serial port reception. Serial Port Transmit (Bit 9). The data loaded into TB8 will be the ninth data bit that will be transmitted in Modes 2 and 3. Serial port Receiver Bit 9. The ninth data bit received in Modes 2 and 3 is latched into RB8. For Mode 1 the stop bit is latched into RB8. Serial Port Transmit Interrupt Flag. Set by hardware at the end of the eighth bit in Mode 0, or at the beginning of the stop bit in Modes 1, 2, and 3. TI must be cleared by user software. Serial Port Receive Interrupt Flag. Set by hardware at the end of the eighth bit in mode 0, or halfway through the stop bit in Modes 1, 2, and 3. RI must be cleared by software. –60– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 UART OPERATING MODES Mode 2: 9-Bit UART with Fixed Baud Rate Mode 0: 8-Bit Shift Register Mode Mode 2 is selected by setting SM0 and clearing SM1. In this mode the UART operates in 9-bit mode with a fixed baud rate. The baud rate is fixed at Core_Clk/64 by default, although by setting the SMOD bit in PCON, the frequency can be doubled to Core_Clk/32. Eleven bits are transmitted or received, a start bit(0), eight data bits, a programmable ninth bit and a stop bit(1). The ninth bit is most often used as a parity bit, although it can be used for anything, including a ninth data bit if required. Mode 0 is selected by clearing both the SM0 and SM1 bits in the SFR SCON. Serial data enters and exits through RXD. TXD outputs the shift clock. Eight data bits are transmitted or received. Transmission is initiated by any instruction that writes to SBUF. The data is shifted out of the RXD line. The eight bits are transmitted with the least-significant bit (LSB) first, as shown in Figure 50. M A CH IN E CY C LE 1 M A CH IN E CY C LE 2 S1 S2 S3 S4 S5 S6 S1 S2 M A CH IN E CY C LE 7 S3 S4 M A CH IN E CY C LE 8 S4 S5 S6 S1 S2 S3 S4 S5 S6 CO RE CL K ALE RX D (D A T A O U T) DA T A B IT 0 DA TA B IT 1 DA T A B IT 6 DA T A B IT 7 TX D (SH IF T CL O C K ) Figure 50. UART Serial Port Transmission, Mode 0. Reception is initiated when the receive enable bit (REN) is 1 and the receive interrupt bit (RI) is 0. When RI is cleared the data is clocked into the RXD line and the clock pulses are output from the TXD line. Mode 1: 8-Bit UART, Variable Baud Rate Mode 1 is selected by clearing SM0 and setting SM1. Each data byte (LSB first) is preceded by a start bit(0) and followed by a stop bit(1). Therefore 10 bits are transmitted on TXD or received on RXD. The baud rate is set by the Timer 1 or Timer 2 overflow rate, or a combination of the two (one for transmission and the other for reception). Transmission is initiated by writing to SBUF. The ‘write to SBUF’ signal also loads a 1 (stop bit) into the ninth bit position of the transmit shift register. The data is output bit by bit until the stop bit appears on TXD and the transmit interrupt flag (TI) is automatically set as shown in Figure 51. START BIT TXD STOP BIT D0 D1 D2 D3 D4 D5 D6 D7 TI (SCON.1) SET INTERRUPT i.e. READY FOR MORE DATA Figure 51. UART Serial Port Transmission, Mode 0. Reception is initiated when a 1-to-0 transition is detected on RXD. Assuming a valid start bit was detected, character reception continues. The start bit is skipped and the eight data bits are clocked into the serial port shift register. When all eight bits have been clocked in, the following events occur: - The eight bits in the receive shift register are latched into SBUF - The ninth bit (Stop bit) is clocked into RB8 in SCON - The Receiver interrupt flag (RI) is set if, and only if, the following conditions are met at the time the final shift pulse is generated: - RI = 0, and - Either SM2 = 0, or SM2 = 1 and the received stop bit = 1. If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. REV. PrC (12 March 2002) To transmit, the eight data bits must be written into SBUF. The ninth bit must be written to TB8 in SCON. When transmission is initiated the eight data bits (from SBUF) are loaded onto the transmit shift register (LSB first). The contents of TB8 are loaded into the ninth bit position of the transmit shift register. The transmission will start at the next valid baud rate clock. The TI flag is set as soon as the stop bit appears on TXD. Reception for Mode 2 is similar to that of Mode 1. The eight data bytes are input at RXD (LSB first) and loaded onto the receive shift register. When all eight bits have been clocked in, the following events occur: - The eight bits in the receive shift register are latched into SBUF - The ninth data bit is latched into RB8 in SCON - The Receiver interrupt flag (RI) is set if, and only if, the following conditions are met at the time the final shift pulse is generated: - RI = 0, and - Either SM2 = 0, or SM2 = 1 and the received stop bit = 1. If either of these conditions is not met, the received frame is irretrievably lost, and RI is not set. Mode 3: 9-Bit UART with Variable Baud Rate Mode 3 is selected by setting both SM0 and SM1. In this mode the 8051 UART serial port operates in 9-bit mode with a variable baud rate determined by either Timer 1 or Timer 2. The operation of the 9-bit UART is the same as for Mode 2 but the baud rate can be varied as for Mode 1. In all four