CYPRESS CY7C68014A

CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
1. Features (CY7C68013A/14A/15A/16A)
■
USB 2.0 USB IF high-speed certified (TID # 40460272)
■
Single chip integrated USB 2.0 transceiver, smart SIE, and
enhanced 8051 microprocessor
■
Fit, form and function compatible with the FX2
❐ Pin compatible
❐ Object-code-compatible
❐ Functionally compatible (FX2LP is a superset)
■
Ultra Low power: ICC no more than 85 mA in any mode
❐ Ideal for bus and battery powered applications
■
Software: 8051 code runs from:
❐ Internal RAM, which is downloaded via USB
❐ Internal RAM, which is loaded from EEPROM
❐ External memory device (128 pin package)
■
16 KBytes of on-chip Code/Data RAM
■
Four programmable BULK/INTERRUPT/ISOCHRONOUS
endpoints
❐ Buffering options: double, triple, and quad
■
Additional programmable (BULK/INTERRUPT) 64 byte
endpoint
■
8-bit or 16-bit external data interface
■
Smart Media Standard ECC generation
Cypress Semiconductor Corporation
Document #: 38-08032 Rev. *L
•
■
GPIF (General Programmable Interface)
❐ Enables direct connection to most parallel interfaces
❐ Programmable waveform descriptors and configuration registers to define waveforms
❐ Supports multiple Ready (RDY) inputs and Control (CTL) outputs
■
Integrated, industry standard enhanced 8051
❐ 48 MHz, 24 MHz, or 12 MHz CPU operation
❐ Four clocks per instruction cycle
❐ Two USARTS
❐ Three counter/timers
❐ Expanded interrupt system
❐ Two data pointers
■
3.3V operation with 5V tolerant inputs
■
Vectored USB interrupts and GPIF/FIFO interrupts
■
Separate data buffers for the Setup and Data portions of a
CONTROL transfer
■
Integrated I2C controller, runs at 100 or 400 kHz
■
Four integrated FIFOs
❐ Integrated glue logic and FIFOs lower system cost
❐ Automatic conversion to and from 16-bit buses
❐ Master or slave operation
❐ Uses external clock or asynchronous strobes
❐ Easy interface to ASIC and DSP ICs
■
Available in Commercial and Industrial temperature grade (all
packages except VFBGA)
198 Champion Court
•
San Jose, CA 95134-1709
• 408-943-2600
Revised February 8, 2008
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Logic Block Diagram
High performance micro
using standard tools
with lower-power options
24 MHz
Ext. XTAL
/0.5
/1.0
/2.0
I2C
8051 Core
12/24/48 MHz,
four clocks/cycle
Address (16) / Data Bus (8)
x20
PLL
VCC
Data (8)
Address (16)
FX2LP
1.5k
connected for
full-speed
D+
D–
USB
2.0
XCVR
Integrated
full-speed and
high-speed
XCVR
CY
Smart
USB
1.1/2.0
Engine
16 KB
RAM
Master
“Soft Configuration”
Easy firmware changes
RDY (6)
CTL (6)
General
programmable I/F
to ASIC/DSP or bus
standards such as
ATAPI, EPP, etc.
8/16
Up to 96 MBytes/s
burst rate
ADDR (9)
GPIF
ECC
4 kB
FIFO
Enhanced USB core
Simplifies 8051 code
Abundant IO
including two USARTS
Additional IOs (24)
FIFO and endpoint memory
(master or slave operation)
1.1 Features (CY7C68013A/14A only)
■
CY7C68014A: Ideal for battery powered applications
❐ Suspend current: 100 μA (typ)
Cypress has created a cost effective solution that provides
superior time-to-market advantages with low power to enable
bus powered applications.
■
CY7C68013A: Ideal for non-battery powered applications
❐ Suspend current: 300 μA (typ)
■
Available in five lead-free packages with up to 40 GPIOs
❐ 128-pin TQFP (40 GPIOs), 100-pin TQFP (40 GPIOs), 56-pin
QFN (24 GPIOs), 56-pin SSOP (24 GPIOs), and 56-pin VFBGA (24 GPIOs)
The ingenious architecture of FX2LP results in data transfer
rates of over 53 Mbytes per second, the maximum allowable
USB 2.0 bandwidth, while still using a low cost 8051 microcontroller in a package as small as a 56 VFBGA (5mm x 5mm).
Because it incorporates the USB 2.0 transceiver, the FX2LP is
more economical, providing a smaller footprint solution than
USB 2.0 SIE or external transceiver implementations. With
EZ-USB FX2LP, the Cypress Smart SIE handles most of the
USB 1.1 and 2.0 protocol in hardware, freeing the embedded
microcontroller for application specific functions and decreasing
development time to ensure USB compatibility.
1.2 Features (CY7C68015A/16A only)
■
CY7C68016A: Ideal for battery powered applications
❐ Suspend current: 100 μA (typ)
■
CY7C68015A: Ideal for non-battery powered applications
❐ Suspend current: 300 μA (typ)
■
Available in lead-free 56-pin QFN package (26 GPIOs)
❐ 2 more GPIOs than CY7C68013A/14A enabling additional
features in same footprint
Cypress Semiconductor Corporation’s (Cypress’s) EZ-USB
FX2LP™ (CY7C68013A/14A) is a low power version of the
EZ-USB FX2™ (CY7C68013), which is a highly integrated, low
power USB 2.0 microcontroller. By integrating the USB 2.0 transceiver, serial interface engine (SIE), enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip,
Document #: 38-08032 Rev. *L
The General Programmable Interface (GPIF) and Master/Slave
Endpoint FIFO (8-bit or 16-bit data bus) provides an easy and
glueless interface to popular interfaces such as ATA, UTOPIA,
EPP, PCMCIA, and most DSP/processors.
The FX2LP draws less current than the FX2 (CY7C68013), has
double the on-chip code/data RAM, and is fit, form and function
compatible with the 56, 100, and 128 pin FX2.
Five packages are defined for the family: 56VFBGA, 56 SSOP,
56 QFN, 100 TQFP, and 128 TQFP.
Page 2 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
2. Applications
frequency is 12 MHz. The clock frequency of the 8051 can be
changed by the 8051 through the CPUCS register, dynamically.
■
Portable video recorder
■
MPEG/TV conversion
■
DSL modems
C1
■
ATA interface
12 pf
■
Memory card readers
■
Legacy conversion devices
■
Cameras
■
Scanners
■
Home PNA
■
Wireless LAN
■
MP3 players
The CLKOUT pin, which can be three-stated and inverted using
internal control bits, outputs the 50% duty cycle 8051 clock, at
the selected 8051 clock frequency: 48 MHz, 24 MHz, or 12 MHz.
■
Networking
3.2.2 USARTS
The “Reference Designs” section of the Cypress web site
provides additional tools for typical USB 2.0 applications. Each
reference design comes complete with firmware source and
object code, schematics, and documentation. Visit the Cypress
web site for more information.
3. Functional Overview
3.1 USB Signaling Speed
FX2LP operates at two of the three rates defined in the USB
Specification Revision 2.0, dated April 27, 2000:
■
Full-speed, with a signaling bit rate of 12 Mbps
■
High-speed, with a signaling bit rate of 480 Mbps.
FX2LP does not support the low speed signaling mode of
1.5 Mbps.
3.2 8051 Microprocessor
The 8051 microprocessor embedded in the FX2LP family has
256 bytes of register RAM, an expanded interrupt system, three
timer/counters, and two USARTs.
3.2.1 8051 Clock Frequency
FX2LP has an on-chip oscillator circuit that uses an external 24
MHz (±100 ppm) crystal with the following characteristics:
■
Parallel resonant
■
Fundamental mode
■
500-μW drive level
■
12-pF (5% tolerance) load capacitors
An on-chip PLL multiplies the 24 MHz oscillator up to 480 MHz,
as required by the transceiver/PHY and internal counters divide
it down for use as the 8051 clock. The default 8051 clock
Figure 1. Crystal Configuration
24 MHz
C2
12 pf
20 × PLL
12-pF capacitor values assumes a trace capacitance
of 3 pF per side on a four-layer FR4 PCA
FX2LP contains two standard 8051 USARTs, addressed via
Special Function Register (SFR) bits. The USART interface pins
are available on separate IO pins, and are not multiplexed with
port pins.
UART0 and UART1 can operate using an internal clock at
230 KBaud with no more than 1% baud rate error. 230 KBaud
operation is achieved by an internally derived clock source that
generates overflow pulses at the appropriate time. The internal
clock adjusts for the 8051 clock rate (48 MHz, 24 MHz, and 12
MHz) such that it always presents the correct frequency for 230
KBaud operation.[1]
3.2.3 Special Function Registers
Certain 8051 SFR addresses are populated to provide fast
access to critical FX2LP functions. These SFR additions are
shown in Table 1 on page 4. Bold type indicates non standard,
enhanced 8051 registers. The two SFR rows that end with “0”
and “8” contain bit addressable registers. The four IO ports A to
D use the SFR addresses used in the standard 8051 for ports 0
to 3, which are not implemented in FX2LP. Because of the faster
and more efficient SFR addressing, the FX2LP IO ports are not
addressable in external RAM space (using the MOVX
instruction).
3.3 I2C Bus
FX2LP supports the I2C bus as a master only at 100-/400- KHz.
SCL and SDA pins have open-drain outputs and hysteresis
inputs. These signals must be pulled up to 3.3V, even if no I2C
device is connected.
3.4 Buses
All packages, 8-bit or 16-bit “FIFO” bidirectional data bus, multiplexed on IO ports B and D. 128-pin package: adds 16-bit
output-only 8051 address bus, 8-bit bidirectional data bus.
Note
1. 115 KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0, UART1, or both respectively.
Document #: 38-08032 Rev. *L
Page 3 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 1. Special Function Registers
x
0
1
8x
IOA
SP
9x
IOB
EXIF
Ax
IOC
INT2CLR
Bx
IOD
IOE
2
3
4
5
6
7
8
9
A
B
C
D
E
F
DPL0
DPH0
DPL1
DPH1
DPS
PCON
TCON
TMOD
TL0
TL1
TH0
TH1
CKCON
MPAGE
INT4CLR
OEA
OEB
OEC
OED
OEE
SCON0
SBUF0
AUTOPTRH1
AUTOPTRL1
reserved
AUTOPTRH2
AUTOPTRL2
reserved
IE
EP2468STAT
EP24FIFOFLGS
EP68FIFOFLGS
AUTOPTRSET-UP
3.5 USB Boot Methods
During the power up sequence, internal logic checks the I2C port
for the connection of an EEPROM whose first byte is either 0xC0
or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM
in place of the internally stored values (0xC0), or it boot-loads the
EEPROM contents into internal RAM (0xC2). If no EEPROM is
detected, FX2LP enumerates using internally stored descriptors.
The default ID values for FX2LP are VID/PID/DID (0x04B4,
0x8613, 0xAxxx where xxx = Chip revision).[2]
Table 2. Default ID Values for FX2LP
Vendor ID
Product ID
Device release
Default VID/PID/DID
0x04B4 Cypress Semiconductor
0x8613 EZ-USB FX2LP
0xAnnn Depends on chip revision
(nnn = chip revision where first
silicon = 001)
3.6 ReNumeration™
Because the FX2LP’s configuration is soft, one chip can take on
the identities of multiple distinct USB devices.
When first plugged into USB, the FX2LP enumerates automatically and downloads firmware and USB descriptor tables over
the USB cable. Next, the FX2LP enumerates again, this time as
a device defined by the downloaded information. This patented
two step process called ReNumeration™ happens instantly when
the device is plugged in, without a hint that the initial download
step has occurred.
Cx
SCON1
SBUF1
Dx
PSW
Ex
ACC
Fx
B
IP
T2CON
EICON
EIE
EIP
EP01STAT
GPIFTRIG
RCAP2L
RCAP2H
TL2
TH2
GPIFSGLDATH
GPIFSGLDATLX
GPIFSGLDATLNOX
Two control bits in the USBCS (USB Control and Status) register,
control the ReNumeration process: DISCON and RENUM. To
simulate a USB disconnect, the firmware sets DISCON to 1. To
reconnect, the firmware clears DISCON to 0.
Before reconnecting, the firmware sets or clears the RENUM bit
to indicate whether the firmware or the Default USB Device
handles device requests over endpoint zero: if RENUM = 0, the
Default USB Device handles device requests; if RENUM = 1, the
firmware services the requests.
3.7 Bus-powered Applications
The FX2LP fully supports bus powered designs by enumerating
with less than 100 mA as required by the USB 2.0 specification.
3.8 Interrupt System
3.8.1 INT2 Interrupt Request and Enable Registers
FX2LP implements an autovector feature for INT2 and INT4.
There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF)
vectors. See EZ-USB Technical Reference Manual (TRM) for
more details.
3.8.2 USB Interrupt Autovectors
The main USB interrupt is shared by 27 interrupt sources. To
save the code and processing time that is required to identify the
individual USB interrupt source, the FX2LP provides a second
level of interrupt vectoring, called Autovectoring. When a USB
interrupt is asserted, the FX2LP pushes the program counter
onto its stack then jumps to the address 0x0043 where it expects
to find a “jump” instruction to the USB Interrupt service routine.
Note
2. The I2C bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly.
Document #: 38-08032 Rev. *L
Page 4 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
The FX2LP jump instruction is encoded as follows:
Table 3. INT2 USB Interrupts
USB INTERRUPT TABLE FOR INT2
Priority
INT2VEC Value
1
00
Source
SUDAV
Notes
Setup Data Available
2
04
SOF
Start of Frame (or microframe)
3
08
SUTOK
Setup Token Received
4
0C
SUSPEND
USB Suspend request
5
10
USB RESET
Bus reset
6
14
HISPEED
Entered high-speed operation
7
18
EP0ACK
FX2LP ACK’d the CONTROL Handshake
8
1C
9
20
EP0-IN
EP0-IN ready to be loaded with data
10
24
EP0-OUT
EP0-OUT has USB data
11
28
EP1-IN
EP1-IN ready to be loaded with data
12
2C
EP1-OUT
EP1-OUT has USB data
13
30
EP2
IN: buffer available. OUT: buffer has data
14
34
EP4
IN: buffer available. OUT: buffer has data
15
38
EP6
IN: buffer available. OUT: buffer has data
16
3C
EP8
IN: buffer available. OUT: buffer has data
17
40
IBN
IN-Bulk-NAK (any IN endpoint)
EP0PING
EP0 OUT was Pinged and it NAK’d
reserved
18
44
19
48
reserved
20
4C
EP1PING
EP1 OUT was Pinged and it NAK’d
21
50
EP2PING
EP2 OUT was Pinged and it NAK’d
22
54
EP4PING
EP4 OUT was Pinged and it NAK’d
23
58
EP6PING
EP6 OUT was Pinged and it NAK’d
24
5C
EP8PING
EP8 OUT was Pinged and it NAK’d
25
60
ERRLIMIT
Bus errors exceeded the programmed limit
26
64
27
68
28
6C
29
70
EP2ISOERR
ISO EP2 OUT PID sequence error
30
74
EP4ISOERR
ISO EP4 OUT PID sequence error
31
78
EP6ISOERR
ISO EP6 OUT PID sequence error
32
7C
EP8ISOERR
ISO EP8 OUT PID sequence error
reserved
reserved
If Autovectoring is enabled (AV2EN = 1 in the INTSET-UP
register), the FX2LP substitutes its INT2VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at the
location 0x0044, the automatically inserted INT2VEC byte at
0x0045 directs the jump to the correct address out of the 27
addresses within the page.
Document #: 38-08032 Rev. *L
3.8.3 FIFO/GPIF Interrupt (INT4)
Just as the USB Interrupt is shared among 27 individual USB
interrupt sources, the FIFO/GPIF interrupt is shared among 14
individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the
USB Interrupt, can employ autovectoring. Table 4 shows the
priority and INT4VEC values for the 14 FIFO/GPIF interrupt
sources.
Page 5 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 4. Individual FIFO/GPIF Interrupt Sources
Priority
INT4VEC Value
Source
1
80
EP2PF
Notes
Endpoint 2 Programmable Flag
2
84
EP4PF
Endpoint 4 Programmable Flag
3
88
EP6PF
Endpoint 6 Programmable Flag
4
8C
EP8PF
Endpoint 8 Programmable Flag
5
90
EP2EF
Endpoint 2 Empty Flag
6
94
EP4EF
Endpoint 4 Empty Flag
7
98
EP6EF
Endpoint 6 Empty Flag
8
9C
EP8EF
Endpoint 8 Empty Flag
9
A0
EP2FF
Endpoint 2 Full Flag
10
A4
EP4FF
Endpoint 4 Full Flag
11
A8
EP6FF
Endpoint 6 Full Flag
12
AC
EP8FF
13
B0
GPIFDONE
14
B4
GPIFWF
Endpoint 8 Full Flag
GPIF Operation Complete
GPIF Waveform
If Autovectoring is enabled (AV4EN = 1 in the INTSET-UP
register), the FX 2LP substitutes its INT4VEC byte. Therefore, if
the high byte (“page”) of a jump-table address is preloaded at
location 0x0054, the automatically inserted INT4VEC byte at
0x0055 directs the jump to the correct address out of the 14
addresses within the page. When the ISR occurs, the FX2LP
pushes the program counter onto its stack then jumps to address
0x0053, where it expects to find a “jump” instruction to the ISR
Interrupt service routine.
3.9 Reset and Wakeup
3.9.1 Reset Pin
The input pin, RESET#, resets the FX2LP when asserted. This
pin has hysteresis and is active LOW. When a crystal is used with
the CY7C680xxA the reset period must allow for the stabilization
of the crystal and the PLL. This reset period must be approximately 5 ms after VCC reaches 3.0V. If the crystal input pin is
driven by a clock signal the internal PLL stabilizes in 200 μs after
VCC has reached 3.0V.[3]
Figure 2 on page 7 shows a power on reset condition and a reset
applied during operation. A power on reset is defined as the time
reset that is asserted while power is being applied to the circuit.
A powered reset is when the FX2LP powered on and operating
and the RESET# pin is asserted.
Cypress provides an application note which describes and
recommends power on reset implementation. For more information about reset implementation for the FX2 family of products
visit http://www.cypress.com.
Note
3. If the external clock is powered at the same time as the CY7C680xxA and has a stabilization wait period, it must be added to the 200 μs.
Document #: 38-08032 Rev. *L
Page 6 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 2. Reset Timing Plots
RESET#
RESET#
VIL
VIL
3.3V
3.0V
3.3V
VCC
VCC
0V
0V
TRESET
TRESET
Power on Reset
Powered Reset
Table 5. Reset Timing Values
3.10 Program/Data RAM
Condition
TRESET
Power on Reset with Crystal
5 ms
Power on Reset with External
Clock
200 μs + Clock stability time
Powered Reset
200 μs
3.10.1 Size
The FX2LP has 16 KBytes of internal program/data RAM, where
PSEN#/RD# signals are internally ORed to enable the 8051 to
access it as both program and data memory. No USB control
registers appear in this space.
Two memory maps are shown in the following diagrams:
3.9.2 Wakeup Pins
Figure 3 on page 8 shows the Internal Code Memory, EA = 0
The 8051 puts itself and the rest of the chip into a power down
mode by setting PCON.0 = 1. This stops the oscillator and PLL.
When WAKEUP is asserted by external logic the oscillator
restarts after the PLL stabilizes, and the 8051 receives a wakeup
interrupt. This applies whether or not FX2LP is connected to the
USB.
Figure 4 on page 9 shows the External Code Memory, EA = 1.
The FX2LP exits the power down (USB suspend) state using one
of the following methods:
■
USB bus activity (if D+/D– lines are left floating, noise on these
lines may indicate activity to the FX2LP and initiate a wakeup)
■
External logic asserts the WAKEUP pin
■
External logic asserts the PA3/WU2 pin
The second wakeup pin, WU2, can also be configured as a
general purpose IO pin. This enables a simple external R-C
network to be used as a periodic wakeup source. WAKEUP is by
default active LOW.
