CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller 1. Features (CY7C68013A/14A/15A/16A) ■ USB 2.0 USB IF high-speed certified (TID # 40460272) ■ Single chip integrated USB 2.0 transceiver, smart SIE, and enhanced 8051 microprocessor ■ Fit, form and function compatible with the FX2 ❐ Pin compatible ❐ Object-code-compatible ❐ Functionally compatible (FX2LP is a superset) ■ Ultra Low power: ICC no more than 85 mA in any mode ❐ Ideal for bus and battery powered applications ■ Software: 8051 code runs from: ❐ Internal RAM, which is downloaded via USB ❐ Internal RAM, which is loaded from EEPROM ❐ External memory device (128 pin package) ■ 16 KBytes of on-chip Code/Data RAM ■ Four programmable BULK/INTERRUPT/ISOCHRONOUS endpoints ❐ Buffering options: double, triple, and quad ■ Additional programmable (BULK/INTERRUPT) 64 byte endpoint ■ 8-bit or 16-bit external data interface ■ Smart Media Standard ECC generation Cypress Semiconductor Corporation Document #: 38-08032 Rev. *L • ■ GPIF (General Programmable Interface) ❐ Enables direct connection to most parallel interfaces ❐ Programmable waveform descriptors and configuration registers to define waveforms ❐ Supports multiple Ready (RDY) inputs and Control (CTL) outputs ■ Integrated, industry standard enhanced 8051 ❐ 48 MHz, 24 MHz, or 12 MHz CPU operation ❐ Four clocks per instruction cycle ❐ Two USARTS ❐ Three counter/timers ❐ Expanded interrupt system ❐ Two data pointers ■ 3.3V operation with 5V tolerant inputs ■ Vectored USB interrupts and GPIF/FIFO interrupts ■ Separate data buffers for the Setup and Data portions of a CONTROL transfer ■ Integrated I2C controller, runs at 100 or 400 kHz ■ Four integrated FIFOs ❐ Integrated glue logic and FIFOs lower system cost ❐ Automatic conversion to and from 16-bit buses ❐ Master or slave operation ❐ Uses external clock or asynchronous strobes ❐ Easy interface to ASIC and DSP ICs ■ Available in Commercial and Industrial temperature grade (all packages except VFBGA) 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised February 8, 2008 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Logic Block Diagram High performance micro using standard tools with lower-power options 24 MHz Ext. XTAL /0.5 /1.0 /2.0 I2C 8051 Core 12/24/48 MHz, four clocks/cycle Address (16) / Data Bus (8) x20 PLL VCC Data (8) Address (16) FX2LP 1.5k connected for full-speed D+ D– USB 2.0 XCVR Integrated full-speed and high-speed XCVR CY Smart USB 1.1/2.0 Engine 16 KB RAM Master “Soft Configuration” Easy firmware changes RDY (6) CTL (6) General programmable I/F to ASIC/DSP or bus standards such as ATAPI, EPP, etc. 8/16 Up to 96 MBytes/s burst rate ADDR (9) GPIF ECC 4 kB FIFO Enhanced USB core Simplifies 8051 code Abundant IO including two USARTS Additional IOs (24) FIFO and endpoint memory (master or slave operation) 1.1 Features (CY7C68013A/14A only) ■ CY7C68014A: Ideal for battery powered applications ❐ Suspend current: 100 μA (typ) Cypress has created a cost effective solution that provides superior time-to-market advantages with low power to enable bus powered applications. ■ CY7C68013A: Ideal for non-battery powered applications ❐ Suspend current: 300 μA (typ) ■ Available in five lead-free packages with up to 40 GPIOs ❐ 128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs), 56-pin QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VFBGA (24 GPIOs) The ingenious architecture of FX2LP results in data transfer rates of over 53 Mbytes per second, the maximum allowable USB 2.0 bandwidth, while still using a low cost 8051 microcontroller in a package as small as a 56 VFBGA (5mm x 5mm). Because it incorporates the USB 2.0 transceiver, the FX2LP is more economical, providing a smaller footprint solution than USB 2.0 SIE or external transceiver implementations. With EZ-USB FX2LP, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application specific functions and decreasing development time to ensure USB compatibility. 1.2 Features (CY7C68015A/16A only) ■ CY7C68016A: Ideal for battery powered applications ❐ Suspend current: 100 μA (typ) ■ CY7C68015A: Ideal for non-battery powered applications ❐ Suspend current: 300 μA (typ) ■ Available in lead-free 56-pin QFN package (26 GPIOs) ❐ 2 more GPIOs than CY7C68013A/14A enabling additional features in same footprint Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB FX2LP™ (CY7C68013A/14A) is a low power version of the EZ-USB FX2™ (CY7C68013), which is a highly integrated, low power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Document #: 38-08032 Rev. *L The General Programmable Interface (GPIF) and Master/Slave Endpoint FIFO (8-bit or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors. The FX2LP draws less current than the FX2 (CY7C68013), has double the on-chip code/data RAM, and is fit, form and function compatible with the 56, 100, and 128 pin FX2. Five packages are defined for the family: 56VFBGA, 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP. Page 2 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 2. Applications frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically. ■ Portable video recorder ■ MPEG/TV conversion ■ DSL modems C1 ■ ATA interface 12 pf ■ Memory card readers ■ Legacy conversion devices ■ Cameras ■ Scanners ■ Home PNA ■ Wireless LAN ■ MP3 players The CLKOUT pin, which can be three-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz. ■ Networking 3.2.2 USARTS The “Reference Designs” section of the Cypress web site provides additional tools for typical USB 2.0 applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Visit the Cypress web site for more information. 3. Functional Overview 3.1 USB Signaling Speed FX2LP operates at two of the three rates defined in the USB Specification Revision 2.0, dated April 27, 2000: ■ Full-speed, with a signaling bit rate of 12 Mbps ■ High-speed, with a signaling bit rate of 480 Mbps. FX2LP does not support the low speed signaling mode of 1.5 Mbps. 3.2 8051 Microprocessor The 8051 microprocessor embedded in the FX2LP family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs. 3.2.1 8051 Clock Frequency FX2LP has an on-chip oscillator circuit that uses an external 24 MHz (±100 ppm) crystal with the following characteristics: ■ Parallel resonant ■ Fundamental mode ■ 500-μW drive level ■ 12-pF (5% tolerance) load capacitors An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz, as required by the transceiver/PHY and internal counters divide it down for use as the 8051 clock. The default 8051 clock Figure 1. Crystal Configuration 24 MHz C2 12 pf 20 × PLL 12-pF capacitor values assumes a trace capacitance of 3 pF per side on a four-layer FR4 PCA FX2LP contains two standard 8051 USARTs, addressed via Special Function Register (SFR) bits. The USART interface pins are available on separate IO pins, and are not multiplexed with port pins. UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230 KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12 MHz) such that it always presents the correct frequency for 230 KBaud operation.[1] 3.2.3 Special Function Registers Certain 8051 SFR addresses are populated to provide fast access to critical FX2LP functions. These SFR additions are shown in Table 1 on page 4. Bold type indicates non standard, enhanced 8051 registers. The two SFR rows that end with “0” and “8” contain bit addressable registers. The four IO ports A to D use the SFR addresses used in the standard 8051 for ports 0 to 3, which are not implemented in FX2LP. Because of the faster and more efficient SFR addressing, the FX2LP IO ports are not addressable in external RAM space (using the MOVX instruction). 3.3 I2C Bus FX2LP supports the I2C bus as a master only at 100-/400- KHz. SCL and SDA pins have open-drain outputs and hysteresis inputs. These signals must be pulled up to 3.3V, even if no I2C device is connected. 3.4 Buses All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multiplexed on IO ports B and D. 128-pin package: adds 16-bit output-only 8051 address bus, 8-bit bidirectional data bus. Note 1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively. Document #: 38-08032 Rev. *L Page 3 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 1. Special Function Registers x 0 1 8x IOA SP 9x IOB EXIF Ax IOC INT2CLR Bx IOD IOE 2 3 4 5 6 7 8 9 A B C D E F DPL0 DPH0 DPL1 DPH1 DPS PCON TCON TMOD TL0 TL1 TH0 TH1 CKCON MPAGE INT4CLR OEA OEB OEC OED OEE SCON0 SBUF0 AUTOPTRH1 AUTOPTRL1 reserved AUTOPTRH2 AUTOPTRL2 reserved IE EP2468STAT EP24FIFOFLGS EP68FIFOFLGS AUTOPTRSET-UP 3.5 USB Boot Methods During the power up sequence, internal logic checks the I2C port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0), or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2LP enumerates using internally stored descriptors. The default ID values for FX2LP are VID/PID/DID (0x04B4, 0x8613, 0xAxxx where xxx = Chip revision).[2] Table 2. Default ID Values for FX2LP Vendor ID Product ID Device release Default VID/PID/DID 0x04B4 Cypress Semiconductor 0x8613 EZ-USB FX2LP 0xAnnn Depends on chip revision (nnn = chip revision where first silicon = 001) 3.6 ReNumeration™ Because the FX2LP’s configuration is soft, one chip can take on the identities of multiple distinct USB devices. When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over the USB cable. Next, the FX2LP enumerates again, this time as a device defined by the downloaded information. This patented two step process called ReNumeration™ happens instantly when the device is plugged in, without a hint that the initial download step has occurred. Cx SCON1 SBUF1 Dx PSW Ex ACC Fx B IP T2CON EICON EIE EIP EP01STAT GPIFTRIG RCAP2L RCAP2H TL2 TH2 GPIFSGLDATH GPIFSGLDATLX GPIFSGLDATLNOX Two control bits in the USBCS (USB Control and Status) register, control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0. Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device handles device requests over endpoint zero: if RENUM = 0, the Default USB Device handles device requests; if RENUM = 1, the firmware services the requests. 3.7 Bus-powered Applications The FX2LP fully supports bus powered designs by enumerating with less than 100 mA as required by the USB 2.0 specification. 3.8 Interrupt System 3.8.1 INT2 Interrupt Request and Enable Registers FX2LP implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See EZ-USB Technical Reference Manual (TRM) for more details. 3.8.2 USB Interrupt Autovectors The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that is required to identify the individual USB interrupt source, the FX2LP provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2LP pushes the program counter onto its stack then jumps to the address 0x0043 where it expects to find a “jump” instruction to the USB Interrupt service routine. Note 2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly. Document #: 38-08032 Rev. *L Page 4 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A The FX2LP jump instruction is encoded as follows: Table 3. INT2 USB Interrupts USB INTERRUPT TABLE FOR INT2 Priority INT2VEC Value 1 00 Source SUDAV Notes Setup Data Available 2 04 SOF Start of Frame (or microframe) 3 08 SUTOK Setup Token Received 4 0C SUSPEND USB Suspend request 5 10 USB RESET Bus reset 6 14 HISPEED Entered high-speed operation 7 18 EP0ACK FX2LP ACK’d the CONTROL Handshake 8 1C 9 20 EP0-IN EP0-IN ready to be loaded with data 10 24 EP0-OUT EP0-OUT has USB data 11 28 EP1-IN EP1-IN ready to be loaded with data 12 2C EP1-OUT EP1-OUT has USB data 13 30 EP2 IN: buffer available. OUT: buffer has data 14 34 EP4 IN: buffer available. OUT: buffer has data 15 38 EP6 IN: buffer available. OUT: buffer has data 16 3C EP8 IN: buffer available. OUT: buffer has data 17 40 IBN IN-Bulk-NAK (any IN endpoint) EP0PING EP0 OUT was Pinged and it NAK’d reserved 18 44 19 48 reserved 20 4C EP1PING EP1 OUT was Pinged and it NAK’d 21 50 EP2PING EP2 OUT was Pinged and it NAK’d 22 54 EP4PING EP4 OUT was Pinged and it NAK’d 23 58 EP6PING EP6 OUT was Pinged and it NAK’d 24 5C EP8PING EP8 OUT was Pinged and it NAK’d 25 60 ERRLIMIT Bus errors exceeded the programmed limit 26 64 27 68 28 6C 29 70 EP2ISOERR ISO EP2 OUT PID sequence error 30 74 EP4ISOERR ISO EP4 OUT PID sequence error 31 78 EP6ISOERR ISO EP6 OUT PID sequence error 32 7C EP8ISOERR ISO EP8 OUT PID sequence error reserved reserved If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP register), the FX2LP substitutes its INT2VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at the location 0x0044, the automatically inserted INT2VEC byte at 0x0045 directs the jump to the correct address out of the 27 addresses within the page. Document #: 38-08032 Rev. *L 3.8.3 FIFO/GPIF Interrupt (INT4) Just as the USB Interrupt is shared among 27 individual USB interrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 4 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources. Page 5 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 4. Individual FIFO/GPIF Interrupt Sources Priority INT4VEC Value Source 1 80 EP2PF Notes Endpoint 2 Programmable Flag 2 84 EP4PF Endpoint 4 Programmable Flag 3 88 EP6PF Endpoint 6 Programmable Flag 4 8C EP8PF Endpoint 8 Programmable Flag 5 90 EP2EF Endpoint 2 Empty Flag 6 94 EP4EF Endpoint 4 Empty Flag 7 98 EP6EF Endpoint 6 Empty Flag 8 9C EP8EF Endpoint 8 Empty Flag 9 A0 EP2FF Endpoint 2 Full Flag 10 A4 EP4FF Endpoint 4 Full Flag 11 A8 EP6FF Endpoint 6 Full Flag 12 AC EP8FF 13 B0 GPIFDONE 14 B4 GPIFWF Endpoint 8 Full Flag GPIF Operation Complete GPIF Waveform If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP register), the FX 2LP substitutes its INT4VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at location 0x0054, the automatically inserted INT4VEC byte at 0x0055 directs the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2LP pushes the program counter onto its stack then jumps to address 0x0053, where it expects to find a “jump” instruction to the ISR Interrupt service routine. 3.9 Reset and Wakeup 3.9.1 Reset Pin The input pin, RESET#, resets the FX2LP when asserted. This pin has hysteresis and is active LOW. When a crystal is used with the CY7C680xxA the reset period must allow for the stabilization of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0V. If the crystal input pin is driven by a clock signal the internal PLL stabilizes in 200 μs after VCC has reached 3.0V.