modes, transmission is initiated by any instruction that uses SBUF as a destination register. Reception is initiated in Mode 0 by the condition RI = 0 and REN = 1. Reception is initiated in the other modes by the incoming start bit if REN = 1. UART Serial Port Baud Rate Generation Mode 0 Baud Rate Generation The baud rate in Mode 0 is fixed: Mode 0 Baud Rate = (Core Clock Frequency1/12) NOTE 1 In these descriptions Core Clock Frequency refers to the core clock frequency selected via the CD0–2 bits in the PLLCON SFR. Mode 2 Baud Rate Generation The baud rate in Mode 2 depends on the value of the SMOD bit in the PCON SFR. If SMOD = 0, the baud rate is 1/64 of the core clock. If SMOD = 1, the baud rate is 1/32 of the core clock: Mode 2 Baud Rate = (2SMOD/64) ∞ (Core Clock Frequency) Mode 1 and 3 Baud Rate Generation Traditionally the baud rates in Modes 1 and 3 are determined by the overflow rate in Timer 1 or Timer 2, or both (one for transmit and the other for receive). On the ADuC834 however the baud rate can also be generated via a seperate baud rate generator to achieve higher baud rates and allow all three be used for other functions. –61– PRELIMINARY TECHNICAL DATA ADuC834 BAUD RATE GENERATION USING TIMER 1 AND TIMER 2 Timer 2 Generated Baud Rates Timer 1 Generated Baud Rates Baud rates can also be generated using Timer 2. Using Timer 2 is similar to using Timer 1 in that the timer must overflow 16 times before a bit is transmitted/received. Because Timer 2 has a 16-bit autoreload mode a wider range of baud rates is possible using Timer 2. When Timer 1 is used as the baud rate generator, the baud rates in Modes 1 and 3 are determined by the Timer 1 overflow rate and the value of SMOD as follows: Modes 1 and 3 Baud Rate = (2SMOD/32) × (Timer 1 Overflow Rate) Modes 1 and 3 Baud Rate = (1/16) × (Timer 2 Overflow Rate) The Timer 1 interrupt should be disabled in this application. The Timer itself can be configured for either timer or counter operation, and in any of its three running modes. In the most typical application, it is configured for timer operation, in the autoreload mode (high nibble of TMOD = 0100Binary). In that case, the baud rate is given by the formula: Therefore, when Timer 2 is used to generate baud rates, the timer increments every two clock cycles and not every core machine cycle as before. Hence, it increments six times faster than Timer 1, and therefore baud rates six times faster are possible. Because Timer 2 has 16-bit autoreload capability, very low baud rates are still possible. Modes 1 and 3 Baud Rate = (2SMOD/32) × (Core Clock/(12 × [256-TH1])) Timer 2 is selected as the baud rate generator by setting the TCLK and/or RCLK in T2CON. The baud rates for transmit and receive can be simultaneously different. Setting RCLK and/or TCLK puts Timer 2 into its baud rate generator mode as shown in Figure 52. A very low baud rate can also be achieved with Timer 1 by leaving the Timer 1 interrupt enabled, and configuring the timer to run as a 16-bit timer (high nibble of TMOD = 0100Binary), and using the Timer 1 interrupt to do a 16-bit software reload. Table XXXI below, shows some commonly-used baud rates and how they might be calculated from a core clock frequency of 1.5728 MHz and 12.58 MHz using timer 1. Generally speaking, a 5% error is tolerable using asynchronous (start/stop) communications. In this case, the baud rate is given by the formula: Modes 1 and 3 Baud Rate = (Core Clk)/(32 × [65536 – (RCAP2H, RCAP2L)]) Table XXXII shows some commonly used baud rates and how they might be calculated from a core clock frequency of 1.5728 MHz and 12.5829 MHz using timer 2. Table XXXII. Commonly used Baud Rates, Timer 2 Table XXXI. Commonly-Used Baud Rates, Timer 1 Ideal Baud Core CLK SMOD Value TH1-Reload Value Actual Baud % Error 9600 1600 1200 1200 12.58 12.58 12.58 1.57 1 1 1 1 –7 (F9h) –27 (E5h) –55 (C9h) –7 (F9h) 9362 1627 1192 1170 2.5 1.1 0.7 2.5 Ideal Baud Core CLK RCAP2H Value RCAP2L Value Actual Baud % Error 19200 9600 1600 1200 9600 1600 1200 12.58 12.58 12.58 12.58 1.57 1.57 1.57 –1 –1 –1 –2 –1 –1 –1 –20 (ECh) –41 (D7h) –164 (5Ch) –72 (B8h) –5 (FBh) –20 (ECh) –41 (D7h) 19661 9591 2398 1199 9830 1658 1199 2.4 0.1 0.1 0.1 2.4 2.4 0.1 (FFh) (FFh) (FFh) (FEh) (FFh) (FFh) (FFh) TIM E R 1 O V ERFLO W 2 NO TE : O S C. FRE Q . IS DIV IDE D B Y 2, NO T 12. 0 CO RE CLK * 2 S M OD C/T 2 = 0 TL2 (8-B ITS ) T2 P IN 1 CO NTR O L TH2 (8-B ITS ) TIM E R 2 O V ERFLO W 1 0 RCLK C/T 2 = 1 16 1 TR2 RX CLO CK 0 TCLK RE LO A D 16 RCA P 2L TX CLO CK RCA P 2H NO TE A V A ILA BILITY OF A DDITIO NA L E X TE RNA L INTE RRUP T EXF 2 T2E X P IN TIM E R 2 INTE RRUP T CO NTR O L TRA NS ITION DE TE CTO R E X E N2 * THE CORE CLO CK IS THE O UTP UT OF THE P LL A S DE S CRIB E D ON P A GE 46 Figure 52. Timer 2, UART Baud Rates –62– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 BAUD RATE GENERATION USING TIMER 3 The T3FD register writes to the fractional divider. This register can be calculated using the following equation: The ADuC824 and the ADuC816 can only achieve PC baud rates up to 57,600baud. They cannot achieve a baud rate of 115,200. To address this problem the ADuC834 has added a fourth timer specifically for generating