3.10.2 Internal Code Memory, EA = 0
This mode implements the internal 16 KByte block of RAM
(starting at 0) as combined code and data memory. When
external RAM or ROM is added, the external read and write
strobes are suppressed for memory spaces that exist inside the
chip. This enables the user to connect a 64 KByte memory
without requiring address decodes to keep clear of internal
memory spaces.
Only the internal 16 KBytes and scratch pad 0.5 KBytes RAM
spaces have the following access:
■
USB download
■
USB upload
■
Setup data pointer
■
I2C interface boot load.
3.10.3 External Code Memory, EA = 1
The bottom 16 KBytes of program memory is external and
therefore the bottom 16 KBytes of internal RAM is accessible
only as a data memory.
Document #: 38-08032 Rev. *L
Page 7 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 3. Internal Code Memory, EA = 0
Inside FX2LP
Outside FX2LP
FFFF
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
E200
E1FF 0.5 KBytes RAM
E000 Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
48 KBytes
External
Code
Memory
(PSEN#)
3FFF
16 KBytes RAM
Code and Data
(PSEN#,RD#,WR#)*
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
(OK to populate
program
memory here—
PSEN# strobe
is not active)
0000
Data
Code
*SUDPTR, USB upload/download, I2C interface boot access
Document #: 38-08032 Rev. *L
Page 8 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 4. External Code Memory, EA = 1
Inside FX2LP
Outside FX2LP
FFFF
7.5 KBytes
USB regs and
4K FIFO buffers
(RD#,WR#)
E200
E1FF
0.5 KBytes RAM
E000 Data (RD#,WR#)*
(OK to populate
data memory
here—RD#/WR#
strobes are not
active)
40 KBytes
External
Data
Memory
(RD#,WR#)
64 KBytes
External
Code
Memory
(PSEN#)
3FFF
(Ok to populate
data memory
here—RD#/WR#
strobes are not
active)
16 KBytes
RAM
Data
(RD#,WR#)*
0000
Data
Code
*SUDPTR, USB upload/download, I2C interface boot access
3.11 Register Addresses
FFFF
4 KBytes EP2-EP8
buffers
(8 x 512)
F000
EFFF
2 KBytes RESERVED
E800
E7FF
E7C0
E7BF
E780
E77F
E740
E73F
E700
E6FF
E500
E4FF
E480
E47F
E400
E3FF
E200
E1FF
64 Bytes EP1IN
64 Bytes EP1OUT
64 Bytes EP0 IN/OUT
64 Bytes RESERVED
8051 Addressable Registers
(512)
Reserved (128)
128 bytes GPIF Waveforms
Reserved (512)
512 bytes
8051 xdata RAM
E000
Document #: 38-08032 Rev. *L
Page 9 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.12 Endpoint RAM
3.12.3 Setup Data Buffer
3.12.1 Size
A separate 8 byte buffer at 0xE6B8-0xE6BF holds the setup data
from a CONTROL transfer.
■
3× 64 bytes
(Endpoints 0 and 1)
■
8 × 512 bytes
(Endpoints 2, 4, 6, 8)
3.12.4 Endpoint Configurations (High -speed Mode)
Endpoints 0 and 1 are the same for every configuration. Endpoint
0 is the only CONTROL endpoint, and endpoint 1 can be either
BULK or INTERRUPT.
3.12.2 Organization
■
EP0
■
Bidirectional endpoint zero, 64 byte buffer
■
EP1IN, EP1OUT
■
64 byte buffers, bulk or interrupt
■
EP2, 4, 6, 8
■
Eight 512 byte buffers, bulk, interrupt, or isochronous. EP4 and
EP8 can be double buffered; EP2 and 6 can be either double,
triple, or quad buffered. For high-speed endpoint configuration
options, see Figure 5.
The endpoint buffers can be configured in any 1 of the 12 configurations shown in the vertical columns. When operating in the
full-speed BULK mode only the first 64 bytes of each buffer are
used. For example, in high-speed, the max packet size is 512
bytes but in full-speed it is 64 bytes. Even though a buffer is
configured to a 512 byte buffer, in full-speed only the first 64
bytes are used. The unused endpoint buffer space is not
available for other operations. An example endpoint configuration is the EP2–1024 double buffered; EP6–512 quad buffered
(column 8).
Figure 5. Endpoint Configuration
EP0 IN&OUT
64
64
64
64
64
64
64
64
64
64
64
64
EP1 IN
64
64
64
64
64
64
64
64
64
64
64
64
EP1 OUT
64
64
64
64
64
64
64
64
64
64
64
64
EP2
EP2
EP2
EP2
EP2
EP2
EP2
EP2
EP2
EP2
512
512
512
512
512
512
512
512
512
512
512
512
EP4
EP4
512
512
512
512
512
512
512
512
512
512
512
512
EP6
EP6
EP6
EP6
EP6
EP6
512
512
512
512
512
512
512
512
EP8
512
512
512
1
2
Document #: 38-08032 Rev. *L
1024
1024
3
1024
1024
512
1024
1024
1024
1024
1024
512
512
512
512
4
5
1024
6
EP6
1024
1024
512
EP6
EP6
512
512
512
512
EP6
512
1024
512
EP8
EP8
512
1024
512
EP4
1024
EP2 EP2
512
512
512
512
512
7
8
1024
9
1024
1024
EP8
EP8
512
512
512
512
10
11
1024
1024
12
Page 10 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.12.5 Default Full-Speed Alternate Settings
Table 6. Default Full-Speed Alternate Settings[4, 5]
Alternate Setting
0
1
2
3
ep0
64
64
64
64
ep1out
0
64 bulk
64 int
64 int
ep1in
0
64 bulk
64 int
64 int
ep2
0
64 bulk out (2×)
64 int out (2×)
64 iso out (2×)
ep4
0
64 bulk out (2×)
64 bulk out (2×)
64 bulk out (2×)
ep6
0
64 bulk in (2×)
64 int in (2×)
64 iso in (2×)
ep8
0
64 bulk in (2×)
64 bulk in (2×)
64 bulk in (2×)
3.12.6 Default High-Speed Alternate Settings
Table 7. Default High-Speed Alternate Settings[4, 5]
Alternate Setting
0
1
2
3
ep0
64
64
64
64
ep1out
0
512 bulk[6]
64 int
64 int
ep1in
0
512
bulk[6]
64 int
64 int
ep2
0
512 bulk out (2×)
512 int out (2×)
512 iso out (2×)
ep4
0
512 bulk out (2×)
512 bulk out (2×)
512 bulk out (2×)
ep6
0
512 bulk in (2×)
512 int in (2×)
512 iso in (2×)
ep8
0
512 bulk in (2×)
512 bulk in (2×)
512 bulk in (2×)
3.13 External FIFO Interface
3.13.1 Architecture
The FX2LP slave FIFO architecture has eight 512 byte blocks in
the endpoint RAM that directly serve as FIFO memories and are
controlled by FIFO control signals (such as IFCLK, SLCS#,
SLRD, SLWR, SLOE, PKTEND, and flags).
In operation, some of the eight RAM blocks fill or empty from the
SIE, while the others are connected to the IO transfer logic. The
transfer logic takes two forms, the GPIF for internally generated
control signals and the slave FIFO interface for externally
controlled transfers.
3.13.2 Master/Slave Control Signals
The FX2LP endpoint FIFOS are implemented as eight physically
distinct 256x16 RAM blocks. The 8051/SIE can switch any of the
RAM blocks between two domains, the USB (SIE) domain and
the 8051-IO Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB
FIFOS” and “Slave FIFOS.” Because they are physically the
same memory no bytes are actually transferred between buffers.
At any given time, some RAM blocks are filling/emptying with
USB data under SIE control, while other RAM blocks are
available to the 8051, the IO control unit or both. The RAM blocks
operate as single port in the USB domain, and dual port in the
8051-IO domain. The blocks can be configured as single,
double, triple, or quad buffered as previously shown.
The IO control unit implements either an internal master (M for
master) or external master (S for Slave) interface.
In Master (M) mode, the GPIF internally controls FIFOADR[1..0]
to select a FIFO. The RDY pins (two in the 56-pin package, six
in the 100-pin and 128-pin packages) can be used as flag inputs
from an external FIFO or other logic if desired. The GPIF can be
run from either an internally derived clock or externally supplied
clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s
(48-MHz IFCLK with 16-bit interface).
In Slave (S) mode, the FX2LP accepts either an internally
derived clock or externally supplied clock (IFCLK, max frequency
48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals
from external logic. When using an external IFCLK, the external
clock must be present before switching to the external clock with
the IFCLKSRC bit. Each endpoint can individually be selected
for byte or word operation by an internal configuration bit and a
Slave FIFO Output Enable signal SLOE enables data of the
selected width. External logic must ensure that the output enable
signal is inactive when writing data to a slave FIFO. The slave
interface can also operate asynchronously, where the SLRD and
SLWR signals act directly as strobes, rather than a clock qualifier
as in synchronous mode. The signals SLRD, SLWR, SLOE and
PKTEND are gated by the signal SLCS#.
Notes
4. “0” means “not implemented.”
5. “2×” means “double buffered.”
6. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1.
Document #: 38-08032 Rev. *L
Page 11 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.13.3 GPIF and FIFO Clock Rates
3.15 ECC Generation[7]
An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively,
an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK
pin can be used as the interface clock. IFCLK can be configured
to function as an output clock when the GPIF and FIFOs are
internally clocked. An output enable bit in the IFCONFIG register
turns this clock output off, if desired. Another bit within the
IFCONFIG register inverts the IFCLK signal whether internally or
externally sourced.
The EZ-USB can calculate ECCs (Error Correcting Codes) on
data that passes across its GPIF or Slave FIFO interfaces. There
are two ECC configurations: Two ECCs, each calculated over
256 bytes (SmartMedia Standard); and one ECC calculated over
512 bytes.
3.14 GPIF
ECCM = 0
The GPIF is a flexible 8-bit or 16-bit parallel interface driven by
a user programmable finite state machine. It enables the
CY7C68013A/15A to perform local bus mastering and can
implement a wide variety of protocols such as ATA interface,
printer parallel port, and Utopia.
Two 3 byte ECCs, each calculated over a 256 byte block of data.
This configuration conforms to the SmartMedia Standard.
The GPIF has six programmable control outputs (CTL), nine
address outputs (GPIFADRx), and six general-purpose ready
inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF
vector defines the state of the control outputs, and determines
what state a ready input (or multiple inputs) must be before
proceeding. The GPIF vector can be programmed to advance a
FIFO to the next data value, advance an address, etc. A
sequence of the GPIF vectors make up a single waveform that
is executed to perform the desired data move between the
FX2LP and the external device.
3.14.1 Six Control OUT Signals
The 100-pin and 128-pin packages bring out all six Control
Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to
define the CTL waveforms. The 56-pin package brings out three
of these signals, CTL0–CTL2. CTLx waveform edges can be
programmed to make transitions as fast as once per clock (20.8
ns using a 48-MHz clock).
3.14.2 Six Ready IN Signals
The 100-pin and 128-pin packages bring out all six Ready inputs
(RDY0–RDY5). The 8051 programs the GPIF unit to test the
RDY pins for GPIF branching. The 56-pin package brings out two
of these signals, RDY0–1.
3.14.3 Nine GPIF Address OUT Signals
Nine GPIF address lines are available in the 100-pin and 128-pin
packages, GPIFADR[8..0]. The GPIF address lines enable
indexing through up to a 512 byte block of RAM. If more address
lines are needed IO port pins are used.
3.14.4 Long Transfer Mode
In the master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or
GPIFTCB0) for unattended transfers of up to 232 transactions.
The GPIF automatically throttles data flow to prevent under or
overflow until the full number of requested transactions
complete. The GPIF decrements the value in these registers to
represent the current status of the transaction.
The ECC can correct any one-bit error or detect any two-bit error.
3.15.1 ECC Implementation
The two ECC configurations are selected by the ECCM bit:
Write any value to ECCRESET, then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 256 bytes of data
is calculated and stored in ECC1. The ECC for the next 256 bytes
is stored in ECC2. After the second ECC is calculated, the values
in the ECCx registers do not change until ECCRESET is written
again, even if more data is subsequently passed across the
interface.
ECCM = 1
One 3 byte ECC calculated over a 512 byte block of data.
Write any value to ECCRESET then pass data across the GPIF
or Slave FIFO interface. The ECC for the first 512 bytes of data
is calculated and stored in ECC1; ECC2 is unused. After the
ECC is calculated, the values in ECC1 do not change even if
more data is subsequently passed across the interface, till
ECCRESET is written again.
3.16 USB Uploads and Downloads
The core has the ability to directly edit the data contents of the
internal 16 KByte RAM and of the internal 512 byte scratch pad
RAM via a vendor specific command. This capability is normally
used when soft downloading user code and is available only to
and from internal RAM, only when the 8051 is held in reset. The
available RAM spaces are 16 KBytes from 0x0000–0x3FFF
(code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad
data RAM).[8]
3.17 Autopointer Access
FX2LP provides two identical autopointers. They are similar to
the internal 8051 data pointers but with an additional feature:
they can optionally increment after every memory access. This
capability is available to and from both internal and external
RAM. The autopointers are available in external FX2LP registers
under control of a mode bit (AUTOPTRSET-UP.0). Using the
external FX2LP autopointer access (at 0xE67B – 0xE67C)
enables the autopointer to access all internal and external RAM
to the part.
Also, the autopointers can point to any FX2LP register or
endpoint buffer space. When autopointer access to external
memory is enabled, location 0xE67B and 0xE67C in XDATA and
code space cannot be used.
Notes
7. To use the ECC logic, the GPIF or Slave FIFO interface must be configured for byte-wide operation.
8. After the data has been downloaded from the host, a “loader” can execute from internal RAM to transfer downloaded data to external memory.
Document #: 38-08032 Rev. *L
Page 12 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.18 I2C Controller
3.18.2 I2C Interface Boot Load Access
FX2LP has one I2C port that is driven by two internal controllers,
one that automatically operates at boot time to load VID/PID/DID
and configuration information, and another that the 8051 uses
when running to control external I2C devices. The I2C port
operates in master mode only.
At power on reset the I2C interface boot loader loads the
VID/PID/DID configuration bytes and up to 16 KBytes of
program/data. The available RAM spaces are 16 KBytes from
0x0000–0x3FFF and 512 bytes from 0xE000–0xE1FF. The 8051
is in reset. I2C interface boot loads only occur after power on
reset.
3.18.1 I2C Port Pins
The I2C pins SCL and SDA must have external 2.2 kΩ pull up
resistors even if no EEPROM is connected to the FX2LP.
External EEPROM device address pins must be configured
properly. See Table 8 for configuring the device address pins.
Table 8. Strap Boot EEPROM Address Lines to These Values
Bytes
Example EEPROM
A2
A1
A0
N/A
N/A
N/A
16
24LC00[9]
128
24LC01
0
0
0
256
24LC02
0
0
0
4K
24LC32
0
0
1
8K
24LC64
0
0
1
16K
24LC128
0
0
1
3.18.3 I2C Interface General-Purpose Access
The 8051 can control peripherals connected to the I2C bus using
the I2CTL and I2DAT registers. FX2LP provides I2C master
control only, it is never an I2C slave.
3.19 Compatible with Previous Generation
EZ-USB FX2
The EZ-USB FX2LP is form, fit and with minor exceptions
functionally compatible with its predecessor, the EZ-USB FX2.
This makes for an easy transition for designers wanting to
upgrade their systems from the FX2 to the FX2LP. The pinout
and package selection are identical and a vast majority of
firmware previously developed for the FX2 functions in the
FX2LP.
For designers migrating from the FX2 to the FX2LP a change in
the bill of material and review of the memory allocation (due to
increased internal memory) is required. For more information
about migrating from EZ-USB FX2 to EZ-USB FX2LP, see the
application note titled Migrating from EZ-USB FX2 to EZ-USB
FX2LP available in the Cypress web site.
Table 9. Part Number Conversion Table
EZ-USB FX2
Part Number
EZ-USB FX2LP
Part Number
CY7C68013-56PVC
CY7C68013A-56PVXC or CY7C68014A-56PVXC
CY7C68013-56PVCT
Package Description
56-pin SSOP
CY7C68013A-56PVXCT or CY7C68014A-56PVXCT 56-pin SSOP – Tape and Reel
CY7C68013-56LFC
CY7C68013A-56LFXC or CY7C68014A-56LFXC
56-pin QFN
CY7C68013-100AC
CY7C68013A-100AXC or CY7C68014A-100AXC
100-pin TQFP
CY7C68013-128AC
CY7C68013A-128AXC or CY7C68014A-128AXC
128-pin TQFP
Note
9. This EEPROM does not have address pins.
Document #: 38-08032 Rev. *L
Page 13 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
3.20 CY7C68013A/14A and CY7C68015A/16A
Differences
CY7C68013A is identical to CY7C68014A in form, fit, and
functionality. CY7C68015A is identical to CY7C68016A in form,
fit, and functionality. CY7C68014A and CY7C68016A have a
lower suspend current than CY7C68013A and CY7C68015A
respectively and are ideal for power sensitive battery applications.
CY7C68015A and CY7C68016A are available in 56-pin QFN
package only. Two additional GPIO signals are available on the
CY7C68015A and CY7C68016A to provide more flexibility when
neither IFCLK or CLKOUT are needed in the 56-pin package.
USB developers wanting to convert their FX2 56-pin application
to a bus-powered system directly benefit from these additional
signals. The two GPIOs give developers the signals they need
for the power control circuitry of their bus-powered application
without pushing them to a high pincount version of FX2LP.
The CY7C68015A is only available in the 56-pin QFN package
Table 10. CY7C68013A/14A and CY7C68015A/16A Pin Differences
4. Pin Assignments
Figure 6 on page 15 identifies all signals for the five package
types. The following pages illustrate the individual pin diagrams,
plus a combination diagram showing which of the full set of
signals are available in the 128-pin, 100-pin, and 56-pin
packages.
The signals on the left edge of the 56-pin package in Figure 6
on page 15 are common to all versions in the FX2LP family with
the noted differences between the CY7C68013A/14A and the
CY7C68015A/16A.
Three modes are available in all package versions: Port, GPIF
master, and Slave FIFO. These modes define the signals on the
right edge of the diagram. The 8051 selects the interface mode
using the IFCONFIG[1:0] register bits. Port mode is the power on
default configuration.
The 100-pin package adds functionality to the 56-pin package by
adding these pins:
■
PORTC or alternate GPIFADR[7:0] address signals
■
PORTE or alternate GPIFADR[8] address signal and seven
additional 8051 signals
■
Three GPIF Control signals
■
Four GPIF Ready signals
■
Nine 8051 signals (two USARTs, three timer inputs, INT4,and
INT5#)
■
BKPT, RD#, WR#.
CY7C68013A/CY7C68014A CY7C68015A/CY7C68016A
IFCLK
PE0
CLKOUT
PE1
The 128-pin package adds the 8051 address and data buses
plus control signals. Note that two of the required signals, RD#
and WR#, are present in the 100-pin version.
In the 100-pin and 128-pin versions, an 8051 control bit can be
set to pulse the RD# and WR# pins when the 8051 reads
from/writes to PORTC. This feature is enabled by setting
PORTCSTB bit in CPUCS register.
Section 10.5 displays the timing diagram of the read and write
strobing function on accessing PORTC.
