CY7C68013 EZ-USB FX2™ USB Microcontroller 1.0 EZ-USB FX2 Features • Single-chip integrated USB 2.0 Transceiver, SIE, and Enhanced 8051 Microprocessor • Software: 8051 code runs from: — Internal RAM, which is downloaded via USB — Internal RAM, which is loaded from EEPROM — External memory device (128 pin package • Four programmable BULK/INTERRUPT/ ISOCHRONOUS endpoints — Buffering options: double, triple and quad • 8- or 16-bit external data interface • GPIF • Supports bus-powered applications by using renumeration • 3.3V operation • Smart Serial Interface Engine • Vectored USB interrupts • Separate data buffers for the SETUP and DATA portions of a CONTROL transfer • Integrated I2C-compatible controller, runs at 100 or 400 kHz • 48-MHz, 24-MHz, or 12-MHz 8051 operation • Four integrated FIFOs — Brings glue and FIFOs inside for lower system cost — Automatic conversion to and from 16-bit buses — Allows direct connection to most parallel interface — Master or slave operation — Programmable waveform descriptors and configuration registers to define waveforms — FIFOs can use externally supplied clock or asynchronous strobes — Supports multiple Ready (RDY) inputs and Control (CTL) outputs • Integrated, industry standard enhanced 8051: — Up to 48-MHz clock rate — Four clocks per instruction cycle — Two USARTS — Easy interface to ASIC and DSP ICs • Special autovectors for FIFO and GPIF interrupts • Up to 40 general-purpose I/Os • Four package options—128-pin TQFP, 100-pin TQFP, 56-pin QFN and 56-pin SSOP • Four packages are defined for the family: 56 SSOP, 56 QFN, 100 TQFP, and 128 TQFP — Three counter/timers — Expanded interrupt system — Two data pointers High-performance micro using standard tools with lower-power options VCC x20 PLL /0.5 /1.0 /2.0 Data (8) Address (16) FX2 8051 Core 12/24/48 MHz, four clocks/cycle 1.5k connected for full speed D+ D– USB 2.0 XCVR Integrated full- and high-speed XCVR CY Smart USB 1.1/2.0 Engine 8.5 kB RAM I2C Compatible Master Address (16) / Data Bus (8) 24-MHz Ext. XTAL ADDR (9) GPIF RDY (6) CTL (6) 4 kB FIFO Enhanced USB core Simplifies 8051 core Abundant I/O including two USARTS Additional I/Os (24) “Soft Configuration” Easy firmware changes 8/16 General programmable I/F to ASIC/DSP or bus standards such as ATAPI, EPP, etc. Up to 96 MBytes/s burst rate FIFO and endpoint memory (master or slave operation) Figure 1-1. Block Diagram Cypress Semiconductor Corporation Document #: 38-08012 Rev. *E • 3901 North First Street • San Jose, CA 95134 • 408-943-2600 Revised February 8, 2005 CY7C68013 Cypress’s EZ-USB FX2 is the world’s first USB 2.0 integrated microcontroller. By integrating the USB 2.0 transceiver, SIE, enhanced 8051 microcontroller, and a programmable peripheral interface in a single chip, Cypress has created a very cost-effective solution that provides superior time-to-market advantages. The ingenious architecture of FX2 results in data transfer rates of 56 Mbytes per second, the maximum allowable USB 2.0 bandwidth, while still using a lowcost 8051 microcontroller in a package as small as a 56 SSOP. Because it incorporates the USB 2.0 transceiver, the FX2 is more economical, providing a smaller footprint solution than USB 2.0 SIE or external transceiver implementations. With EZ-USB FX2, the Cypress Smart SIE handles most of the USB 1.1 and 2.0 protocol in hardware, freeing the embedded microcontroller for application-specific functions and decreasing development time to ensure USB compatibility. The General Programmable Interface (GPIF) and Master/Slave Endpoint FIFO (8- or 16-bit data bus) provides an easy and glueless interface to popular interfaces such as ATA, UTOPIA, EPP, PCMCIA, and most DSP/processors. 2.0 3.2 8051 Microprocessor The 8051 microprocessor embedded in the FX2 family has 256 bytes of register RAM, an expanded interrupt system, three timer/counters, and two USARTs.8051 Clock Frequency FX2 has an on-chip oscillator circuit that uses an external 24-MHz (±100 ppm) crystal with the following characteristics: • Parallel resonant • Fundamental mode • 500-µW drive level • 20–33 pF (5% tolerance) load capacitors. An on-chip PLL multiplies the 24-MHz oscillator up to 480 MHz, as required by the transceiver/PHY, and internal counters divide it down for use as the 8051 clock. The default 8051 clock frequency is 12 MHz. The clock frequency of the 8051 can be changed by the 8051 through the CPUCS register, dynamically. The CLKOUT pin, which can be tri-stated and inverted using internal control bits, outputs the 50% duty cycle 8051 clock, at the selected 8051 clock frequency—48, 24, or 12 MHz. Applications • DSL modems • ATA interface • Memory card readers • Legacy conversion devices • Cameras • Scanners • Home PNA • Wireless LAN • MP3 players • Networking. The “Reference Designs” section of the cypress website provides additional tools for typical USB 2.0 applications. Each reference design comes complete with firmware source and object code, schematics, and documentation. Please visit http://www.cypress.com for more information. 