high accuracy baudrates. Timer 3 can be used instead of timer1 or timer2 for generating the baudrate, allowing a much wider range of baud rates to be accurately obtained. This also frees up the other three timers allowing them to be used for different applications. As shown in figure 53 timer 3 uses a programmable fractional divider to divide the core clock down into a wide range of clocks. These are then passed through a seven stage binary divider. Two SFRs (T3CON and T3FD) are required to use the Timer 3 baud rate generator. T3FD = (2 x fVCO) / (Baud Rate x 2CD x 2DIV) - 64 where DIV is the 3 LSBs of the T3CON SFR. NOTE: The value of DIV should be chosen to ensure that: 0 ≤ T3FD < 64 or 64 ≤ (2 x fVCO) / (Baud Rate x 2CD x 2DIV) < 128 e.g. to get a baud rate of 115200 while operating from the maximum core frequency (CD=0) we get: T3FD = 218.45/2DIV - 64 therefore choose DIV = 1 T3CON is the baud rate control SFR, allowing timer 3 to be used to set up the UART baud rate, and setting up the binary divider (DIV). T3FD is the fractional divider ratio required to achieve the required baudrate. FRA CTIO NA L DIVIDE R TIM ER 1/TIM ER 2 RX CLO CK (FIG 52) 2 DIV 1 0 1 0 = 109.22 -64 = 45.22 => 2Dh DIV2-0 = 1 (=>T3CON = 81h ) The actual baudrate can then be calculated using the following formula: TIM ER 1/TIM ER 2 TX CLOCK (FIG 52) CO RE CLK * T3FD Baud Rate = (2 x fVCO) / ((T3FD + 64) x 2CD x 2DIV) (1 + T3FD/64) RX CLO CK Table XXXIV. Commonly used Baud Rates using Timer 3 32 T3 RX /TX CLO CK T3E N TX CLOCK Ideal Baud CD DIV T3CON T3FD Error 230400 0 0 80h 2Dh 0.2% 115200 0 115200 1 1 0 81h 80h 2Dh 2Dh 0.2% 0.2% 57600 57600 57600 0 1 2 2 1 0 82h 81h 80h 2Dh 2Dh 2Dh 0.2% 0.2% 0.2% 38400 38400 38400 38400 0 1 2 3 3 2 1 0 83h 82h 81h 80h 12h 12h 12h 12h 0.1% 0.1% 0.1% 0.1% 19200 19200 19200 19200 19200 0 1 2 3 4 4 3 2 1 0 84h 83h 82h 81h 80h 12h 12h 12h 12h 12h 0.1% 0.1% 0.1% 0.1% 0.1% 9600 9600 9600 9600 9600 9600 0 1 2 3 4 5 5 4 3 2 1 0 85h 84h 83h 82h 81h 80h 12h 12h 12h 12h 12h 12h 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% * THE CORE CLOCK IS THE OUTPUT OF THE P LL A S DE S CRIB E D O N PA G E 46. Figure 53. Timer 3, UART Baud Rates Table XXXIII. T3CON SFR Bit Designations Bit Name Description 7 T3EN Set to enable Timer 3 to generate the baud rate. When set PCON.7, T2CON.4 and T2CON.5 are ignored. Cleared to let the baud rate be generated as per a standard 8052. Binary Divider Factor DIV2 DIV1 DIV0 Bin Divider 0 0 0 1 0 0 1 2 0 1 0 4 0 1 1 8 1 0 0 16 1 0 1 32 1 1 0 64 1 1 1 128 6 5 4 3 2 1 0 DIV2 DIV1 DIV0 REV. PrC (12 March 2002) –63– PRELIMINARY TECHNICAL DATA ADuC834 INTERRUPT SYSTEM The ADuC834 provides a total of eleven interrupt sources with two priority levels. The control and configuration of the interrupt system is carried out through three Interrupt-related SFRs. These are the IE (Interrupt Enable) register, the IP (Interrupt Priority Register) and the IEIP2 (secondary interrupt enable/priority SFR) registers. There bit definifitions are given in the tables below. IE: Interrupt Enable Register SFR Address Power-On Default Value Bit Addressable A8H 00H Yes Bit Name Description 7 6 5 4 3 2 1 0 EA EADC ET2 ES ET1 EX1 ET0 EX0 Written by User to Enable ‘1’ or Disable ‘0’ All Interrupt Sources Written by User to Enable ‘1’ or Disable ‘0’ ADC Interrupt Written by User to Enable ‘1’ or Disable ‘0’ Timer 2 Interrupt Written by User to Enable ‘1’ or Disable ‘0’ UART Serial Port Interrupt Written by User to Enable ‘1’ or Disable ‘0’ Timer 1 Interrupt Written by User to Enable ‘1’ or Disable ‘0’ External Interrupt 1 Written by User to Enable ‘1’ or Disable ‘0’ Timer 0 Interrupt Written by User to Enable ‘1’ or Disable ‘0’ External Interrupt 0 Table XXXV. IE SFR Bit Designations IP: Interrupt Priority Register SFR Address Power-On Default Value Bit Addressable B8H 00H Yes Bit Name Description 7 6 5 4 3 2 1 0 --PADC PT2 PS PT1 PX1 PT0 PX0 Reserved for Future Use. Written by User to Select ADC Interrupt Priority (‘1’ = High; ‘0’ = Low) Written by User to Select Timer 2 Interrupt Priority (‘1’ = High; ‘0’ = Low) Written by User to Select UART Serial Port Interrupt Priority (‘1’ = High; ‘0’ = Low) Written by User to Select Timer 1 Interrupt Priority (‘1’ = High; ‘0’ = Low) Written by User to Select External Interrupt 1 Priority (‘1’ = High; ‘0’ = Low) Written by User to Select Timer 0 Interrupt Priority (‘1’ = High; ‘0’ = Low) Written by User to Select External Interrupt 0 Priority (‘1’ = High; ‘0’ = Low) Table XXXVI. IP SFR Bit Designations IEIP2: Secondary Interrupt Enable and Priority Register SFR Address Power-On Default Value Bit Addressable A9H A0H No Bit Name Description 7 6 5 4 3 2 1 0 --PTI PPSM PSI --ETI EPSM ESI Reserved for Future Use. Written by User to Select TIC Interrupt Priority (‘1’ = High; ‘0’ = Low). Written by User to Select Power Supply Monitor Interrupt Priority (‘1’ = High; ‘0’ = Low). Written by User to Select SPI Serial Port Interrupt Priority (‘1’ = High; ‘0’ = Low). Reserved, This Bit Must Be ‘0.’ Written by User to Enable ‘1’ or Disable ‘0’ TIC Interrupt. Written by User to Enable ‘1’ or Disable ‘0’ Power Supply Monitor Interrupt. Written by User to Enable ‘1’ or Disable ‘0’ SPI Serial Port Interrupt. Table XXXVII. IEIP2 SFR Bit Designations –64– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Interrupt Priority Interrupt Vectors The Interrupt Enable registers are written by the user to enable individual interrupt sources, while the Interrupt Priority registers allow the user to select one of two priority levels for each interrupt. An interrupt of a high priority may interrupt the service routine of a low priority interrupt, and if two interrupts of different priority occur at the same time, the higher level interrupt will be serviced first. An interrupt cannot be interrupted by another interrupt of the same priority level. If two interrupts of the same priority level occur simultaneously, a polling sequence is used to determine which interrupt is serviced first. The polling sequence is shown in Table XXXVIII. When an interrupt occurs the program counter is pushed onto the stack and the corresponding interrupt vector address is loaded into the program counter. The interrupt vector addresses are shown in Table XXXIX. Table XXXVIII. Priority within an Interrupt Level Source Priority Description PSMI WDS IE0 RDY0/RDY1 TF0 IE1 TF1 ISPI RI + TI TF2 + EXF2 TII 1 (Highest) 2 3 4 5 6 7 8 9 10 11 (Lowest) Power Supply Monitor Interrupt Watchdog Interrupt External Interrupt 0 ADC Interrupt Timer/Counter 0 Interrupt External Interrupt 1 Timer/Counter 1 Interrupt SPI Interrupt Serial Interrupt Timer/Counter 2 Interrupt Time Interval Counter Interrupt REV. PrC (12 March 2002) Table XXXiX. Interrupt Vector Addresses Source Vector Address IE0 TF0 IE1 TF1 RI + TI TF2 + EXF2 RDY0/RDY1 (ADC) ISPI PSMI TII WDS (WDIR = 1)1 0003 Hex 000B Hex 0013 Hex 001B Hex 0023 Hex 002B Hex 0033 Hex 003B Hex 0043 Hex 0053 Hex 005B Hex Notes 1 The watchdog can be configured to generate an interrupt instead of a reset when it times out. This is used for logging errors or to examine the internal status of the microcontroller core to understand, from a software debug point of view, why a watchdog timeout occurred. The watchdog interrupt is slightly different from the normal interrupts in that its priority level is always set to 1 and it is not possible to disable the interrupt via the global disable bit (EA) in the IE SFR. This is done to ensure that the interrupt will always be responded to if a watchdog timeout occurs. The watchdog will only produce an interrupt if the watchdog timeout is greater than zero. –65– . PRELIMINARY TECHNICAL DATA ADuC834 ADUC834 HARDWARE DESIGN CONSIDERATIONS Though both external program memory and external data memory are accessed by some of the same pins, the two are completely independent of each other from a software point of view. For example, the chip can read/write external data memory while executing from external program memory. This section outlines some of the key hardware design considerations that must be addressed when integrating the ADuC834 into any hardware system. External Memory Interface In addition to its internal program and data memories, the ADuC834 can access up to 64 Kbytes of external program memory (ROM/PROM/etc.) and up to 16 Mbytes of external data memory (SRAM). Figure 55 shows a hardware configuration for accessing up to 64 Kbytes of external RAM. This interface is standard to any 8051 compatible MCU. ADuC83 4 S RA M D0›D7 (DA TA) P0 To select from which code space (internal or external program memory) to begin executing instructions, tie the EA (external access) pin high or low, respectively. When EA is high (pulled up to VDD), user program execution will start at address 0 of the internal 62 Kbytes Flash/EE code space. When EA is low (tied to ground) user program execution will start at address 0 of the external code space. When executing from internal code space accesses to the program space above F7FF hex (62K) will be read as NOP instructions. LATCH A 0›A 7 A LE Note that a second very important function of the EA pin is described in the Single Pin Emulation Mode section of this data sheet. P2 A 8›A 15 RD OE WR WE Figure 55. External Data Memory Interface (64 K Address Space) External program memory (if used) must be connected to the ADuC834 as illustrated in Figure 54. Note that 16 I/O lines (Ports 0 and 2) are dedicated to bus functions during external program memory fetches. Port 0 (P0) serves as a multiplexed address/data bus. It emits the low byte of the program counter (PCL) as an address, and then goes into a float state awaiting the arrival of the code byte from the program memory. During the time that the low byte of the program counter is valid on P0, the signal ALE (Address Latch Enable) clocks this byte into an address latch. Meanwhile, Port 2 (P2) emits the high byte of the program counter (PCH), then PSEN strobes the EPROM and the code byte is read into the ADuC834. If access to more than 64 Kbytes of RAM is desired, a feature unique to the MicroConverter allows addressing up to 16 Mbytes of external RAM simply by adding an additional latch as illustrated in Figure 56. ADuC83 4 S RA M D0›D7 (DA TA) P0 LATCH A 0›A 7 A LE A 8›A 15 P2 LATCH A 16›A23 ADuC83 4 E P RO M D0›D7 (INS TRUCTIO N) P0 LATCH A 0›A 7 PSEN A 8›A 15 OE Figure 54. External Program Memory