Document #: 38-08032 Rev. *L
Page 14 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 6. Signal
Port
XTALIN
XTALOUT
RESET#
WAKEUP#
SCL
SDA
56
**PE0 replaces IFCLK
& PE1 replaces CLKOUT
on CY7C68015A/16A
**PE0
**PE1
IFCLK
CLKOUT
DPLUS
DMINUS
GPIF Master
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PB7
PB6
PB5
PB4
PB3
PB2
PB1
PB0
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
Slave FIFO
FD[15]
FD[14]
FD[13]
FD[12]
FD[11]
FD[10]
FD[9]
FD[8]
FD[7]
FD[6]
FD[5]
FD[4]
FD[3]
FD[2]
FD[1]
FD[0]
RDY0
RDY1
SLRD
SLWR
CTL0
CTL1
CTL2
FLAGA
FLAGB
FLAGC
INT0#/PA0
INT1#/PA1
PA2
WU2/PA3
PA4
PA5
PA6
PA7
INT0#/ PA0
INT1#/ PA1
SLOE
WU2/PA3
FIFOADR0
FIFOADR1
PKTEND
PA7/FLAGD/SLCS#
CTL3
CTL4
CTL5
RDY2
RDY3
RDY4
RDY5
100
BKPT
PORTC7/GPIFADR7
PORTC6/GPIFADR6
PORTC5/GPIFADR5
PORTC4/GPIFADR4
PORTC3/GPIFADR3
PORTC2/GPIFADR2
PORTC1/GPIFADR1
PORTC0/GPIFADR0
PE7/GPIFADR8
PE6/T2EX
PE5/INT6
PE4/RxD1OUT
PE3/RxD0OUT
PE2/T2OUT
PE1/T1OUT
PE0/T0OUT
128
Document #: 38-08032 Rev. *L
RD#
WR#
CS#
OE#
PSEN#
D7
D6
D5
D4
D3
D2
D1
D0
EA
RxD0
TxD0
RxD1
TxD1
INT4
INT5#
T2
T1
T0
A15
A14
A13
A12
A11
A10
A9
A8
A7
A6
A5
A4
A3
A2
A1
A0
Page 15 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 7. CY7C68013A/CY7C68014A 128-pin TQFP Pin Assignment
27
28
29
30
31
32
33
34
35
36
37
38
103
26
104
25
105
24
106
23
107
22
108
21
109
20
110
19
111
18
112
17
113
16
114
15
115
14
116
13
117
12
118
11
119
10
120
9
121
8
122
7
123
6
124
5
125
4
126
3
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
A4
A5
A6
A7
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
A8
A9
A10
2
127
128
1
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
A11
A12
A13
A14
A15
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
EA
SCL
SDA
OE#
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
A3
A2
A1
A0
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
D7
D6
D5
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
GND
CY7C68013A/CY7C68014A
128-pin TQFP
102
101
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
VCC
D4
D3
D2
D1
D0
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
CS#
WR#
RD#
PSEN#
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
* denotes programmable polarity
Document #: 38-08032 Rev. *L
Page 16 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 8. CY7C68013A/CY7C68014A 100-pin TQFP Pin Assignment
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
PD1/FD9
PD2/FD10
PD3/FD11
INT5#
VCC
PE0/T0OUT
PE1/T1OUT
PE2/T2OUT
PE3/RXD0OUT
PE4/RXD1OUT
PE5/INT6
PE6/T2EX
PE7/GPIFADR8
GND
PD4/FD12
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
RDY2
RDY3
RDY4
RDY5
AVCC
XTALOUT
XTALIN
AGND
NC
NC
NC
AVCC
DPLUS
DMINUS
AGND
VCC
GND
INT4
T0
T1
T2
*IFCLK
RESERVED
BKPT
SCL
SDA
CY7C68013A/CY7C68014A
100-pin TQFP
PD0/FD8
*WAKEUP
VCC
RESET#
CTL5
GND
PA7/*FLAGD/SLCS#
PA6/*PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
GND
PC7/GPIFADR7
PC6/GPIFADR6
PC5/GPIFADR5
PC4/GPIFADR4
PC3/GPIFADR3
PC2/GPIFADR2
PC1/GPIFADR1
PC0/GPIFADR0
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
VCC
CTL4
CTL3
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
RXD1
TXD1
RXD0
TXD0
GND
VCC
PB3/FD3
PB2/FD2
PB1/FD1
PB0/FD0
VCC
WR#
RD#
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
* denotes programmable polarity
Document #: 38-08032 Rev. *L
Page 17 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 9. CY7C68013A/CY7C68014A 56-pin SSOP Pin Assignment
CY7C68013A/CY7C68014A
56-pin SSOP
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PD5/FD13
PD6/FD14
PD7/FD15
GND
CLKOUT
VCC
GND
RDY0/*SLRD
RDY1/*SLWR
AVCC
XTALOUT
XTALIN
AGND
AVCC
DPLUS
DMINUS
AGND
VCC
GND
*IFCLK
RESERVED
SCL
SDA
VCC
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3
PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
RESET#
GND
PA7/*FLAGD/SLCS#
PA6/PKTEND
PA5/FIFOADR1
PA4/FIFOADR0
PA3/*WU2
PA2/*SLOE
PA1/INT1#
PA0/INT0#
VCC
CTL2/*FLAGC
CTL1/*FLAGB
CTL0/*FLAGA
GND
VCC
GND
PB7/FD7
PB6/FD6
PB5/FD5
PB4/FD4
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
* denotes programmable polarity
Document #: 38-08032 Rev. *L
Page 18 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 10. CY7C68013A/14A/15A/16A 56-pin QFN Pin Assignment
GND
VCC
CLKOUT/**PE1
GND
PD7/FD15
PD6/FD14
PD5/FD13
PD4/FD12
PD3/FD11
PD2/FD10
PD1/FD9
PD0/FD8
*WAKEUP
VCC
56
55
54
53
52
51
50
49
48
47
46
45
44
43
RDY0/*SLRD
1
42
RESET#
RDY1/*SLWR
2
41
GND
AVCC
3
40
PA7/*FLAGD/SLCS#
XTALOUT
4
39
PA6/*PKTEND
XTALIN
5
38
PA5/FIFOADR1
AGND
6
37
PA4/FIFOADR0
AVCC
7
36
PA3/*WU2
DPLUS
8
35
PA2/*SLOE
DMINUS
9
34
PA1/INT1#
AGND
10
33
PA0/INT0#
VCC
11
32
VCC
GND
12
31
CTL2/*FLAGC
*IFCLK/**PE0
13
30
CTL1/*FLAGB
RESERVED
14
29
CTL0/*FLAGA
CY7C68013A/CY7C68014A
&
CY7C68015A/CY7C68016A
56-pin QFN
18
19
20
21
22
23
24
25
26
27
28
PB0/FD0
PB1/FD1
PB2/FD2
PB3/FD3
PB4/FD4
PB5/FD5
PB6/FD6
PB7/FD7
GND
VCC
GND
SDA
VCC
16
SCL
17
15
* denotes programmable polarity
** denotes CY7C68015A/CY7C68016A pinout
Document #: 38-08032 Rev. *L
Page 19 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Figure 11. CY7C68013A 56-pin VFBGA Pin Assignment - Top View
1
2
3
4
5
6
7
8
A
1A
2A
3A
4A
5A
6A
7A
8A
B
1B
2B
3B
4B
5B
6B
7B
8B
C
1C
2C
3C
4C
5C
6C
7C
8C
D
1D
2D
7D
8D
E
1E
2E
7E
8E
F
1F
2F
3F
4F
5F
6F
7F
8F
G
1G
2G
3G
4G
5G
6G
7G
8G
H
1H
2H
3H
4H
5H
6H
7H
8H
Document #: 38-08032 Rev. *L
Page 20 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
4.1 CY7C68013A/15A Pin Descriptions
The FX2LP Pin Descriptions follows.[10]
Table 11. FX2LP Pin Descriptions
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
10
9
10
3
2D
AVCC
Power
N/A
Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.
17
16
14
7
1D
AVCC
Power
N/A
Analog VCC. Connect this pin to 3.3V power source.
This signal provides power to the analog section of the
chip.
13
12
13
6
2F
AGND
Ground
N/A
Analog Ground. Connect to ground with as short a path
as possible.
20
19
17
10
1F
AGND
Ground
N/A
Analog Ground. Connect to ground with as short a path
as possible.
19
18
16
9
1E
DMINUS
IO/Z
Z
USB D– Signal. Connect to the USB D– signal.
18
17
15
8
2E
DPLUS
IO/Z
Z
USB D+ Signal. Connect to the USB D+ signal.
8051 Address Bus. This bus is driven at all times.
When the 8051 is addressing internal RAM it reflects
the internal address.
94
A0
Output
L
95
A1
Output
L
96
A2
Output
L
97
A3
Output
L
117
A4
Output
L
118
A5
Output
L
119
A6
Output
L
120
A7
Output
L
126
A8
Output
L
127
A9
Output
L
128
A10
Output
L
21
A11
Output
L
22
A12
Output
L
23
A13
Output
L
24
A14
Output
L
25
A15
Output
L
59
D0
IO/Z
Z
60
D1
IO/Z
Z
61
D2
IO/Z
Z
62
D3
IO/Z
Z
63
D4
IO/Z
Z
86
D5
IO/Z
Z
87
D6
IO/Z
Z
88
D7
IO/Z
Z
39
PSEN#
Output
H
8051 Data Bus. This bidirectional bus is high
impedance when inactive, input for bus reads, and
output for bus writes. The data bus is used for external
8051 program and data memory. The data bus is active
only for external bus accesses, and is driven LOW in
suspend.
Program Store Enable. This active-LOW signal
indicates an 8051 code fetch from external memory. It
is active for program memory fetches from
0x4000–0xFFFF when the EA pin is LOW, or from
0x0000–0xFFFF when the EA pin is HIGH.
Note
10. Unused inputs must not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power up and in
standby. Note also that no pins should be driven while the device is powered down.
Document #: 38-08032 Rev. *L
Page 21 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
34
28
99
77
Name
Type
Default
Description
Output
L
Breakpoint. This pin goes active (HIGH) when the 8051
address bus matches the BPADDRH/L registers and
breakpoints are enabled in the BREAKPT register
(BPEN = 1). If the BPPULSE bit in the BREAKPT
register is HIGH, this signal pulses HIGH for eight
12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the
signal remains HIGH until the 8051 clears the BREAK
bit (by writing 1 to it) in the BREAKPT register.
RESET#
Input
N/A
Active LOW Reset. Resets the entire chip. See section
3.9 ”Reset and Wakeup” on page 6 for more details.
EA
Input
N/A
External Access. This pin determines where the 8051
fetches code between addresses 0x0000 and 0x3FFF.
If EA = 0 the 8051 fetches this code from its internal
RAM. IF EA = 1 the 8051 fetches this code from external
memory.
Input
N/A
Crystal Input. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
It is also correct to drive XTALIN with an external
24-MHz square wave derived from another clock
source. When driving from an external source, the
driving signal should be a 3.3V square wave.
Output
N/A
Crystal Output. Connect this signal to a 24-MHz
parallel-resonant, fundamental mode crystal and load
capacitor to GND.
If an external clock is used to drive XTALIN, leave this
pin open.
BKPT
49
42
8B
35
12
11
12
5
1C
XTALIN
11
10
11
4
2C
XTALOUT
1
100
5
54
2B
O/Z
12 MHz
CLKOUT on
CY7C68013A
and
CY7C68014A
------------------ ----------- ---------IO/Z
I
PE1 on
CY7C68015A
and
CY7C68016A
82
67
40
33
8G
PA0 or
INT0#
IO/Z
I
Multiplexed pin whose function is selected by
(PA0) PORTACFG.0
PA0 is a bidirectional IO port pin.
INT0# is the active-LOW 8051 INT0 interrupt input
signal, which is either edge triggered (IT0 = 1) or level
triggered (IT0 = 0).
83
68
41
34
6G
PA1 or
INT1#
IO/Z
I
Multiplexed pin whose function is selected by:
(PA1) PORTACFG.1
PA1 is a bidirectional IO port pin.
INT1# is the active-LOW 8051 INT1 interrupt input
signal, which is either edge triggered (IT1 = 1) or level
triggered (IT1 = 0).
84
69
42
35
8F
PA2 or
SLOE or
IO/Z
I
Multiplexed pin whose function is selected by two bits:
(PA2) IFCONFIG[1:0].
PA2 is a bidirectional IO port pin.
SLOE is an input-only output enable with programmable polarity (FIFOPINPOLAR.4) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
CLKOUT: 12-, 24- or 48-MHz clock, phase locked to the
24-MHz input clock. The 8051 defaults to 12-MHz
operation. The 8051 may three-state this output by
setting CPUCS.1 = 1.
-----------------------------------------------------------------------PE1 is a bidirectional IO port pin.
Port A
Document #: 38-08032 Rev. *L
Page 22 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
85
70
43
36
7F
PA3 or
WU2
IO/Z
I
Multiplexed pin whose function is selected by:
(PA3) WAKEUP.7 and OEA.3
PA3 is a bidirectional IO port pin.
WU2 is an alternate source for USB Wakeup, enabled
by WU2EN bit (WAKEUP.1) and polarity set by
WU2POL (WAKEUP.4). If the 8051 is in suspend and
WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to enable it to exit the
suspend mode. Asserting this pin inhibits the chip from
suspending, if WU2EN = 1.
89
71
44
37
6F
PA4 or
FIFOADR0
IO/Z
I
Multiplexed pin whose function is selected by:
(PA4) IFCONFIG[1..0].
PA4 is a bidirectional IO port pin.
FIFOADR0 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].
90
72
45
38
8C
PA5 or
FIFOADR1
IO/Z
I
Multiplexed pin whose function is selected by:
(PA5) IFCONFIG[1..0].
PA5 is a bidirectional IO port pin.
FIFOADR1 is an input-only address select for the slave
FIFOs connected to FD[7..0] or FD[15..0].
91
73
46
39
7C
PA6 or
PKTEND
IO/Z
I
Multiplexed pin whose function is selected by the
(PA6) IFCONFIG[1:0] bits.
PA6 is a bidirectional IO port pin.
PKTEND is an input used to commit the FIFO packet
data to the endpoint and whose polarity is programmable via FIFOPINPOLAR.5.
92
74
47
40
6C
PA7 or
FLAGD or
SLCS#
IO/Z
I
Multiplexed pin whose function is selected by the
(PA7) IFCONFIG[1:0] and PORTACFG.7 bits.
PA7 is a bidirectional IO port pin.
FLAGD is a programmable slave-FIFO output status
flag signal.
SLCS# gates all other slave FIFO enable/strobes
44
34
25
18
3H
PB0 or
FD[0]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB0) following bits: IFCONFIG[1..0].
PB0 is a bidirectional IO port pin.
FD[0] is the bidirectional FIFO/GPIF data bus.
45
35
26
19
4F
PB1 or
FD[1]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB1) following bits: IFCONFIG[1..0].
PB1 is a bidirectional IO port pin.
FD[1] is the bidirectional FIFO/GPIF data bus.
46
36
27
20
4H
PB2 or
FD[2]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB2) following bits: IFCONFIG[1..0].
PB2 is a bidirectional IO port pin.
FD[2] is the bidirectional FIFO/GPIF data bus.
47
37
28
21
4G
PB3 or
FD[3]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB3) following bits: IFCONFIG[1..0].
PB3 is a bidirectional IO port pin.
FD[3] is the bidirectional FIFO/GPIF data bus.
54
44
29
22
5H
PB4 or
FD[4]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB4) following bits: IFCONFIG[1..0].
PB4 is a bidirectional IO port pin.
FD[4] is the bidirectional FIFO/GPIF data bus.
Port B
Document #: 38-08032 Rev. *L
Page 23 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
55
45
30
23
5G
PB5 or
FD[5]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB5) following bits: IFCONFIG[1..0].
PB5 is a bidirectional IO port pin.
FD[5] is the bidirectional FIFO/GPIF data bus.
56
46
31
24
5F
PB6 or
FD[6]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB6) following bits: IFCONFIG[1..0].
PB6 is a bidirectional IO port pin.
FD[6] is the bidirectional FIFO/GPIF data bus.
57
47
32
25
6H
PB7 or
FD[7]
IO/Z
I
Multiplexed pin whose function is selected by the
(PB7) following bits: IFCONFIG[1..0].
PB7 is a bidirectional IO port pin.
FD[7] is the bidirectional FIFO/GPIF data bus.
PORT C
72
57
PC0 or
GPIFADR0
IO/Z
I
Multiplexed pin whose function is selected by
(PC0) PORTCCFG.0
PC0 is a bidirectional IO port pin.
GPIFADR0 is a GPIF address output pin.
73
58
PC1 or
GPIFADR1
IO/Z
I
Multiplexed pin whose function is selected by
(PC1) PORTCCFG.1
PC1 is a bidirectional IO port pin.
GPIFADR1 is a GPIF address output pin.
74
59
PC2 or
GPIFADR2
IO/Z
I
Multiplexed pin whose function is selected by
(PC2) PORTCCFG.2
PC2 is a bidirectional IO port pin.
GPIFADR2 is a GPIF address output pin.
75
60
PC3 or
GPIFADR3
IO/Z
I
Multiplexed pin whose function is selected by
(PC3) PORTCCFG.3
PC3 is a bidirectional IO port pin.
GPIFADR3 is a GPIF address output pin.
76
61
PC4 or
GPIFADR4
IO/Z
I
Multiplexed pin whose function is selected by
(PC4) PORTCCFG.4
PC4 is a bidirectional IO port pin.
GPIFADR4 is a GPIF address output pin.
77
62
PC5 or
GPIFADR5
IO/Z
I
Multiplexed pin whose function is selected by
(PC5) PORTCCFG.5
PC5 is a bidirectional IO port pin.
GPIFADR5 is a GPIF address output pin.
78
63
PC6 or
GPIFADR6
IO/Z
I
Multiplexed pin whose function is selected by
(PC6) PORTCCFG.6
PC6 is a bidirectional IO port pin.
GPIFADR6 is a GPIF address output pin.
79
64
PC7 or
GPIFADR7
IO/Z
I
Multiplexed pin whose function is selected by
(PC7) PORTCCFG.7
PC7 is a bidirectional IO port pin.
GPIFADR7 is a GPIF address output pin.
PORT D
102
80
52
45
8A
PD0 or
FD[8]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD0) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[8] is the bidirectional FIFO/GPIF data bus.
103
81
53
46
7A
PD1 or
FD[9]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD1) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[9] is the bidirectional FIFO/GPIF data bus.
Document #: 38-08032 Rev. *L
Page 24 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
104
82
54
47
6B
PD2 or
FD[10]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD2) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[10] is the bidirectional FIFO/GPIF data bus.
105
83
55
48
6A
PD3 or
FD[11]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD3) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[11] is the bidirectional FIFO/GPIF data bus.
121
95
56
49
3B
PD4 or
FD[12]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD4) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[12] is the bidirectional FIFO/GPIF data bus.
122
96
1
50
3A
PD5 or
FD[13]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD5) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[13] is the bidirectional FIFO/GPIF data bus.
123
97
2
51
3C
PD6 or
FD[14]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD6) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[14] is the bidirectional FIFO/GPIF data bus.
124
98
3
52
2A
PD7 or
FD[15]
IO/Z
I
Multiplexed pin whose function is selected by the
(PD7) IFCONFIG[1..0] and EPxFIFOCFG.0 (wordwide) bits.
FD[15] is the bidirectional FIFO/GPIF data bus.
Port E
108
86
PE0 or
T0OUT
IO/Z
I
Multiplexed pin whose function is selected by the
(PE0) PORTECFG.0 bit.
PE0 is a bidirectional IO port pin.
T0OUT is an active-HIGH signal from 8051
Timer-counter0. T0OUT outputs a high level for one
CLKOUT clock cycle when Timer0 overflows. If Timer0
is operated in Mode 3 (two separate timer/counters),
T0OUT is active when the low byte timer/counter
overflows.
109
87
PE1 or
T1OUT
IO/Z
I
Multiplexed pin whose function is selected by the
(PE1) PORTECFG.1 bit.
PE1 is a bidirectional IO port pin.
T1OUT is an active-HIGH signal from 8051
Timer-counter1. T1OUT outputs a high level for one
CLKOUT clock cycle when Timer1 overflows. If Timer1
is operated in Mode 3 (two separate timer/counters),
T1OUT is active when the low byte timer/counter
overflows.
110
88
PE2 or
T2OUT
IO/Z
I
Multiplexed pin whose function is selected by the
(PE2) PORTECFG.2 bit.
PE2 is a bidirectional IO port pin.