3.0 Functional Overview 3.1 USB Signaling Speed FX2 operates at two of the three rates defined in the Universal Serial Bus Specification Revision 2.0, dated April 27, 2000: • Full speed, with a signaling bit rate of 12 Mbps • High speed, with a signaling bit rate of 480 Mbps FX2 does not support the low-speed signaling mode of 1.5 Mbps. Document #: 38-08012 Rev. *E 3.2.1 USARTS FX2 contains two standard 8051 USARTs, addressed via Special Function Register (SFR) bits. The USART interface pins are available on separate I/O pins, and are not multiplexed with port pins. UART0 and UART1 can operate using an internal clock at 230 KBaud with no more than 1% baud rate error. 230-KBaud operation is achieved by an internally derived clock source that generates overflow pulses at the appropriate time. The internal clock adjusts for the 8051 clock rate (48, 24, 12 MHz) such that it always presents the correct frequency for 230-KBaud operation. Note. 115-KBaud operation is also possible by programming the 8051 SMOD0 or SMOD1 bits to a “1” for UART0 and/or UART1, respectively. 3.2.2 Special Function Registers Certain 8051 SFR addresses are populated to provide fast access to critical FX2 functions. These SFR additions are shown in Table 3-1. Bold type indicates non-standard, enhanced 8051 registers. The two SFR rows that end with “0” and “8” contain bit-addressable registers. The four I/O ports A–D use the SFR addresses used in the standard 8051 for ports 0–3, which are not implemented in FX2. Because of the faster and more efficient SFR addressing, the FX2 I/O ports are not addressable in external RAM space (using the MOVX instruction). Page 2 of 48 CY7C68013 Table 3-1. Special Function Registers x 8x 9x Ax Bx Cx Dx Ex Fx 0 IOA 1 SP IOB IOC IOD SCON1 PSW ACC B EXIF INT2CLR IOE SBUF1 2 DPL0 MPAGE INT4CLR OEA 3 DPH0 OEB 4 DPL1 OEC 5 DPH1 OED 6 DPS OEE 7 PCON EICON EIE EIP 8 TCON SCON0 9 TMOD SBUF0 IE IP T2CON A TL0 AUTOPTRH1 EP2468STAT EP01STAT RCAP2L B TL1 AUTOPTRL1 EP24FIFOFLGS GPIFTRIG RCAP2H C D TH0 reserved EP68FIFOFLGS TH1 AUTOPTRH2 GPIFSGLDATH TH2 E CKCON AUTOPTRL2 GPIFSGLDATLX F 3.3 reserved AUTOPTRSETUP I2C-compatible Bus FX2 supports the I2C-compatible bus as a master only at 100/400 kbps. SCL and SDA pins have open-drain outputs and hysteresis inputs. These signals must be pulled up to 3.3V, even if no I2C-compatible device is connected. 3.4 Buses All packages: 8- or 16-bit “FIFO” bidirectional data bus, multiplexed on I/O ports B and D. 128-pin package: adds 16-bit output-only 8051 address bus, 8-bit bidirectional data bus. 3.5 USB Boot Methods During the power-up sequence, internal logic checks the I2Ccompatible port for the connection of an EEPROM whose first byte is either 0xC0 or 0xC2. If found, it uses the VID/PID/DID values in the EEPROM in place of the internally stored values (0xC0), or it boot-loads the EEPROM contents into internal RAM (0xC2). If no EEPROM is detected, FX2 enumerates using internally stored descriptors. The default ID values for FX2 are VID/PID/DID (0x04B4, 0x8613, 0xxxyy). Table 3-2. Default ID Values for FX2 Default VID/PID/DID Vendor ID 0x04B4 Cypress Semiconductor Prod ID 0x8613 EZ-USB FX2 Device release 0xXXYY Depends on revision (0x04 for Rev E) TL2 GPIFSGLDATLNOX 3.6 ReNumeration™ Because the FX2’s configuration is soft, one chip can take on the identities of multiple distinct USB devices. When first plugged into USB, the FX2 enumerates automatically and downloads firmware and USB descriptor tables over the USB cable. Next, the FX2 enumerates again, this time as a device defined by the downloaded information. This patented two-step process, called ReNumeration™, happens instantly when the device is plugged in, with no hint that the initial download step has occurred. Two