Interface Note that program memory addresses are always 16 bits wide, even in cases where the actual amount of program memory used is less than 64 Kbytes. External program execution sacrifices two of the 8-bit ports (P0 and P2) to the function of addressing the program memory. While executing from external program memory, Ports 0 and 2 can be used simultaneously for read/ write access to external data memory, but not for general-purpose I/O. OE WE Figure 56. External Data Memory Interface (16 M Bytes Address Space) A LE P2 RD WR In either implementation, Port 0 (P0) serves as a multiplexed address/data bus. It emits the low byte of the data pointer (DPL) as an address, which is latched by a pulse of ALE prior to data being placed on the bus by the ADuC834 (write operation) or the SRAM (read operation). Port 2 (P2) provides the data pointer page byte (DPP) to be latched by ALE, followed by the data pointer high byte (DPH). If no latch is connected to P2, DPP is ignored by the SRAM, and the 8051 standard of 64 Kbyte external data memory access is maintained. Detailed timing diagrams of external program and data memory read and write access can be found in the timing specification sections of this data sheet. –66– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 Power Supplies Power-On Reset Operation The ADuC834’s operational power supply voltage range is 2.7 V to 5.25 V. Although the guaranteed data sheet specifications are given only for power supplies within 2.7 V to 3.6 V or +5% of the nominal 5 V level, the chip will function equally well at any power supply level between 2.7 V and 5.25 V. An internal POR (power-on reset) is implemented on the ADuC834. For DVDD below 2.63V the internal POR will hold the ADuC834 in reset. As DVDD rises above 2.63V an internal timer will timeout for approx 128ms before the part is released from reset. The user must ensure that the power supply must have reached at least a 2.7 V level by this time. Separate analog and digital power supply pins (AVDD and DVDD respectively) allow AVDD to be kept relatively free of noisy digital signals often present on the system DVDD line. In this mode the part can also operate with split supplies; that is, using different voltage supply levels for each supply. For example, this means that the system can be designed to operate with a DVDD voltage level of 3 V while the AVDD level can be at 5 V or vice-versa if required. A typical split supply configuration is show in Figure 57. A NA LOG S UP P LY DIGITA L S UP P LY 10 F 10 F + › + › ADuC834 20 34 DV DD A V DD 5 0.1 F 48 0.1 F 21 35 DG N D A GND 6 47 Figure 57. External Dual Supply Connections As an alternative to providing two separate power supplies, AV DD can be kept quiet by placing a small series resistor and/or ferrite bead between it and DVDD, and then decoupling AVDD separately to ground. An example of this configuration is shown in Figure 58. With this configuration other analog circuitry (such as op-amps, voltage reference, etc.) can be powered from the AVDD supply line as well. DIGITA L S UP P LY + › 10 F BEAD 1.6⍀ 10 F ADuC834 20 34 DV DD A V DD 5 A G ND 6 0.1 F 48 0.1 F 21 35 Power Consumption The “CORE” values given on the spec pages represent the current drawn by DVDD, while the rest (“ADC”, and “DAC”) are pulled by the AVDD pin and can be disabled in software when not in use. The other on-chip peripherals (watchdog timer, power supply monitor, etc.) consume negligible current and are therefore lumped in with the “CORE” operating current here. Of course, the user must add any currents sourced by the parallel and serial I/O pins, and that sourced by the DAC, in order to determine the total current needed at the ADuC834’s supply pins. Also, current draw from the DVDD supply will increase by approximately 5 mA during Flash/EE erase and program cycles Power-Saving Modes Setting the Idle and Power-Down Mode bits, PCON.0 and PCON.1 respectively, in the PCON SFR described in Table II, allows the chip to be switched from normal mode into idle mode, and also into full power-down mode. In idle mode, the oscillator continues to run, but the core clock generated from the PLL is halted. The on-chip peripherals continue to receive the clock, and remain functional. The CPU status is preserved with the stack pointer, program counter, and all other internal registers maintain their data during idle mode. Port pins and DAC output pins also retain their states, and ALE and PSEN outputs go high in this mode. The chip will recover from idle mode upon receiving any enabled interrupt, or on receiving a hardware reset. In power-down mode, both the PLL and the clock to the core are stopped. The on-chip oscillator can be halted or can continue to oscillate depending on the state of the oscillator power-down bit (OSC_PD) in the PLLCON SFR. The TIC, being driven directly from the oscillator, can also be enabled during powerdown. All other on-chip peripherals however, are shut down. Port pins retain their logic levels in this mode, but the DAC output goes to a high-impedance state (three-state) while ALE and PSEN outputs are held low. During full power-down mode, the ADuC834 typically consumes a total of 15 µA. There are