T2OUT is the active-HIGH output signal from 8051
Timer2. T2OUT is active (HIGH) for one clock cycle
when Timer/Counter 2 overflows.
111
89
PE3 or
RXD0OUT
IO/Z
I
Multiplexed pin whose function is selected by the
(PE3) PORTECFG.3 bit.
PE3 is a bidirectional IO port pin.
RXD0OUT is an active-HIGH signal from 8051 UART0.
If RXD0OUT is selected and UART0 is in Mode 0, this
pin provides the output data for UART0 only when it is
in sync mode. Otherwise it is a 1.
Document #: 38-08032 Rev. *L
Page 25 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
112
90
PE4 or
RXD1OUT
IO/Z
I
Multiplexed pin whose function is selected by the
(PE4) PORTECFG.4 bit.
PE4 is a bidirectional IO port pin.
RXD1OUT is an active-HIGH output from 8051 UART1.
When RXD1OUT is selected and UART1 is in Mode 0,
this pin provides the output data for UART1 only when
it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH.
113
91
PE5 or
INT6
IO/Z
I
Multiplexed pin whose function is selected by the
(PE5) PORTECFG.5 bit.
PE5 is a bidirectional IO port pin.
INT6 is the 8051 INT6 interrupt request input signal. The
INT6 pin is edge-sensitive, active HIGH.
114
92
PE6 or
T2EX
IO/Z
I
Multiplexed pin whose function is selected by the
(PE6) PORTECFG.6 bit.
PE6 is a bidirectional IO port pin.
T2EX is an active-HIGH input signal to the 8051 Timer2.
T2EX reloads timer 2 on its falling edge. T2EX is active
only if the EXEN2 bit is set in T2CON.
115
93
PE7 or
GPIFADR8
IO/Z
I
Multiplexed pin whose function is selected by the
(PE7) PORTECFG.7 bit.
PE7 is a bidirectional IO port pin.
GPIFADR8 is a GPIF address output pin.
4
3
8
1
1A
RDY0 or
SLRD
Input
N/A
Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY0 is a GPIF input signal.
SLRD is the input-only read strobe with programmable
polarity (FIFOPINPOLAR.3) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
5
4
9
2
1B
RDY1 or
SLWR
Input
N/A
Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
RDY1 is a GPIF input signal.
SLWR is the input-only write strobe with programmable
polarity (FIFOPINPOLAR.2) for the slave FIFOs
connected to FD[7..0] or FD[15..0].
6
5
RDY2
Input
N/A
RDY2 is a GPIF input signal.
7
6
RDY3
Input
N/A
RDY3 is a GPIF input signal.
8
7
RDY4
Input
N/A
RDY4 is a GPIF input signal.
9
8
RDY5
Input
N/A
RDY5 is a GPIF input signal.
69
54
CTL0 or
FLAGA
O/Z
H
36
29
Document #: 38-08032 Rev. *L
7H
Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL0 is a GPIF control output.
FLAGA is a programmable slave-FIFO output status
flag signal.
Defaults to programmable for the FIFO selected by the
FIFOADR[1:0] pins.
Page 26 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
Name
Type
Default
Description
70
55
37
30
7G
CTL1 or
FLAGB
O/Z
H
Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL1 is a GPIF control output.
FLAGB is a programmable slave-FIFO output status
flag signal.
Defaults to FULL for the FIFO selected by the
FIFOADR[1:0] pins.
71
56
38
31
8H
CTL2 or
FLAGC
O/Z
H
Multiplexed pin whose function is selected by the
following bits:
IFCONFIG[1..0].
CTL2 is a GPIF control output.
FLAGC is a programmable slave-FIFO output status
flag signal.
Defaults to EMPTY for the FIFO selected by the
FIFOADR[1:0] pins.
66
51
CTL3
O/Z
H
CTL3 is a GPIF control output.
67
52
CTL4
Output
H
CTL4 is a GPIF control output.
98
76
CTL5
Output
H
CTL5 is a GPIF control output.
32
26
IFCLK on
CY7C68013A
and
CY7C68014A
IO/Z
Z
28
22
INT4
Input
N/A
INT4 is the 8051 INT4 interrupt request input signal. The
INT4 pin is edge-sensitive, active HIGH.
106
84
INT5#
Input
N/A
INT5# is the 8051 INT5 interrupt request input signal.
The INT5 pin is edge-sensitive, active LOW.
31
25
T2
Input
N/A
T2 is the active-HIGH T2 input signal to 8051 Timer2,
which provides the input to Timer2 when C/T2 = 1.
When C/T2 = 0, Timer2 does not use this pin.
30
24
T1
Input
N/A
T1 is the active-HIGH T1 signal for 8051 Timer1, which
provides the input to Timer1 when C/T1 is 1. When C/T1
is 0, Timer1 does not use this bit.
29
23
T0
Input
N/A
T0 is the active-HIGH T0 signal for 8051 Timer0, which
provides the input to Timer0 when C/T0 is 1. When C/T0
is 0, Timer0 does not use this bit.
53
43
RXD1
Input
N/A
RXD1is an active-HIGH input signal for 8051 UART1,
which provides data to the UART in all modes.
52
42
TXD1
Output
H
TXD1is an active-HIGH output pin from 8051 UART1,
which provides the output clock in sync mode, and the
output data in async mode.
51
41
RXD0
Input
N/A
RXD0 is the active-HIGH RXD0 input to 8051 UART0,
which provides data to the UART in all modes.
20
13
Document #: 38-08032 Rev. *L
2G
Interface Clock, used for synchronously clocking data
into or out of the slave FIFOs. IFCLK also serves as a
timing reference for all slave FIFO control signals and
GPIF. When internal clocking is used (IFCONFIG.7 = 1)
the IFCLK pin can be configured to output 30/48 MHz
by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be
inverted, whether internally or externally sourced, by
setting the bit IFCONFIG.4 =1.
------------------ ----------- ---------- ----------------------------------------------------------------------PE0 is a bidirectional IO port pin.
PE0 on
IO/Z
I
CY7C68015A
and
CY7C68016A
Page 27 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 11. FX2LP Pin Descriptions (continued)
128 100
56
56 56 VFTQFP TQFP SSOP QFN BGA
50
Name
Type
Default
Description
H
TXD0 is the active-HIGH TXD0 output from 8051
UART0, which provides the output clock in sync mode,
and the output data in async mode.
40
TXD0
Output
CS#
Output
H
CS# is the active-LOW chip select for external memory.
41
32
WR#
Output
H
WR# is the active-LOW write strobe output for external
memory.
40
31
RD#
Output
H
RD# is the active-LOW read strobe output for external
memory.
OE#
Output
H
OE# is the active-LOW output enable for external
memory.
42
38
33
27
21
14
2H
Reserved
Input
N/A
Reserved. Connect to ground.
101
79
51
44
7B
WAKEUP
Input
N/A
USB Wakeup. If the 8051 is in suspend, asserting this
pin starts up the oscillator and interrupts the 8051 to
enable it to exit the suspend mode. Holding WAKEUP
asserted inhibits the EZ-USB® chip from suspending.
This pin has programmable polarity (WAKEUP.4).
36
29
22
15
3F
SCL
OD
Z
Clock for the I2C interface. Connect to VCC with a 2.2K
resistor, even if no I2C peripheral is attached.
37
30
23
16
3G
SDA
OD
Z
Data for I2C-compatible interface. Connect to VCC
with a 2.2K resistor, even if no I2C-compatible
peripheral is attached.
2
1
6
55
5A
VCC
Power
N/A
VCC. Connect to 3.3V power source.
26
20
18
11
1G
VCC
Power
N/A
VCC. Connect to 3.3V power source.
43
33
24
17
7E
VCC
Power
N/A
VCC. Connect to 3.3V power source.
48
38
64
49
34
27
8E
68
53
VCC
81
66
39
32
5C
VCC
100
78
50
43
5B
VCC
107
85
VCC
3
2
7
56
4B
GND
27
21
19
12
1H
49
39
58
48
33
26
65
50
35
28
80
65
93
75
48
41
4C
116
94
125
99
4
53
4A
VCC
Power
N/A
VCC. Connect to 3.3V power source.
VCC
Power
N/A
VCC. Connect to 3.3V power source.
Power
N/A
VCC. Connect to 3.3V power source.
Power
N/A
VCC. Connect to 3.3V power source.
Power
N/A
VCC. Connect to 3.3V power source.
Power
N/A
VCC. Connect to 3.3V power source.
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
7D
GND
Ground
N/A
Ground.
8D
GND
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
GND
Ground
N/A
Ground.
14
13
NC
N/A
N/A
No Connect. This pin must be left open.
15
14
NC
N/A
N/A
No Connect. This pin must be left open.
16
15
NC
N/A
N/A
No Connect. This pin must be left open.
Document #: 38-08032 Rev. *L
Page 28 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
5. Register Summary
FX2LP register bit definitions are described in the FX2LP TRM in greater detail.
Table 12. FX2LP Register Summary
Hex
E400
E480
E50D
E600
E601
E602
E603
E604
E605
E606
E607
E608
E609
E60A
Size Name
Description
b7
GPIF Waveform Memories
128 WAVEDATA
GPIF Waveform
D7
Descriptor 0, 1, 2, 3 data
128 reserved
GENERAL CONFIGURATION
GPCR2
General Purpose Configu- reserved
ration Register 2
1
CPUCS
CPU Control & Status
0
1
IFCONFIG
Interface Configuration
IFCLKSRC
(Ports, GPIF, slave FIFOs)
[11]
1
PINFLAGSAB
Slave FIFO FLAGA and FLAGB3
FLAGB Pin Configuration
1
PINFLAGSCD[11]
Slave FIFO FLAGC and FLAGD3
FLAGD Pin Configuration
1
FIFORESET[11]
Restore FIFOS to default NAKALL
state
1
BREAKPT
Breakpoint Control
0
1
BPADDRH
Breakpoint Address H
A15
1
BPADDRL
Breakpoint Address L
A7
1
UART230
230 Kbaud internally
0
generated ref. clock
1
FIFOPINPOLAR[11] Slave FIFO Interface pins 0
polarity
1
REVID
Chip Revision
rv7
E60B 1
E60C 1
3
E610 1
E611 1
E612
E613
E614
E615
1
1
1
1
2
E618 1
E619 1
E61A 1
E61B 1
E61C 4
E620 1
E621 1
E622 1
E623 1
E624 1
E625 1
E626 1
REVCTL[11]
Chip Revision Control
UDMA
GPIFHOLDAMOUNT MSTB Hold Time
(for UDMA)
reserved
ENDPOINT CONFIGURATION
EP1OUTCFG
Endpoint 1-OUT
Configuration
EP1INCFG
Endpoint 1-IN
Configuration
EP2CFG
Endpoint 2 Configuration
EP4CFG
Endpoint 4 Configuration
EP6CFG
Endpoint 6 Configuration
EP8CFG
Endpoint 8 Configuration
reserved
EP2FIFOCFG[11]
Endpoint 2 / slave FIFO
configuration
[11]
EP4FIFOCFG
Endpoint 4 / slave FIFO
configuration
[11]
EP6FIFOCFG
Endpoint 6 / slave FIFO
configuration
[11]
EP8FIFOCFG
Endpoint 8 / slave FIFO
configuration
reserved
EP2AUTOINLENH[11 Endpoint 2 AUTOIN
Packet Length H
EP2AUTOINLENL[11] Endpoint 2 AUTOIN
Packet Length L
EP4AUTOINLENH[11] Endpoint 4 AUTOIN
Packet Length H
EP4AUTOINLENL[11] Endpoint 4 AUTOIN
Packet Length L
EP6AUTOINLENH[11] Endpoint 6 AUTOIN
Packet Length H
EP6AUTOINLENL[11] Endpoint 6 AUTOIN
Packet Length L
EP8AUTOINLENH[11] Endpoint 8 AUTOIN
Packet Length H
E627 1
EP8AUTOINLENL
E628 1
E629 1
E62A 1
ECCCFG
ECCRESET
ECC1B0
[11]
Endpoint 8 AUTOIN
Packet Length L
ECC Configuration
ECC Reset
ECC1 Byte 0 Address
b6
b5
b4
b3
b2
b1
b0
Default
Access
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
reserved
reserved
reserved
reserved
reserved
00000000 R
0
3048MHZ
FULL_SPEE reserved
D_ONLY
PORTCSTB CLKSPD1 CLKSPD0
IFCLKOE
IFCLKPOL ASYNC
CLKINV
GSTATE
CLKOE
IFCFG1
8051RES
IFCFG0
00000010 rrbbbbbr
10000000 RW
FLAGB2
FLAGB1
FLAGB0
FLAGA3
FLAGA2
FLAGA1
FLAGA0
00000000 RW
FLAGD2
FLAGD1
FLAGD0
FLAGC3
FLAGC2
FLAGC1
FLAGC0
00000000 RW
0
0
0
EP3
EP2
EP1
EP0
xxxxxxxx W
0
A14
A6
0
0
A13
A5
0
0
A12
A4
0
BREAK
A11
A3
0
BPPULSE
A10
A2
0
BPEN
A9
A1
230UART1
0
A8
A0
230UART0
00000000 rrrrbbbr
xxxxxxxx RW
xxxxxxxx RW
00000000 rrrrrrbb
0
PKTEND
SLOE
SLRD
SLWR
EF
FF
00000000 rrbbbbbb
rv6
rv5
rv4
rv3
rv2
rv1
rv0
0
0
0
0
0
0
dyn_out
enh_pkt
RevA
R
00000001
00000000 rrrrrrbb
0
0
0
0
0
0
HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb
VALID
0
TYPE1
TYPE0
0
0
0
0
10100000 brbbrrrr
VALID
0
TYPE1
TYPE0
0
0
0
0
10100000 brbbrrrr
VALID
VALID
VALID
VALID
DIR
DIR
DIR
DIR
TYPE1
TYPE1
TYPE1
TYPE1
TYPE0
TYPE0
TYPE0
TYPE0
SIZE
0
SIZE
0
0
0
0
0
BUF1
0
BUF1
0
BUF0
0
BUF0
0
10100010 bbbbbrbb
10100000 bbbbrrrr
11100010 bbbbbrbb
11100000 bbbbrrrr
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN 0
WORDWIDE 00000101 rbbbbbrb
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN 0
WORDWIDE 00000101 rbbbbbrb
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN 0
WORDWIDE 00000101 rbbbbbrb
0
INFM1
OEP1
AUTOOUT
AUTOIN
ZEROLENIN 0
WORDWIDE 00000101 rbbbbbrb
0
0
0
0
0
PL10
PL9
PL8
00000010 rrrrrbbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000 RW
0
0
0
0
0
0
PL9
PL8
00000010 rrrrrrbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000 RW
0
0
0
0
0
PL10
PL9
PL8
00000010 rrrrrbbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000 RW
0
0
0
0
0
0
PL9
PL8
00000010 rrrrrrbb
PL7
PL6
PL5
PL4
PL3
PL2
PL1
PL0
00000000 RW
0
x
LINE15
0
x
LINE14
0
x
LINE13
0
x
LINE12
0
x
LINE11
0
x
LINE10
0
x
LINE9
ECCM
x
LINE8
00000000 rrrrrrrb
00000000 W
00000000 R
Note
11. Read and writes to these registers may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.”
Document #: 38-08032 Rev. *L
Page 29 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex
E62B
E62C
E62D
Size
1
1
1
Name
ECC1B1
ECC1B2
ECC2B0
Description
ECC1 Byte 1 Address
ECC1 Byte 2 Address
ECC2 Byte 0 Address
b7
LINE7
COL5
LINE15
b6
LINE6
COL4
LINE14
b5
LINE5
COL3
LINE13
b4
LINE4
COL2
LINE12
b3
LINE3
COL1
LINE11
E62E
E62F
E630
H.S.
E630
F.S.
E631
H.S.
E631
F.S
E632
H.S.
E632
F.S
E633
H.S.
E633
F.S
1
1
1
ECC2B1
ECC2B2
EP2FIFOPFH[11]
LINE7
COL5
DECIS
LINE6
COL4
PKTSTAT
1
EP2FIFOPFH[11]
DECIS
PKTSTAT
LINE5
COL3
IN:PKTS[2]
OUT:PFC12
OUT:PFC12
LINE4
COL2
IN:PKTS[1]
OUT:PFC11
OUT:PFC11
1
EP2FIFOPFL[11]
PFC7
PFC6
PFC5
1
EP2FIFOPFL[11]
EP4FIFOPFH[11]
IN:PKTS[1]
OUT:PFC7
DECIS
IN:PKTS[0]
OUT:PFC6
PKTSTAT
PFC5
1
0
1
EP4FIFOPFH[11]
DECIS
PKTSTAT
1
EP4FIFOPFL[11]
PFC7
PFC6
1
EP4FIFOPFL[11]
ECC2 Byte 1 Address
ECC2 Byte 2 Address
Endpoint 2 / slave FIFO
Programmable Flag H
Endpoint 2 / slave FIFO
Programmable Flag H
Endpoint 2 / slave FIFO
Programmable Flag L
Endpoint 2 / slave FIFO
Programmable Flag L
Endpoint 4 / slave FIFO
Programmable Flag H
Endpoint 4 / slave FIFO
Programmable Flag H
Endpoint 4 / slave FIFO
Programmable Flag L
Endpoint 4 / slave FIFO
Programmable Flag L
E634
H.S.
E634
F.S
E635
H.S.
E635
F.S
E636
H.S.
E636
F.S
E637
H.S.