[3] Figure 2 on page 7 shows a power on reset condition and a reset applied during operation. A power on reset is defined as the time reset that is asserted while power is being applied to the circuit. A powered reset is when the FX2LP powered on and operating and the RESET# pin is asserted. Cypress provides an application note which describes and recommends power on reset implementation. For more information about reset implementation for the FX2 family of products visit http://www.cypress.com. Note 3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs. Document #: 38-08032 Rev. *L Page 6 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 2. Reset Timing Plots RESET# RESET# VIL VIL 3.3V 3.0V 3.3V VCC VCC 0V 0V TRESET TRESET Power on Reset Powered Reset Table 5. Reset Timing Values 3.10 Program/Data RAM Condition TRESET Power on Reset with Crystal 5 ms Power on Reset with External Clock 200 μs + Clock stability time Powered Reset 200 μs 3.10.1 Size The FX2LP has 16 KBytes of internal program/data RAM, where PSEN#/RD# signals are internally ORed to enable the 8051 to access it as both program and data memory. No USB control registers appear in this space. Two memory maps are shown in the following diagrams: 3.9.2 Wakeup Pins Figure 3 on page 8 shows the Internal Code Memory, EA = 0 The 8051 puts itself and the rest of the chip into a power down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic the oscillator restarts after the PLL stabilizes, and the 8051 receives a wakeup interrupt. This applies whether or not FX2LP is connected to the USB. Figure 4 on page 9 shows the External Code Memory, EA = 1. The FX2LP exits the power down (USB suspend) state using one of the following methods: ■ USB bus activity (if D+/D– lines are left floating, noise on these lines may indicate activity to the FX2LP and initiate a wakeup) ■ External logic asserts the WAKEUP pin ■ External logic asserts the PA3/WU2 pin The second wakeup pin, WU2, can also be configured as a general purpose IO pin. This enables a simple external R-C network to be used as a periodic wakeup source. WAKEUP is by default active LOW. 3.10.2 Internal Code Memory, EA = 0 This mode implements the internal 16 KByte block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This enables the user to connect a 64 KByte memory without requiring address decodes to keep clear of internal memory spaces. Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM spaces have the following access: ■ USB download ■ USB upload ■ Setup data pointer ■ I2C interface boot load. 3.10.3 External Code Memory, EA = 1 The bottom 16 KBytes of program memory is external and therefore the bottom 16 KBytes of internal RAM is accessible only as a data memory. Document #: 38-08032 Rev. *L Page 7 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 3. Internal Code Memory, EA = 0 Inside FX2LP Outside FX2LP FFFF 7.5 KBytes USB regs and 4K FIFO buffers (RD#,WR#) E200 E1FF 0.5 KBytes RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 40 KBytes External Data Memory (RD#,WR#) 48 KBytes External Code Memory (PSEN#) 3FFF 16 KBytes RAM Code and Data (PSEN#,RD#,WR#)* (Ok to populate data memory here—RD#/WR# strobes are not active) (OK to populate program memory here— PSEN# strobe is not active) 0000 Data Code *SUDPTR, USB upload/download, I2C interface boot access Document #: 38-08032 Rev. *L Page 8 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 4. External Code Memory, EA = 1 Inside FX2LP Outside FX2LP FFFF 7.5 KBytes USB regs and 4K FIFO buffers (RD#,WR#) E200 E1FF 0.5 KBytes RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 40 KBytes External Data Memory (RD#,WR#) 64 KBytes External Code Memory (PSEN#) 3FFF (Ok to populate data memory here—RD#/WR# strobes are not active) 16 KBytes RAM Data (RD#,WR#)* 0000 Data Code *SUDPTR, USB upload/download, I2C interface boot access 3.11 Register Addresses FFFF 4 KBytes EP2-EP8 buffers (8 x 512) F000 EFFF 2 KBytes RESERVED E800 E7FF E7C0 E7BF E780 E77F E740 E73F E700 E6FF E500 E4FF E480 E47F E400 E3FF E200 E1FF 64 Bytes EP1IN 64 Bytes EP1OUT 64 Bytes EP0 IN/OUT 64 Bytes RESERVED 8051 Addressable Registers (512) Reserved (128) 128 bytes GPIF Waveforms Reserved (512) 512 bytes 8051 xdata RAM E000 Document #: 38-08032 Rev. *L Page 9 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 3.12 Endpoint RAM 3.12.3 Setup Data Buffer 3.12.1 Size A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data from a CONTROL transfer. ■ 3× 64 bytes (Endpoints 0 and 1) ■ 8 × 512 bytes (Endpoints 2, 4, 6, 8) 3.12.4 Endpoint Configurations (High -speed Mode) Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either BULK or INTERRUPT. 3.12.2 Organization ■ EP0 ■ Bidirectional endpoint zero, 64 byte buffer ■ EP1IN, EP1OUT ■ 64 byte buffers, bulk or interrupt ■ EP2, 4, 6, 8 ■ Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and EP8 can be double buffered; EP2 and 6 can be either double, triple, or quad buffered. For high-speed endpoint configuration options, see Figure 5. The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in the full-speed BULK mode only the first 64 bytes of each buffer are used. For example, in high-speed, the max packet size is 512 bytes but in full-speed it is 64 bytes. Even though a buffer is configured to a 512 byte buffer, in full-speed only the first 64 bytes are used. The unused endpoint buffer space is not available for other operations. An example endpoint configuration is the EP2–1024 double buffered; EP6–512 quad buffered (column 8). Figure 5. Endpoint Configuration EP0 IN&OUT 64 64 64 64 64 64 64 64 64 64 64 64 EP1 IN 64 64 64 64 64 64 64 64 64 64 64 64 EP1 OUT 64 64 64 64 64 64 64 64 64 64 64 64 EP2 EP2 EP2 EP2 EP2 EP2 EP2 EP2 EP2 EP2 512 512 512 512 512 512 512 512 512 512 512 512 EP4 EP4 512 512 512 512 512 512 512 512 512 512 512 512 EP6 EP6 EP6 EP6 EP6 EP6 512 512 512 512 512 512 512 512 EP8 512 512 512 1 2 Document #: 38-08032 Rev. *L 1024 1024 3 1024 1024 512 1024 1024 1024 1024 1024 512 512 512 512 4 5 1024 6 EP6 1024 1024 512 EP6 EP6 512 512 512 512 EP6 512 1024 512 EP8 EP8 512 1024 512 EP4 1024 EP2 EP2 512 512 512 512 512 7 8 1024 9 1024 1024 EP8 EP8 512 512 512 512 10 11 1024 1024 12 Page 10 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 3.12.5 Default Full-Speed Alternate Settings Table 6. Default Full-Speed Alternate Settings[4, 5] Alternate Setting 0 1 2 3 ep0 64 64 64 64 ep1out 0 64 bulk 64 int 64 int ep1in 0 64 bulk 64 int 64 int ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×) ep4 0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×) ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×) ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×) 3.12.6 Default High-Speed Alternate Settings Table 7. Default High-Speed Alternate Settings[4, 5] Alternate Setting 0 1 2 3 ep0 64 64 64 64 ep1out 0 512 bulk[6] 64 int 64 int ep1in 0 512 bulk[6] 64 int 64 int ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×) ep4 0 512 bulk out (2×) 512 bulk out (2×) 512 bulk out (2×) ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×) ep8 0 512 bulk in (2×) 512 bulk in (2×) 512 bulk in (2×) 3.13 External FIFO Interface 3.13.1 Architecture The FX2LP slave FIFO architecture has eight 512 byte blocks in the endpoint RAM that directly serve as FIFO memories and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the IO transfer logic. The transfer logic takes two forms, the GPIF for internally generated control signals and the slave FIFO interface for externally controlled transfers. 3.13.2 Master/Slave Control Signals The FX2LP endpoint FIFOS are implemented as eight physically distinct 256x16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-IO Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB FIFOS” and “Slave FIFOS.” Because they are physically the same memory no bytes are actually transferred between buffers. At any given time, some RAM blocks are filling/emptying with USB data under SIE control, while other RAM blocks are available to the 8051, the IO control unit or both. The RAM blocks operate as single port in the USB domain, and dual port in the 8051-IO domain. The blocks can be configured as single, double, triple, or quad buffered as previously shown. The IO control unit implements either an internal master (M for master) or external master (S for Slave) interface. In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56-pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s (48-MHz IFCLK with 16-bit interface). In Slave (S) mode, the FX2LP accepts either an internally derived clock or externally supplied clock (IFCLK, max frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. When using an external IFCLK, the external clock must be present before switching to the external clock with the IFCLKSRC bit. Each endpoint can individually be selected for byte or word operation by an internal configuration bit and a Slave FIFO Output Enable signal SLOE enables data of the selected width. External logic must ensure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signals SLRD, SLWR, SLOE and PKTEND are gated by the signal SLCS#. Notes 4. “0” means “not implemented.” 5. “2×” means “double buffered.” 6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1. Document #: 38-08032 Rev. *L Page 11 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 3.13.3 GPIF and FIFO Clock Rates 3.15 ECC Generation[7] An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register inverts the IFCLK signal whether internally or externally sourced. The EZ-USB can calculate ECCs (Error Correcting Codes) on data that passes across its GPIF or Slave FIFO interfaces. There are two ECC configurations: Two ECCs, each calculated over 256 bytes (SmartMedia Standard); and one ECC calculated over 512 bytes. 3.14 GPIF ECCM = 0 The GPIF is a flexible 8-bit or 16-bit parallel interface driven by a user programmable finite state machine. It enables the CY7C68013A/15A to perform local bus mastering and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia. Two 3 byte ECCs, each calculated over a 256 byte block of data. This configuration conforms to the SmartMedia Standard. The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that is executed to perform the desired data move between the FX2LP and the external device. 3.14.1 Six Control OUT Signals The 100-pin and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock). 3.14.2 Six Ready IN Signals The 100-pin and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1. 3.14.3 Nine GPIF Address OUT Signals Nine GPIF address lines are available in the 100-pin and 128-pin packages, GPIFADR[8..0]. The GPIF address lines enable indexing through up to a 512 byte block of RAM. If more address lines are needed IO port pins are used. 3.14.4 Long Transfer Mode In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 232 transactions. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction. The ECC can correct any one-bit error or detect any two-bit error. 3.15.1 ECC Implementation The two ECC configurations are selected by the ECCM bit: Write any value to ECCRESET, then pass data across the GPIF or Slave FIFO interface. The ECC for the first 256 bytes of data is calculated and stored in ECC1. The ECC for the next 256 bytes is stored in ECC2. After the second ECC is calculated, the values in the ECCx registers do not change until ECCRESET is written again, even if more data is subsequently passed across the interface. ECCM = 1 One 3 byte ECC calculated over a 512 byte block of data. Write any value to ECCRESET then pass data across the GPIF or Slave FIFO interface. The ECC for the first 512 bytes of data is calculated and stored in ECC1; ECC2 is unused. After the ECC is calculated, the values in ECC1 do not change even if more data is subsequently passed across the interface, till ECCRESET is written again. 3.16 USB Uploads and Downloads The core has the ability to directly edit the data contents of the internal 16 KByte RAM and of the internal 512 byte scratch pad RAM via a vendor specific command. This capability is normally used when soft downloading user code and is available only to and from internal RAM, only when the 8051 is held in reset. The available RAM spaces are 16 KBytes from 0x0000–0x3FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad data RAM).[8] 3.17 Autopointer Access FX2LP provides two identical autopointers. They are similar to the internal 8051 data pointers but with an additional feature: they can optionally increment after every memory access. This capability is available to and from both internal and external RAM. The autopointers are available in external FX2LP registers under control of a mode bit (AUTOPTRSET-UP.0). Using the external FX2LP autopointer access (at 0xE67B – 0xE67C) enables the autopointer to access all internal and external RAM to the part. Also, the autopointers can point to any FX2LP register or endpoint buffer space. When autopointer access to external memory is enabled, location 0xE67B and 0xE67C in XDATA and code space cannot be used. Notes 7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation. 8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory. Document #: 38-08032 Rev. *L Page 12 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 3.18 I2C Controller 3.18.2 I2C Interface Boot Load Access FX2LP has one I2C port that is driven by two internal controllers, one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051 uses when running to control external I2C devices. The I2C port operates in master mode only. At power on reset the I2C interface boot loader loads the VID/PID/DID configuration bytes and up to 16 KBytes of program/data. The available RAM spaces are 16 KBytes from 0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051 is in reset. I2C interface boot loads only occur after power on reset. 3.18.1 I2C Port Pins The I2C pins SCL and SDA must have external 2.2 kΩ pull up resistors even if no EEPROM is connected to the FX2LP. External EEPROM device address pins must be configured properly. See Table 8 for configuring the device address pins. Table 8. Strap Boot EEPROM Address Lines to These Values Bytes Example EEPROM A2 A1 A0 N/A N/A N/A 16 24LC00[9] 128 24LC01 0 0 0 256 24LC02 0 0 0 4K 24LC32 0 0 1 8K 24LC64 0 0 1 16K 24LC128 0 0 1 3.18.3 I2C Interface General-Purpose Access The 8051 can control peripherals connected to the I2C bus using the I2CTL and I2DAT registers. FX2LP provides I2C master control only, it is never an I2C slave. 