five ways of terminating power-down mode: DGN D 47 Figure 58. External Single Supply Connections Notice that in both Figure 57 and Figure 58, a large value (10 µF) reservoir capacitor sits on DVDD and a separate 10 µF capacitor sits on AV DD. Also, local small-value (0.1 µF) capacitors are located at each VDD pin of the chip. As per standard design practice, be sure to include all of these capacitors, and ensure the smaller capacitors are closest to each AVDD pin with trace lengths as short as possible. Connect the ground terminal of each of these capacitors directly to the underlying ground plane. Finally, it should also be noticed that, at all times, the analog and digital ground pins on the ADuC834 should be referenced to the same system ground reference point. REV. PrC (12 March 2002) Asserting the RESET pin (#15) Returns to normal mode all registers are set to their default state and program execution starts at the reset vector once the Reset pin is de-asserted. Cycling Power All registers are set to their default state and program execution starts at the reset vector approximately 128ms later. Time Interval Counter (TIC) Interrupt Power-down mode is terminated and the CPU services the TIC interrupt. The RETI at the end of the TIC ISR will return the core to the instruction after that which enabled power down. SPI Interrupt Power-down mode is terminated and the CPU services the SPI interrupt. The RETI at the end of the ISR will return the core to the instruction after that which enabled power down. It –67– PRELIMINARY TECHNICAL DATA ADuC834 should be noted that the SPI power down interrupt enable bit (SERIPD) in the PCON SFR must first be set to allow this mode of operation. INT0 Interrupt Power-down mode is terminated and the CPU services the INT0 interrupt. The RETI at the end of the ISR will return the core to the instruction after that which enabled power-down. It should be noted that the INT0 power-down interrupt enable bit (INT0PD) in the PCON SFR must first be set to allow this mode of operation. Grounding and Board Layout Recommendations As with all high resolution data converters, special attention must be paid to grounding and PC board layout of ADuC834-based designs in order to achieve optimum performance from the ADCs and DAC. Although the ADuC834 has separate pins for analog and digital ground (AGND and DGND), the user must not tie these to two separate ground planes unless the two ground planes are connected together very close to the ADuC834, as illustrated in the simplified example of Figure 59a. In systems where digital and analog ground planes are connected together somewhere else (at the system’s power supply for example), they cannot be connected again near the ADuC834 since a ground loop would result. In these cases, tie the ADuC834’s AGND and DGND pins all to the analog ground plane, as illustrated in Figure 59b. In systems with only one ground plane, ensure that the digital and analog components are physically separated onto separate halves of the board such that digital return currents do not flow near analog circuitry and vice versa. The ADuC834 can then be placed between the digital and analog sections, as illustrated in Figure 59c. A A GND B DG N D A GND C DG N D PLACE A NA LOG CO MP O NE NTS HE RE ADuC834 System Self-Identification In some hardware designs it may be an advantage for the software running on the ADuC834 target to identify the host MicroConverter. For example, code running on the ADuC834 may also be used with the ADuC824 or the ADuC816 but is required to operate differently. The CHIPID SFR is a read-only register located at SFR address C2 hex. The upper nibble of this SFR is set to 2Xhex to designate an ADuC834. As shown in the typical external crystal connection diagram in Figure 60, two internal 12 pF capacitors are provided on-chip. These are connected internally, directly to the XTAL1 and XTAL2 pins and the total input capacitances at both pins is detailed in the specification section of this data sheet. The value of the total load capacitance required for the external crystal should be the value recommended by the crystal manufacturer for use with that specific crystal. In many cases, because of the on-chip capacitors, additional external load capacitors will not be required. PLACE DIGITA L CO MP O NE NTS HE RE PLACE A NA LOG CO MP O NE NTS HE RE If the user plans to connect fast logic signals (rise/fall time < 5 ns) to any of the ADuC834’s digital inputs, add a series resistor to each relevant line to keep rise and fall times longer than 5 ns at the ADuC834 input pins. A value of 100Ω or 200Ω is usually sufficient to prevent high-speed signals from coupling capacitively into the ADuC834 and affecting the accuracy of ADC conversions. Clock Oscillator As described earlier, the core clock frequency for the ADuC834 is generated from an on-chip PLL that locks onto a multiple (384 times) of 32.768 kHz. The latter is generated from an internal clock oscillator. To use the internal clock oscillator, connect a 32.768 kHz parallel resonant crystal between XTAL1 and XTAL2 pins (32 and 33) as shown in Figure 60. PLACE DIGITA L CO MP O NE NTS HE RE PLACE ANALOG CO MP ONE NTS HE