E637
F.S
1
EP6FIFOPFH[11]
PKTSTAT
1
DECIS
1
EP6FIFOPFL[11]
1
EP6FIFOPFL[11]
1
EP8FIFOPFH[11]
1
EP8FIFOPFH[11]
1
EP8FIFOPFL[11]
1
EP8FIFOPFL[11]
Endpoint 6 / slave FIFO
Programmable Flag H
Endpoint 6 / slave FIFO
Programmable Flag H
Endpoint 6 / slave FIFO
Programmable Flag L
Endpoint 6 / slave FIFO
Programmable Flag L
Endpoint 8 / slave FIFO
Programmable Flag H
Endpoint 8 / slave FIFO
Programmable Flag H
Endpoint 8 / slave FIFO
Programmable Flag L
Endpoint 8 / slave FIFO
Programmable Flag L
DECIS
EP6FIFOPFH[11]
8
E640 1
reserved
EP2ISOINPKTS
AADJ
0
E641 1
EP4ISOINPKTS
AADJ
E642 1
EP6ISOINPKTS
E643 1
EP8ISOINPKTS
EP2 (if ISO) IN Packets
per frame (1-3)
EP4 (if ISO) IN Packets
per frame (1-3)
EP6 (if ISO) IN Packets
per frame (1-3)
EP8 (if ISO) IN Packets
per frame (1-3)
E644 4
E648 1
E649 7
E650 1
reserved
INPKTEND[11]
OUTPKTEND[11]
INTERRUPTS
EP2FIFOIE[11]
E651 1
EP2FIFOIRQ[11,12]
E652 1
[11]
EP4FIFOIE
[11,12]
E653 1
EP4FIFOIRQ
E654 1
EP6FIFOIE[11]
E655 1
EP6FIFOIRQ[11,12]
E656 1
[11]
EP8FIFOIE
[11,12]
E657 1
EP8FIFOIRQ
E658 1
IBNIE
E659 1
IBNIRQ[12]
E65A 1
NAKIE
E65B 1
NAKIRQ[12]
E65C 1
USBIE
b2
LINE2
COL0
LINE10
b1
LINE1
LINE17
LINE9
b0
LINE0
LINE16
LINE8
Default
Access
00000000 R
00000000 R
00000000 R
LINE3
LINE2
COL1
COL0
IN:PKTS[0] 0
OUT:PFC10
OUT:PFC10 0
LINE1
0
PFC9
LINE0
0
PFC8
00000000 R
00000000 R
10001000 bbbbbrbb
PFC9
10001000 bbbbbrbb
PFC4
PFC3
PFC2
PFC1
IN:PKTS[2]
OUT:PFC8
PFC0
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
0
PFC8
10001000 bbrbbrrb
0
IN: PKTS[1] IN: PKTS[0] 0
OUT:PFC10 OUT:PFC9
OUT:PFC10 OUT:PFC9 0
0
PFC8
10001000 bbrbbrrb
PFC5
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
IN: PKTS[1] IN: PKTS[0] PFC5
OUT:PFC7 OUT:PFC6
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
PFC9
PFC8
00001000 bbbbbrbb
PKTSTAT
IN:PKTS[2] IN:PKTS[1] IN:PKTS[0] 0
OUT:PFC12 OUT:PFC11 OUT:PFC10
OUT:PFC12 OUT:PFC11 OUT:PFC10 0
PFC9
00001000 bbbbbrbb
PFC7
PFC6
PFC5
PFC4
PFC3
PFC2
PFC1
IN:PKTS[2]
OUT:PFC8
PFC0
IN:PKTS[1]
OUT:PFC7
DECIS
IN:PKTS[0]
OUT:PFC6
PKTSTAT
PFC5
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
0
0
PFC8
00001000 bbrbbrrb
DECIS
PKTSTAT
0
IN: PKTS[1] IN: PKTS[0] 0
OUT:PFC10 OUT:PFC9
OUT:PFC10 OUT:PFC9 0
0
PFC8
00001000 bbrbbrrb
PFC7
PFC6
PFC5
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
IN: PKTS[1] IN: PKTS[0] PFC5
OUT:PFC7 OUT:PFC6
PFC4
PFC3
PFC2
PFC1
PFC0
00000000 RW
0
0
0
0
INPPF1
INPPF0
00000001 brrrrrbb
0
0
0
0
0
INPPF1
INPPF0
00000001 brrrrrrr
AADJ
0
0
0
0
0
INPPF1
INPPF0
00000001 brrrrrbb
AADJ
0
0
0
0
0
INPPF1
INPPF0
00000001 brrrrrrr
Force IN Packet End
Force OUT Packet End
Skip
Skip
0
0
0
0
0
0
EP3
EP3
EP2
EP2
EP1
EP1
EP0
EP0
xxxxxxxx W
xxxxxxxx W
Endpoint 2 slave FIFO
Flag Interrupt Enable
Endpoint 2 slave FIFO
Flag Interrupt Request
Endpoint 4 slave FIFO
Flag Interrupt Enable
Endpoint 4 slave FIFO
Flag Interrupt Request
Endpoint 6 slave FIFO
Flag Interrupt Enable
Endpoint 6 slave FIFO
Flag Interrupt Request
Endpoint 8 slave FIFO
Flag Interrupt Enable
Endpoint 8 slave FIFO
Flag Interrupt Request
IN-BULK-NAK Interrupt
Enable
IN-BULK-NAK interrupt
Request
Endpoint Ping-NAK / IBN
Interrupt Enable
Endpoint Ping-NAK / IBN
Interrupt Request
USB Int Enables
0
0
0
0
EDGEPF
PF
EF
FF
00000000 RW
0
0
0
0
0
PF
EF
FF
00000000 rrrrrbbb
0
0
0
0
EDGEPF
PF
EF
FF
00000000 RW
0
0
0
0
0
PF
EF
FF
00000000 rrrrrbbb
0
0
0
0
EDGEPF
PF
EF
FF
00000000 RW
0
0
0
0
0
PF
EF
FF
00000000 rrrrrbbb
0
0
0
0
EDGEPF
PF
EF
FF
00000000 RW
0
0
0
0
0
PF
EF
FF
00000000 rrrrrbbb
0
0
EP8
EP6
EP4
EP2
EP1
EP0
00000000 RW
0
0
EP8
EP6
EP4
EP2
EP1
EP0
00xxxxxx rrbbbbbb
EP8
EP6
EP4
EP2
EP1
EP0
0
IBN
00000000 RW
EP8
EP6
EP4
EP2
EP1
EP0
0
IBN
xxxxxx0x bbbbbbrb
0
EP0ACK
HSGRANT
URES
SUSP
SUTOK
SOF
SUDAV
00000000 RW
00000000 RW
00000000 RW
Note
12. The register can only be reset, it cannot be set.
Document #: 38-08032 Rev. *L
Page 30 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex Size Name
E65D 1
USBIRQ[12]
E65E 1
EPIE
E65F 1
EPIRQ[12]
E660 1
E661 1
E662 1
GPIFIE[11]
E663 1
USBERRIRQ[12]
E664 1
ERRCNTLIM
E665 1
E666 1
CLRERRCNT
INT2IVEC
E667 1
INT4IVEC
E668 1
E669 7
INTSET-UP
reserved
E670 1
INPUT / OUTPUT
PORTACFG
E671 1
PORTCCFG
E672 1
PORTECFG
E673 4
E677 1
E678 1
reserved
reserved
I2CS
E679 1
I2DAT
E67A 1
I2CTL
E67B 1
XAUTODAT1
E67C 1
XAUTODAT2
GPIFIRQ[11]
USBERRIE
E680
E681
E682
E683
E684
E685
E686
E687
E688
1
1
1
1
1
1
1
1
2
UDMA CRC
UDMACRCH[11]
UDMACRCL[11]
UDMACRCQUALIFIER
USB CONTROL
USBCS
SUSPEND
WAKEUPCS
TOGCTL
USBFRAMEH
USBFRAMEL
MICROFRAME
FNADDR
reserved
E68A
E68B
E68C
E68D
1
1
1
1
ENDPOINTS
EP0BCH[11]
EP0BCL[11]
reserved
EP1OUTBC
E68E
E68F
E690
E691
1
1
1
1
reserved
EP1INBC
EP2BCH[11]
EP2BCL[11]
E692
E694
E695
E696
E698
E699
E69A
E69C
2
1
1
2
1
1
2
1
reserved
EP4BCH[11]
EP4BCL[11]
reserved
EP6BCH[11]
EP6BCL[11]
reserved
EP8BCH[11]
E67D 1
E67E 1
E67F 1
Description
USB Interrupt Requests
Endpoint Interrupt
Enables
b6
EP0ACK
EP6
b5
HSGRANT
EP4
b4
URES
EP2
b3
SUSP
EP1OUT
b2
SUTOK
EP1IN
b1
SOF
EP0OUT
b0
SUDAV
EP0IN
Default
Access
0xxxxxxx rbbbbbbb
00000000 RW
Endpoint Interrupt
EP8
Requests
GPIF Interrupt Enable
0
GPIF Interrupt Request 0
USB Error Interrupt
ISOEP8
Enables
USB Error Interrupt
ISOEP8
Requests
USB Error counter and
EC3
limit
Clear Error Counter EC3:0 x
Interrupt 2 (USB)
0
Autovector
Interrupt 4 (slave FIFO & 1
GPIF) Autovector
Interrupt 2&4 setup
0
EP6
EP4
EP2
EP1OUT
EP1IN
EP0OUT
EP0IN
0
0
0
ISOEP6
0
0
ISOEP4
0
0
ISOEP2
0
0
0
0
0
0
GPIFWF
GPIFWF
0
GPIFDONE 00000000 RW
GPIFDONE 000000xx RW
ERRLIMIT
00000000 RW
ISOEP6
ISOEP4
ISOEP2
0
0
0
ERRLIMIT
0000000x bbbbrrrb
EC2
EC1
EC0
LIMIT3
LIMIT2
LIMIT1
LIMIT0
xxxx0100 rrrrbbbb
x
I2V4
x
I2V3
x
I2V2
x
I2V1
x
I2V0
x
0
x
0
xxxxxxxx W
00000000 R
0
I4V3
I4V2
I4V1
I4V0
0
0
10000000 R
0
0
0
AV2EN
0
INT4SRC
AV4EN
00000000 RW
IO PORTA Alternate
Configuration
IO PORTC Alternate
Configuration
IO PORTE Alternate
Configuration
FLAGD
SLCS
0
0
0
0
INT1
INT0
00000000 RW
GPIFA7
GPIFA6
GPIFA5
GPIFA4
GPIFA3
GPIFA2
GPIFA1
GPIFA0
00000000 RW
GPIFA8
T2EX
INT6
RXD1OUT
RXD0OUT T2OUT
T1OUT
T0OUT
00000000 RW
I²C Bus
Control & Status
I²C Bus
Data
I²C Bus
Control
Autoptr1 MOVX access,
when APTREN=1
Autoptr2 MOVX access,
when APTREN=1
START
STOP
LASTRD
ID1
ID0
BERR
ACK
DONE
000xx000 bbbrrrrr
d7
d6
d5
d4
d3
d2
d1
d0
xxxxxxxx RW
0
0
0
0
0
0
STOPIE
400KHZ
00000000 RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
UDMA CRC MSB
UDMA CRC LSB
UDMA CRC Qualifier
CRC15
CRC7
QENABLE
CRC14
CRC6
0
CRC13
CRC5
0
CRC12
CRC4
0
CRC11
CRC3
QSTATE
CRC10
CRC2
QSIGNAL2
CRC9
CRC1
QSIGNAL1
CRC8
CRC0
QSIGNAL0
01001010 RW
10111010 RW
00000000 brrrbbbb
USB Control & Status
Put chip into suspend
Wakeup Control & Status
Toggle Control
USB Frame count H
USB Frame count L
Microframe count, 0-7
USB Function address
HSM
x
WU2
Q
0
FC7
0
0
0
x
WU
S
0
FC6
0
FA6
0
x
WU2POL
R
0
FC5
0
FA5
0
x
WUPOL
IO
0
FC4
0
FA4
DISCON
x
0
EP3
0
FC3
0
FA3
NOSYNSOF
x
DPEN
EP2
FC10
FC2
MF2
FA2
RENUM
x
WU2EN
EP1
FC9
FC1
MF1
FA1
SIGRSUME
x
WUEN
EP0
FC8
FC0
MF0
FA0
x0000000 rrrrbbbb
xxxxxxxx W
xx000101 bbbbrbbb
x0000000 rrrbbbbb
00000xxx R
xxxxxxxx R
00000xxx R
0xxxxxxx R
Endpoint 0 Byte Count H (BC15)
Endpoint 0 Byte Count L (BC7)
(BC14)
BC6
(BC13)
BC5
(BC12)
BC4
(BC11)
BC3
(BC10)
BC2
(BC9)
BC1
(BC8)
BC0
xxxxxxxx RW
xxxxxxxx RW
Endpoint 1 OUT Byte
Count
BC6
BC5
BC4
BC3
BC2
BC1
BC0
0xxxxxxx RW
Endpoint 1 IN Byte Count 0
Endpoint 2 Byte Count H 0
Endpoint 2 Byte Count L BC7/SKIP
BC6
0
BC6
BC5
0
BC5
BC4
0
BC4
BC3
0
BC3
BC2
BC10
BC2
BC1
BC9
BC1
BC0
BC8
BC0
0xxxxxxx RW
00000xxx RW
xxxxxxxx RW
Endpoint 4 Byte Count H 0
Endpoint 4 Byte Count L BC7/SKIP
0
BC6
0
BC5
0
BC4
0
BC3
0
BC2
BC9
BC1
BC8
BC0
000000xx RW
xxxxxxxx RW
Endpoint 6 Byte Count H 0
Endpoint 6 Byte Count L BC7/SKIP
0
BC6
0
BC5
0
BC4
0
BC3
BC10
BC2
BC9
BC1
BC8
BC0
00000xxx RW
xxxxxxxx RW
Endpoint 8 Byte Count H 0
0
0
0
0
0
BC9
BC8
000000xx RW
Document #: 38-08032 Rev. *L
b7
0
EP8
0
RW
Page 31 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex
E69D
E69E
E6A0
Size
1
2
1
Name
EP8BCL[11]
reserved
EP0CS
E6A1 1
EP1OUTCS
E6A2 1
EP1INCS
E6A3 1
EP2CS
E6A4 1
EP4CS
E6A5 1
EP6CS
E6A6 1
EP8CS
E6A7 1
EP2FIFOFLGS
E6A8 1
EP4FIFOFLGS
E6A9 1
EP6FIFOFLGS
E6AA 1
EP8FIFOFLGS
E6AB 1
EP2FIFOBCH
E6AC 1
EP2FIFOBCL
E6AD 1
EP4FIFOBCH
E6AE 1
EP4FIFOBCL
E6AF 1
EP6FIFOBCH
E6B0 1
EP6FIFOBCL
E6B1 1
EP8FIFOBCH
E6B2 1
EP8FIFOBCL
E6B3 1
SUDPTRH
E6B4 1
SUDPTRL
E6B5 1
SUDPTRCTL
2
E6B8 8
reserved
SET-UPDAT
E6C0 1
E6C1 1
GPIF
GPIFWFSELECT
GPIFIDLECS
E6C2
E6C3
E6C4
E6C5
1
1
1
1
E6C6 1
GPIFIDLECTL
GPIFCTLCFG
GPIFADRH[11]
GPIFADRL[11]
FLOWSTATE
FLOWSTATE
E6C7 1
E6C8 1
FLOWLOGIC
FLOWEQ0CTL
E6C9 1
FLOWEQ1CTL
E6CA 1
FLOWHOLDOFF
Description
b7
Endpoint 8 Byte Count L BC7/SKIP
b6
BC6
b5
BC5
b4
BC4
b3
BC3
b2
BC2
b1
BC1
b0
BC0
Default
Access
xxxxxxxx RW
Endpoint 0 Control and
Status
Endpoint 1 OUT Control
and Status
Endpoint 1 IN Control and
Status
Endpoint 2 Control and
Status
Endpoint 4 Control and
Status
Endpoint 6 Control and
Status
Endpoint 8 Control and
Status
Endpoint 2 slave FIFO
Flags
Endpoint 4 slave FIFO
Flags
HSNAK
0
0
0
0
0
BUSY
STALL
10000000 bbbbbbrb
0
0
0
0
0
0
BUSY
STALL
00000000 bbbbbbrb
0
0
0
0
0
0
BUSY
STALL
00000000 bbbbbbrb
0
NPAK2
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00101000 rrrrrrrb
0
0
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00101000 rrrrrrrb
0
NPAK2
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00000100 rrrrrrrb
0
0
NPAK1
NPAK0
FULL
EMPTY
0
STALL
00000100 rrrrrrrb
0
0
0
0
0
PF
EF
FF
00000010 R
0
0
0
0
0
PF
EF
FF
00000010 R
Endpoint 6 slave FIFO
0
Flags
Endpoint 8 slave FIFO
0
Flags
Endpoint 2 slave FIFO
0
total byte count H
Endpoint 2 slave FIFO
BC7
total byte count L
Endpoint 4 slave FIFO
0
total byte count H
Endpoint 4 slave FIFO
BC7
total byte count L
Endpoint 6 slave FIFO
0
total byte count H
Endpoint 6 slave FIFO
BC7
total byte count L
Endpoint 8 slave FIFO
0
total byte count H
Endpoint 8 slave FIFO
BC7
total byte count L
Setup Data Pointer high A15
address byte
Setup Data Pointer low ad- A7
dress byte
Setup Data Pointer Auto 0
Mode
0
0
0
0
PF
EF
FF
00000110 R
0
0
0
0
PF
EF
FF
00000110 R
0
0
BC12
BC11
BC10
BC9
BC8
00000000 R
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000 R
0
0
0
0
BC10
BC9
BC8
00000000 R
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000 R
0
0
0
BC11
BC10
BC9
BC8
00000000 R
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000 R
0
0
0
0
BC10
BC9
BC8
00000000 R
BC6
BC5
BC4
BC3
BC2
BC1
BC0
00000000 R
A14
A13
A12
A11
A10
A9
A8
xxxxxxxx RW
A6
A5
A4
A3
A2
A1
0
xxxxxxx0 bbbbbbbr
0
0
0
0
0
0
SDPAUTO
00000001 RW
8 bytes of setup data
D7
SET-UPDAT[0] =
bmRequestType
SET-UPDAT[1] =
bmRequest
SET-UPDAT[2:3] = wValue
SET-UPDAT[4:5] = wIndex
SET-UPDAT[6:7] =
wLength
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx R
Waveform Selector
GPIF Done, GPIF IDLE
drive mode
Inactive Bus, CTL states
CTL Drive Type
GPIF Address H
GPIF Address L
SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1
DONE
0
0
0
0
FIFOWR0
0
FIFORD1
0
FIFORD0
IDLEDRV
11100100 RW
10000000 RW
0
TRICTL
0
GPIFA7
CTL1
CTL1
0
GPIFA1
CTL0
CTL0
GPIFA8
GPIFA0
11111111 RW
00000000 RW
00000000 RW
00000000 RW
Flowstate Enable and
Selector
Flowstate Logic
CTL-Pin States in
Flowstate
(when Logic = 0)
CTL-Pin States in Flowstate (when Logic = 1)
Holdoff Configuration
Document #: 38-08032 Rev. *L
0
0
0
GPIFA6
CTL5
CTL5
0
GPIFA5
CTL4
CTL4
0
GPIFA4
CTL3
CTL3
0
GPIFA3
CTL2
CTL2
0
GPIFA2
FSE
0
0
0
0
FS2
FS1
FS0
00000000 brrrrbbb
LFUNC1
CTL0E3
LFUNC0
CTL0E2
TERMA2
CTL0E1/
CTL5
TERMA1
CTL0E0/
CTL4
TERMA0
CTL3
TERMB2
CTL2
TERMB1
CTL1
TERMB0
CTL0
00000000 RW
00000000 RW
CTL0E3
CTL0E2
CTL2
CTL1
CTL0
00000000 RW
HOCTL2
HOCTL1
HOCTL0
00010010 RW
CTL0E1/
CTL0E0/
CTL3
CTL5
CTL4
HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD HOSTATE
0
Page 32 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex Size Name
E6CB 1
FLOWSTB
E6CC 1
FLOWSTBEDGE
E6CD 1
E6CE 1
FLOWSTBPERIOD
GPIFTCB3[11]
E6CF 1
GPIFTCB2[11]
E6D0 1
GPIFTCB1[11]
E6D1 1
GPIFTCB0[11]
2
Description
Flowstate Strobe
Configuration
Flowstate Rising/Falling
Edge Configuration
b7
SLAVE
b6
b5
RDYASYNC CTLTOGL
b4
SUSTAIN
b3
0
b2
MSTB2
b1
MSTB1
b0
MSTB0
Default
Access
00100000 RW
0
0
0
0
0
0
FALLING
RISING
00000001 rrrrrrbb
D6
TC30
D5
TC29
D4
TC28
D3
TC27
D2
TC26
D1
TC25
D0
TC24
00000010 RW
00000000 RW
TC22
TC21
TC20
TC19
TC18
TC17
TC16
00000000 RW
TC14
TC13
TC12
TC11
TC10
TC9
TC8
00000000 RW
TC6
TC5
TC4
TC3
TC2
TC1
TC0
00000001 RW
Master-Strobe Half-Period D7
GPIF Transaction Count TC31
Byte 3
GPIF Transaction Count TC23
Byte 2
GPIF Transaction Count TC15
Byte 1
GPIF Transaction Count TC7
Byte 0
reserved
reserved
reserved
EP2GPIFFLGSEL[11] Endpoint 2 GPIF Flag
0
select
EP2GPIFPFSTOP
Endpoint 2 GPIF stop
0
transaction on prog. flag
0
0
0
0
0
FS1
FS0
0
0
0
0
0
0
FIFO2FLAG 00000000 RW
EP2GPIFTRIG[11]
x
x
x
x
x
x
x
x
xxxxxxxx W
0
0
0
0
0
0
FS1
FS0
00000000 RW
0
0
0
0
0
0
0
FIFO4FLAG 00000000 RW
x
x
x
x
x
x
x
x
xxxxxxxx W
0
0
0
0
0
0
FS1
FS0
00000000 RW
0
0
0
0
0
0
0
FIFO6FLAG 00000000 RW
x
x
x
x
x
x
x
x
xxxxxxxx W
0
0
0
0
0
0
FS1
FS0
00000000 RW
0
0
0
0
0
0
0
FIFO8FLAG 00000000 RW
x
x
x
x
x
x
x
x
xxxxxxxx W
D15
D14
D13
D12
D11
D10
D9
D8
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx R
INTRDY
SAS
TCXRDY5
0
0
0
0
0
00000000 bbbrrrrr
E6F4 1
E6F5 1
E6F6 2
0
x
0
x
RDY5
x
RDY4
x
RDY3
x
RDY2
x
RDY1
x
RDY0
x
00xxxxxx R
xxxxxxxx W
E740
E780
E7C0
E800
F000
D7
D7
D7
D6
D6
D6
D5
D5
D5
D4
D4
D4
D3
D3
D3
D2
D2
D2
D1
D1
D1
D0
D0
D0
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
xxxxxxxx RW
xxxxxxxx RW
RW
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
D7
D6
D5
D4
D3
D2
D1
D0
xxxxxxxx RW
E6D2 1
E6D3 1
E6D4 1
3
E6DA 1
E6DB 1
E6DC 1
3
E6E2 1
E6E3 1
E6E4 1
3
E6EA 1
E6EB 1
E6EC 1
3
E6F0 1
E6F1 1
E6F2 1
E6F3 1
F400
F600
F800
FC00
FE00
Endpoint 2 GPIF Trigger
reserved
reserved
reserved
EP4GPIFFLGSEL[11] Endpoint 4 GPIF Flag