3.19 Compatible with Previous Generation EZ-USB FX2 The EZ-USB FX2LP is form, fit and with minor exceptions functionally compatible with its predecessor, the EZ-USB FX2. This makes for an easy transition for designers wanting to upgrade their systems from the FX2 to the FX2LP. The pinout and package selection are identical and a vast majority of firmware previously developed for the FX2 functions in the FX2LP. For designers migrating from the FX2 to the FX2LP a change in the bill of material and review of the memory allocation (due to increased internal memory) is required. For more information about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the application note titled Migrating from EZ-USB FX2 to EZ-USB FX2LP available in the Cypress web site. Table 9. Part Number Conversion Table EZ-USB FX2 Part Number EZ-USB FX2LP Part Number CY7C68013-56PVC CY7C68013A-56PVXC or CY7C68014A-56PVXC CY7C68013-56PVCT Package Description 56-pin SSOP CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel CY7C68013-56LFC CY7C68013A-56LFXC or CY7C68014A-56LFXC 56-pin QFN CY7C68013-100AC CY7C68013A-100AXC or CY7C68014A-100AXC 100-pin TQFP CY7C68013-128AC CY7C68013A-128AXC or CY7C68014A-128AXC 128-pin TQFP Note 9. This EEPROM does not have address pins. Document #: 38-08032 Rev. *L Page 13 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 3.20 CY7C68013A/14A and CY7C68015A/16A Differences CY7C68013A is identical to CY7C68014A in form, fit, and functionality. CY7C68015A is identical to CY7C68016A in form, fit, and functionality. CY7C68014A and CY7C68016A have a lower suspend current than CY7C68013A and CY7C68015A respectively and are ideal for power sensitive battery applications. CY7C68015A and CY7C68016A are available in 56-pin QFN package only. Two additional GPIO signals are available on the CY7C68015A and CY7C68016A to provide more flexibility when neither IFCLK or CLKOUT are needed in the 56-pin package. USB developers wanting to convert their FX2 56-pin application to a bus-powered system directly benefit from these additional signals. The two GPIOs give developers the signals they need for the power control circuitry of their bus-powered application without pushing them to a high pincount version of FX2LP. The CY7C68015A is only available in the 56-pin QFN package Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences 4. Pin Assignments Figure 6 on page 15 identifies all signals for the five package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-pin, 100-pin, and 56-pin packages. The signals on the left edge of the 56-pin package in Figure 6 on page 15 are common to all versions in the FX2LP family with the noted differences between the CY7C68013A/14A and the CY7C68015A/16A. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power on default configuration. The 100-pin package adds functionality to the 56-pin package by adding these pins: ■ PORTC or alternate GPIFADR[7:0] address signals ■ PORTE or alternate GPIFADR[8] address signal and seven additional 8051 signals ■ Three GPIF Control signals ■ Four GPIF Ready signals ■ Nine 8051 signals (two USARTs, three timer inputs, INT4,and INT5#) ■ BKPT, RD#, WR#. CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A IFCLK PE0 CLKOUT PE1 The 128-pin package adds the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version. In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register. Section 10.5 displays the timing diagram of the read and write strobing function on accessing PORTC. Document #: 38-08032 Rev. *L Page 14 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 6. Signal Port XTALIN XTALOUT RESET# WAKEUP# SCL SDA 56 **PE0 replaces IFCLK & PE1 replaces CLKOUT on CY7C68015A/16A **PE0 **PE1 IFCLK CLKOUT DPLUS DMINUS GPIF Master PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] Slave FIFO FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] RDY0 RDY1 SLRD SLWR CTL0 CTL1 CTL2 FLAGA FLAGB FLAGC INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 INT0#/ PA0 INT1#/ PA1 SLOE WU2/PA3 FIFOADR0 FIFOADR1 PKTEND PA7/FLAGD/SLCS# CTL3 CTL4 CTL5 RDY2 RDY3 RDY4 RDY5 100 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC4/GPIFADR4 PORTC3/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR1 PORTC0/GPIFADR0 PE7/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RxD1OUT PE3/RxD0OUT PE2/T2OUT PE1/T1OUT PE0/T0OUT 128 Document #: 38-08032 Rev. *L RD# WR# CS# OE# PSEN# D7 D6 D5 D4 D3 D2 D1 D0 EA RxD0 TxD0 RxD1 TxD1 INT4 INT5# T2 T1 T0 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Page 15 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment 27 28 29 30 31 32 33 34 35 36 37 38 103 26 104 25 105 24 106 23 107 22 108 21 109 20 110 19 111 18 112 17 113 16 114 15 115 14 116 13 117 12 118 11 119 10 120 9 121 8 122 7 123 6 124 5 125 4 126 3 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND A4 A5 A6 A7 PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND A8 A9 A10 2 127 128 1 CLKOUT VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC AVCC DPLUS DMINUS AGND A11 A12 A13 A14 A15 VCC GND INT4 T0 T1 T2 *IFCLK RESERVED BKPT EA SCL SDA OE# PD0/FD8 *WAKEUP VCC RESET# CTL5 A3 A2 A1 A0 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 D7 D6 D5 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 GND CY7C68013A/CY7C68014A 128-pin TQFP 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 VCC D4 D3 D2 D1 D0 GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RXD1 TXD1 RXD0 TXD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC CS# WR# RD# PSEN# 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 * denotes programmable polarity Document #: 38-08032 Rev. *L Page 16 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND CLKOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC AVCC DPLUS DMINUS AGND VCC GND INT4 T0 T1 T2 *IFCLK RESERVED BKPT SCL SDA CY7C68013A/CY7C68014A 100-pin TQFP PD0/FD8 *WAKEUP VCC RESET# CTL5 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND VCC GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RXD1 TXD1 RXD0 TXD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC WR# RD# 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 * denotes programmable polarity Document #: 38-08032 Rev. *L Page 17 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment CY7C68013A/CY7C68014A 56-pin SSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PD5/FD13 PD6/FD14 PD7/FD15 GND CLKOUT VCC GND RDY0/*SLRD RDY1/*SLWR AVCC XTALOUT XTALIN AGND AVCC DPLUS DMINUS AGND VCC GND *IFCLK RESERVED SCL SDA VCC PB0/FD0 PB1/FD1 PB2/FD2 PB3/FD3 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 *WAKEUP VCC RESET# GND PA7/*FLAGD/SLCS# PA6/PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA GND VCC GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 * denotes programmable polarity Document #: 38-08032 Rev. *L Page 18 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment GND VCC CLKOUT/**PE1 GND PD7/FD15 PD6/FD14 PD5/FD13 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 *WAKEUP VCC 56 55 54 53 52 51 50 49 48 47 46 45 44 43 RDY0/*SLRD 1 42 RESET# RDY1/*SLWR 2 41 GND AVCC 3 40 PA7/*FLAGD/SLCS# XTALOUT 4 39 PA6/*PKTEND XTALIN 5 38 PA5/FIFOADR1 AGND 6 37 PA4/FIFOADR0 AVCC 7 36 PA3/*WU2 DPLUS 8 35 PA2/*SLOE DMINUS 9 34 PA1/INT1# AGND 10 33 PA0/INT0# VCC 11 32 VCC GND 12 31 CTL2/*FLAGC *IFCLK/**PE0 13 30 CTL1/*FLAGB RESERVED 14 29 CTL0/*FLAGA CY7C68013A/CY7C68014A & CY7C68015A/CY7C68016A 56-pin QFN 18 19 20 21 22 23 24 25 26 27 28 PB0/FD0 PB1/FD1 PB2/FD2 PB3/FD3 PB4/FD4 PB5/FD5 PB6/FD6 PB7/FD7 GND VCC GND SDA VCC 16 SCL 17 15 * denotes programmable polarity ** denotes CY7C68015A/CY7C68016A pinout Document #: 38-08032 Rev. *L Page 19 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View 1 2 3 4 5 6 7 8 A 1A 2A 3A 4A 5A 6A 7A 8A B 1B 2B 3B 4B 5B 6B 7B 8B C 1C 2C 3C 4C 5C 6C 7C 8C D 1D 2D 7D 8D E 1E 2E 7E 8E F 1F 2F 3F 4F 5F 6F 7F 8F G 1G 2G 3G 4G 5G 6G 7G 8G H 1H 2H 3H 4H 5H 6H 7H 8H Document #: 38-08032 Rev. *L Page 20 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 4.1 CY7C68013A/15A Pin Descriptions The FX2LP Pin Descriptions follows.[10] Table 11. FX2LP Pin Descriptions 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 10 9 10 3 2D AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source. This signal provides power to the analog section of the chip. 17 16 14 7 1D AVCC Power N/A Analog VCC. Connect this pin to 3.3V power source. This signal provides power to the analog section of the chip. 13 12 13 6 2F AGND Ground N/A Analog Ground. Connect to ground with as short a path as possible. 20 19 17 10 1F AGND Ground N/A Analog Ground. Connect to ground with as short a path as possible. 19 18 16 9 1E DMINUS IO/Z Z USB D– Signal. Connect to the USB D– signal. 18 17 15 8 2E DPLUS IO/Z Z USB D+ Signal. Connect to the USB D+ signal. 8051 Address Bus. This bus is driven at all times. When the 8051 is addressing internal RAM it reflects the internal address. 94 A0 Output L 95 A1 Output L 96 A2 Output L 97 A3 Output L 117 A4 Output L 118 A5 Output L 119 A6 Output L 120 A7 Output L 126 A8 Output L 127 A9 Output L 128 A10 Output L 21 A11 Output L 22 A12 Output L 23 A13 Output L 24 A14 Output L 25 A15 Output L 59 D0 IO/Z Z 60 D1 IO/Z Z 61 D2 IO/Z Z 62 D3 IO/Z Z 63 D4 IO/Z Z 86 D5 IO/Z Z 87 D6 IO/Z Z 88 D7 IO/Z Z 39 PSEN# Output H 8051 Data Bus. This bidirectional bus is high impedance when inactive, input for bus reads, and output for bus writes. The data bus is used for external 8051 program and data memory. The data bus is active only for external bus accesses, and is driven LOW in suspend. Program Store Enable. This active-LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x4000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH. Note 10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in standby. Note also that no pins should be driven while the device is powered down. Document #: 38-08032 Rev. *L Page 21 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA 34 28 99 77 Name Type Default Description Output L Breakpoint. This pin goes active (HIGH) when the 8051 address bus matches the BPADDRH/L registers and breakpoints are enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears the BREAK bit (by writing 1 to it) in the BREAKPT register. RESET# Input N/A Active LOW Reset. Resets the entire chip. See section 3.9 ”Reset and Wakeup” on page 6 for more details. EA Input N/A External Access. This pin determines where the 8051 fetches code between addresses 0x0000 and 0x3FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory. Input N/A Crystal Input. Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. It is also correct to drive XTALIN with an external 24-MHz square wave derived from another clock source. When driving from an external source, the driving signal should be a 3.3V square wave. Output N/A Crystal Output. Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open. BKPT 49 42 8B 35 12 11 12 5 1C XTALIN 11 10 11 4 2C XTALOUT 1 100 5 54 2B O/Z 12 MHz CLKOUT on CY7C68013A and CY7C68014A ------------------ ----------- ---------IO/Z I PE1 on CY7C68015A and CY7C68016A 82 67 40 33 8G PA0 or INT0# IO/Z I Multiplexed pin whose function is selected by (PA0) PORTACFG.0 PA0 is a bidirectional IO port pin. INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either edge triggered (IT0 = 1) or level triggered (IT0 = 0). 83 68 41 34 6G PA1 or INT1# IO/Z I Multiplexed pin whose function is selected by: (PA1) PORTACFG.1 PA1 is a bidirectional IO port pin. INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either edge triggered (IT1 = 1) or level triggered (IT1 = 0). 84 69 42 35 8F PA2 or SLOE or IO/Z I Multiplexed pin whose function is selected by two bits: (PA2) IFCONFIG[1:0]. PA2 is a bidirectional IO port pin. SLOE is an input-only output enable with programmable polarity (FIFOPINPOLAR.4) for the slave FIFOs connected to FD[7..0] or FD[15..0]. CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input clock. The 8051 defaults to 12-MHz operation. The 8051 may three-state this output by setting CPUCS.1 = 1. -----------------------------------------------------------------------PE1 is a bidirectional IO port pin. Port A Document #: 38-08032 Rev. *L Page 22 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 85 70 43 36 7F PA3 or WU2 IO/Z I Multiplexed pin whose function is selected by: (PA3) WAKEUP.7 and OEA.3 PA3 is a bidirectional IO port pin. WU2 is an alternate source for USB Wakeup, enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Asserting this pin inhibits the chip from suspending, if WU2EN = 1. 89 71 44 37 6F PA4 or FIFOADR0 IO/Z I Multiplexed pin whose function is selected by: (PA4) IFCONFIG[1..0]. PA4 is a bidirectional IO port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. 90 72 45 38 8C PA5 or FIFOADR1 IO/Z I Multiplexed pin whose function is selected by: (PA5) IFCONFIG[1..0]. PA5 is a bidirectional IO port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. 91 73 46 39 7C PA6 or PKTEND IO/Z I Multiplexed pin whose function is selected by the (PA6) IFCONFIG[1:0] bits. PA6 is a bidirectional IO port pin. PKTEND is an input used to commit the FIFO packet data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5. 