RE back to ground. Make sure the return paths for all currents are as close as possible to the paths the currents took to reach their destinations. For example, do not power components on the analog side of Figure 59b with DVDD since that would force return currents from DVDD to flow through AGND. Also, try to avoid digital currents flowing under analog circuitry, which could happen if the user placed a noisy digital chip on the left half of the board in Figure 59c. Whenever possible, avoid large discontinuities in the ground plane(s) (such as are formed by a long trace on the same layer), since they force return signals to travel a longer path. And of course, make all connections to the ground plane directly, with little or no trace separating the pin from its via to ground. ADuC8 34 PLACE DIGITA L CO MP ONE NTS HE RE X TA L1 12pF 32.768kHz G ND X TA L2 Figure 59. System Grounding Schemes In all of these scenarios, and in more complicated real-life applications, keep in mind the flow of current from the supplies and 12pF TO INTE RNAL P LL Figure 60. External Parallel Resonant Crystal Connections –68– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 OTHER HARDWARE CONSIDERATIONS the standard connector that comes with the single-pin emulator available from Accutron Limited (www.accutron.com), use a 2pin 0.1-inch pitch "Friction Lock" header from Molex (www.molex.com) such as their part number 22-27-2021. Be sure to observe the polarity of this header. As represented in Figure 61, when the Friction Lock tab is at the right, the ground pin should be the lower of the two pins (when viewed from the top). To facilitate in-circuit programming, plus in-circuit debug and emulation options, users will want to implement some simple connection points in their hardware that will allow easy access to download, debug, and emulation modes. In-Circuit Serial Download Access Nearly all ADuC834 designs will want to take advantage of the in-circuit reprogrammability of the chip. This is accomplished by a connection to the ADuC834’s UART, which requires an external RS-232 chip for level translation if downloading code from a PC. Basic configuration of an RS-232 connection is illustrated in Figure 61 with a simple ADM202-based circuit. If users would rather not design an RS-232 chip onto a board, refer to the application note “uC006–A 4-Wire UART-to-PC Interface”1 for a simple (and zero-cost-per-board) method of gaining in-circuit serial download access to the ADuC834. Enhanced-Hooks Emulation Mode ADuC834 also supports enhanced-hooks emulation mode. An enhanced-hooks-based emulator is available from Metalink Corporation (www.metaice.com). No special hardware support for these emulators needs to be designed onto the board since these are "pod-style" emulators where users must replace the chip on their board with a header device that the emulator pod plugs into. The only hardware concern is then one of determining if adequate space is available for the emulator pod to fit into the system enclosure. Note 1 Application note uC006 is available at www.analog.com/microconverter Typical System Configuration In addition to the basic UART connections, users will also need a way to trigger the chip into download mode. This is accomplished via a 1 kΩ pull-down resistor that can be jumpered onto the PSEN pin, as shown in Figure 61. To get the ADuC834 into download mode, simply connect this jumper and power-cycle the device (or manually reset the device, if a manual reset button is available) and it will be ready to receive a new program serially. With the jumper removed, the device will come up in normal mode (and run the program) whenever power is cycled or RESET is toggled. A typical ADuC834 configuration is shown in Figure 61. It summarizes some of the hardware considerations discussed in the previous paragraphs. Figure 61 also includes connections for a typical analog measurement application of the ADuC834, namely an interface to an RTD (Resistive Temperature Device). The arrangement shown is commonly referred to as a 4-wire RTD configuration. Note that PSEN is normally an output (as described in the External Memory Interface section) and it is sampled as an input only on the falling edge of RESET (i.e., at power-up or upon an external manual reset). Note also that if any external circuitry unintentionally pulls PSEN low during power-up or reset events, it could cause the chip to enter download mode and therefore fail to begin user code execution as it should. To prevent this, ensure that no external signals are capable of pulling the PSEN pin low, except for the external PSEN jumper itself. Embedded Serial Port Debugger From a hardware perspective, entry to serial port debug mode is identical to the serial download entry sequence described above. In fact, both serial download and serial port debug modes can be thought of as essentially one mode of operation used in two different ways. Here, the on-chip excitation current sources are enabled to excite the sensor. An external differential reference voltage is generated by the current sourced through resistor R1. This current also flows directly through the RTD, which generates a differential voltage