control bits in the USBCS (USB Control and Status) register control the ReNumeration process: DISCON and RENUM. To simulate a USB disconnect, the firmware sets DISCON to 1. To reconnect, the firmware clears DISCON to 0. Before reconnecting, the firmware sets or clears the RENUM bit to indicate whether the firmware or the Default USB Device will handle device requests over endpoint zero: if RENUM = 0, the Default USB Device will handle device requests; if RENUM = 1, the firmware will. 3.7 Bus Powered Applications Bus powered applications require the FX2 to enumerate in a unconfigured mode with less then 100 mA. To do this, the FX2 must enumerate in the full speed mode and then, when configured, renumerate in high speed mode. For an example of the benefits and limitations of this renumeration process see the application note titled “Bus Powered Enumeration with FX2”. Note. The I2C-compatible bus SCL and SDA pins must be pulled up, even if an EEPROM is not connected. Otherwise this detection method does not work properly. Document #: 38-08012 Rev. *E Page 3 of 48 CY7C68013 3.8 Interrupt System 3.8.1 INT2 Interrupt Request and Enable Registers FX2 implements an autovector feature for INT2 and INT4. There are 27 INT2 (USB) vectors, and 14 INT4 (FIFO/GPIF) vectors. See FX2 TRM for more details. 3.8.2 USB-Interrupt Autovectors The main USB interrupt is shared by 27 interrupt sources. To save the code and processing time that normally would be required to identify the individual USB interrupt source, the FX2 provides a second level of interrupt vectoring, called Autovectoring. When a USB interrupt is asserted, the FX2 pushes the program counter onto its stack then jumps to address 0x0043, where it expects to find a “jump” instruction to the USB Interrupt service routine. The FX2 jump instruction is encoded as shown in Table 3-3. If Autovectoring is enabled (AV2EN = 1 in the INTSETUP register), the FX2 substitutes its INT2VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at location 0x0044, the automatically-inserted INT2VEC byte at 0x0045 will direct the jump to the correct address out of the 27 addresses within the page. Table 3-3. INT2 USB Interrupts USB Interrupt Table for INT2 Priority INT2VEC Value Source Notes 1 00 SUDAV SETUP Data Available 2 04 SOF Start of Frame (or microframe) 3 08 SUTOK Setup Token Received 4 0C SUSPEND USB Suspend request 5 10 USB RESET Bus reset 6 14 HISPEED Entered high-speed operation 7 18 EP0ACK FX2 ACK’d the CONTROL Handshake 8 1C reserved 9 20 EP0-IN EP0-IN ready to be loaded with data 10 24 EP0-OUT EP0-OUT has USB data 11 28 EP1-IN EP1-IN ready to be loaded with data 12 2C EP1-OUT EP1-OUT has USB data 13 30 EP2 IN: buffer available. OUT: buffer has data 14 34 EP4 IN: buffer available. OUT: buffer has data 15 38 EP6 IN: buffer available. OUT: buffer has data 16 3C EP8 IN: buffer available. OUT: buffer has data 17 40 IBN IN-Bulk-NAK (any IN endpoint) 18 44 reserved 19 48 EP0PING EP0 OUT was Pinged and it NAK’d 20 4C EP1PING EP1 OUT was Pinged and it NAK’d 21 50 EP2PING EP2 OUT was Pinged and it NAK’d 22 54 EP4PING EP4 OUT was Pinged and it NAK’d 23 58 EP6PING EP6 OUT was Pinged and it NAK’d 24 5C EP8PING EP8 OUT was Pinged and it NAK’d 25 60 ERRLIMIT 26 64 reserved 27 68 reserved 28 6C reserved 29 70 EP2ISOERR ISO EP2 OUT PID sequence error 30 74 EP4ISOERR ISO EP4 OUT PID sequence error 31 78 EP6ISOERR ISO EP6 OUT PID sequence error 32 7C EP8ISOERR ISO EP8 OUT PID sequence error Document #: 38-08012 Rev. *E Bus errors exceeded the programmed limit Page 4 of 48 CY7C68013 Table 3-4. Individual FIFO/GPIF Interrupt Sources Priority INT4VEC Value 1 80 EP2PF Endpoint 2 Programmable Flag 2 84 EP4PF Endpoint 4 Programmable Flag 3.8.3 Source Notes 3 88 EP6PF Endpoint 6 Programmable Flag 4 8C EP8PF Endpoint 8 Programmable Flag 5 90 EP2EF Endpoint 2 Empty Flag 6 94 EP4EF Endpoint 4 Empty Flag 7 98 EP6EF Endpoint 6 Empty Flag 8 9C EP8EF Endpoint 8 Empty Flag 9 A0 EP2FF Endpoint 2 Full Flag 10 A4 EP4FF Endpoint 4 Full Flag 11 A8 EP6FF Endpoint 6 Full Flag 12 AC EP8FF Endpoint 8 Full Flag 13 B0 GPIFDONE 14 B4 GPIFWF GPIF Operation Complete GPIF Waveform FIFO/GPIF Interrupt (INT4) Just as the USB Interrupt is shared among 27 individual USBinterrupt sources, the FIFO/GPIF interrupt is shared among 14 individual FIFO/GPIF sources. The FIFO/GPIF Interrupt, like the USB Interrupt, can employ autovectoring. Table 3-4 shows the