select
EP4GPIFPFSTOP
Endpoint 4 GPIF stop
transaction on GPIF Flag
EP4GPIFTRIG[11]
Endpoint 4 GPIF Trigger
reserved
reserved
reserved
EP6GPIFFLGSEL[11] Endpoint 6 GPIF Flag
select
EP6GPIFPFSTOP
Endpoint 6 GPIF stop
transaction on prog. flag
[11]
EP6GPIFTRIG
Endpoint 6 GPIF Trigger
reserved
reserved
reserved
EP8GPIFFLGSEL[11] Endpoint 8 GPIF Flag
select
EP8GPIFPFSTOP
Endpoint 8 GPIF stop
transaction on prog. flag
EP8GPIFTRIG[11]
Endpoint 8 GPIF Trigger
reserved
XGPIFSGLDATH
GPIF Data H
(16-bit mode only)
XGPIFSGLDATLX
Read/Write GPIF Data L &
trigger transaction
XGPIFSGLDATLRead GPIF Data L, no
NOX
transaction trigger
GPIFREADYCFG
Internal RDY, Sync/Async,
RDY pin states
GPIFREADYSTAT
GPIF Ready Status
GPIFABORT
Abort GPIF Waveforms
reserved
ENDPOINT BUFFERS
64 EP0BUF
EP0-IN/-OUT buffer
64 EP10UTBUF
EP1-OUT buffer
64 EP1INBUF
EP1-IN buffer
2048 reserved
1024 EP2FIFOBUF
512/1024 byte EP 2 / slave
FIFO buffer (IN or OUT)
512 EP4FIFOBUF
512 byte EP 4 / slave FIFO
buffer (IN or OUT)
512 reserved
1024 EP6FIFOBUF
512/1024 byte EP 6 / slave
FIFO buffer (IN or OUT)
512 EP8FIFOBUF
512 byte EP 8 / slave FIFO
buffer (IN or OUT)
512 reserved
Document #: 38-08032 Rev. *L
00000000 RW
00000000 RW
Page 33 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex Size Name
Description
xxxx
I²C Configuration Byte
b7
0
b6
DISCON
b5
0
b4
0
b3
0
b2
0
b1
0
b0
400KHZ
Default
Access
xxxxxxxx n/a
Port A (bit addressable)
Stack Pointer
Data Pointer 0 L
Data Pointer 0 H
Data Pointer 1 L
Data Pointer 1 H
Data Pointer 0/1 select
Power Control
Timer/Counter Control
(bit addressable)
Timer/Counter Mode
Control
Timer 0 reload L
Timer 1 reload L
Timer 0 reload H
D7
D7
A7
A15
A7
A15
0
SMOD0
TF1
D6
D6
A6
A14
A6
A14
0
x
TR1
D5
D5
A5
A13
A5
A13
0
1
TF0
D4
D4
A4
A12
A4
A12
0
1
TR0
D3
D3
A3
A11
A3
A11
0
x
IE1
D2
D2
A2
A10
A2
A10
0
x
IT1
D1
D1
A1
A9
A1
A9
0
x
IE0
D0
D0
A0
A8
A0
A8
SEL
IDLE
IT0
xxxxxxxx RW
00000111 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW
00110000 RW
00000000 RW
GATE
CT
M1
M0
GATE
CT
M1
M0
00000000 RW
D7
D7
D15
D6
D6
D14
D5
D5
D13
D4
D4
D12
D3
D3
D11
D2
D2
D10
D1
D1
D9
D0
D0
D8
00000000 RW
00000000 RW
00000000 RW
Timer 1 reload H
Clock Control
D15
x
D14
x
D13
T2M
D12
T1M
D11
T0M
D10
MD2
D9
MD1
D8
MD0
00000000 RW
00000001 RW
Port B (bit addressable) D7
External Interrupt Flag(s) IE5
Upper Addr Byte of MOVX A15
using @R0 / @R1
D6
IE4
A14
D5
I²CINT
A13
D4
USBNT
A12
D3
1
A11
D2
0
A10
D1
0
A9
D0
0
A8
xxxxxxxx RW
00001000 RW
00000000 RW
Serial Port 0 Control
(bit addressable)
Serial Port 0 Data Buffer
Autopointer 1 Address H
Autopointer 1 Address L
SM0_0
SM1_0
SM2_0
REN_0
TB8_0
RB8_0
TI_0
RI_0
00000000 RW
D7
A15
A7
D6
A14
A6
D5
A13
A5
D4
A12
A4
D3
A11
A3
D2
A10
A2
D1
A9
A1
D0
A8
A0
00000000 RW
00000000 RW
00000000 RW
Autopointer 2 Address H A15
Autopointer 2 Address L A7
A14
A6
A13
A5
A12
A4
A11
A3
A10
A2
A9
A1
A8
A0
00000000 RW
00000000 RW
Port C (bit addressable)
Interrupt 2 clear
Interrupt 4 clear
D7
x
x
D6
x
x
D5
x
x
D4
x
x
D3
x
x
D2
x
x
D1
x
x
D0
x
x
xxxxxxxx RW
xxxxxxxx W
xxxxxxxx W
Interrupt Enable
(bit addressable)
EA
ES1
ET2
ES0
ET1
EX1
ET0
EX0
00000000 RW
EP8E
EP6F
EP6E
EP4F
EP4E
EP2F
EP2E
01011010 R
EP4PF
EP4EF
EP4FF
0
EP2PF
EP2EF
EP2FF
00100010 R
EP8PF
EP8EF
EP8FF
0
EP6PF
EP6EF
EP6FF
01100110 R
0
D7
D7
0
D6
D6
0
D5
D5
0
D4
D4
0
D3
D3
APTR2INC
D2
D2
APTR1INC
D1
D1
APTREN
D0
D0
00000110 RW
xxxxxxxx RW
xxxxxxxx RW
D7
D7
D7
D7
D7
D6
D6
D6
D6
D6
D5
D5
D5
D5
D5
D4
D4
D4
D4
D4
D3
D3
D3
D3
D3
D2
D2
D2
D2
D2
D1
D1
D1
D1
D1
D0
D0
D0
D0
D0
00000000 RW
00000000 RW
00000000 RW
00000000 RW
00000000 RW
1
PS1
PT2
PS0
PT1
PX1
PT0
PX0
10000000 RW
0
0
0
0
0
EP1INBSY
00000000 R
DONE
0
0
0
0
RW
EP1OUTBS EP0BSY
Y
EP1
EP0
D14
D13
D12
D11
D10
D9
xxxxxxxx RW
[14]
Special Function Registers (SFRs)
80
81
82
83
84
85
86
87
88
1
1
1
1
1
1
1
1
1
IOA[13]
SP
DPL0
DPH0
DPL1[13]
DPH1[13]
DPS[13]
PCON
TCON
89
1
TMOD
8A
8B
8C
1
1
1
TL0
TL1
TH0
8D
8E
8F
90
91
92
1
1
1
1
1
1
TH1
CKCON[13]
reserved
IOB[13]
EXIF[13]
MPAGE[13]
93
98
5
1
reserved
SCON0
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A8
1
1
1
1
1
1
1
1
1
1
5
1
SBUF0
AUTOPTRH1[13]
AUTOPTRL1[13]
reserved
AUTOPTRH2[13]
AUTOPTRL2[13]
reserved
IOC[13]
INT2CLR[13]
INT4CLR[13]
reserved
IE
A9
AA
1
1
reserved
EP2468STAT[13]
AB
1
EP24FIFOFLGS
AC
1
EP68FIFOFLGS
AD
AF
B0
B1
2
1
1
1
B2
B3
B4
B5
B6
B7
B8
1
1
1
1
1
1
1
B9
BA
1
1
reserved
AUTOPTRSETUP[13] Autopointer 1&2 setup
IOD[13]
Port D (bit addressable)
IOE[13]
Port E
(NOT bit addressable)
[13]
OEA
Port A Output Enable
OEB[13]
Port B Output Enable
OEC[13]
Port C Output Enable
OED[13]
Port D Output Enable
OEE[13]
Port E Output Enable
reserved
IP
Interrupt Priority (bit addressable)
reserved
EP01STAT[13]
Endpoint 0&1 Status
BB
1
GPIFTRIG[13, 11]
BC
BD
1
1
reserved
GPIFSGLDATH[13]
[13]
[13]
Endpoint 2,4,6,8 status
EP8F
flags
Endpoint 2,4 slave FIFO 0
status flags
Endpoint 6,8 slave FIFO 0
status flags
Endpoint 2,4,6,8 GPIF
slave FIFO Trigger
GPIF Data H (16-bit mode D15
only)
D8
10000xxx brrrrbbb
Note
13. SFRs not part of the standard 8051 architecture.
14. If no EEPROM is detected by the SIE then the default is 00000000.
Document #: 38-08032 Rev. *L
Page 34 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Table 12. FX2LP Register Summary (continued)
Hex
BE
BF
Size Name
Description
b7
1
GPIFSGLDATLX[13] GPIF Data L w/ Trigger D7
1
GPIFSGLDATLGPIF Data L w/ No Trigger D7
NOX[13]
C0
1
SCON1[13]
C1
C2
C8
1
6
1
SBUF1[13]
C9
CA
1
1
reserved
RCAP2L
CB
1
RCAP2H
CC
CD
CE
D0
1
1
2
1
TL2
TH2
reserved
PSW
D1
D8
D9
E0
7
1
7
1
reserved
EICON[13]
reserved
ACC
E1
E8
7
1
reserved
EIE[13]
E9
F0
F1
F8
7
1
7
1
reserved
B
reserved
EIP[13]
F9
7
reserved
reserved
T2CON
b6
D6
D6
b5
D5
D5
b4
D4
D4
b3
D3
D3
b2
D2
D2
b1
D1
D1
b0
D0
D0
Default
Access
xxxxxxxx RW
xxxxxxxx R
Serial Port 1 Control (bit SM0_1
addressable)
Serial Port 1 Data Buffer D7
SM1_1
SM2_1
REN_1
TB8_1
RB8_1
TI_1
RI_1
00000000 RW
D6
D5
D4
D3
D2
D1
D0
00000000 RW
Timer/Counter 2 Control
(bit addressable)
TF2
EXF2
RCLK
TCLK
EXEN2
TR2
CT2
CPRL2
00000000 RW
Capture for Timer 2, auto-reload, up-counter
Capture for Timer 2, auto-reload, up-counter
Timer 2 reload L
Timer 2 reload H
D7
D6
D5
D4
D3
D2
D1
D0
00000000 RW
D7
D6
D5
D4
D3
D2
D1
D0
00000000 RW
D7
D15
D6
D14
D5
D13
D4
D12
D3
D11
D2
D10
D1
D9
D0
D8
00000000 RW
00000000 RW
Program Status Word (bit CY
addressable)
AC
F0
RS1
RS0
OV
F1
P
00000000 RW
External Interrupt Control SMOD1
1
ERESI
RESI
INT6
0
0
0
01000000 RW
Accumulator (bit address- D7
able)
D6
D5
D4
D3
D2
D1
D0
00000000 RW
External Interrupt Enable(s)
1
1
1
EX6
EX5
EX4
EI²C
EUSB
11100000 RW
B (bit addressable)
D7
D6
D5
D4
D3
D2
D1
D0
00000000 RW
1
1
PX6
PX5
PX4
PI²C
PUSB
11100000 RW
External Interrupt Priority 1
Control
R = all bits read-only
W = all bits write-only
r = read-only bit
w = write-only bit
b = both read/write bit
Document #: 38-08032 Rev. *L
Page 35 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
6. Absolute Maximum Ratings
Storage Temperature ..................................................................................................................................................... 65°C to +150°C
Ambient Temperature with Power Supplied (Commercial) ................................................................................................ 0°C to +70°C
Ambient Temperature with Power Supplied (Industrial).............................................................................................. –40°C to +105°C
Supply Voltage to Ground Potential................................................................................................................................ –0.5V to +4.0V
DC Input Voltage to Any Input Pin[15] ............................................................................................................................................ 5.25V
DC Voltage Applied to Outputs in High Z State .................................................................................................... –0.5V to VCC + 0.5V
Power Dissipation...................................................................................................................................................................... 300 mW
Static Discharge Voltage.............................................................................................................................................................>2000V
Max Output Current, per IO port................................................................................................................................................... 10 mA
Max Output Current, all five IO ports (128- and 100-pin packages) ............................................................................................. 50 mA
7. Operating Conditions
TA (Ambient Temperature Under Bias) Commercial ......................................................................................................... 0°C to +70°C
TA (Ambient Temperature Under Bias) Industrial......................................................................................................... –40°C to +105°C
Supply Voltage............................................................................................................................................................ +3.00V to +3.60V
Ground Voltage................................................................................................................................................................................... 0V
FOSC (Oscillator or Crystal Frequency).......................................................................................24 MHz ± 100 ppm, Parallel Resonant
8. Thermal Characteristics
The following table displays the thermal characteristics of various packages:
Table 13. Thermal Characteristics
θJc
Junction
to Case
Ambient Temperature
Temperature
(°C)
(°C/W)
θa
Package
θCa
Case to Ambient
Temperature
θJa
Junction to Ambient Temperature
θJc + θCa
(°C/W)
(°C/W)
56 SSOP
70
24.4
23.3
47.7
100 TQFP
70
11.9
34.0
45.9
128 TQFP
70
15.5
27.7
43.2
56 QFN
70
10.6
14.6
25.2
56 VFBGA
70
30.9
27.7
58.6
The Junction Temperature θj, can be calculated using the following equation: θj = P*θJa + θa
where,
P = Power
θJa = Junction to Ambient Temperature (θJc + θCa)
θa = Ambient Temperature (70 C)
The Case Temperature θc, can be calculated using the following equation: θc = P*θCa + θa
where,
P = Power
θCa = Case to Ambient Temperature
θa = Ambient Temperature (70 C)
Note
15. Do not power IO with chip power off.
Document #: 38-08032 Rev. *L
Page 36 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
9. DC Characteristics
Table 14. DC Characteristics
Parameter
VCC
Description
Conditions
Supply Voltage
VCC Ramp Up 0 to 3.3V
Min
Typ
Max
Unit
3.00
3.3
3.60
V
μs
200
VIH
Input HIGH Voltage
2
VIL
Input LOW Voltage
–0.5
0.8
V
VIH_X
Crystal Input HIGH Voltage
2
5.25
V
VIL_X
Crystal Input LOW Voltage
II
Input Leakage Current
0< VIN < VCC
VOH
Output Voltage HIGH
IOUT = 4 mA
VOL
Output LOW Voltage
IOUT = –4 mA
5.25
–0.5
V
0.8
V
±10
μA
2.4
V
0.4
V
IOH
Output Current HIGH
4
mA
IOL
Output Current LOW
4
mA
CIN
Input Pin Capacitance
ISUSP
ICC
TRESET
Except D+/D–
10
pF
D+/D–
15
pF
Suspend Current
Connected
300
380[16]
μA
CY7C68014/CY7C68016
Disconnected
100
150[16]
μA
mA
Suspend Current
Connected
0.5
1.2[16]
CY7C68013/CY7C68015
Disconnected
0.3
1.0[16]
mA
Supply Current
8051 running, connected to USB HS
50
85
mA
8051 running, connected to USB FS
35
65
mA
Reset Time after Valid Power
VCC min = 3.0V
Pin Reset after powered on
5.0
mS
200
μS
9.1 USB Transceiver
USB 2.0 compliant in full-speed and high-speed modes.
10. AC Electrical Characteristics
10.1 USB Transceiver
USB 2.0 compliant in full-speed and high-speed modes.
Note
16. Measured at Max VCC, 25°C.
Document #: 38-08032 Rev. *L
Page 37 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.2 Program Memory Read
Figure 12. Program Memory Read Timing Diagram
tCL
CLKOUT[17]
tAV
tAV
A[15..0]
tSTBH
tSTBL
PSEN#
[18]
tACC1
D[7..0]
tDH
data in
tSOEL
OE#
tSCSL
CS#
Table 15. Program Memory Read Parameters
Parameter
tCL
Description
Min
1/CLKOUT Frequency
Typ
Max
20.83
Unit
Notes
ns
48 MHz
41.66
ns
24 MHz
83.2
ns
12 MHz
tAV
Delay from Clock to Valid Address
0
10.7
ns
tSTBL
Clock to PSEN Low
0
8
ns
tSTBH
Clock to PSEN High
0
tSOEL
Clock to OE Low
tSCSL
Clock to CS Low
tDSU
Data Setup to Clock
tDH
Data Hold Time
8
ns
11.1
ns
13
ns
9.6
ns
0
ns
Notes
17. CLKOUT is shown with positive polarity.
18. tACC1 is computed from the above parameters as follows:
tACC1(24 MHz) = 3*tCL – tAV – tDSU = 106 ns
tACC1(48 MHz) = 3*tCL – tAV – tDSU = 43 ns.
Document #: 38-08032 Rev. *L
Page 38 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.3 Data Memory Read
Figure 13. Data Memory Read Timing Diagram
tCL
Stretch = 0
CLKOUT[17]
tAV
tAV
A[15..0]
tSTBH
tSTBL
RD#
tSCSL
CS#
tSOEL
OE#
tDSU
[19]
tDH
tACC1
D[7..0]
data in
tCL
Stretch = 1
CLKOUT[17]
tAV
A[15..0]
RD#
CS#
tDSU
tACC1[19]
D[7..0]
tDH
data in
Table 16. Data Memory Read Parameters
Parameter
tCL
Description
Min
1/CLKOUT Frequency
Typ
Max
Unit
Notes
20.83
ns
48 MHz
41.66
ns
24 MHz
ns
12 MHz
83.2
tAV
Delay from Clock to Valid Address
tSTBL
Clock to RD LOW
11
ns
tSTBH
Clock to RD HIGH
11
ns
tSCSL
Clock to CS LOW
13
ns
tSOEL
Clock to OE LOW
11.1
ns
tDSU
Data Setup to Clock
tDH
Data Hold Time
10.7
ns
9.6
ns
0
ns
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either
RD# or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for
which is based on the stretch value
Note
19. tACC2 and tACC3 are computed from the above parameters as follows:
tACC2(24 MHz) = 3*tCL – tAV –tDSU = 106 ns
tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns
tACC3(24 MHz) = 5*tCL – tAV –tDSU = 190 ns
tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns.