92 74 47 40 6C PA7 or FLAGD or SLCS# IO/Z I Multiplexed pin whose function is selected by the (PA7) IFCONFIG[1:0] and PORTACFG.7 bits. PA7 is a bidirectional IO port pin. FLAGD is a programmable slave-FIFO output status flag signal. SLCS# gates all other slave FIFO enable/strobes 44 34 25 18 3H PB0 or FD[0] IO/Z I Multiplexed pin whose function is selected by the (PB0) following bits: IFCONFIG[1..0]. PB0 is a bidirectional IO port pin. FD[0] is the bidirectional FIFO/GPIF data bus. 45 35 26 19 4F PB1 or FD[1] IO/Z I Multiplexed pin whose function is selected by the (PB1) following bits: IFCONFIG[1..0]. PB1 is a bidirectional IO port pin. FD[1] is the bidirectional FIFO/GPIF data bus. 46 36 27 20 4H PB2 or FD[2] IO/Z I Multiplexed pin whose function is selected by the (PB2) following bits: IFCONFIG[1..0]. PB2 is a bidirectional IO port pin. FD[2] is the bidirectional FIFO/GPIF data bus. 47 37 28 21 4G PB3 or FD[3] IO/Z I Multiplexed pin whose function is selected by the (PB3) following bits: IFCONFIG[1..0]. PB3 is a bidirectional IO port pin. FD[3] is the bidirectional FIFO/GPIF data bus. 54 44 29 22 5H PB4 or FD[4] IO/Z I Multiplexed pin whose function is selected by the (PB4) following bits: IFCONFIG[1..0]. PB4 is a bidirectional IO port pin. FD[4] is the bidirectional FIFO/GPIF data bus. Port B Document #: 38-08032 Rev. *L Page 23 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 55 45 30 23 5G PB5 or FD[5] IO/Z I Multiplexed pin whose function is selected by the (PB5) following bits: IFCONFIG[1..0]. PB5 is a bidirectional IO port pin. FD[5] is the bidirectional FIFO/GPIF data bus. 56 46 31 24 5F PB6 or FD[6] IO/Z I Multiplexed pin whose function is selected by the (PB6) following bits: IFCONFIG[1..0]. PB6 is a bidirectional IO port pin. FD[6] is the bidirectional FIFO/GPIF data bus. 57 47 32 25 6H PB7 or FD[7] IO/Z I Multiplexed pin whose function is selected by the (PB7) following bits: IFCONFIG[1..0]. PB7 is a bidirectional IO port pin. FD[7] is the bidirectional FIFO/GPIF data bus. PORT C 72 57 PC0 or GPIFADR0 IO/Z I Multiplexed pin whose function is selected by (PC0) PORTCCFG.0 PC0 is a bidirectional IO port pin. GPIFADR0 is a GPIF address output pin. 73 58 PC1 or GPIFADR1 IO/Z I Multiplexed pin whose function is selected by (PC1) PORTCCFG.1 PC1 is a bidirectional IO port pin. GPIFADR1 is a GPIF address output pin. 74 59 PC2 or GPIFADR2 IO/Z I Multiplexed pin whose function is selected by (PC2) PORTCCFG.2 PC2 is a bidirectional IO port pin. GPIFADR2 is a GPIF address output pin. 75 60 PC3 or GPIFADR3 IO/Z I Multiplexed pin whose function is selected by (PC3) PORTCCFG.3 PC3 is a bidirectional IO port pin. GPIFADR3 is a GPIF address output pin. 76 61 PC4 or GPIFADR4 IO/Z I Multiplexed pin whose function is selected by (PC4) PORTCCFG.4 PC4 is a bidirectional IO port pin. GPIFADR4 is a GPIF address output pin. 77 62 PC5 or GPIFADR5 IO/Z I Multiplexed pin whose function is selected by (PC5) PORTCCFG.5 PC5 is a bidirectional IO port pin. GPIFADR5 is a GPIF address output pin. 78 63 PC6 or GPIFADR6 IO/Z I Multiplexed pin whose function is selected by (PC6) PORTCCFG.6 PC6 is a bidirectional IO port pin. GPIFADR6 is a GPIF address output pin. 79 64 PC7 or GPIFADR7 IO/Z I Multiplexed pin whose function is selected by (PC7) PORTCCFG.7 PC7 is a bidirectional IO port pin. GPIFADR7 is a GPIF address output pin. PORT D 102 80 52 45 8A PD0 or FD[8] IO/Z I Multiplexed pin whose function is selected by the (PD0) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus. 103 81 53 46 7A PD1 or FD[9] IO/Z I Multiplexed pin whose function is selected by the (PD1) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus. Document #: 38-08032 Rev. *L Page 24 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 104 82 54 47 6B PD2 or FD[10] IO/Z I Multiplexed pin whose function is selected by the (PD2) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus. 105 83 55 48 6A PD3 or FD[11] IO/Z I Multiplexed pin whose function is selected by the (PD3) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus. 121 95 56 49 3B PD4 or FD[12] IO/Z I Multiplexed pin whose function is selected by the (PD4) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus. 122 96 1 50 3A PD5 or FD[13] IO/Z I Multiplexed pin whose function is selected by the (PD5) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus. 123 97 2 51 3C PD6 or FD[14] IO/Z I Multiplexed pin whose function is selected by the (PD6) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus. 124 98 3 52 2A PD7 or FD[15] IO/Z I Multiplexed pin whose function is selected by the (PD7) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus. Port E 108 86 PE0 or T0OUT IO/Z I Multiplexed pin whose function is selected by the (PE0) PORTECFG.0 bit. PE0 is a bidirectional IO port pin. T0OUT is an active-HIGH signal from 8051 Timer-counter0. T0OUT outputs a high level for one CLKOUT clock cycle when Timer0 overflows. If Timer0 is operated in Mode 3 (two separate timer/counters), T0OUT is active when the low byte timer/counter overflows. 109 87 PE1 or T1OUT IO/Z I Multiplexed pin whose function is selected by the (PE1) PORTECFG.1 bit. PE1 is a bidirectional IO port pin. T1OUT is an active-HIGH signal from 8051 Timer-counter1. T1OUT outputs a high level for one CLKOUT clock cycle when Timer1 overflows. If Timer1 is operated in Mode 3 (two separate timer/counters), T1OUT is active when the low byte timer/counter overflows. 110 88 PE2 or T2OUT IO/Z I Multiplexed pin whose function is selected by the (PE2) PORTECFG.2 bit. PE2 is a bidirectional IO port pin. T2OUT is the active-HIGH output signal from 8051 Timer2. T2OUT is active (HIGH) for one clock cycle when Timer/Counter 2 overflows. 111 89 PE3 or RXD0OUT IO/Z I Multiplexed pin whose function is selected by the (PE3) PORTECFG.3 bit. PE3 is a bidirectional IO port pin. RXD0OUT is an active-HIGH signal from 8051 UART0. If RXD0OUT is selected and UART0 is in Mode 0, this pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1. Document #: 38-08032 Rev. *L Page 25 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 112 90 PE4 or RXD1OUT IO/Z I Multiplexed pin whose function is selected by the (PE4) PORTECFG.4 bit. PE4 is a bidirectional IO port pin. RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH. 113 91 PE5 or INT6 IO/Z I Multiplexed pin whose function is selected by the (PE5) PORTECFG.5 bit. PE5 is a bidirectional IO port pin. INT6 is the 8051 INT6 interrupt request input signal. The INT6 pin is edge-sensitive, active HIGH. 114 92 PE6 or T2EX IO/Z I Multiplexed pin whose function is selected by the (PE6) PORTECFG.6 bit. PE6 is a bidirectional IO port pin. T2EX is an active-HIGH input signal to the 8051 Timer2. T2EX reloads timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON. 115 93 PE7 or GPIFADR8 IO/Z I Multiplexed pin whose function is selected by the (PE7) PORTECFG.7 bit. PE7 is a bidirectional IO port pin. GPIFADR8 is a GPIF address output pin. 4 3 8 1 1A RDY0 or SLRD Input N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY0 is a GPIF input signal. SLRD is the input-only read strobe with programmable polarity (FIFOPINPOLAR.3) for the slave FIFOs connected to FD[7..0] or FD[15..0]. 5 4 9 2 1B RDY1 or SLWR Input N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY1 is a GPIF input signal. SLWR is the input-only write strobe with programmable polarity (FIFOPINPOLAR.2) for the slave FIFOs connected to FD[7..0] or FD[15..0]. 6 5 RDY2 Input N/A RDY2 is a GPIF input signal. 7 6 RDY3 Input N/A RDY3 is a GPIF input signal. 8 7 RDY4 Input N/A RDY4 is a GPIF input signal. 9 8 RDY5 Input N/A RDY5 is a GPIF input signal. 69 54 CTL0 or FLAGA O/Z H 36 29 Document #: 38-08032 Rev. *L 7H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins. Page 26 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA Name Type Default Description 70 55 37 30 7G CTL1 or FLAGB O/Z H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins. 71 56 38 31 8H CTL2 or FLAGC O/Z H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins. 66 51 CTL3 O/Z H CTL3 is a GPIF control output. 67 52 CTL4 Output H CTL4 is a GPIF control output. 98 76 CTL5 Output H CTL5 is a GPIF control output. 32 26 IFCLK on CY7C68013A and CY7C68014A IO/Z Z 28 22 INT4 Input N/A INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH. 106 84 INT5# Input N/A INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW. 31 25 T2 Input N/A T2 is the active-HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When C/T2 = 0, Timer2 does not use this pin. 30 24 T1 Input N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit. 29 23 T0 Input N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit. 53 43 RXD1 Input N/A RXD1is an active-HIGH input signal for 8051 UART1, which provides data to the UART in all modes. 52 42 TXD1 Output H TXD1is an active-HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode. 51 41 RXD0 Input N/A RXD0 is the active-HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes. 20 13 Document #: 38-08032 Rev. *L 2G Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking is used (IFCONFIG.7 = 1) the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1. ------------------ ----------- ---------- ----------------------------------------------------------------------PE0 is a bidirectional IO port pin. PE0 on IO/Z I CY7C68015A and CY7C68016A Page 27 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 11. FX2LP Pin Descriptions (continued) 128 100 56 56 56 VFTQFP TQFP SSOP QFN BGA 50 Name Type Default Description H TXD0 is the active-HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode. 40 TXD0 Output CS# Output H CS# is the active-LOW chip select for external memory. 41 32 WR# Output H WR# is the active-LOW write strobe output for external memory. 40 31 RD# Output H RD# is the active-LOW read strobe output for external memory. OE# Output H OE# is the active-LOW output enable for external memory. 42 38 33 27 21 14 2H Reserved Input N/A Reserved. Connect to ground. 101 79 51 44 7B WAKEUP Input N/A USB Wakeup. If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to enable it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB® chip from suspending. This pin has programmable polarity (WAKEUP.4). 36 29 22 15 3F SCL OD Z Clock for the I2C interface. Connect to VCC with a 2.2K resistor, even if no I2C peripheral is attached. 37 30 23 16 3G SDA OD Z Data for I2C-compatible interface. Connect to VCC with a 2.2K resistor, even if no I2C-compatible peripheral is attached. 2 1 6 55 5A VCC Power N/A VCC. Connect to 3.3V power source. 26 20 18 11 1G VCC Power N/A VCC. Connect to 3.3V power source. 43 33 24 17 7E VCC Power N/A VCC. Connect to 3.3V power source. 48 38 64 49 34 27 8E 68 53 VCC 81 66 39 32 5C VCC 100 78 50 43 5B VCC 107 85 VCC 3 2 7 56 4B GND 27 21 19 12 1H 49 39 58 48 33 26 65 50 35 28 80 65 93 75 48 41 4C 116 94 125 99 4 53 4A VCC Power N/A VCC. Connect to 3.3V power source. VCC Power N/A VCC. Connect to 3.3V power source. Power N/A VCC. Connect to 3.3V power source. Power N/A VCC. Connect to 3.3V power source. Power N/A VCC. Connect to 3.3V power source. Power N/A VCC. Connect to 3.3V power source. Ground N/A Ground. GND Ground N/A Ground. GND Ground N/A Ground. 7D GND Ground N/A Ground. 8D GND Ground N/A Ground. GND Ground N/A Ground. GND Ground N/A Ground. GND Ground N/A Ground. GND Ground N/A Ground. 14 13 NC N/A N/A No Connect. This pin must be left open. 15 14 NC N/A N/A No Connect. This pin must be left open. 16 15 NC N/A N/A No Connect. This pin must be left open. Document #: 38-08032 Rev. *L Page 28 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 5. Register Summary FX2LP register bit definitions are described in the FX2LP TRM in greater detail. Table 12. FX2LP Register Summary Hex E400 E480 E50D E600 E601 E602 E603 E604 E605 E606 E607 E608 E609 E60A Size Name Description b7 GPIF Waveform Memories 128 WAVEDATA GPIF Waveform D7 Descriptor 0, 1, 2, 3 data 128 reserved GENERAL CONFIGURATION GPCR2 General Purpose Configu- reserved ration Register 2 1 CPUCS CPU Control & Status 0 1 IFCONFIG Interface Configuration IFCLKSRC (Ports, GPIF, slave FIFOs) [11] 1 PINFLAGSAB Slave FIFO FLAGA and FLAGB3 FLAGB Pin Configuration 1 PINFLAGSCD[11] Slave FIFO FLAGC and FLAGD3 FLAGD Pin Configuration 1 FIFORESET[11] Restore FIFOS to default NAKALL state 1 BREAKPT Breakpoint Control 0 1 BPADDRH Breakpoint Address H A15 1 BPADDRL Breakpoint Address L A7 1 UART230 230 Kbaud internally 0 generated ref. clock 1 FIFOPINPOLAR[11] Slave FIFO Interface pins 0 polarity 1 REVID Chip Revision rv7 E60B 1 E60C 1 3 E610 1 E611 1 E612 E613 E614 E615 1 1 1 1 2 E618 1 E619 1 E61A 1 E61B 1 E61C 4 E620 1 E621 1 E622 1 E623 1 E624 1 E625 1 E626 1 REVCTL[11] Chip Revision Control UDMA GPIFHOLDAMOUNT MSTB Hold Time (for UDMA) reserved ENDPOINT CONFIGURATION EP1OUTCFG Endpoint 1-OUT Configuration EP1INCFG Endpoint 1-IN Configuration EP2CFG Endpoint 2 Configuration EP4CFG Endpoint 4 Configuration EP6CFG Endpoint 6 Configuration EP8CFG Endpoint 8 Configuration reserved EP2FIFOCFG[11] Endpoint 2 / slave FIFO configuration [11] EP4FIFOCFG Endpoint 4 / slave FIFO configuration [11] EP6FIFOCFG Endpoint 6 / slave FIFO configuration [11] EP8FIFOCFG Endpoint 8 / slave FIFO configuration reserved EP2AUTOINLENH[11 Endpoint 2 AUTOIN Packet Length H EP2AUTOINLENL[11] Endpoint 2 AUTOIN Packet Length L EP4AUTOINLENH[11] Endpoint 4 AUTOIN Packet Length H EP4AUTOINLENL[11] Endpoint 4 AUTOIN Packet Length L EP6AUTOINLENH[11] Endpoint 6 AUTOIN Packet Length H EP6AUTOINLENL[11] Endpoint 6 AUTOIN Packet Length L EP8AUTOINLENH[11] Endpoint 8 AUTOIN Packet Length H E627 1 EP8AUTOINLENL E628 1 E629 1 E62A 1 ECCCFG ECCRESET ECC1B0 [11] Endpoint 8 AUTOIN Packet Length L ECC Configuration ECC Reset ECC1 Byte 0 Address b6 b5 b4 b3 b2 b1 b0 Default Access D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW reserved reserved reserved reserved reserved 00000000 R 0 3048MHZ FULL_SPEE reserved D_ONLY PORTCSTB CLKSPD1 CLKSPD0 IFCLKOE IFCLKPOL ASYNC CLKINV GSTATE CLKOE IFCFG1 8051RES IFCFG0 00000010 rrbbbbbr 10000000 RW FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 00000000 RW 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W 0 A14 A6 0 0 A13 A5 0 0 A12 A4 0 BREAK A11 A3 0 BPPULSE A10 A2 0 BPEN A9 A1 230UART1 0 A8 A0 230UART0 00000000 rrrrbbbr xxxxxxxx RW xxxxxxxx RW 00000000 rrrrrrbb 0 PKTEND SLOE SLRD SLWR EF FF 00000000 rrbbbbbb rv6 rv5 rv4 rv3 rv2 rv1 rv0 0 0 0 0 0 0 dyn_out enh_pkt RevA R 00000001 00000000 rrrrrrbb 0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr VALID VALID VALID VALID DIR DIR DIR DIR TYPE1 TYPE1 TYPE1 TYPE1 TYPE0 TYPE0 TYPE0 TYPE0 SIZE 0 SIZE 0 0 0 0 0 BUF1 0 BUF1 0 BUF0 0 BUF0 0 10100010 bbbbbrbb 10100000 bbbbrrrr 11100010 bbbbbrbb 11100000 bbbbrrrr 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 x LINE15 0 x LINE14 0 x LINE13 0 x LINE12 0 x LINE11 0 x LINE10 0 x LINE9 ECCM x LINE8 00000000 rrrrrrrb 00000000 W 00000000 R Note 11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.” Document #: 38-08032 Rev. *L Page 29 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex E62B E62C E62D Size 1 1 1 Name ECC1B1 ECC1B2 ECC2B0 Description ECC1 Byte 1 Address ECC1 Byte 2 Address ECC2 Byte 0 Address b7 LINE7 COL5 LINE15 b6 LINE6 COL4 LINE14 b5 LINE5 COL3 LINE13 b4 LINE4 COL2 LINE12 b3 LINE3 COL1 LINE11 E62E E62F E630 H.S. E630 F.S. E631 H.S. E631 F.S E632 H.S. E632 F.S E633 H.S. E633 F.S 1 1 1 ECC2B1 ECC2B2 EP2FIFOPFH[11] LINE7 COL5 DECIS LINE6 COL4 PKTSTAT 1 EP2FIFOPFH[11] DECIS PKTSTAT LINE5 COL3 IN:PKTS[2] OUT:PFC12 OUT:PFC12 LINE4 COL2 IN:PKTS[1] OUT:PFC11 OUT:PFC11 1 EP2FIFOPFL[11] PFC7 PFC6 PFC5 1 EP2FIFOPFL[11] EP4FIFOPFH[11] IN:PKTS[1] OUT:PFC7 DECIS IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 1 0 1 EP4FIFOPFH[11] DECIS PKTSTAT 1 EP4FIFOPFL[11] PFC7 PFC6 1 EP4FIFOPFL[11] ECC2 Byte 1 Address ECC2 Byte 2 Address Endpoint 2 / slave FIFO Programmable Flag H Endpoint 2 / slave FIFO Programmable Flag H Endpoint 2 / slave FIFO Programmable Flag L Endpoint 2 / slave FIFO Programmable Flag L Endpoint 4 / slave FIFO Programmable Flag H Endpoint 4 / slave FIFO Programmable Flag H Endpoint 4 / slave FIFO Programmable Flag L Endpoint 4 / slave FIFO Programmable Flag L E634 H.S. E634 F.S E635 H.S. E635 F.S E636 H.S. E636 F.S E637 H.S. E637 F.S 1 EP6FIFOPFH[11] PKTSTAT 1 DECIS 1 EP6FIFOPFL[11] 1 EP6FIFOPFL[11] 1 EP8FIFOPFH[11] 1 EP8FIFOPFH[11] 1 EP8FIFOPFL[11] 1 EP8FIFOPFL[11] Endpoint 6 / slave FIFO Programmable Flag H Endpoint 6 / slave FIFO Programmable Flag H Endpoint 6 / slave FIFO Programmable Flag L Endpoint 6 / slave FIFO Programmable Flag L Endpoint 8 / slave FIFO Programmable Flag H Endpoint 8 / slave FIFO Programmable Flag H Endpoint 8 / slave FIFO Programmable Flag L Endpoint 8 / slave FIFO Programmable Flag L DECIS EP6FIFOPFH[11] 8 E640 1 reserved EP2ISOINPKTS AADJ 0 E641 1 EP4ISOINPKTS AADJ E642 1 EP6ISOINPKTS E643 1 EP8ISOINPKTS EP2 (if ISO) IN Packets per frame (1-3) EP4 (if ISO) IN Packets per frame (1-3) EP6 (if ISO) IN Packets per frame (1-3) EP8 (if ISO) IN Packets per frame (1-3) E644 4 E648 1 E649 7 E650 1 reserved INPKTEND[11] OUTPKTEND[11] INTERRUPTS EP2FIFOIE[11] E651 1 EP2FIFOIRQ[11,12] E652 1 [11] EP4FIFOIE [11,12] E653 1 EP4FIFOIRQ E654 1 EP6FIFOIE[11] E655 1 EP6FIFOIRQ[11,12] E656 1 [11] EP8FIFOIE [11,12] E657 1 EP8FIFOIRQ E658 1 IBNIE E659 1 IBNIRQ[12] E65A 1 NAKIE E65B 1 NAKIRQ[12] E65C 1 USBIE b2 LINE2 COL0 LINE10 b1 LINE1 LINE17 LINE9 b0 LINE0 LINE16 LINE8 Default Access 00000000 R 00000000 R 00000000 R LINE3 LINE2 COL1 COL0 IN:PKTS[0] 0 OUT:PFC10 OUT:PFC10 0 LINE1 0 PFC9 LINE0 0 PFC8 00000000 R 00000000 R 10001000 bbbbbrbb PFC9 10001000 bbbbbrbb PFC4 PFC3 PFC2 PFC1 IN:PKTS[2] OUT:PFC8 PFC0 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 PFC8 10001000 bbrbbrrb 0 IN: PKTS[1] IN: PKTS[0] 0 OUT:PFC10 OUT:PFC9 OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW IN: PKTS[1] IN: PKTS[0] PFC5 OUT:PFC7 OUT:PFC6 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW PFC9 PFC8 00001000 bbbbbrbb PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0] 0 OUT:PFC12 OUT:PFC11 OUT:PFC10 OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 00001000 bbbbbrbb PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 IN:PKTS[2] OUT:PFC8 PFC0 IN:PKTS[1] OUT:PFC7 DECIS IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 0 PFC8 00001000 bbrbbrrb DECIS PKTSTAT 0 IN: PKTS[1] IN: PKTS[0] 0 OUT:PFC10 OUT:PFC9 OUT:PFC10 OUT:PFC9 0 0 PFC8 00001000 bbrbbrrb PFC7 PFC6 PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW IN: PKTS[1] IN: PKTS[0] PFC5 OUT:PFC7 OUT:PFC6 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrbb AADJ 0 0 0 0 0 INPPF1 INPPF0 00000001 brrrrrrr Force IN Packet End Force OUT Packet End Skip Skip 0 0 0 0 0 0 EP3 EP3 EP2 EP2 EP1 EP1 EP0 EP0 xxxxxxxx W xxxxxxxx W Endpoint 2 slave FIFO Flag Interrupt Enable Endpoint 2 slave FIFO Flag Interrupt Request Endpoint 4 slave FIFO Flag Interrupt Enable Endpoint 4 slave FIFO Flag Interrupt Request Endpoint 6 slave FIFO Flag Interrupt Enable Endpoint 6 slave FIFO Flag Interrupt Request Endpoint 8 slave FIFO Flag Interrupt Enable Endpoint 8 slave FIFO Flag Interrupt Request IN-BULK-NAK Interrupt Enable IN-BULK-NAK interrupt Request Endpoint Ping-NAK / IBN Interrupt Enable Endpoint Ping-NAK / IBN Interrupt Request USB Int Enables 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000000 rrrrrbbb 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000 RW 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx rrbbbbbb EP8 EP6 EP4 EP2 EP1 EP0 0 IBN 00000000 RW EP8 EP6 EP4 EP2 EP1 EP0 0 IBN xxxxxx0x bbbbbbrb 0 EP0ACK HSGRANT URES SUSP SUTOK SOF SUDAV 00000000 RW 00000000 RW 00000000 RW Note 12. The register can only be reset, it cannot be set. Document #: 38-08032 Rev. *L Page 30 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name E65D 1 USBIRQ[12] E65E 1 EPIE E65F 1 EPIRQ[12] E660 1 E661 1 E662 1 GPIFIE[11] E663 1 USBERRIRQ[12] E664 1 ERRCNTLIM E665 1 E666 1 CLRERRCNT INT2IVEC E667 1 INT4IVEC E668 1 E669 7 INTSET-UP reserved E670 1 INPUT / OUTPUT PORTACFG E671 1 PORTCCFG E672 1 PORTECFG E673 4 E677 1 E678 1 reserved reserved I2CS E679 1 I2DAT E67A 1 I2CTL E67B 1 XAUTODAT1 E67C 1 XAUTODAT2 GPIFIRQ[11] USBERRIE E680 E681 E682 E683 E684 E685 E686 E687 E688 1 1 1 1 1 1 1 1 2 UDMA CRC UDMACRCH[11] UDMACRCL[11] UDMACRCQUALIFIER USB CONTROL USBCS SUSPEND WAKEUPCS TOGCTL USBFRAMEH USBFRAMEL MICROFRAME FNADDR reserved E68A E68B E68C E68D 1 1 1 1 ENDPOINTS EP0BCH[11] EP0BCL[11] reserved EP1OUTBC E68E E68F E690 E691 1 1 1 1 reserved EP1INBC EP2BCH[11] EP2BCL[11] E692 E694 E695 E696 E698 E699 E69A E69C 2 1 1 2 1 1 2 1 reserved EP4BCH[11] EP4BCL[11] reserved EP6BCH[11] EP6BCL[11] reserved EP8BCH[11] E67D 1 E67E 1 E67F 1 Description USB Interrupt Requests Endpoint Interrupt Enables b6 EP0ACK EP6 b5 HSGRANT EP4 b4 URES EP2 b3 SUSP EP1OUT b2 SUTOK EP1IN b1 SOF EP0OUT b0 SUDAV EP0IN Default Access 0xxxxxxx rbbbbbbb 00000000 RW Endpoint Interrupt EP8 Requests GPIF Interrupt Enable 0 GPIF Interrupt Request 0 USB Error Interrupt ISOEP8 Enables USB Error Interrupt ISOEP8 Requests USB Error counter and EC3 limit Clear Error Counter EC3:0 x Interrupt 2 (USB) 0 Autovector Interrupt 4 (slave FIFO & 1 GPIF) Autovector Interrupt 2&4 setup 0 EP6 EP4 EP2 EP1OUT EP1IN EP0OUT EP0IN 0 0 0 ISOEP6 0 0 ISOEP4 0 0 ISOEP2 0 0 0 0 0 0 GPIFWF GPIFWF 0 GPIFDONE 00000000 RW GPIFDONE 000000xx RW ERRLIMIT 00000000 RW ISOEP6 ISOEP4 ISOEP2 0 0 0 ERRLIMIT 0000000x bbbbrrrb EC2 EC1 EC0 LIMIT3 LIMIT2 LIMIT1 LIMIT0 xxxx0100 rrrrbbbb x I2V4 x I2V3 x I2V2 x I2V1 x I2V0 x 0 x 0 xxxxxxxx W 00000000 R 0 I4V3 I4V2 I4V1 I4V0 0 0 10000000 R 0 0 0 AV2EN 0 INT4SRC AV4EN 00000000 RW IO PORTA Alternate Configuration IO PORTC Alternate Configuration IO PORTE Alternate Configuration FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW I²C Bus Control & Status I²C Bus Data I²C Bus Control Autoptr1 MOVX access, when APTREN=1 Autoptr2 MOVX access, when APTREN=1 START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW 0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW UDMA CRC MSB UDMA CRC LSB UDMA CRC Qualifier CRC15 CRC7 QENABLE CRC14 CRC6 0 CRC13 CRC5 0 CRC12 CRC4 0 CRC11 CRC3 QSTATE CRC10 CRC2 QSIGNAL2 CRC9 CRC1 QSIGNAL1 CRC8 CRC0 QSIGNAL0 01001010 RW 10111010 RW 00000000 brrrbbbb USB Control & Status Put chip into suspend Wakeup Control & Status Toggle Control USB Frame count H USB Frame count L Microframe count, 0-7 USB Function address HSM x WU2 Q 0 FC7 0 0 0 x WU S 0 FC6 0 FA6 0 x WU2POL R 0 FC5 0 FA5 0 x WUPOL IO 0 FC4 0 FA4 DISCON x 0 EP3 0 FC3 0 FA3 NOSYNSOF x DPEN EP2 FC10 FC2 MF2 FA2 RENUM x WU2EN EP1 FC9 FC1 MF1 FA1 SIGRSUME x WUEN EP0 FC8 FC0 MF0 FA0 x0000000 rrrrbbbb xxxxxxxx W xx000101 bbbbrbbb x0000000 rrrbbbbb 00000xxx R xxxxxxxx R 00000xxx R 0xxxxxxx R Endpoint 0 Byte Count H (BC15) Endpoint 0 Byte Count L (BC7) (BC14) BC6 (BC13) BC5 (BC12) BC4 (BC11) BC3 (BC10) BC2 (BC9) BC1 (BC8) BC0 xxxxxxxx RW xxxxxxxx RW Endpoint 1 OUT Byte Count BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW Endpoint 1 IN Byte Count 0 Endpoint 2 Byte Count H 0 Endpoint 2 Byte Count L BC7/SKIP BC6 0 BC6 BC5 0 BC5 BC4 0 BC4 BC3 0 BC3 BC2 BC10 BC2 BC1 BC9 BC1 BC0 BC8 BC0 0xxxxxxx RW 00000xxx RW xxxxxxxx RW Endpoint 4 Byte Count H 0 Endpoint 4 Byte Count L BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 0 BC2 BC9 BC1 BC8 BC0 000000xx RW xxxxxxxx RW Endpoint 6 Byte Count H 0 Endpoint 6 Byte Count L BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 BC10 BC2 BC9 BC1 BC8 BC0 00000xxx RW xxxxxxxx RW Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW Document #: 38-08032 Rev. *L b7 0 EP8 0 RW Page 31 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex E69D E69E E6A0 Size 1 2 1 Name EP8BCL[11] reserved EP0CS E6A1 1 EP1OUTCS E6A2 1 EP1INCS E6A3 1 EP2CS E6A4 1 EP4CS E6A5 1 EP6CS E6A6 1 EP8CS E6A7 1 EP2FIFOFLGS E6A8 1 EP4FIFOFLGS E6A9 1 EP6FIFOFLGS E6AA 1 EP8FIFOFLGS E6AB 1 EP2FIFOBCH E6AC 1 EP2FIFOBCL E6AD 1 EP4FIFOBCH E6AE 1 EP4FIFOBCL E6AF 1 EP6FIFOBCH E6B0 1 EP6FIFOBCL E6B1 1 EP8FIFOBCH E6B2 1 EP8FIFOBCL E6B3 1 SUDPTRH E6B4 1 SUDPTRL E6B5 1 SUDPTRCTL 2 E6B8 8 reserved SET-UPDAT E6C0 1 E6C1 1 GPIF GPIFWFSELECT GPIFIDLECS E6C2 E6C3 E6C4 E6C5 1 1 1 1 E6C6 1 GPIFIDLECTL GPIFCTLCFG GPIFADRH[11] GPIFADRL[11] FLOWSTATE FLOWSTATE E6C7 1 E6C8 1 FLOWLOGIC FLOWEQ0CTL E6C9 1 FLOWEQ1CTL E6CA 1 FLOWHOLDOFF Description b7 Endpoint 8 Byte Count L BC7/SKIP b6 BC6 b5 BC5 b4 BC4 b3 BC3 b2 BC2 b1 BC1 b0 BC0 Default Access xxxxxxxx RW Endpoint 0 Control and Status Endpoint 1 OUT Control and Status Endpoint 1 IN Control and Status Endpoint 2 Control and Status Endpoint 4 Control and Status Endpoint 6 Control and Status Endpoint 8 Control and Status Endpoint 2 slave FIFO Flags Endpoint 4 slave FIFO Flags HSNAK 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb 0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb 0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb 0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb 0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb 0 0 0 0 0 PF EF FF 00000010 R 0 0 0 0 0 PF EF FF 00000010 R Endpoint 6 slave FIFO 0 Flags Endpoint 8 slave FIFO 0 Flags Endpoint 2 slave FIFO 0 total byte count H Endpoint 2 slave FIFO BC7 total byte count L Endpoint 4 slave FIFO 0 total byte count H Endpoint 4 slave FIFO BC7 total byte count L Endpoint 6 slave FIFO 0 total byte count H Endpoint 6 slave FIFO BC7 total byte count L Endpoint 8 slave FIFO 0 total byte count H Endpoint 8 slave FIFO BC7 total byte count L Setup Data Pointer high A15 address byte Setup Data Pointer low ad- A7 dress byte Setup Data Pointer Auto 0 Mode 0 0 0 0 PF EF FF 00000110 R 0 0 0 0 PF EF FF 00000110 R 0 0 BC12 BC11 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 0 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 BC11 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 0 0 0 0 BC10 BC9 BC8 00000000 R BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW A6 A5 A4 A3 A2 A1 0 xxxxxxx0 bbbbbbbr 0 0 0 0 0 0 SDPAUTO 00000001 RW 8 bytes of setup data D7 SET-UPDAT[0] = bmRequestType SET-UPDAT[1] = bmRequest SET-UPDAT[2:3] = wValue SET-UPDAT[4:5] = wIndex SET-UPDAT[6:7] = wLength D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R Waveform Selector GPIF Done, GPIF IDLE drive mode Inactive Bus, CTL states CTL Drive Type GPIF Address H GPIF Address L SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 DONE 0 0 0 0 FIFOWR0 0 FIFORD1 0 FIFORD0 IDLEDRV 11100100 RW 10000000 RW 0 TRICTL 0 GPIFA7 CTL1 CTL1 0 GPIFA1 CTL0 CTL0 GPIFA8 GPIFA0 11111111 RW 00000000 RW 00000000 RW 00000000 RW Flowstate Enable and Selector Flowstate Logic CTL-Pin States in Flowstate (when Logic = 0) CTL-Pin States in Flowstate (when Logic = 1) Holdoff Configuration Document #: 38-08032 Rev. *L 0 0 0 GPIFA6 CTL5 CTL5 0 GPIFA5 CTL4 CTL4 0 GPIFA4 CTL3 CTL3 0 GPIFA3 CTL2 CTL2 0 GPIFA2 FSE 0 0 0 0 FS2 FS1 FS0 00000000 brrrrbbb LFUNC1 CTL0E3 LFUNC0 CTL0E2 TERMA2 CTL0E1/ CTL5 TERMA1 CTL0E0/ CTL4 TERMA0 CTL3 TERMB2 CTL2 TERMB1 CTL1 TERMB0 CTL0 00000000 RW 00000000 RW CTL0E3 CTL0E2 CTL2 CTL1 CTL0 00000000 RW HOCTL2 HOCTL1 HOCTL0 00010010 RW CTL0E1/ CTL0E0/ CTL3 CTL5 CTL4 HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE 0 Page 32 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name E6CB 1 FLOWSTB E6CC 1 FLOWSTBEDGE E6CD 1 E6CE 1 FLOWSTBPERIOD GPIFTCB3[11] E6CF 1 GPIFTCB2[11] E6D0 1 GPIFTCB1[11] E6D1 1 GPIFTCB0[11] 2 Description Flowstate Strobe Configuration Flowstate Rising/Falling Edge Configuration b7 SLAVE b6 b5 RDYASYNC CTLTOGL b4 SUSTAIN b3 0 b2 MSTB2 b1 MSTB1 b0 MSTB0 Default Access 00100000 RW 0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb D6 TC30 D5 TC29 D4 TC28 D3 TC27 D2 TC26 D1 TC25 D0 TC24 00000010 RW 00000000 RW TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000 RW TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW Master-Strobe Half-Period D7 GPIF Transaction Count TC31 Byte 3 GPIF Transaction Count TC23 Byte 2 GPIF Transaction Count TC15 Byte 1 GPIF Transaction Count TC7 Byte 0 reserved reserved reserved EP2GPIFFLGSEL[11] Endpoint 2 GPIF Flag 0 select EP2GPIFPFSTOP Endpoint 2 GPIF stop 0 transaction on prog. flag 0 0 0 0 0 FS1 FS0 0 0 0 0 0 0 FIFO2FLAG 00000000 RW EP2GPIFTRIG[11] x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO4FLAG 00000000 RW x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO6FLAG 00000000 RW x x x x x x x x xxxxxxxx W 0 0 0 0 0 0 FS1 FS0 00000000 RW 0 0 0 0 0 0 0 FIFO8FLAG 00000000 RW x x x x x x x x xxxxxxxx W D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R INTRDY SAS TCXRDY5 0 0 0 0 0 00000000 bbbrrrrr E6F4 1 E6F5 1 E6F6 2 0 x 0 x RDY5 x RDY4 x RDY3 x RDY2 x RDY1 x RDY0 x 00xxxxxx R xxxxxxxx W E740 E780 E7C0 E800 F000 D7 D7 D7 D6 D6 D6 D5 D5 D5 D4 D4 D4 D3 D3 D3 D2 D2 D2 D1 D1 D1 D0 D0 D0 D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW xxxxxxxx RW xxxxxxxx RW RW xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E6D2 1 E6D3 1 E6D4 1 3 E6DA 1 E6DB 1 E6DC 1 3 E6E2 1 E6E3 1 E6E4 1 3 E6EA 1 E6EB 1 E6EC 1 3 E6F0 1 E6F1 1 E6F2 1 E6F3 1 F400 F600 F800 FC00 FE00 Endpoint 2 GPIF Trigger reserved reserved reserved EP4GPIFFLGSEL[11] Endpoint 4 GPIF Flag select EP4GPIFPFSTOP Endpoint 4 GPIF stop transaction on GPIF Flag EP4GPIFTRIG[11] Endpoint 4 GPIF Trigger reserved reserved reserved EP6GPIFFLGSEL[11] Endpoint 6 GPIF Flag select EP6GPIFPFSTOP Endpoint 6 GPIF stop transaction on prog. flag [11] EP6GPIFTRIG