priority and INT4VEC values for the 14 FIFO/GPIF interrupt sources. If Autovectoring is enabled (AV4EN = 1 in the INTSETUP register), the FX2 substitutes its INT4VEC byte. Therefore, if the high byte (“page”) of a jump-table address is preloaded at location 0x0054, the automatically-inserted INT4VEC byte at 0x0055 will direct the jump to the correct address out of the 14 addresses within the page. When the ISR occurs, the FX2 pushes the program counter onto its stack then jumps to address 0x0053, where it expects to find a “jump” instruction to the ISR Interrupt service routine. The second wakeup pin, WU2, can also be configured as a general purpose I/O pin. This allows a simple external R-C network to be used as a periodic wakeup source. 3.10 Program/Data RAM 3.10.1 Size The FX2 has eight kbytes of internal program/data RAM, where PSEN#/RD# signals are internally ORed to allow the 8051 to access it as both program and data memory. No USB control registers appear in this space. Two memory maps are shown in the following diagrams: Figure 3-1 Internal Code Memory, EA = 0 Figure 3-2 External Code Memory, EA = 1. 3.10.2 3.9 Reset and Wakeup 3.9.1 Reset Pin An input pin (RESET#) resets the chip. This pin has hysteresis and is active LOW. The internal PLL stabilizes approximately 200 µs after VCC has reached 3.3V. Typically, an external RC network (R = 100k, C = 0.1 µF) is used to provide the RESET# signal. 3.9.2 Wakeup Pins The 8051 puts itself and the rest of the chip into a power-down mode by setting PCON.0 = 1. This stops the oscillator and PLL. When WAKEUP is asserted by external logic, the oscillator restarts and after the PLL stabilizes, and the 8051 receives a wakeup interrupt. This applies whether or not FX2 is connected to the USB. The FX2 exits the power down (USB suspend) state using one of the following methods: • USB bus signals resume • External logic asserts the WAKEUP pin • External logic asserts the PA3/WU2 pin. Document #: 38-08012 Rev. *E Internal Code Memory, EA = 0 This mode implements the internal eight-kbyte block of RAM (starting at 0) as combined code and data memory. When external RAM or ROM is added, the external read and write strobes are suppressed for memory spaces that exist inside the chip. This allows the user to connect a 64-kbyte memory without requiring address decodes to keep clear of internal memory spaces. Only the internal eight kbytes and scratch pad 0.5 kbytes RAM spaces have the following access: • USB download • USB upload • Setup data pointer • I2C-compatible interface boot load. 3.10.3 External Code Memory, EA = 1 The bottom eight kbytes of program memory is external, and therefore the bottom eight kbytes of internal RAM is accessible only as data memory. Page 5 of 48 CY7C68013 Inside FX2 Outside FX2 FFFF 7.5 kbytes US B regs and 4k EP buffers (RD#,WR#) E200 E1FF 0.5 kbytes RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 56 kbytes External Code Memory (PSEN#) 48 kbytes External Data Memory (RD#,WR#) 1FFF Eight kbytes RAM Code and Data (PSEN#,RD#,WR#)* (Ok to populate data memory here—RD#/WR# strobes are not active) (OK to populate program memory here— PSEN# strobe is not active) 0000 Data Code *SUDPTR, USB upload/download, I2C-compatible interface boot access Figure 3-1. Internal Code Memory, EA = 0 Inside FX2 Outside FX2 FFFF 7.5 kbytes USB regs and 4k EP buffers (RD#,WR#) E200 E1FF 0.5 kbytes RAM E000 Data (RD#,WR#)* (OK to populate data memory here—RD#/WR# strobes are not active) 48 kbytes External Data Memory (RD#,WR#) 64 kbytes External Code Memory (PSEN#) 1FFF Eight kbytes RAM Data (RD#,WR#)* (Ok to populate data memory here—RD#/WR# strobes are not active) 0000 Data *SUDPTR, USB upload/download, I2C-compatible Code interface boot access Figure 3-2. External Code Memory, EA = 1 Document #: 38-08012 Rev. *E Page 6 of 48 CY7C68013 3.11 Register Addresses FFFF 4 kbytes EP2-EP8 buffers (8 × 512) F000 EFFF 2 kbytes RESERVED E800 E7FF E7C0 E7BF E780 E77F E740 E73F E700 E6FF E600 E5FF E480 E47F E400 E3FF 64 bytes EP1IN 64 bytes EP1OUT 64 bytes EP0 IN/OUT 64 bytes RESERVED 256 bytes Registers 384 bytes RESERVED 128 bytes GPIF Waveforms 512 bytes RESERVED E200 E1FF E000 3.12 Endpoint RAM 3.12.1 Size • 3 × 64 bytes • 8 × 512 bytes 512 bytes 8051 xdata RAM 3.12.3 Set-up Data Buffer A separate eight-byte buffer at 0xE6B8-0xE6BF holds the SETUP data from a CONTROL transfer. (Endpoints 0 and 1) (Endpoints 