Document #: 38-08032 Rev. *L
Page 39 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.4 Data Memory Write
Figure 14. Data Memory Write Timing Diagram
tCL
CLKOUT
tAV
tSTBL
tSTBH
tAV
A[15..0]
WR#
tSCSL
CS#
tON1
tOFF1
data out
D[7..0]
Stretch = 1
tCL
CLKOUT
tAV
A[15..0]
WR#
CS#
tON1
tOFF1
data out
D[7..0]
Table 17. Data Memory Write Parameters
Min
Max
Unit
tAV
Parameter
Delay from Clock to Valid Address
Description
0
10.7
ns
tSTBL
Clock to WR Pulse LOW
0
11.2
ns
tSTBH
Clock to WR Pulse HIGH
0
11.2
ns
tSCSL
Clock to CS Pulse LOW
13.0
ns
tON1
Clock to Data Turn-on
0
13.1
ns
tOFF1
Clock to Data Hold Time
0
13.1
ns
Notes
When using the AUTPOPTR1 or AUTOPTR2 to address external memory, the address of AUTOPTR1 is only active while either RD#
or WR# are active. The address of AUTOPTR2 is active throughout the cycle and meets the above address valid time for which is
based on the stretch value.
Document #: 38-08032 Rev. *L
Page 40 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.5 PORTC Strobe Feature Timings
The RD# and WR# are present in the 100-pin version and the
128-pin package. In these 100-pin and 128-pin versions, an
8051 control bit can be set to pulse the RD# and WR# pins when
the 8051 reads from or writes to PORTC. This feature is enabled
by setting PORTCSTB bit in CPUCS register.
The RD# signal prompts the external logic to prepare the next
data byte. Nothing gets sampled internally on assertion of the
RD# signal itself, it is just a prefetch type signal to get the next
data byte prepared. So, using it with that in mind easily meets the
setup time to the next read.
The RD# and WR# strobes are asserted for two CLKOUT cycles
when PORTC is accessed.
The WR# strobe is asserted two clock cycles after PORTC is
updated and is active for two clock cycles after that, as shown in
Figure 15.
The purpose of this pulsing of RD# is to allow the external
peripheral to know that the 8051 is done reading PORTC and the
data was latched into PORTC three CLKOUT cycles before
asserting the RD# signal. After the RD# is pulsed, the external
logic can update the data on PORTC.
As for read, the value of PORTC three clock cycles before the
assertion of RD# is the value that the 8051 reads in. The RD# is
pulsed for 2 clock cycles after 3 clock cycles from the point when
the 8051 has performed a read function on PORTC.
Following is the timing diagram of the read and write strobing
function on accessing PORTC. Refer to Section 10.3 and
Section 10.4 for details on propagation delay of RD# and WR#
signals.
Figure 15. WR# Strobe Function when PORTC is Accessed by 8051
tCLKOUT
CLKOUT
PORTC IS UPDATED
tSTBL
tSTBH
WR#
Figure 16. RD# Strobe Function when PORTC is Accessed by 8051
tCLKOUT
CLKOUT
8051 READS PORTC
DATA CAN BE UPDATED BY EXTERNAL LOGIC
DATA MUST BE HELD FOR 3 CLK CYLCES
tSTBL
tSTBH
RD#
Document #: 38-08032 Rev. *L
Page 41 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.6 GPIF Synchronous Signals
Figure 17. GPIF Synchronous Signals Timing Diagram[20]
tIFCLK
IFCLK
tSGA
GPIFADR[8:0]
RDYX
tSRY
tRYH
DATA(input)
valid
tSGD
tDAH
CTLX
tXCTL
DATA(output)
N
N+1
tXGD
Table 18. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[20, 21]
Parameter
Description
Min
Max
20.83
Unit
tIFCLK
IFCLK Period
ns
tSRY
RDYX to Clock Setup Time
tRYH
Clock to RDYX
tSGD
GPIF Data to Clock Setup Time
tDAH
GPIF Data Hold Time
tSGA
Clock to GPIF Address Propagation Delay
7.5
ns
tXGD
Clock to GPIF Data Output Propagation Delay
11
ns
tXCTL
Clock to CTLX Output Propagation Delay
6.7
ns
Min.
Max.
Unit
20.83
200
ns
8.9
ns
0
ns
9.2
ns
0
ns
Table 19. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK[21]
Parameter
Description
tIFCLK
IFCLK Period[22]
tSRY
RDYX to Clock Setup Time
2.9
ns
tRYH
Clock to RDYX
3.7
ns
tSGD
GPIF Data to Clock Setup Time
3.2
ns
tDAH
GPIF Data Hold Time
4.5
ns
tSGA
Clock to GPIF Address Propagation Delay
tXGD
Clock to GPIF Data Output Propagation Delay
tXCTL
Clock to CTLX Output Propagation Delay
11.5
ns
15
ns
10.7
ns
Notes
20. Dashed lines denote signals with programmable polarity.
21. GPIF asynchronous RDYx signals have a minimum Setup time of 50 ns when using internal 48-MHz IFCLK.
22. IFCLK must not exceed 48 MHz.
Document #: 38-08032 Rev. *L
Page 42 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.7 Slave FIFO Synchronous Read
Figure 18. Slave FIFO Synchronous Read Timing Diagram[20]
tIFCLK
IFCLK
tSRD
tRDH
SLRD
tXFLG
FLAGS
DATA
N
tOEon
N+1
tXFD
tOEoff
SLOE
Table 20. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK[21]
Parameter
Description
Min
Max
Unit
tIFCLK
IFCLK Period
20.83
ns
tSRD
SLRD to Clock Setup Time
18.7
ns
tRDH
Clock to SLRD Hold Time
0
tOEon
SLOE Turn-on to FIFO Data Valid
10.5
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
tXFLG
Clock to FLAGS Output Propagation Delay
9.5
ns
tXFD
Clock to FIFO Data Output Propagation Delay
11
ns
ns
ns
Table 21. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[21]
Min.
Max.
Unit
tIFCLK
Parameter
IFCLK Period
Description
20.83
200
ns
tSRD
SLRD to Clock Setup Time
12.7
ns
tRDH
Clock to SLRD Hold Time
3.7
ns
tOEon
SLOE Turn-on to FIFO Data Valid
10.5
ns
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
tXFLG
Clock to FLAGS Output Propagation Delay
13.5
ns
tXFD
Clock to FIFO Data Output Propagation Delay
15
ns
Document #: 38-08032 Rev. *L
Page 43 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.8 Slave FIFO Asynchronous Read
Figure 19. Slave FIFO Asynchronous Read Timing Diagram[20]
tRDpwh
SLRD
tRDpwl
FLAGS
tXFD
tXFLG
DATA
N
N+1
tOEon
tOEoff
SLOE
Table 22. Slave FIFO Asynchronous Read Parameters[23]
Parameter
Description
Min
Max
Unit
tRDpwl
SLRD Pulse Width LOW
50
tRDpwh
SLRD Pulse Width HIGH
50
tXFLG
SLRD to FLAGS Output Propagation Delay
tXFD
SLRD to FIFO Data Output Propagation Delay
tOEon
SLOE Turn-on to FIFO Data Valid
tOEoff
SLOE Turn-off to FIFO Data Hold
10.5
ns
ns
ns
70
ns
15
ns
10.5
ns
Note
23. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz.
Document #: 38-08032 Rev. *L
Page 44 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.9 Slave FIFO Synchronous Write
Figure 20. Slave FIFO Synchronous Write Timing Diagram[20]
tIFCLK
IFCLK
SLWR
DATA
tSWR
tWRH
N
Z
tSFD
Z
tFDH
FLAGS
tXFLG
Table 23. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK[21]
Parameter
Description
Min
Max
Unit
tIFCLK
IFCLK Period
20.83
ns
tSWR
SLWR to Clock Setup Time
10.4
ns
tWRH
Clock to SLWR Hold Time
0
ns
tSFD
FIFO Data to Clock Setup Time
9.2
ns
tFDH
Clock to FIFO Data Hold Time
0
tXFLG
Clock to FLAGS Output Propagation Time
ns
9.5
ns
Min
Max
Unit
200
ns
Table 24. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[21]
Parameter
Description
tIFCLK
IFCLK Period
20.83
tSWR
SLWR to Clock Setup Time
12.1
ns
tWRH
Clock to SLWR Hold Time
3.6
ns
tSFD
FIFO Data to Clock Setup Time
3.2
ns
tFDH
Clock to FIFO Data Hold Time
4.5
tXFLG
Clock to FLAGS Output Propagation Time
Document #: 38-08032 Rev. *L
ns
13.5
ns
Page 45 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.10 Slave FIFO Asynchronous Write
Figure 21. Slave FIFO Asynchronous Write Timing Diagram[20]
tWRpwh
SLWR
SLWR/SLCS#
tWRpwl
tSFD
tFDH
DATA
tXFD
FLAGS
Table 25. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [23]
Parameter
Description
Min
Max
Unit
tWRpwl
SLWR Pulse LOW
50
ns
tWRpwh
SLWR Pulse HIGH
70
ns
tSFD
SLWR to FIFO DATA Setup Time
10
ns
tFDH
FIFO DATA to SLWR Hold Time
10
tXFD
SLWR to FLAGS Output Propagation Delay
ns
70
ns
10.11 Slave FIFO Synchronous Packet End Strobe
Figure 22. Slave FIFO Synchronous Packet End Strobe Timing Diagram[20]
IFCLK
tPEH
PKTEND
tSPE
FLAGS
tXFLG
Table 26. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK[21]
Parameter
Description
Min
Max
Unit
tIFCLK
IFCLK Period
20.83
tSPE
PKTEND to Clock Setup Time
14.6
ns
tPEH
Clock to PKTEND Hold Time
0
ns
tXFLG
Clock to FLAGS Output Propagation Delay
ns
9.5
ns
Table 27. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK[21]
Parameter
Description
Min
Max
Unit
20.83
200
ns
tIFCLK
IFCLK Period
tSPE
PKTEND to Clock Setup Time
8.6
tPEH
Clock to PKTEND Hold Time
2.5
tXFLG
Clock to FLAGS Output Propagation Delay
Document #: 38-08032 Rev. *L
ns
ns
13.5
ns
Page 46 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
There is no specific timing requirement that should be met for
asserting PKTEND pin to asserting SLWR. PKTEND can be
asserted with the last data value clocked into the FIFOs or thereafter. The setup time tSPE and the hold time tPEH must be met.
caused the last byte or word to be clocked into the previous auto
committed packet. Figure 23 shows this scenario. X is the value
the AUTOINLEN register is set to when the IN endpoint is
configured to be in auto mode.
Although there are no specific timing requirements for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one byte
or word packet. There is an additional timing requirement that
needs to be met when the FIFO is configured to operate in auto
mode and it is required to send two packets back to back: a full
packet (full defined as the number of bytes in the FIFO meeting
the level set in AUTOINLEN register) committed automatically
followed by a short one byte or word packet committed manually
using the PKTEND pin. In this scenario, the user must ensure to
assert PKTEND at least one clock cycle after the rising edge that
Figure 23 shows a scenario where two packets are committed.
The first packet gets committed automatically when the number
of bytes in the FIFO reaches X (value set in AUTOINLEN
register) and the second one byte/word short packet being
committed manually using PKTEND.
Note that there is at least one IFCLK cycle timing between the
assertion of PKTEND and clocking of the last byte of the previous
packet (causing the packet to be committed automatically).
Failing to adhere to this timing results in the FX2 failing to send
the one byte or word short packet.
Figure 23. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
tIFCLK
IFCLK
tSFA
tFAH
FIFOADR
>= tWRH
>= tSWR
SLWR
tFDH
tSFD
tSFD
X-4
DATA
tFDH
tFDH
tSFD
X-3
tFDH
tSFD
X-2
tSFD
X-1
X
tFDH
tSFD
tFDH
1
At least one IFCLK cycle
tSPE
tPEH
PKTEND
10.12 Slave FIFO Asynchronous Packet End Strobe
Figure 24. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[20]
tPEpwh
PKTEND
tPEpwl
FLAGS
tXFLG
Table 28. Slave FIFO Asynchronous Packet End Strobe Parameters[23]
Parameter
Description
Min
Max
Unit
tPEpwl
PKTEND Pulse Width LOW
50
ns
tPWpwh
PKTEND Pulse Width HIGH
50
ns
tXFLG
PKTEND to FLAGS Output Propagation Delay
Document #: 38-08032 Rev. *L
115
ns
Page 47 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.13 Slave FIFO Output Enable
Figure 25. Slave FIFO Output Enable Timing Diagram[20]
SLOE
tOEoff
tOEon
DATA
Table 29. Slave FIFO Output Enable Parameters
Max
Unit
tOEon
Parameter
SLOE Assert to FIFO DATA Output
Description
Min
10.5
ns
tOEoff
SLOE Deassert to FIFO DATA Hold
10.5
ns
10.14 Slave FIFO Address to Flags/Data
Figure 26. Slave FIFO Address to Flags/Data Timing Diagram[20]
FIFOADR [1.0]
tXFLG
FLAGS
tXFD
DATA
N
N+1
Table 30. Slave FIFO Address to Flags/Data Parameters
Parameter
Description
Min
Max
Unit
tXFLG
FIFOADR[1:0] to FLAGS Output Propagation Delay
10.7
ns
tXFD
FIFOADR[1:0] to FIFODATA Output Propagation Delay
14.3
ns
Document #: 38-08032 Rev. *L
Page 48 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.15 Slave FIFO Synchronous Address
Figure 27. Slave FIFO Synchronous Address Timing Diagram[20]
IFCLK
SLCS/FIFOADR [1:0]
tSFA
tFAH
Table 31. Slave FIFO Synchronous Address Parameters [21]
Parameter
Description
Min
Max
Unit
20.83
200
ns
tIFCLK
Interface Clock Period
tSFA
FIFOADR[1:0] to Clock Setup Time
25
ns
tFAH
Clock to FIFOADR[1:0] Hold Time
10
ns
10.16 Slave FIFO Asynchronous Address
Figure 28. Slave FIFO Asynchronous Address Timing Diagram[20]
SLCS/FIFOADR [1:0]
tSFA
tFAH
SLRD/SLWR/PKTEND
Table 32. Slave FIFO Asynchronous Address Parameters[23]
Parameter
Description
Min
Max
Unit
tSFA
FIFOADR[1:0] to SLRD/SLWR/PKTEND Setup Time
10
ns
tFAH
RD/WR/PKTEND to FIFOADR[1:0] Hold Time
10
ns
Document #: 38-08032 Rev. *L
Page 49 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.17 Sequence Diagram
10.17.1 Single and Burst Synchronous Read Example
Figure 29. Slave FIFO Synchronous Read Sequence and Timing Diagram[20]
tIFCLK
IFCLK
tSFA
tSFA
tFAH
tFAH
FIFOADR
t=0
tSRD
T=0
tRDH
>= tSRD
>= tRDH
SLRD
t=3
t=2
T=3
T=2
SLCS
tXFLG
FLAGS
tXFD
tXFD
Data Driven: N
DATA
N+1
N+1
N+2
N+3
tOEon
tOEoff
tOEon
tXFD
tXFD
N+4
tOEoff
SLOE
t=4
T=4
T=1
t=1
Figure 30. Slave FIFO Synchronous Sequence of Events Diagram
IFCLK
FIFO POINTER
N
IFCLK
IFCLK
N
N+1
FIFO DATA BUS Not Driven
Driven: N
N+1
Not Driven
■
At t = 0 the FIFO address is stable and the signal SLCS is
asserted (SLCS may be tied low in some applications). Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.
■
At t = 1, SLOE is asserted. SLOE is an output enable only,
whose sole function is to drive the data bus. The data that is
driven on the bus is the data that the internal FIFO pointer is
currently pointing to. In this example it is the first data value in
the FIFO. Note: the data is pre-fetched and is driven on the bus
when SLOE is asserted.
At t = 2, SLRD is asserted. SLRD must meet the setup time of
tSRD (time from asserting the SLRD signal to the rising edge of
the IFCLK) and maintain a minimum hold time of tRDH (time
from the IFCLK edge to the deassertion of the SLRD signal).
Document #: 38-08032 Rev. *L
N+1
SLOE
Figure 29 shows the timing relationship of the SLAVE FIFO
signals during a synchronous FIFO read using IFCLK as the
synchronizing clock. The diagram illustrates a single read
followed by a burst read.
■
IFCLK
N+1
SLOE
SLRD
SLRD
SLOE
IFCLK
IFCLK
N+2
IFCLK
N+3
IFCLK
N+4
SLRD
N+1
IFCLK
N+4
SLRD
N+2
N+3
N+4
IFCLK
N+4
SLOE
N+4
Not Driven
If the SLCS signal is used, it must be asserted before SLRD is
asserted (The SLCS and SLRD signals must both be asserted
to start a valid read condition).
■
The FIFO pointer is updated on the rising edge of the IFCLK,
while SLRD is asserted. This starts the propagation of data
from the newly addressed location to the data bus. After a
propagation delay of tXFD (measured from the rising edge of
IFCLK) the new data value is present. N is the first data value
read from the FIFO. To have data on the FIFO data bus, SLOE
MUST also be asserted.
The same sequence of events are shown for a burst read and
are marked with the time indicators of T = 0 through 5.
Note For the burst mode, the SLRD and SLOE are left asserted
during the entire duration of the read. In the burst read mode,
when SLOE is asserted, data indexed by the FIFO pointer is on
the data bus. During the first read cycle, on the rising edge of the
clock the FIFO pointer is updated and increments to point to
address N+1. For each subsequent rising edge of IFCLK, while
the SLRD is asserted, the FIFO pointer is incremented and the
next data value is placed on the data bus.
Page 50 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.17.2 Single and Burst Synchronous Write
Figure 31. Slave FIFO Synchronous Write Sequence and Timing Diagram[20]
tIFCLK
IFCLK
tSFA
tSFA
tFAH
tFAH
FIFOADR
t=0
tSWR
tWRH
>= tWRH
>= tSWR
T=0
SLWR
t=2
T=2
t=3
T=5
SLCS
tXFLG
tXFLG
FLAGS
tFDH
tSFD
tSFD
N+1
N
DATA
t=1
tFDH
T=1
tSFD
tSFD
tFDH
N+3
N+2
T=3
tFDH
T=4
tSPE
tPEH
PKTEND
The Figure 31 shows the timing relationship of the SLAVE FIFO
signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by
burst write of 3 bytes and committing all 4 bytes as a short packet
using the PKTEND pin.
FIFO data bus is written to the FIFO on every rising edge of
IFCLK. The FIFO pointer is updated on each rising edge of
IFCLK. In Figure 31, after the four bytes are written to the FIFO,
SLWR is deasserted. The short 4 byte packet can be committed
to the host by asserting the PKTEND signal.
■
At t = 0 the FIFO address is stable and the signal SLCS is
asserted. (SLCS may be tied low in some applications) Note
that tSFA has a minimum of 25 ns. This means when IFCLK is
running at 48 MHz, the FIFO address setup time is more than
one IFCLK cycle.
■
At t = 1, the external master/peripheral must outputs the data
value onto the data bus with a minimum set up time of tSFD
before the rising edge of IFCLK.
■
At t = 2, SLWR is asserted. The SLWR must meet the setup
time of tSWR (time from asserting the SLWR signal to the rising
edge of IFCLK) and maintain a minimum hold time of tWRH (time
from the IFCLK edge to the deassertion of the SLWR signal).
If the SLCS signal is used, it must be asserted with SLWR or
before SLWR is asserted (The SLCS and SLWR signals must
both be asserted to start a valid write condition).
There is no specific timing requirement that should be met for
asserting PKTEND signal with regards to asserting the SLWR
signal. PKTEND can be asserted with the last data value or
thereafter. The only requirement is that the setup time tSPE and
the hold time tPEH must be met. In the scenario of Figure 31, the
number of data values committed includes the last value written
to the FIFO. In this example, both the data value and the
PKTEND signal are clocked on the same rising edge of IFCLK.
PKTEND can also be asserted in subsequent clock cycles. The
FIFOADDR lines should be held constant during the PKTEND
assertion.
■
While the SLWR is asserted, data is written to the FIFO and on
the rising edge of the IFCLK, the FIFO pointer is incremented.
The FIFO flag is also updated after a delay of tXFLG from the
rising edge of the clock.