Endpoint 6 GPIF Trigger reserved reserved reserved EP8GPIFFLGSEL[11] Endpoint 8 GPIF Flag select EP8GPIFPFSTOP Endpoint 8 GPIF stop transaction on prog. flag EP8GPIFTRIG[11] Endpoint 8 GPIF Trigger reserved XGPIFSGLDATH GPIF Data H (16-bit mode only) XGPIFSGLDATLX Read/Write GPIF Data L & trigger transaction XGPIFSGLDATLRead GPIF Data L, no NOX transaction trigger GPIFREADYCFG Internal RDY, Sync/Async, RDY pin states GPIFREADYSTAT GPIF Ready Status GPIFABORT Abort GPIF Waveforms reserved ENDPOINT BUFFERS 64 EP0BUF EP0-IN/-OUT buffer 64 EP10UTBUF EP1-OUT buffer 64 EP1INBUF EP1-IN buffer 2048 reserved 1024 EP2FIFOBUF 512/1024 byte EP 2 / slave FIFO buffer (IN or OUT) 512 EP4FIFOBUF 512 byte EP 4 / slave FIFO buffer (IN or OUT) 512 reserved 1024 EP6FIFOBUF 512/1024 byte EP 6 / slave FIFO buffer (IN or OUT) 512 EP8FIFOBUF 512 byte EP 8 / slave FIFO buffer (IN or OUT) 512 reserved Document #: 38-08032 Rev. *L 00000000 RW 00000000 RW Page 33 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex Size Name Description xxxx I²C Configuration Byte b7 0 b6 DISCON b5 0 b4 0 b3 0 b2 0 b1 0 b0 400KHZ Default Access xxxxxxxx n/a Port A (bit addressable) Stack Pointer Data Pointer 0 L Data Pointer 0 H Data Pointer 1 L Data Pointer 1 H Data Pointer 0/1 select Power Control Timer/Counter Control (bit addressable) Timer/Counter Mode Control Timer 0 reload L Timer 1 reload L Timer 0 reload H D7 D7 A7 A15 A7 A15 0 SMOD0 TF1 D6 D6 A6 A14 A6 A14 0 x TR1 D5 D5 A5 A13 A5 A13 0 1 TF0 D4 D4 A4 A12 A4 A12 0 1 TR0 D3 D3 A3 A11 A3 A11 0 x IE1 D2 D2 A2 A10 A2 A10 0 x IT1 D1 D1 A1 A9 A1 A9 0 x IE0 D0 D0 A0 A8 A0 A8 SEL IDLE IT0 xxxxxxxx RW 00000111 RW 00000000 RW 00000000 RW 00000000 RW 00000000 RW 00000000 RW 00110000 RW 00000000 RW GATE CT M1 M0 GATE CT M1 M0 00000000 RW D7 D7 D15 D6 D6 D14 D5 D5 D13 D4 D4 D12 D3 D3 D11 D2 D2 D10 D1 D1 D9 D0 D0 D8 00000000 RW 00000000 RW 00000000 RW Timer 1 reload H Clock Control D15 x D14 x D13 T2M D12 T1M D11 T0M D10 MD2 D9 MD1 D8 MD0 00000000 RW 00000001 RW Port B (bit addressable) D7 External Interrupt Flag(s) IE5 Upper Addr Byte of MOVX A15 using @R0 / @R1 D6 IE4 A14 D5 I²CINT A13 D4 USBNT A12 D3 1 A11 D2 0 A10 D1 0 A9 D0 0 A8 xxxxxxxx RW 00001000 RW 00000000 RW Serial Port 0 Control (bit addressable) Serial Port 0 Data Buffer Autopointer 1 Address H Autopointer 1 Address L SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW D7 A15 A7 D6 A14 A6 D5 A13 A5 D4 A12 A4 D3 A11 A3 D2 A10 A2 D1 A9 A1 D0 A8 A0 00000000 RW 00000000 RW 00000000 RW Autopointer 2 Address H A15 Autopointer 2 Address L A7 A14 A6 A13 A5 A12 A4 A11 A3 A10 A2 A9 A1 A8 A0 00000000 RW 00000000 RW Port C (bit addressable) Interrupt 2 clear Interrupt 4 clear D7 x x D6 x x D5 x x D4 x x D3 x x D2 x x D1 x x D0 x x xxxxxxxx RW xxxxxxxx W xxxxxxxx W Interrupt Enable (bit addressable) EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW EP8E EP6F EP6E EP4F EP4E EP2F EP2E 01011010 R EP4PF EP4EF EP4FF 0 EP2PF EP2EF EP2FF 00100010 R EP8PF EP8EF EP8FF 0 EP6PF EP6EF EP6FF 01100110 R 0 D7 D7 0 D6 D6 0 D5 D5 0 D4 D4 0 D3 D3 APTR2INC D2 D2 APTR1INC D1 D1 APTREN D0 D0 00000110 RW xxxxxxxx RW xxxxxxxx RW D7 D7 D7 D7 D7 D6 D6 D6 D6 D6 D5 D5 D5 D5 D5 D4 D4 D4 D4 D4 D3 D3 D3 D3 D3 D2 D2 D2 D2 D2 D1 D1 D1 D1 D1 D0 D0 D0 D0 D0 00000000 RW 00000000 RW 00000000 RW 00000000 RW 00000000 RW 1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000 RW 0 0 0 0 0 EP1INBSY 00000000 R DONE 0 0 0 0 RW EP1OUTBS EP0BSY Y EP1 EP0 D14 D13 D12 D11 D10 D9 xxxxxxxx RW [14] Special Function Registers (SFRs) 80 81 82 83 84 85 86 87 88 1 1 1 1 1 1 1 1 1 IOA[13] SP DPL0 DPH0 DPL1[13] DPH1[13] DPS[13] PCON TCON 89 1 TMOD 8A 8B 8C 1 1 1 TL0 TL1 TH0 8D 8E 8F 90 91 92 1 1 1 1 1 1 TH1 CKCON[13] reserved IOB[13] EXIF[13] MPAGE[13] 93 98 5 1 reserved SCON0 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A8 1 1 1 1 1 1 1 1 1 1 5 1 SBUF0 AUTOPTRH1[13] AUTOPTRL1[13] reserved AUTOPTRH2[13] AUTOPTRL2[13] reserved IOC[13] INT2CLR[13] INT4CLR[13] reserved IE A9 AA 1 1 reserved EP2468STAT[13] AB 1 EP24FIFOFLGS AC 1 EP68FIFOFLGS AD AF B0 B1 2 1 1 1 B2 B3 B4 B5 B6 B7 B8 1 1 1 1 1 1 1 B9 BA 1 1 reserved AUTOPTRSETUP[13] Autopointer 1&2 setup IOD[13] Port D (bit addressable) IOE[13] Port E (NOT bit addressable) [13] OEA Port A Output Enable OEB[13] Port B Output Enable OEC[13] Port C Output Enable OED[13] Port D Output Enable OEE[13] Port E Output Enable reserved IP Interrupt Priority (bit addressable) reserved EP01STAT[13] Endpoint 0&1 Status BB 1 GPIFTRIG[13, 11] BC BD 1 1 reserved GPIFSGLDATH[13] [13] [13] Endpoint 2,4,6,8 status EP8F flags Endpoint 2,4 slave FIFO 0 status flags Endpoint 6,8 slave FIFO 0 status flags Endpoint 2,4,6,8 GPIF slave FIFO Trigger GPIF Data H (16-bit mode D15 only) D8 10000xxx brrrrbbb Note 13. SFRs not part of the standard 8051 architecture. 14. If no EEPROM is detected by the SIE then the default is 00000000. Document #: 38-08032 Rev. *L Page 34 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Table 12. FX2LP Register Summary (continued) Hex BE BF Size Name Description b7 1 GPIFSGLDATLX[13] GPIF Data L w/ Trigger D7 1 GPIFSGLDATLGPIF Data L w/ No Trigger D7 NOX[13] C0 1 SCON1[13] C1 C2 C8 1 6 1 SBUF1[13] C9 CA 1 1 reserved RCAP2L CB 1 RCAP2H CC CD CE D0 1 1 2 1 TL2 TH2 reserved PSW D1 D8 D9 E0 7 1 7 1 reserved EICON[13] reserved ACC E1 E8 7 1 reserved EIE[13] E9 F0 F1 F8 7 1 7 1 reserved B reserved EIP[13] F9 7 reserved reserved T2CON b6 D6 D6 b5 D5 D5 b4 D4 D4 b3 D3 D3 b2 D2 D2 b1 D1 D1 b0 D0 D0 Default Access xxxxxxxx RW xxxxxxxx R Serial Port 1 Control (bit SM0_1 addressable) Serial Port 1 Data Buffer D7 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW D6 D5 D4 D3 D2 D1 D0 00000000 RW Timer/Counter 2 Control (bit addressable) TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW Capture for Timer 2, auto-reload, up-counter Capture for Timer 2, auto-reload, up-counter Timer 2 reload L Timer 2 reload H D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW D7 D15 D6 D14 D5 D13 D4 D12 D3 D11 D2 D10 D1 D9 D0 D8 00000000 RW 00000000 RW Program Status Word (bit CY addressable) AC F0 RS1 RS0 OV F1 P 00000000 RW External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW Accumulator (bit address- D7 able) D6 D5 D4 D3 D2 D1 D0 00000000 RW External Interrupt Enable(s) 1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW External Interrupt Priority 1 Control R = all bits read-only W = all bits write-only r = read-only bit w = write-only bit b = both read/write bit Document #: 38-08032 Rev. *L Page 35 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 6. Absolute Maximum Ratings Storage Temperature ..................................................................................................................................................... 65°C to +150°C Ambient Temperature with Power Supplied (Commercial) ................................................................................................ 0°C to +70°C Ambient Temperature with Power Supplied (Industrial).............................................................................................. –40°C to +105°C Supply Voltage to Ground Potential................................................................................................................................ –0.5V to +4.0V DC Input Voltage to Any Input Pin[15] ............................................................................................................................................ 5.25V DC Voltage Applied to Outputs in High Z State .................................................................................................... –0.5V to VCC + 0.5V Power Dissipation...................................................................................................................................................................... 300 mW Static Discharge Voltage.............................................................................................................................................................>2000V Max Output Current, per IO port................................................................................................................................................... 10 mA Max Output Current, all five IO ports (128- and 100-pin packages) ............................................................................................. 50 mA 7. Operating Conditions TA (Ambient Temperature Under Bias) Commercial ......................................................................................................... 0°C to +70°C TA (Ambient Temperature Under Bias) Industrial......................................................................................................... –40°C to +105°C Supply Voltage............................................................................................................................................................ +3.00V to +3.60V Ground Voltage................................................................................................................................................................................... 0V FOSC (Oscillator or Crystal Frequency).......................................................................................24 MHz ± 100 ppm, Parallel Resonant 8. Thermal Characteristics The following table displays the thermal characteristics of various packages: Table 13. Thermal Characteristics θJc Junction to Case Ambient Temperature Temperature (°C) (°C/W) θa Package θCa Case to Ambient Temperature θJa Junction to Ambient Temperature θJc + θCa (°C/W) (°C/W) 56 SSOP 70 24.4 23.3 47.7 100 TQFP 70 11.9 34.0 45.9 128 TQFP 70 15.5 27.7 43.2 56 QFN 70 10.6 14.6 25.2 56 VFBGA 70 30.9 27.7 58.6 The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa where, P = Power θJa = Junction to Ambient Temperature (θJc + θCa) θa = Ambient Temperature (70 C) The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa where, P = Power θCa = Case to Ambient Temperature θa = Ambient Temperature (70 C) Note 15. Do not power IO with chip power off. Document #: 38-08032 Rev. *L Page 36 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 9. DC Characteristics Table 14. DC Characteristics Parameter VCC Description Conditions Supply Voltage VCC Ramp Up 0 to 3.3V Min Typ Max Unit 3.00 3.3 3.60 V μs 200 VIH Input HIGH Voltage 2 VIL Input LOW Voltage –0.5 0.8 V VIH_X Crystal Input HIGH Voltage 2 5.25 V VIL_X Crystal Input LOW Voltage II Input Leakage Current 0< VIN < VCC VOH Output Voltage HIGH IOUT = 4 mA VOL Output LOW Voltage IOUT = –4 mA 5.25 –0.5 V 0.8 V ±10 μA 2.4 V 0.4 V IOH Output Current HIGH 4 mA IOL Output Current LOW 4 mA CIN Input Pin Capacitance ISUSP ICC TRESET Except D+/D– 10 pF D+/D– 15 pF Suspend Current Connected 300 380[16] μA CY7C68014/CY7C68016 Disconnected 100 150[16] μA mA Suspend Current Connected 0.5 1.2[16] CY7C68013/CY7C68015 Disconnected 0.3 1.0[16] mA Supply Current 8051 running, connected to USB HS 50 85 mA 8051 running, connected to USB FS 35 65 mA Reset Time after Valid Power VCC min = 3.0V Pin Reset after powered on 5.0 mS 200 μS 9.1 USB Transceiver USB 2.0 compliant in full-speed and high-speed modes. 10. AC Electrical Characteristics 10.1 USB Transceiver USB 2.0 compliant in full-speed and high-speed modes. Note 16. Measured at Max VCC, 25°C. Document #: 38-08032 Rev. *L Page 37 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.2 Program Memory Read Figure 12. Program Memory Read Timing Diagram tCL CLKOUT[17] tAV tAV A[15..0] tSTBH tSTBL PSEN# [18] tACC1 D[7..0] tDH data in tSOEL OE# tSCSL CS# Table 15. Program Memory Read Parameters Parameter tCL Description Min 1/CLKOUT Frequency Typ Max 20.83 Unit Notes ns 48 MHz 41.66 ns 24 MHz 83.2 ns 12 MHz tAV Delay from Clock to Valid Address 0 10.7 ns tSTBL Clock to PSEN Low 0 8 ns tSTBH Clock to PSEN High 0 tSOEL Clock to OE Low tSCSL Clock to CS Low tDSU Data Setup to Clock tDH Data Hold Time 8 ns 11.1 ns 13 ns 9.6 ns 0 ns Notes 17. CLKOUT is shown with positive polarity. 18. tACC1 is computed from the above parameters as follows: tACC1(24 MHz) = 3*tCL – tAV – tDSU = 106 ns tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns. Document #: 38-08032 Rev. *L Page 38 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.3 Data Memory Read Figure 13. Data Memory Read Timing Diagram tCL Stretch = 0 CLKOUT[17] tAV tAV A[15..0] tSTBH tSTBL RD# tSCSL CS# tSOEL OE# tDSU [19] tDH tACC1 D[7..0] data in tCL Stretch = 1 CLKOUT[17] tAV A[15..0] RD# CS# tDSU tACC1[19] D[7..0] tDH data in Table 16. Data Memory Read Parameters Parameter tCL Description Min 1/CLKOUT Frequency Typ Max Unit Notes 20.83 ns 48 MHz 41.66 ns 24 MHz ns 12 MHz 83.2 tAV Delay from Clock to Valid Address tSTBL Clock to RD LOW 11 ns tSTBH Clock to RD HIGH 11 ns tSCSL Clock to CS LOW 13 ns tSOEL Clock to OE LOW 11.1 ns tDSU Data Setup to Clock tDH Data Hold Time 10.7 ns 9.6 ns 0 ns When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is based on the stretch value Note 19. tACC2 and tACC3 are computed from the above parameters as follows: tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns. Document #: 38-08032 Rev. *L Page 39 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.4 Data Memory Write Figure 14. Data Memory Write Timing Diagram tCL CLKOUT tAV tSTBL tSTBH tAV A[15..0] WR# tSCSL CS# tON1 tOFF1 data out D[7..0] Stretch = 1 tCL CLKOUT tAV A[15..0] WR# CS# tON1 tOFF1 data out D[7..0] Table 17. Data Memory Write Parameters Min Max Unit tAV Parameter Delay from Clock to Valid Address Description 0 10.7 ns tSTBL Clock to WR Pulse LOW 0 11.2 ns tSTBH Clock to WR Pulse HIGH 0 11.2 ns tSCSL Clock to CS Pulse LOW 13.0 ns tON1 Clock to Data Turn-on 0 13.1 ns tOFF1 Clock to Data Hold Time 0 13.1 ns Notes When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is based on the stretch value. Document #: 38-08032 Rev. *L Page 40 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.5 PORTC Strobe Feature Timings The RD# and WR# are present in the 100-pin version and the 128-pin package. In these 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from or writes to PORTC. This feature is enabled by setting PORTCSTB bit in CPUCS register. The RD# signal prompts the external logic to prepare the next data byte. Nothing gets sampled internally on assertion of the RD# signal itself, it is just a prefetch