2, 4, 6, 8) 3.12.2 Organization • EP0 Bidirectional endpoint zero, 64-byte buffer • EP1IN, EP1OUT 64-byte buffers, bulk or interrupt • EP2,4,6,8 Eight 512-byte buffers, bulk, interrupt, or isochronous. EP2 and 6 can be either double, triple, or quad buffered. For highspeed endpoint configuration options, see Figure 3-3. Document #: 38-08012 Rev. *E 3.12.4 Endpoint Configuration (High-speed Mode) Endpoints 0 and 1 are the same for every configuration. Endpoint 0 is the only CONTROL endpoint, and endpoint 1 can be either BULK or INTERRUPT. To the left of the vertical line, the user may pick different configurations for EP2&4 and EP6&8, since none of the 512-byte buffers are combined between these endpoint groups. An example endpoint configuration would be: EP2—1024 double buffered; EP6—512 quad buffered. To the right of the vertical line, buffers are shared between EP2–8, and therefore only entire columns may be chosen. Page 7 of 48 CY7C68013 EP0 IN&OUT 64 64 64 64 64 64 EP1 IN 64 64 64 64 64 64 EP1 OUT 64 64 64 64 64 64 512 512 512 EP2 512 1024 512 EP2 512 EP2 EP2 512 512 512 512 1024 1024 1024 1024 512 1024 EP4 512 EP2 EP2 512 EP6 512 EP6 512 512 EP6 512 1024 512 1024 EP6 512 1024 EP8 512 512 1024 512 512 EP8 1024 EP8 512 512 512 Figure 3-3. Endpoint Configuration 3.12.5 Default Full-Speed Alternate Settings Table 3-5. Default Full-Speed Alternate Settings[1,2] Alternate Setting ep0 0 1 64 64 2 64 3 64 ep1out 0 64 bulk 64 int 64 int ep1in 0 64 bulk 64 int 64 int ep2 0 64 bulk out (2×) 64 int out (2×) 64 iso out (2×) ep4 0 64 bulk out (2×) 64 bulk out (2×) 64 bulk out (2×) ep6 0 64 bulk in (2×) 64 int in (2×) 64 iso in (2×) ep8 0 64 bulk in (2×) 64 bulk in (2×) 64 bulk in (2×) 3.12.6 Default High-Speed Alternate Settings Table 3-6. Default High-Speed Alternate Settings[1, 2] Alternate Setting 0 1 2 3 ep0 64 64 64 64 ep1out 0 512 bulk[3] 64 int 64 int ep1in 0 512 bulk[3] 64 int 64 int ep2 0 512 bulk out (2×) 512 int out (2×) 512 iso out (2×) ep4 0 512 bulk out (2×) 512 bulk out (2×) 512 bulk out (2×) ep6 0 512 bulk in (2×) 512 int in (2×) 512 iso in (2×) ep8 0 512 bulk in (2×) 512 bulk in (2×) 512 bulk in (2×) Notes: 1. “0” means “not implemented.” 2. “2x” means “double buffered.” 3. Even though these buffers are 64 bytes, they are reported as 512 for USB 2.0 compliance. The user must never transfer packets larger than 64 bytes to EP1. Document #: 38-08012 Rev. *E Page 8 of 48 CY7C68013 3.13 External FIFO interface 3.13.1 Architecture The FX2 slave FIFO architecture has eight 512-byte blocks in the endpoint RAM that directly serve as FIFO memories, and are controlled by FIFO control signals (such as IFCLK, SLCS#, SLRD, SLWR, SLOE, PKTEND, and flags). In operation, some of the eight RAM blocks fill or empty from the SIE, while the others are connected to the I/O transfer logic. The transfer logic takes two forms, the GPIF for internally generated control signals, or the slave FIFO interface for externally controlled transfers. 3.13.2 Master/Slave Control Signals The FX2 endpoint FIFOS are implemented as eight physically distinct 256 x 16 RAM blocks. The 8051/SIE can switch any of the RAM blocks between two domains, the USB (SIE) domain and the 8051-I/O Unit domain. This switching is done virtually instantaneously, giving essentially zero transfer time between “USB FIFOS” and “Slave FIFOS.” Since they are physically the same memory, no bytes are actually transferred between buffers. At any given time, some RAM blocks are filling/emptying with USB data under SIE control, while other RAM blocks are available to the 8051 and/or the I/O control unit. The RAM blocks operate as single-port in the USB domain, and dualport in the 8051-I/O domain. The blocks can be configured as single, double, triple, or quad buffered as previously shown. The I/O control unit implements either an internal-master (M for master) or external-master (S for Slave) interface. In Master (M) mode, the GPIF internally controls FIFOADR[1..0] to select a FIFO. The RDY pins (two in the 56pin package, six in the 100-pin and 128-pin packages) can be used as flag inputs from an external FIFO or other logic if desired. The GPIF can be run from either an internally derived clock or externally supplied clock (IFCLK), at a rate that transfers data up to 96 Megabytes/s (48 MHz). In Slave (S) mode, the FX2 accepts either an internally derived clock or externally supplied clock (IFCLK, max. frequency 48 MHz) and SLCS#, SLRD, SLWR, SLOE, PKTEND signals from external logic. Each endpoint can individually be selected for byte or word operation by an internal configuration bit, and a Slave FIFO Output Enable signal SLOE enables data of the selected width. External logic must insure that the output enable signal is inactive when writing data to a slave FIFO. The slave interface can also operate asynchronously, where the SLRD and SLWR signals act directly as strobes, rather than a clock qualifier as in synchronous mode. The signals SLRD, SLWR, SLOE and PKTEND are gated by the signal SLCS#. 