The same sequence of events are also shown for a burst write
and are marked with the time indicators of T = 0 through 5.
Note For the burst mode, SLWR and SLCS are left asserted for
the entire duration of writing all the required data values. In this
burst write mode, after the SLWR is asserted, the data on the
Document #: 38-08032 Rev. *L
Although there are no specific timing requirement for the
PKTEND assertion, there is a specific corner case condition that
needs attention while using the PKTEND to commit a one
byte/word packet. Additional timing requirements exists when
the FIFO is configured to operate in auto mode and it is desired
to send two packets: a full packet (full defined as the number of
bytes in the FIFO meeting the level set in AUTOINLEN register)
committed automatically followed by a short one byte or word
packet committed manually using the PKTEND pin.
In this case, the external master must ensure to assert the
PKTEND pin at least one clock cycle after the rising edge that
caused the last byte or word that needs to be clocked into the
previous auto committed packet (the packet with the number of
bytes equal to what is set in the AUTOINLEN register). Refer to
Figure 23 for further details on this timing.
Page 51 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.17.3 Sequence Diagram of a Single and Burst Asynchronous Read
Figure 32. Slave FIFO Asynchronous Read Sequence and Timing Diagram[20]
tSFA
tFAH
tSFA
tFAH
FIFOADR
t=0
tRDpwl
tRDpwh
tRDpwl
T=0
tRDpwl
tRDpwh
tRDpwl
tRDpwh
tRDpwh
SLRD
t=2
t=3
T=3
T=2
T=5
T=4
T=6
SLCS
tXFLG
tXFLG
FLAGS
tXFD
Data (X)
Driven
DATA
tXFD
tXFD
N
N
N+3
N+2
tOEon
tOEoff
tOEon
tXFD
N+1
tOEoff
SLOE
t=4
t=1
T=7
T=1
Figure 33. Slave FIFO Asynchronous Read Sequence of Events Diagram
SLOE
FIFO POINTER
N
FIFO DATA BUS Not Driven
SLRD
SLRD
SLOE
SLOE
SLRD
SLRD
SLRD
SLRD
SLOE
N
N
N+1
N+1
N+1
N+1
N+2
N+2
N+3
N+3
Driven: X
N
N
Not Driven
N
N+1
N+1
N+2
N+2
Not Driven
Figure 32 shows the timing relationship of the SLAVE FIFO
signals during an asynchronous FIFO read. It shows a single
read followed by a burst read.
■
The data that is driven, after asserting SLRD, is the updated
data from the FIFO. This data is valid after a propagation delay
of tXFD from the activating edge of SLRD. In Figure 32, data N
is the first valid data read from the FIFO. For data to appear on
the data bus during the read cycle (SLRD is asserted), SLOE
must be in an asserted state. SLRD and SLOE can also be tied
together.
■
At t = 0 the FIFO address is stable and the SLCS signal is
asserted.
■
At t = 1, SLOE is asserted. This results in the data bus being
driven. The data that is driven on to the bus is previous data,
it data that was in the FIFO from a prior read cycle.
The same sequence of events is also shown for a burst read
marked with T = 0 through 5.
At t = 2, SLRD is asserted. The SLRD must meet the minimum
active pulse of tRDpwl and minimum de-active pulse width of
tRDpwh. If SLCS is used then, SLCS must be asserted before
SLRD is asserted (The SLCS and SLRD signals must both be
asserted to start a valid read condition.)
Note In burst read mode, during SLOE is assertion, the data bus
is in a driven state and outputs the previous data. After SLRD is
asserted, the data from the FIFO is driven on the data bus (SLOE
must also be asserted) and then the FIFO pointer is incremented.
■
Document #: 38-08032 Rev. *L
Page 52 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
10.17.4 Sequence Diagram of a Single and Burst Asynchronous Write
Figure 34. Slave FIFO Asynchronous Write Sequence and Timing Diagram[20]
tSFA
tFAH
tSFA
tFAH
FIFOADR
t=0
tWRpwl
tWRpwh
T=0
tWRpwl
tWRpwl
tWRpwh
tWRpwl
tWRpwh
tWRpwh
SLWR
t=3
t =1
T=1
T=3
T=4
T=6
T=7
T=9
SLCS
tXFLG
tXFLG
FLAGS
tSFD tFDH
tSFD tFDH
tSFD tFDH
tSFD tFDH
N+1
N+2
N+3
N
DATA
t=2
T=2
T=5
T=8
tPEpwl
tPEpwh
PKTEND
Figure 34 shows the timing relationship of the SLAVE FIFO write
in an asynchronous mode. The diagram shows a single write
followed by a burst write of 3 bytes and committing the 4 byte
short packet using PKTEND.
■
At t = 0 the FIFO address is applied, insuring that it meets the
setup time of tSFA. If SLCS is used, it must also be asserted
(SLCS may be tied low in some applications).
■
At t = 1 SLWR is asserted. SLWR must meet the minimum
active pulse of tWRpwl and minimum de-active pulse width of
tWRpwh. If the SLCS is used, it must be asserted with SLWR or
before SLWR is asserted.
■
At t = 2, data must be present on the bus tSFD before the
deasserting edge of SLWR.
■
At t = 3, deasserting SLWR causes the data to be written from
the data bus to the FIFO and then increments the FIFO pointer.
Document #: 38-08032 Rev. *L
The FIFO flag is also updated after tXFLG from the deasserting
edge of SLWR.
The same sequence of events are shown for a burst write and is
indicated by the timing marks of T = 0 through 5.
Note In the burst write mode, after SLWR is deasserted, the data
is written to the FIFO and then the FIFO pointer is incremented
to the next byte in the FIFO. The FIFO pointer is post incremented.
In Figure 34 after the four bytes are written to the FIFO and
SLWR is deasserted, the short 4 byte packet can be committed
to the host using the PKTEND. The external device should be
designed to not assert SLWR and the PKTEND signal at the
same time. It should be designed to assert the PKTEND after
SLWR is deasserted and met the minimum deasserted pulse
width. The FIFOADDR lines have to held constant during the
PKTEND assertion.
Page 53 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
11. Ordering Information
Table 33. Ordering Information
Ordering Code
Package Type
RAM Size
# Prog IOs
8051 Address
/Data Busses
Ideal for battery powered applications
CY7C68014A-128AXC
128 TQFP – Lead-Free
16K
40
16/8 bit
CY7C68014A-100AXC
100 TQFP – Lead-Free
16K
40
–
CY7C68014A-56PVXC
56 SSOP – Lead-Free
16K
24
–
CY7C68014A-56LFXC
56 QFN – Lead-Free
16K
24
–
CY7C68014A-56BAXC
56 VFBGA – Lead-Free
16K
24
–
CY7C68016A-56LFXC
56 QFN – Lead-Free
16K
26
–
Ideal for non-battery powered applications
CY7C68013A-128AXC
128 TQFP – Lead-Free
16K
40
16/8 bit
CY7C68013A-128AXI
128 TQFP – Lead-Free (Industrial)
16K
40
16/8 bit
CY7C68013A-100AXC
100 TQFP – Lead-Free
16K
40
–
CY7C68013A-100AXI
100 TQFP – Lead-Free (Industrial)
16K
40
–
CY7C68013A-56PVXC
56 SSOP – Lead-Free
16K
24
–
CY7C68013A-56PVXI
56 SSOP – Lead-Free (Industrial)
16K
24
–
CY7C68013A-56LFXC
56 QFN – Lead-Free
16K
24
–
CY7C68013A-56LFXI
56 QFN – Lead-Free (Industrial)
16K
24
–
CY7C68015A-56LFXC
56 QFN – Lead-Free
16K
26
–
CY7C68013A-56BAXC
56 VFBGA – Lead-Free
16K
24
–
Development Tool Kit
CY3684
EZ-USB FX2LP Development Kit
Reference Design Kit
CY4611B
Document #: 38-08032 Rev. *L
USB 2.0 to ATA/ATAPI Reference Design using EZ-USB FX2LP
Page 54 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
12. Package Diagrams
The FX2LP is available in five packages:
■
56-pin SSOP
■
56-pin QFN
■
100-pin TQFP
■
128-pin TQFP
■
56-ball VFBGA
Package Diagrams
Figure 35. 56-lead Shrunk Small Outline Package O56 (51-85062)
51-85062-*C
Document #: 38-08032 Rev. *L
Page 55 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Package Diagrams (continued)
Figure 36. 56-Lead QFN 8 x 8 mm LF56A (51-85144)
SIDE VIEW
TOP VIEW
BOTTOM VIEW
0.08[0.003]
7.90[0.311]
8.10[0.319]
A
C
1.00[0.039] MAX.
6.1
0.05[0.002] MAX.
7.70[0.303]
7.80[0.307]
0.18[0.007]
0.28[0.011]
0.80[0.031] MAX.
0.20[0.008] REF.
N
1
2
2
6.1
0°-12°
C
SEATING PLANE
0.45[0.018]
SOLDERABLE
EXPOSED
PAD
0.30[0.012]
0.50[0.020]
0.50[0.020]
6.45[0.254]
6.55[0.258]
6.45[0.254]
6.55[0.258]
7.70[0.303]
7.80[0.307]
1
7.90[0.311]
8.10[0.319]
0.80[0.031]
DIA.
PIN1 ID
0.20[0.008] R.
N
0.24[0.009]
0.60[0.024]
(4X)
51-85144-*D
NOTES:
1.
HATCH AREA IS SOLDERABLE EXPOSED METAL.
2. REFERENCE JEDEC#: MO-220
3. PACKAGE WEIGHT: 0.162g
4. ALL DIMENSIONS ARE IN MM [MIN/MAX]
5. PACKAGE CODE
PART #
DESCRIPTION
LF56
LY56
STANDARD
PB-FREE
(SUBCON PUNCH TYPE PKG with 6.1 x 6.1 EPAD)
51-85144-*G
Document #: 38-08032 Rev. *L
Page 56 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Package Diagrams (continued)
Figure 37. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A100RA (51-85050)
16.00±0.20
1.40±0.05
14.00±0.10
100
81
80
1
20.00±0.10
22.00±0.20
0.30±0.08
0.65
TYP.
30
12°±1°
(8X)
SEE DETAIL
A
51
31
50
0.20 MAX.
0.10
1.60 MAX.
R 0.08 MIN.
0.20 MAX.
0° MIN.
SEATING PLANE
STAND-OFF
0.05 MIN.
0.15 MAX.
0.25
NOTE:
1. JEDEC STD REF MS-026
GAUGE PLANE
0°-7°
R 0.08 MIN.
0.20 MAX.
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
0.60±0.15
51-85050-*B
0.20 MIN.
1.00 REF.
DETAIL
Document #: 38-08032 Rev. *L
A
Page 57 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Package Diagrams (continued)
Figure 38. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 (51-85101)
16.00±0.20
14.00±0.10
1.40±0.05
128
1
20.00±0.10
22.00±0.20
0.22±0.05
12°±1°
(8X)
0.50
TYP.
SEE DETAIL
A
0.20 MAX.
1.60 MAX.
0° MIN.
0.08
R 0.08 MIN.
0.20 MAX.
STAND-OFF
0.05 MIN.
0.15 MAX.
0.25
GAUGE PLANE
0°-7°
R 0.08 MIN.
0.20 MAX.
SEATING PLANE
NOTE:
1. JEDEC STD REF MS-026
2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH
MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.0098 in (0.25 mm) PER SIDE
BODY LENGTH DIMENSIONS ARE MAX PLASTIC BODY SIZE INCLUDING MOLD MISMATCH
3. DIMENSIONS IN MILLIMETERS
51-85101-*C
0.60±0.15
0.20 MIN.
1.00 REF.
DETAIL
Document #: 38-08032 Rev. *L
A
Page 58 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Package Diagrams (continued)
Figure 39. 56 VFBGA (5 x 5 x 1.0 mm) 0.50 Pitch, 0.30 Ball BZ56 (001-03901)
TOP VIEW
BOTTOM VIEW
Ø0.05 M C
Ø0.15 M C A B
PIN A1 CORNER
A1 CORNER
Ø0.30±0.05(56X)
8 7 6 5 4 3 2 1
A
B
C
D
E
F
G
H
0.50
3.50
A
B
C
D
E
F
G
H
5.00±0.10
5.00±0.10
1 2 3 4 5 6 6 8
0.50
-B3.50
-A-
5.00±0.10
5.00±0.10
0.080 C
0.45
SIDE VIEW
0.10 C
0.10(4X)
REFERENCE JEDEC: MO-195C
PACKAGE WEIGHT: 0.02 grams
0.160 ~0.260
1.0 max
SEATING PLANE
0.21
-C-
001-03901-*B
13. PCB Layout Recommendations
Follow these recommendations to ensure reliable high performance operation:[24]
■
Bypass and flyback caps on VBus, near connector, are recommended.
■
Four layer impedance controlled boards are required to
maintain signal quality.
■
■
Specify impedance targets (ask your board vendor what they
can achieve).
DPLUS and DMINUS trace lengths should be kept to within 2
mm of each other in length, with preferred length of 20 to
30 mm.
■
Maintain a solid ground plane under the DPLUS and DMINUS
traces. Do not allow the plane to split under these traces.
■
Do not place vias on the DPLUS or DMINUS trace routing.
■
Isolate the DPLUS and DMINUS traces from all other signal
traces by no less than 10 mm.
■
To control impedance, maintain trace widths and trace spacing.
■
Minimize stubs to minimize reflected signals.
■
Connections between the USB connector shell and signal
ground must be near the USB connector.
Note
24. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http://www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and
High-Speed USB Platform Design Guidelines, http://www.usb.org/developers/docs/hs_usb_pdg_r1_0.pdf.
Document #: 38-08032 Rev. *L
Page 59 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
14. Quad Flat Package No Leads (QFN) Package Design Notes
Electrical contact of the part to the Printed Circuit Board (PCB)
is made by soldering the leads on the bottom surface of the
package to the PCB. Hence, special attention is required to the
heat transfer area below the package to provide a good thermal
bond to the circuit board. Design a Copper (Cu) fill in the PCB as
a thermal pad under the package. Heat is transferred from the
FX2LP through the device’s metal paddle on the bottom side of
the package. Heat from here is conducted to the PCB at the
thermal pad. It is then conducted from the thermal pad to the
PCB inner ground plane by a 5 x 5 array of via. A via is a plated
through hole in the PCB with a finished diameter of 13 mil. The
QFN’s metal die paddle must be soldered to the PCB’s thermal
pad. Solder mask is placed on the board top side over each via
to resist solder flow into the via. The mask on the top side also
minimizes outgassing during the solder reflow process.
For further information on this package design refer to Application Notes for Surface Mount Assembly of Amkor's MicroLeadFrame (MLF) Packages. You can find this on Amkor's website
http://www.amkor.com.
The application note provides detailed information about board
mounting guidelines, soldering flow, rework process, etc.
Figure 40 shows a cross-sectional area underneath the
package. The cross section is of only one via. The solder paste
template should be designed to allow at least 50% solder
coverage. The thickness of the solder paste template should be
5 mil. Use the No Clean type 3 solder paste for mounting the part.
Nitrogen purge is recommended during reflow.
Figure 41 is a plot of the solder mask pattern and Figure 42
displays an X-Ray image of the assembly (darker areas indicate
solder).
Figure 40. Cross-section of the Area Underneath the QFN Package
0.017” dia
Solder Mask
Cu Fill
Cu Fill
PCB Material
Via hole for thermally connecting the
QFN to the circuit board ground plane.
0.013” dia
PCB Material
This figure only shows the top three layers of the
circuit board: Top Solder, PCB Dielectric, and
the Ground Plane
Figure 41. Plot of the Solder Mask (White Area)
Figure 42. X-ray Image of the Assembly
Document #: 38-08032 Rev. *L
Page 60 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document History Page
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO.
Issue
Date
Orig. of
Change
Description of Change
**
124316 03/17/03
VCS
New data sheet
*A
128461 09/02/03
VCS
Added PN CY7C68015A throughout data sheet
Modified Figure 1 to add ECC block and fix errors
Removed word “compatible” where associated with I2C
Corrected grammar and formatting in various locations
Updated Sections 3.2.1, 3.9, 3.11, Table 9, Section 5.0
Added Sections 3.15, 3.18.4, 3.20
Modified Figure 5 for clarity
Updated Figure 36 to match current spec revision
*B
130335 10/09/03
KKV
Restored PRELIMINARY to header (had been removed in error from rev. *A)
*C
131673 02/12/04
KKU
Section 8.1 changed “certified” to “compliant”
Table 14 added parameter VIH_X and VIL_X
Added Sequence diagrams Section 9.16
Updated Ordering information with lead-free parts
Updated Registry Summary
Section 3.12.4:example changed to column 8 from column 9
Updated Figure 14 memory write timing Diagram
Updated section 3.9 (reset)
Updated section 3.15 ECC Generation
*D
230713 See ECN
KKU
Changed Lead free Marketing part numbers in Table 33 as per spec change in 28-00054.
*E
242398 See ECN
TMD
Minor Change: data sheet posted to the web,
*F
271169 See ECN
MON
Added USB-IF Test ID number
Added USB 2.0 logo
Added values for Isusp, Icc, Power Dissipation, Vih_x, Vil_x
Changed VCC from + 10% to + 5%
Changed E-Pad size to 4.3 mm x 5.0 mm
Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in
Table 28 from a max value of 70 ns to 115 ns
*G
316313 See ECN
MON
Removed CY7C68013A-56PVXCT part availability
Added parts ideal for battery powered applications: CY7C68014A, CY7C68016A
Provided additional timing restrictions and requirement about the use of PKETEND pin to
commit a short one byte/word packet subsequent to committing a packet automatically
(when in auto mode).
Added Min Vcc Ramp Up time (0 to 3.3v)
*H
338901 See ECN
MON
Added information about the AUTOPTR1/AUTOPTR2 address timing with regards to data
memory read/write timing diagram.
Removed TBD for Min value of Clock to FIFO Data Output Propagation Delay (tXFD) for
Slave FIFO Synchronous Read
Changed Table 33 to include part CY7C68016A-56LFXC in the part listed for battery
powered applications
Added register GPCR2 in register summary
*I
371097 See ECN
MON
Added timing for strobing RD#/WR# signals when using PortC strobe feature (Section 10.5)
*J
397239 See ECN
MON
Removed XTALINSRC register from register summary.
Changed Vcc margins to +10%
Added 56-pin VFBGA Pin Package Diagram
Added 56-pin VFBGA definition in pin listing
Added RDK part number to the Ordering Information table
Document #: 38-08032 Rev. *L
Page 61 of 62
[+] Feedback
CY7C68013A, CY7C68014A
CY7C68015A, CY7C68016A
Document Title: CY7C68013A, CY7C68014A, CY7C68015A, CY7C68016A, EZ-USB FX2LP™ USB Microcontroller
High-Speed USB Peripheral Controller
Document Number: 38-08032
REV. ECN NO.
Issue
Date
Orig. of
Change
MON
Description of Change
*K
420505 See ECN
Remove SLCS from figure in Section 10.10.
Removed indications that SLRD can be asserted simultaneously with SLCS in Section
10.17.2 and Section 10.17.3
Added Absolute Maximum Temperature Rating for industrial packages in Section 6.
Changed number of packages stated in the description in Section 4. to five.
Added Table 13 on Thermal Coefficients for various packages
*L
2064406 See ECN CMCC/ Changed TID number
PYRS Removed T0OUT and T1OUT from CY7C68015A/16A
Updated tSWR Min value in Figure 20
Updated 56-lead QFN package diagram
© Cypress Semiconductor Corporation, 2003-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of
any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for
medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of,
and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without
the express written permission of Cypress.
Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where
a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.
Use may be limited by and subject to the applicable Cypress software license agreement.
Document #: 38-08032 Rev. *L
2
Revised February 8, 2008
Page 62 of 62
2
Purchase of I C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips I C Patent Rights to use these components in an I2C system, provided
that the system conforms to the I2C Standard Specification as defined by Philips. EZ-USB FX2LP, EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress
Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.
[+] Feedback