type signal to get the next data byte prepared. So, using it with that in mind easily meets the setup time to the next read. The RD# and WR# strobes are asserted for two CLKOUT cycles when PORTC is accessed. The WR# strobe is asserted two clock cycles after PORTC is updated and is active for two clock cycles after that, as shown in Figure 15. The purpose of this pulsing of RD# is to allow the external peripheral to know that the 8051 is done reading PORTC and the data was latched into PORTC three CLKOUT cycles before asserting the RD# signal. After the RD# is pulsed, the external logic can update the data on PORTC. As for read, the value of PORTC three clock cycles before the assertion of RD# is the value that the 8051 reads in. The RD# is pulsed for 2 clock cycles after 3 clock cycles from the point when the 8051 has performed a read function on PORTC. Following is the timing diagram of the read and write strobing function on accessing PORTC. Refer to Section 10.3 and Section 10.4 for details on propagation delay of RD# and WR# signals. Figure 15. WR# Strobe Function when PORTC is Accessed by 8051 tCLKOUT CLKOUT PORTC IS UPDATED tSTBL tSTBH WR# Figure 16. RD# Strobe Function when PORTC is Accessed by 8051 tCLKOUT CLKOUT 8051 READS PORTC DATA CAN BE UPDATED BY EXTERNAL LOGIC DATA MUST BE HELD FOR 3 CLK CYLCES tSTBL tSTBH RD# Document #: 38-08032 Rev. *L Page 41 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.6 GPIF Synchronous Signals Figure 17. GPIF Synchronous Signals Timing Diagram[20] tIFCLK IFCLK tSGA GPIFADR[8:0] RDYX tSRY tRYH DATA(input) valid tSGD tDAH CTLX tXCTL DATA(output) N N+1 tXGD Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[20, 21] Parameter Description Min Max 20.83 Unit tIFCLK IFCLK Period ns tSRY RDYX to Clock Setup Time tRYH Clock to RDYX tSGD GPIF Data to Clock Setup Time tDAH GPIF Data Hold Time tSGA Clock to GPIF Address Propagation Delay 7.5 ns tXGD Clock to GPIF Data Output Propagation Delay 11 ns tXCTL Clock to CTLX Output Propagation Delay 6.7 ns Min. Max. Unit 20.83 200 ns 8.9 ns 0 ns 9.2 ns 0 ns Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[21] Parameter Description tIFCLK IFCLK Period[22] tSRY RDYX to Clock Setup Time 2.9 ns tRYH Clock to RDYX 3.7 ns tSGD GPIF Data to Clock Setup Time 3.2 ns tDAH GPIF Data Hold Time 4.5 ns tSGA Clock to GPIF Address Propagation Delay tXGD Clock to GPIF Data Output Propagation Delay tXCTL Clock to CTLX Output Propagation Delay 11.5 ns 15 ns 10.7 ns Notes 20. Dashed lines denote signals with programmable polarity. 21. GPIF asynchronous RDYx signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK. 22. IFCLK must not exceed 48 MHz. Document #: 38-08032 Rev. *L Page 42 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.7 Slave FIFO Synchronous Read Figure 18. Slave FIFO Synchronous Read Timing Diagram[20] tIFCLK IFCLK tSRD tRDH SLRD tXFLG FLAGS DATA N tOEon N+1 tXFD tOEoff SLOE Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21] Parameter Description Min Max Unit tIFCLK IFCLK Period 20.83 ns tSRD SLRD to Clock Setup Time 18.7 ns tRDH Clock to SLRD Hold Time 0 tOEon SLOE Turn-on to FIFO Data Valid 10.5 tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns tXFLG Clock to FLAGS Output Propagation Delay 9.5 ns tXFD Clock to FIFO Data Output Propagation Delay 11 ns ns ns Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21] Min. Max. Unit tIFCLK Parameter IFCLK Period Description 20.83 200 ns tSRD SLRD to Clock Setup Time 12.7 ns tRDH Clock to SLRD Hold Time 3.7 ns tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns tXFLG Clock to FLAGS Output Propagation Delay 13.5 ns tXFD Clock to FIFO Data Output Propagation Delay 15 ns Document #: 38-08032 Rev. *L Page 43 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.8 Slave FIFO Asynchronous Read Figure 19. Slave FIFO Asynchronous Read Timing Diagram[20] tRDpwh SLRD tRDpwl FLAGS tXFD tXFLG DATA N N+1 tOEon tOEoff SLOE Table 22. Slave FIFO Asynchronous Read Parameters[23] Parameter Description Min Max Unit tRDpwl SLRD Pulse Width LOW 50 tRDpwh SLRD Pulse Width HIGH 50 tXFLG SLRD to FLAGS Output Propagation Delay tXFD SLRD to FIFO Data Output Propagation Delay tOEon SLOE Turn-on to FIFO Data Valid tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns ns ns 70 ns 15 ns 10.5 ns Note 23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document #: 38-08032 Rev. *L Page 44 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.9 Slave FIFO Synchronous Write Figure 20. Slave FIFO Synchronous Write Timing Diagram[20] tIFCLK IFCLK SLWR DATA tSWR tWRH N Z tSFD Z tFDH FLAGS tXFLG Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[21] Parameter Description Min Max Unit tIFCLK IFCLK Period 20.83 ns tSWR SLWR to Clock Setup Time 10.4 ns tWRH Clock to SLWR Hold Time 0 ns tSFD FIFO Data to Clock Setup Time 9.2 ns tFDH Clock to FIFO Data Hold Time 0 tXFLG Clock to FLAGS Output Propagation Time ns 9.5 ns Min Max Unit 200 ns Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[21] Parameter Description tIFCLK IFCLK Period 20.83 tSWR SLWR to Clock Setup Time 12.1 ns tWRH Clock to SLWR Hold Time 3.6 ns tSFD FIFO Data to Clock Setup Time 3.2 ns tFDH Clock to FIFO Data Hold Time 4.5 tXFLG Clock to FLAGS Output Propagation Time Document #: 38-08032 Rev. *L ns 13.5 ns Page 45 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.10 Slave FIFO Asynchronous Write Figure 21. Slave FIFO Asynchronous Write Timing Diagram[20] tWRpwh SLWR SLWR/SLCS# tWRpwl tSFD tFDH DATA tXFD FLAGS Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [23] Parameter Description Min Max Unit tWRpwl SLWR Pulse LOW 50 ns tWRpwh SLWR Pulse HIGH 70 ns tSFD SLWR to FIFO DATA Setup Time 10 ns tFDH FIFO DATA to SLWR Hold Time 10 tXFD SLWR to FLAGS Output Propagation Delay ns 70 ns 10.11 Slave FIFO Synchronous Packet End Strobe Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram[20] IFCLK tPEH PKTEND tSPE FLAGS tXFLG Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[21] Parameter Description Min Max Unit tIFCLK IFCLK Period 20.83 tSPE PKTEND to Clock Setup Time 14.6 ns tPEH Clock to PKTEND Hold Time 0 ns tXFLG Clock to FLAGS Output Propagation Delay ns 9.5 ns Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[21] Parameter Description Min Max Unit 20.83 200 ns tIFCLK IFCLK Period tSPE PKTEND to Clock Setup Time 8.6 tPEH Clock to PKTEND Hold Time 2.5 tXFLG Clock to FLAGS Output Propagation Delay Document #: 38-08032 Rev. *L ns ns 13.5 ns Page 46 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A There is no specific timing requirement that should be met for asserting PKTEND pin to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs or thereafter. The setup time tSPE and the hold time tPEH must be met. caused the last byte or word to be clocked into the previous auto committed packet. Figure 23 shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode. Although there are no specific timing requirements for the PKTEND assertion, there is a specific corner case condition that needs attention while using the PKTEND to commit a one byte or word packet. There is an additional timing requirement that needs to be met when the FIFO is configured to operate in auto mode and it is required to send two packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this scenario, the user must ensure to assert PKTEND at least one clock cycle after the rising edge that Figure 23 shows a scenario where two packets are committed. The first packet gets committed automatically when the number of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND. Note that there is at least one IFCLK cycle timing between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the packet to be committed automatically). Failing to adhere to this timing results in the FX2 failing to send the one byte or word short packet. Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram[20] tIFCLK IFCLK tSFA tFAH FIFOADR >= tWRH >= tSWR SLWR tFDH tSFD tSFD X-4 DATA tFDH tFDH tSFD X-3 tFDH tSFD X-2 tSFD X-1 X tFDH tSFD tFDH 1 At least one IFCLK cycle tSPE tPEH PKTEND 10.12 Slave FIFO Asynchronous Packet End Strobe Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[20] tPEpwh PKTEND tPEpwl FLAGS tXFLG Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[23] Parameter Description Min Max Unit tPEpwl PKTEND Pulse Width LOW 50 ns tPWpwh PKTEND Pulse Width HIGH 50 ns tXFLG PKTEND to FLAGS Output Propagation Delay Document #: 38-08032 Rev. *L 115 ns Page 47 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.13 Slave FIFO Output Enable Figure 25. Slave FIFO Output Enable Timing Diagram[20] SLOE tOEoff tOEon DATA Table 29. Slave FIFO Output Enable Parameters Max Unit tOEon Parameter SLOE Assert to FIFO DATA Output Description Min 10.5 ns tOEoff SLOE Deassert to FIFO DATA Hold 10.5 ns 10.14 Slave FIFO Address to Flags/Data Figure 26. Slave FIFO Address to Flags/Data Timing Diagram[20] FIFOADR [1.0] tXFLG FLAGS tXFD DATA N N+1 Table 30. Slave FIFO Address to Flags/Data Parameters Parameter Description Min Max Unit tXFLG FIFOADR[1:0] to FLAGS Output Propagation Delay 10.7 ns tXFD FIFOADR[1:0] to FIFODATA Output Propagation Delay 14.3 ns Document #: 38-08032 Rev. *L Page 48 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.15 Slave FIFO Synchronous Address Figure 27. Slave FIFO Synchronous Address Timing Diagram[20] IFCLK SLCS/FIFOADR [1:0] tSFA tFAH Table 31. Slave FIFO Synchronous Address Parameters [21] Parameter Description Min Max Unit 20.83 200 ns tIFCLK Interface Clock Period tSFA FIFOADR[1:0] to Clock Setup Time 25 ns tFAH Clock to FIFOADR[1:0] Hold Time 10 ns 10.16 Slave FIFO Asynchronous Address Figure 28. Slave FIFO Asynchronous Address Timing Diagram[20] SLCS/FIFOADR [1:0] tSFA tFAH SLRD/SLWR/PKTEND Table 32. Slave FIFO Asynchronous Address Parameters[23] Parameter Description Min Max Unit tSFA FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time 10 ns tFAH RD/WR/PKTEND to FIFOADR[1:0] Hold Time 10 ns Document #: 38-08032 Rev. *L Page 49 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.17 Sequence Diagram 10.17.1 Single and Burst Synchronous Read Example Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram[20] tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSRD T=0 tRDH >= tSRD >= tRDH SLRD t=3 t=2 T=3 T=2 SLCS tXFLG FLAGS tXFD tXFD Data Driven: N DATA N+1 N+1 N+2 N+3 tOEon tOEoff tOEon tXFD tXFD N+4 tOEoff SLOE t=4 T=4 T=1 t=1 Figure 30. Slave FIFO Synchronous Sequence of Events Diagram IFCLK FIFO POINTER N IFCLK IFCLK N N+1 FIFO DATA BUS Not Driven Driven: N N+1 Not Driven ■ At t = 0 the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied low in some applications). Note that tSFA has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle. ■ At t = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is pre-fetched and is driven on the bus when SLOE is asserted. At t = 2, SLRD is asserted. SLRD must meet the setup time of tSRD (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of tRDH (time from the IFCLK edge to the deassertion of the SLRD signal). Document #: 38-08032 Rev. *L N+1 SLOE Figure 29 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read. ■ IFCLK N+1 SLOE SLRD SLRD SLOE IFCLK IFCLK N+2 IFCLK N+3 IFCLK N+4 SLRD N+1 IFCLK N+4 SLRD N+2 N+3 N+4 IFCLK N+4 SLOE N+4 Not Driven If the SLCS signal is used, it must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition). ■ The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of tXFD (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. To have data on the FIFO data bus, SLOE MUST also be asserted. The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5. Note For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock the FIFO pointer is updated and increments to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus. Page 50 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.17.2 Single and Burst Synchronous Write Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram[20] tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSWR tWRH >= tWRH >= tSWR T=0 SLWR t=2 T=2 t=3 T=5 SLCS tXFLG tXFLG FLAGS tFDH tSFD tSFD N+1 N DATA t=1 tFDH T=1 tSFD tSFD tFDH N+3 N+2 T=3 tFDH T=4 tSPE tPEH PKTEND The Figure 31 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of 3 bytes and committing all 4 bytes as a short packet using the PKTEND pin. FIFO data bus is written to the FIFO on every rising edge of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 31, after the four bytes are written to the FIFO, SLWR is deasserted. The short 4 byte packet can be committed to the host by asserting the PKTEND signal. ■ At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied low in some applications) Note that tSFA has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle. ■ At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of tSFD before the rising edge of IFCLK. ■ At t = 2, SLWR is asserted. The SLWR must meet the setup time of tSWR (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of tWRH (time from the IFCLK edge to the deassertion of the SLWR signal). If the SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted (The SLCS and SLWR signals must both be asserted to start a valid write condition). There is no specific timing requirement that should be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the setup time tSPE and the hold time tPEH must be met. In the scenario of Figure 31, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion. ■ While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag is also updated after a delay of tXFLG from the rising edge of the clock. The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5. Note For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, after the SLWR is asserted, the data on the Document #: 38-08032 Rev. *L Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exists when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte or word packet committed manually using the PKTEND pin. In this case, the external master must ensure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte or word that needs to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 23 for further details on this timing. Page 51 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram[20] tSFA tFAH tSFA tFAH FIFOADR t=0 tRDpwl tRDpwh tRDpwl T=0 tRDpwl