3.13.3 GPIF and FIFO Clock Rates An 8051 register bit selects one of two frequencies for the internally supplied interface clock: 30 MHz and 48 MHz. Alternatively, an externally supplied clock of 5 MHz–48 MHz feeding the IFCLK pin can be used as the interface clock. IFCLK can be configured to function as an output clock when the GPIF and FIFOs are internally clocked. An output enable bit in the IFCONFIG register turns this clock output off, if desired. Another bit within the IFCONFIG register will invert the IFCLK signal whether internally or externally sourced. 3.14 GPIF The GPIF is a flexible 8- or 16-bit parallel interface driven by a user-programmable finite state machine. It allows the CY7C68013 to perform local bus mastering, and can implement a wide variety of protocols such as ATA interface, printer parallel port, and Utopia. The GPIF has six programmable control outputs (CTL), nine address outputs (GPIFADRx), and six general-purpose ready inputs (RDY). The data bus width can be 8 or 16 bits. Each GPIF vector defines the state of the control outputs, and determines what state a ready input (or multiple inputs) must be before proceeding. The GPIF vector can be programmed to advance a FIFO to the next data value, advance an address, etc. A sequence of the GPIF vectors make up a single waveform that will be executed to perform the desired data move between the CY7C68013 and the external design. 3.14.1 Six Control OUT Signals The 100- and 128-pin packages bring out all six Control Output pins (CTL0-CTL5). The 8051 programs the GPIF unit to define the CTL waveforms. The 56-pin package brings out three of these signals, CTL0–CTL2. CTLx waveform edges can be programmed to make transitions as fast as once per clock (20.8 ns using a 48-MHz clock). 3.14.2 Six Ready IN Signals The 100- and 128-pin packages bring out all six Ready inputs (RDY0–RDY5). The 8051 programs the GPIF unit to test the RDY pins for GPIF branching. The 56-pin package brings out two of these signals, RDY0–1. 3.14.3 Nine GPIF Address OUT signals Nine GPIF address lines are available in the 100- and 128-pin packages, GPIFADR[8..0]. The GPIF address lines allow indexing through up to a 512-byte block of RAM. If more address lines are needed, I/O port pins can be used. 3.14.4 Long Transfer Mode In master mode, the 8051 appropriately sets GPIF transaction count registers (GPIFTCB3, GPIFTCB2, GPIFTCB1, or GPIFTCB0) for unattended transfers of up to 4,294,967,296 bytes. The GPIF automatically throttles data flow to prevent under or overflow until the full number of requested transactions complete. The GPIF decrements the value in these registers to represent the current status of the transaction. 3.15 USB Uploads and Downloads The core has the ability to directly edit the data contents of the internal 8-kbyte RAM and of the internal 512-byte scratch pad RAM via a vendor-specific command. This capability is normally used when “soft” downloading user code and is available only to and from internal RAM, whether the 8051 is held in reset or running. The available RAM spaces are 8 kbytes from 0x0000–0x1FFF (code/data) and 512 bytes from 0xE000–0xE1FF (scratch pad RAM). Note: A “loader” running in internal RAM can be used to transfer downloaded data to external memory. Document #: 38-08012 Rev. *E Page 9 of 48 CY7C68013 3.16 3.17.2 Autopointer Access FX2 provides two identical autopointers. They are similar to the internal 8051 data pointers, but with an additional feature: they can optionally increment a pointer address after every memory access. This capability is available to and from both internal and external RAM. The autopointers are available in external FX2 registers, under control of a mode bit (AUTOPTRSETUP.0). Using the external FX2 autopointer access (at 0xE67B – 