directly proportional to temperature. This differential voltage is routed directly to the positive and negative inputs of the primary ADC (AIN1, AIN2 respectively). A second external resistor, R2, is used to ensure that absolute analog input voltage on the negative input to the primary ADC stays within that specified for the ADuC834, i.e., AGND + 100 mV. It should also be noted that variations in the excitation current do not affect the measurement system as the input voltage from the RTD and reference voltage across R1 vary ratiometrically with the excitation current. Resistor R1 must, however, have a low temperature coefficient to avoid errors in the reference voltage over temperature. Note that the serial port debugger is fully contained on the ADuC834 device, (unlike "ROM monitor" type debuggers) and therefore no external memory is needed to enable insystem debug sessions. Single-Pin Emulation Mode Also built into the ADuC834 is a dedicated controller for single-pin in-circuit emulation (ICE) using standard production ADuC834 devices. In this mode, emulation access is gained by connection to a single pin, the EA pin. Normally, this pin is hard-wired either high or low to select execution from internal or external program memory space, as described earlier. To enable single-pin emulation mode, however, users will need to pull the EA pin high through a 1 kΩ resistor as shown in Figure 61. The emulator will then connect to the 2pin header also shown in Figure 61. To be compatible with REV. PrC (12 March 2002) –69– PRELIMINARY TECHNICAL DATA ADuC834 DO W NLOA D/D E B UG E NA B LE JUM P E R (NO RM A LLY O P E N) 1k ⍀ DV DD DV DD 1k ⍀ 46 45 44 43 42 41 2-P IN HE A DE R FO R E M ULA TION A CCE S S (NO RM A LLY O P E N) 40 EA 47 PSEN 50 48 DV DD 51 49 DG N D 52 39 38 P 1.2/I E XC 1/DA C 200 A /4 00 A E XC IT A T IO N CU R RE N T A V DD 37 P 1.3/A IN5/DA C 36 A V DD A IN + A G ND RTD A IN › A D uC 834 RE FIN› V RE F + DV DD 34 X TA L2 33 X TA L1 32 RE FIN+ R R EF 5.6k ⍀ DV DD DG N D 35 P 1.4/A IN1 31 P 1.5/A IN2 30 32.766kHz DG N D DV DD RX D TX D RE S E T 29 28 27 NO T CO NNE CTE D IN THIS E X A M P LE DV DD DV DD R S2 32 D O N G LE A DM 202 C1+ V+ VCC 9-P IN D-S UB FE MA LE G ND 1 C1› T1O UT 2 C2+ R1IN 3 C2› R1O UT 4 V› T1IN 5 T2O UT T2IN 6 R2O UT 7 R2IN 8 9 Figure 61. Typical System Configuration –70– (12 March 2002) REV. PrC PRELIMINARY TECHNICAL DATA ADuC834 QUICKSTART DEVELOPMENT SYSTEM The QuickStart Development System is a full featured, low cost development tool suite supporting the ADuC834. The system consists of the following PC-based (Windows-compatible) hardware and software development tools. Hardware: ADuC834 Evaluation Board, and Serial Port Cable Code Development: 8051 Assembler Code Functionality: ADSIM, Windows MicroConverter Code Simulator In-Circuit Code Download: Serial Downloader In-Circuit Debugger/Emulator: Serial Port/Single Pin Debugger/Emulator with Assembly and C Source debug Misc. Other: CD-ROM Documentation and Two Additional Prototype Devices Figures 62 shows the typical components of a QuickStart Development System while Figure 63 shows a typical debug session. A brief description of some of the software tools’ components in the QuickStart Development System is given below. Figure 62. Components of the QuickStart Dev System Figure. 63. Typical Debug Session Download- In Circuit Downloader The Serial Downloader is a software program that allows the user to serially download an assembled program (Intel Hex format file) to the on-chip program FLASH memory via the serial COM1 port on a standard PC. An Application Note (uC004) detailing this serial download protocol is available from www.analog.com/microconverter. DeBugger/Emulator — In-Circuit Debugger/Emulator The Debugger/Emulator is a Windows application that allows the user to debug code execution on silicon using the MicroConverter UART serial port or via a single pin to provide non-intrusive debug. The debugger provides access to all on-chip peripherals during a typical debug session, including single-step and multiple break-point code execution control. C source and Assembly level debug are both possible with the emulator. ADSIM—Windows Simulator The Simulator is a Windows application that fully simulates the MicroConverter functionality including ADC and DAC peripherals. The simulator provides an easy-to-use, intuitive, interface to the MicroConverter functionality and integrates many standard debug features; including multiple breakpoints, single stepping; and code execution trace capability. This tool can be used both as a tutorial guide to the part as well as an efficient way to prove code functionality before moving to a hardware platform. REV. PrC (12 March 2002) –71– ADuC834 OUTLINE DIMENSIONS Dimensions shown in inches and (mm). 52-Lead MQFP (S-52) 0.557 (14.15) 0.094 (2.39) 0.537 (13.65) 0.398 (10.11) 0.084 (2.13) 0.390 (9.91) 0.037 (0.95) 0.026 (0.65) 52 40 39 1 0.012 (0.30) 13 14 0.006 (0.15) 0.537 (13.65) 0.398 (10.11) TOP V IE W (PINS D O W N ) 0.390 (9.91) 0.557 (14.15) P IN 1 S E ATING P LA NE 27 26 0.008 (0.20) 0.006 (0.15) 0.082 (2.09) 0.078 (1.97) 0.0256 (0.65) BSC –72– 0.014 (0.35) 0.010 (0.25) (12 March 2002) REV. PrC