tRDpwh tRDpwl tRDpwh tRDpwh SLRD t=2 t=3 T=3 T=2 T=5 T=4 T=6 SLCS tXFLG tXFLG FLAGS tXFD Data (X) Driven DATA tXFD tXFD N N N+3 N+2 tOEon tOEoff tOEon tXFD N+1 tOEoff SLOE t=4 t=1 T=7 T=1 Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram SLOE FIFO POINTER N FIFO DATA BUS Not Driven SLRD SLRD SLOE SLOE SLRD SLRD SLRD SLRD SLOE N N N+1 N+1 N+1 N+1 N+2 N+2 N+3 N+3 Driven: X N N Not Driven N N+1 N+1 N+2 N+2 Not Driven Figure 32 shows the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read. ■ The data that is driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of tXFD from the activating edge of SLRD. In Figure 32, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (SLRD is asserted), SLOE must be in an asserted state. SLRD and SLOE can also be tied together. ■ At t = 0 the FIFO address is stable and the SLCS signal is asserted. ■ At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is previous data, it data that was in the FIFO from a prior read cycle. The same sequence of events is also shown for a burst read marked with T = 0 through 5. At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of tRDpwl and minimum de-active pulse width of tRDpwh. If SLCS is used then, SLCS must be asserted before SLRD is asserted (The SLCS and SLRD signals must both be asserted to start a valid read condition.) Note In burst read mode, during SLOE is assertion, the data bus is in a driven state and outputs the previous data. After SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented. ■ Document #: 38-08032 Rev. *L Page 52 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram[20] tSFA tFAH tSFA tFAH FIFOADR t=0 tWRpwl tWRpwh T=0 tWRpwl tWRpwl tWRpwh tWRpwl tWRpwh tWRpwh SLWR t=3 t =1 T=1 T=3 T=4 T=6 T=7 T=9 SLCS tXFLG tXFLG FLAGS tSFD tFDH tSFD tFDH tSFD tFDH tSFD tFDH N+1 N+2 N+3 N DATA t=2 T=2 T=5 T=8 tPEpwl tPEpwh PKTEND Figure 34 shows the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of 3 bytes and committing the 4 byte short packet using PKTEND. ■ At t = 0 the FIFO address is applied, insuring that it meets the setup time of tSFA. If SLCS is used, it must also be asserted (SLCS may be tied low in some applications). ■ At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of tWRpwl and minimum de-active pulse width of tWRpwh. If the SLCS is used, it must be asserted with SLWR or before SLWR is asserted. ■ At t = 2, data must be present on the bus tSFD before the deasserting edge of SLWR. ■ At t = 3, deasserting SLWR causes the data to be written from the data bus to the FIFO and then increments the FIFO pointer. Document #: 38-08032 Rev. *L The FIFO flag is also updated after tXFLG from the deasserting edge of SLWR. The same sequence of events are shown for a burst write and is indicated by the timing marks of T = 0 through 5. Note In the burst write mode, after SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented. In Figure 34 after the four bytes are written to the FIFO and SLWR is deasserted, the short 4 byte packet can be committed to the host using the PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines have to held constant during the PKTEND assertion. Page 53 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 11. Ordering Information Table 33. Ordering Information Ordering Code Package Type RAM Size # Prog IOs 8051 Address /Data Busses Ideal for battery powered applications CY7C68014A-128AXC 128 TQFP – Lead-Free 16K 40 16/8 bit CY7C68014A-100AXC 100 TQFP – Lead-Free 16K 40 – CY7C68014A-56PVXC 56 SSOP – Lead-Free 16K 24 – CY7C68014A-56LFXC 56 QFN – Lead-Free 16K 24 – CY7C68014A-56BAXC 56 VFBGA – Lead-Free 16K 24 – CY7C68016A-56LFXC 56 QFN – Lead-Free 16K 26 – Ideal for non-battery powered applications CY7C68013A-128AXC 128 TQFP – Lead-Free 16K 40 16/8 bit CY7C68013A-128AXI 128 TQFP – Lead-Free (Industrial) 16K 40 16/8 bit CY7C68013A-100AXC 100 TQFP – Lead-Free 16K 40 – CY7C68013A-100AXI 100 TQFP – Lead-Free (Industrial) 16K 40 – CY7C68013A-56PVXC 56 SSOP – Lead-Free 16K 24 – CY7C68013A-56PVXI 56 SSOP – Lead-Free (Industrial) 16K 24 – CY7C68013A-56LFXC 56 QFN – Lead-Free 16K 24 – CY7C68013A-56LFXI 56 QFN – Lead-Free (Industrial) 16K 24 – CY7C68015A-56LFXC 56 QFN – Lead-Free 16K 26 – CY7C68013A-56BAXC 56 VFBGA – Lead-Free 16K 24 – Development Tool Kit CY3684 EZ-USB FX2LP Development Kit Reference Design Kit CY4611B Document #: 38-08032 Rev. *L USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP Page 54 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 12. Package Diagrams The FX2LP is available in five packages: ■ 56-pin SSOP ■ 56-pin QFN ■ 100-pin TQFP ■ 128-pin TQFP ■ 56-ball VFBGA Package Diagrams Figure 35. 56-lead Shrunk Small Outline Package O56 (51-85062) 51-85062-*C Document #: 38-08032 Rev. *L Page 55 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Package Diagrams (continued) Figure 36. 56-Lead QFN 8 x 8 mm LF56A (51-85144) SIDE VIEW TOP VIEW BOTTOM VIEW 0.08[0.003] 7.90[0.311] 8.10[0.319] A C 1.00[0.039] MAX. 6.1 0.05[0.002] MAX. 7.70[0.303] 7.80[0.307] 0.18[0.007] 0.28[0.011] 0.80[0.031] MAX. 0.20[0.008] REF. N 1 2 2 6.1 0°-12° C SEATING PLANE 0.45[0.018] SOLDERABLE EXPOSED PAD 0.30[0.012] 0.50[0.020] 0.50[0.020] 6.45[0.254] 6.55[0.258] 6.45[0.254] 6.55[0.258] 7.70[0.303] 7.80[0.307] 1 7.90[0.311] 8.10[0.319] 0.80[0.031] DIA. PIN1 ID 0.20[0.008] R. N 0.24[0.009] 0.60[0.024] (4X) 51-85144-*D NOTES: 1. HATCH AREA IS SOLDERABLE EXPOSED METAL. 2. REFERENCE JEDEC#: MO-220 3. PACKAGE WEIGHT: 0.162g 4. ALL DIMENSIONS ARE IN MM [MIN/MAX] 5. PACKAGE CODE PART # DESCRIPTION LF56 LY56 STANDARD PB-FREE (SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD) 51-85144-*G Document #: 38-08032 Rev. *L Page 56 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Package Diagrams (continued) Figure 37. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050) 16.00±0.20 1.40±0.05 14.00±0.10 100 81 80 1 20.00±0.10 22.00±0.20 0.30±0.08 0.65 TYP. 30 12°±1° (8X) SEE DETAIL A 51 31 50 0.20 MAX. 0.10 1.60 MAX. R 0.08 MIN. 0.20 MAX. 0° MIN. SEATING PLANE STAND-OFF 0.05 MIN. 0.15 MAX. 0.25 NOTE: 1. JEDEC STD REF MS-026 GAUGE PLANE 0°-7° R 0.08 MIN. 0.20 MAX. 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 3. DIMENSIONS IN MILLIMETERS 0.60±0.15 51-85050-*B 0.20 MIN. 1.00 REF. DETAIL Document #: 38-08032 Rev. *L A Page 57 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Package Diagrams (continued) Figure 38. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101) 16.00±0.20 14.00±0.10 1.40±0.05 128 1 20.00±0.10 22.00±0.20 0.22±0.05 12°±1° (8X) 0.50 TYP. SEE DETAIL A 0.20 MAX. 1.60 MAX. 0° MIN. 0.08 R 0.08 MIN. 0.20 MAX. STAND-OFF 0.05 MIN. 0.15 MAX. 0.25 GAUGE PLANE 0°-7° R 0.08 MIN. 0.20 MAX. SEATING PLANE NOTE: 1. JEDEC STD REF MS-026 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH 3. DIMENSIONS IN MILLIMETERS 51-85101-*C 0.60±0.15 0.20 MIN. 1.00 REF. DETAIL Document #: 38-08032 Rev. *L A Page 58 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Package Diagrams (continued) Figure 39. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901) TOP VIEW BOTTOM VIEW Ø0.05 M C Ø0.15 M C A B PIN A1 CORNER A1 CORNER Ø0.30±0.05(56X) 8 7 6 5 4 3 2 1 A B C D E F G H 0.50 3.50 A B C D E F G H 5.00±0.10 5.00±0.10 1 2 3 4 5 6 6 8 0.50 -B3.50 -A- 5.00±0.10 5.00±0.10 0.080 C 0.45 SIDE VIEW 0.10 C 0.10(4X) REFERENCE JEDEC: MO-195C PACKAGE WEIGHT: 0.02 grams 0.160 ~0.260 1.0 max SEATING PLANE 0.21 -C- 001-03901-*B 13. PCB Layout Recommendations Follow these recommendations to ensure reliable high performance operation:[24] ■ Bypass and flyback caps on VBus, near connector, are recommended. ■ Four layer impedance controlled boards are required to maintain signal quality. ■ ■ Specify impedance targets (ask your board vendor what they can achieve). DPLUS and DMINUS trace lengths should be kept to within 2 mm of each other in length, with preferred length of 20 to 30 mm. ■ Maintain a solid ground plane under the DPLUS and DMINUS traces. Do not allow the plane to split under these traces. ■ Do not place vias on the DPLUS or DMINUS trace routing. ■ Isolate the DPLUS and DMINUS traces from all other signal traces by no less than 10 mm. ■ To control impedance, maintain trace widths and trace spacing. ■ Minimize stubs to minimize reflected signals. ■ Connections between the USB connector shell and signal ground must be near the USB connector. Note 24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High-Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf. Document #: 38-08032 Rev. *L Page 59 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A 14. Quad Flat Package No Leads (QFN) Package Design Notes Electrical contact of the part to the Printed Circuit Board (PCB) is made by soldering the leads on the bottom surface of the package to the PCB. Hence, special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. Design a Copper (Cu) fill in the PCB as a thermal pad under the package. Heat is transferred from the FX2LP through the device’s metal paddle on the bottom side of the package. Heat from here is conducted to the PCB at the thermal pad. It is then conducted from the thermal pad to the PCB inner ground plane by a 5 x 5 array of via. A via is a plated through hole in the PCB with a finished diameter of 13 mil. The QFN’s metal die paddle must be soldered to the PCB’s thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process. For further information on this package design refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website http://www.amkor.com. The application note provides detailed information about board mounting guidelines, soldering flow, rework process, etc. Figure 40 shows a cross-sectional area underneath the package. The cross section is of only one via. The solder paste template should be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 mil. Use the No Clean type 3 solder paste for mounting the part. Nitrogen purge is recommended during reflow. Figure 41 is a plot of the solder mask pattern and Figure 42 displays an X-Ray image of the assembly (darker areas indicate solder). Figure 40. Cross-section of the Area Underneath the QFN Package 0.017” dia Solder Mask Cu Fill Cu Fill PCB Material Via hole for thermally connecting the QFN to the circuit board ground plane. 0.013” dia PCB Material This figure only shows the top three layers of the circuit board: Top Solder, PCB Dielectric, and the Ground Plane Figure 41. Plot of the Solder Mask (White Area) Figure 42. X-ray Image of the Assembly Document #: 38-08032 Rev. *L Page 60 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Document History Page Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 REV. ECN NO. Issue Date Orig. of Change Description of Change ** 124316 03/17/03 VCS New data sheet *A 128461 09/02/03 VCS Added PN CY7C68015A throughout data sheet Modified Figure 1 to add ECC block and fix errors Removed word “compatible” where associated with I2C Corrected grammar and formatting in various locations Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0 Added Sections 3.15, 3.18.4, 3.20 Modified Figure 5 for clarity Updated Figure 36 to match current spec revision *B 130335 10/09/03 KKV Restored PRELIMINARY to header (had been removed in error from rev. *A) *C 131673 02/12/04 KKU Section 8.1 changed “certified” to “compliant” Table 14 added parameter VIH_X and VIL_X Added Sequence diagrams Section 9.16 Updated Ordering information with lead-free parts Updated Registry Summary Section 3.12.4:example changed to column 8 from column 9 Updated Figure 14 memory write timing Diagram Updated section 3.9 (reset) Updated section 3.15 ECC Generation *D 230713 See ECN KKU Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054. *E 242398 See ECN TMD Minor Change: data sheet posted to the web, *F 271169 See ECN MON Added USB-IF Test ID number Added USB 2.0 logo Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x Changed VCC from + 10% to + 5% Changed E-Pad size to 4.3 mm x 5.0 mm Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in Table 28 from a max value of 70 ns to 115 ns *G 316313 See ECN MON Removed CY7C68013A-56PVXCT part availability Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A Provided additional timing restrictions and requirement about the use of PKETEND pin to commit a short one byte/word packet subsequent to committing a packet automatically (when in auto mode). Added Min Vcc Ramp Up time (0 to 3.3v) *H 338901 See ECN MON Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data memory read/write timing diagram. Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (tXFD) for Slave FIFO Synchronous Read Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery powered applications Added register GPCR2 in register summary *I 371097 See ECN MON Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5) *J 397239 See ECN MON Removed XTALINSRC register from register summary. Changed Vcc margins to +10% Added 56-pin VFBGA Pin Package Diagram Added 56-pin VFBGA definition in pin listing Added RDK part number to the Ordering Information table Document #: 38-08032 Rev. *L Page 61 of 62 [+] Feedback CY7C68013A, CY7C68014A CY7C68015A, CY7C68016A Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller High-Speed USB Peripheral Controller Document Number: 38-08032 REV. ECN NO. Issue Date Orig. of Change MON Description of Change *K 420505 See ECN Remove SLCS from figure in Section 10.10. Removed indications that SLRD can be asserted simultaneously with SLCS in Section 10.17.2 and Section 10.17.3 Added Absolute Maximum Temperature Rating for industrial packages in Section 6. Changed number of packages stated in the description in Section 4. to five. Added Table 13 on Thermal Coefficients for various packages *L 2064406 See ECN CMCC/ Changed TID number PYRS Removed T0OUT and T1OUT from CY7C68015A/16A Updated tSWR Min value in Figure 20 Updated 56-lead QFN package diagram © Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress. Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges. Use may be limited by and subject to the applicable Cypress software license agreement. Document #: 38-08032 Rev. *L 2 Revised February 8, 2008 Page 62 of 62 2 Purchase of I C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard Specification as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders. [+] Feedback