0xE67C) allows the autopointer to access all RAM, internal and external to the part. Also, the autopointers can point to any FX2 register or endpoint buffer space. When autopointer access to external memory is enabled, location 0xE67B and 0xE67C in XDATA and PDATA space cannot be used. FX2 has one I2C-compatible port that is driven by two internal controllers, one that automatically operates at boot time to load VID/PID/DID and configuration information, and another that the 8051, once running, uses to control external I2Ccompatible devices. The I2C-compatible port operates in master mode only. 3.17.1 At power-on reset the I2C-compatible interface boot loader will load the VID/PID/DID/a configuration byte and up to eight kbytes of program/data. The available RAM spaces are eight kbytes from 0x0000–0x1FFF and 512 bytes from 0xE000–0xE1FF. The 8051 will be in reset. I2C-compatible interface boot loads only occur after power-on reset. 3.17.3 I2C-compatible Port Pins 2C-compatible pins SCL and SDA must have external The I 2.2-kΩ pull-up resistors. External EEPROM device address pins must be configured properly. See Table 3-7 for configuring the device address pins. Table 3-7. Strap Boot EEPROM Address Lines to These Values Bytes Example EEPROM A2 A1 A0 16 24LC00[4] N/A N/A N/A 128 24LC01 0 0 0 256 24LC02 0 0 0 4K 24LC32 0 0 1 8K 24LC64 0 0 1 I2C-compatible Interface General Purpose Access The 8051 can control peripherals connected to the I2Ccompatible bus using the I2CTL and I2DAT registers. FX2 provides I2C compatible master control only, it is never an I2Ccompatible slave. 4.0 I2C-compatible Controller 3.17 I2C-compatible Interface Boot Load Access Pin Assignments Figure 4-1 identifies all signals for the four package types. The following pages illustrate the individual pin diagrams, plus a combination diagram showing which of the full set of signals are available in the 128-, 100-, and 56-pin packages. The 56-pin package is the lowest-cost version. The signals on the left edge of the 56-pin package in Figure 4-1 are common to all versions in the FX2 family. Three modes are available in all package versions: Port, GPIF master, and Slave FIFO. These modes define the signals on the right edge of the diagram. The 8051 selects the interface mode using the IFCONFIG[1:0] register bits. Port mode is the power-on default configuration. The 100-pin package adds functionality to the 56-pin package by adding these pins: • PORTC or alternate GPIFADR[7...0] address signals • PORTE or alternate GPIFADR8 address signals and 7 more 8051 signals • Three GPIF Control signals • Four GPIF Ready signals • Nine 8051 signals (two USARTs, three timer inputs, INT4,and INT5#) • BKPT, RD#, WR# The 128-pin package is the full version, adding the 8051 address and data buses plus control signals. Note that two of the required signals, RD# and WR#, are present in the 100-pin version. In the 100-pin and 128-pin versions, an 8051 control bit can be set to pulse the RD# and WR# pins when the 8051 reads from/writes to PORTC. Note: 4. This EEPROM does not have address pins. Document #: 38-08012 Rev. *E Page 10 of 48 CY7C68013 Port XTALIN XTALOUT RESET# WAKEUP# GPIF Master PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0 56 SCL SDA INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 IFCLK CLKOUT DPLUS DMINUS FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] Slave FIFO FD[15] FD[14] FD[13] FD[12] FD[11] FD[10] FD[9] FD[8] FD[7] FD[6] FD[5] FD[4] FD[3] FD[2] FD[1] FD[0] RDY0 RDY1 SLRD SLWR CTL0 CTL1 CTL2 FLAGA FLAGB FLAGC INT0#/PA0 INT1#/PA1 PA2 WU2/PA3 PA4 PA5 PA6 PA7 INT0#/ PA0 INT1#/ PA1 SLOE WU2/PA3 FIFOADR0 FIFOADR1 PKTEND PA7/FLAGD/SLCS# CTL3 CTL4 CTL5 RDY2 RDY3 RDY4 RDY5 100 BKPT PORTC7/GPIFADR7 PORTC6/GPIFADR6 PORTC5/GPIFADR5 PORTC4/GPIFADR4 PORTC3/GPIFADR3 PORTC2/GPIFADR2 PORTC1/GPIFADR1 PORTC0/GPIFADR0 PE7/GPIFADR8 PE6/T2EX PE5/INT6 PE4/RxD1OUT PE3/RxD0OUT PE2/T2OUT PE1/T1OUT PE0/T0OUT RD# WR# CS# OE# PSEN# D7 D6 D5 D4 D3 D2 D1 D0 128 EA RxD0 TxD0 RxD1 TxD1 INT4 INT5# TIMER2 TIMER1 TIMER0 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 Figure 4-1. Signals Document #: 38-08012 Rev. *E Page 11 of 48 CY7C68013 27 28 29 30 31 32 33 34 35 36 37 38 103 26 104 25 105 24 106 23 107 22 108 21 109 20 110 19 111 18 112 17 113 16 114 15 115 14 116 13 117 12 118 11 119 10 120 9 121 8 122 7 123 6 124 5 125 4 126 3 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND A4 A5 A6 A7 PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND A8 A9 A10 2 127 128 1 CLKOUT VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC VCC DPLUS DMINUS GND A11 A12 A13 A14 A15 VCC GND INT4 T0 T1 T2 IFCLK RESERVED BKPT EA SCL SDA OE# PD0/FD8 *WAKEUP VCC RESET# CTL5 A3 A2 A1 A0 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 D7 D6 D5 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 GND CY7C68013 128-pin TQFP 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 VCC D4 D3 D2 D1 D0 GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RxD1 TxD1 RxD0 TxD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC CS# WR# RD# PSEN# 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 Figure 4-2. CY7C68013 128-pin TQFP Pin Assignment * denotes programmable polarity Document #: 38-08012 Rev. *E Page 12 of 48 CY7C68013 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 PD1/FD9 PD2/FD10 PD3/FD11 INT5# VCC PE0/T0OUT PE1/T1OUT PE2/T2OUT PE3/RXD0OUT PE4/RXD1OUT PE5/INT6 PE6/T2EX PE7/GPIFADR8 GND PD4/FD12 PD5/FD13 PD6/FD14 PD7/FD15 GND CLKOUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 VCC GND RDY0/*SLRD RDY1/*SLWR RDY2 RDY3 RDY4 RDY5 AVCC XTALOUT XTALIN AGND NC NC NC VCC DPLUS DMINUS GND VCC GND INT4 T0 T1 T2 IFCLK RESERVED BKPT SCL SDA PD0/FD8 *WAKEUP VCC RESET# CTL5 GND PA7/*FLAGD/SLCS# PA6/*PKTEND PA5/FIFOADR1 PA4/FIFOADR0 PA3/*WU2 PA2/*SLOE PA1/INT1# PA0/INT0# VCC GND PC7/GPIFADR7 PC6/GPIFADR6 PC5/GPIFADR5 PC4/GPIFADR4 PC3/GPIFADR3 PC2/GPIFADR2 PC1/GPIFADR1 PC0/GPIFADR0 CTL2/*FLAGC CTL1/*FLAGB CTL0/*FLAGA VCC CTL4 CTL3 CY7C68013 100-pin TQFP 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 GND VCC GND PB7/FD7 PB6/FD6 PB5/FD5 PB4/FD4 RxD1 TxD1 RxD0 TxD0 GND VCC PB3/FD3 PB2/FD2 PB1/FD1 PB0/FD0 VCC WR# RD# 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 Figure 4-3. CY7C68013 100-pin TQFP Pin Assignment * denotes programmable polarity Document #: 38-08012 Rev. *E Page 13 of 48 CY7C68013 CY7C68013 56-pin SSOP 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 PD5/FD13 PD4/FD12 PD6/FD14 PD3/FD11 PD7/FD15 PD2/FD10 GND PD1/FD9 CLKOUT PD0/FD8 VCC *WAKEUP GND VCC RDY0/*SLRD RESET# RDY1/*SLWR GND AVCC PA7/*FLAGD/SLCS# XTALOUT PA6/PKTEND XTALIN PA5/FIFOADR1 AGND PA4/FIFOADR0 VCC PA3/*WU2 DPLUS PA2/*SLOE DMINUS PA1/INT1# GND PA0/INT0# VCC VCC GND CTL2/*FLAGC IFCLK CTL1/*FLAGB RESERVED CTL0/*FLAGA SCL GND SDA VCC VCC GND PB0/FD0 PB7/FD7 PB1/FD1 PB6/FD6 PB2/FD2 PB5/FD5 PB3/FD3 PB4/FD4 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 Figure 4-4. CY7C68013 56-pin SSOP Pin Assignment * denotes programmable polarity Document #: 38-08012 Rev. *E Page 14 of 48 CY7C68013 GND VCC CLKOUT GND PD7/FD15 PD6/FD14 PD5/FD13 PD4/FD12 PD3/FD11 PD2/FD10 PD1/FD9 PD0/FD8 *WAKEUP VCC 56 55 54 53 52 51 50 49 48 47 46 45 44 43 RDY0/*SLRD 1 42 RESET# RDY1/*SLWR 2 41 GND AVCC 3 40 PA7/*FLAGD/SLCS# XTALOUT 4 39 PA6/*PKTEND XTALIN 5 38 PA5/FIFOADR1 AGND 6 37 PA4/FIFOADR0 36 PA3/*WU2 CY7C68013 VCC 7 DPLUS 8 35 PA2/*SLOE DMINUS 9 34 PA1/INT1# GND 10 33 PA0/INT0# VCC 11 32 VCC GND 12 31 CTL2/*FLAGC *IFCLK 13 30 CTL1/*FLAGB RESERVED 14 29 CTL0/*FLAGA 56-pin QFN 21 22 23 24 25 26 27 28 PB3/FD3 PB4/FD4 PB5/FD5 PB6/FD6 PB7/FD7 GND VCC GND PB0/FD0 PB2/FD2 18 VCC 20 17 SDA PB1/FD1 16 SCL 19 15 Figure 4-5. CY7C68013 56-pin QFN Pin Assignment * denotes programmable polarity Document #: 38-08012 Rev. *E Page 15 of 48 CY7C68013 4.1 CY7C68013 Pin Descriptions Table 4-1. FX2 Pin Descriptions [5] 128 100 56 56 TQFP TQFP SSOP QFN Type Default Description 10 9 10 3 AVCC Name Power N/A Analog VCC. This signal provides power to the analog section of the chip. 13 12 13 6 AGND Power N/A Analog Ground. Connect to ground with as short a path as possible. 19 18 16 9 DMINUS I/O/Z Z USB D– Signal. Connect to the USB D– signal. 18 17 15 8 DPLUS I/O/Z Z USB D+ Signal. Connect to the USB D+ signal. 94 A0 Output L 95 A1 Output L 8051 Address Bus. This bus is driven at all times. When the 8051 is addressing internal RAM it reflects the internal address. 96 A2 Output L 97 A3 Output L 117 A4 Output L 118 A5 Output L 119 A6 Output L 120 A7 Output L 126 A8 Output L 127 A9 Output L 128 A10 Output L 21 A11 Output L 22 A12 Output L 23 A13 Output L 24 A14 Output L 25 A15 Output L 59 D0 I/O/Z Z 60 D1 I/O/Z Z 61 D2 I/O/Z Z 62 D3 I/O/Z Z 63 D4 I/O/Z Z 86 D5 I/O/Z Z 87 D6 I/O/Z Z 8051 Data Bus. This bidirectional bus is high-impedance when inactive, input for bus reads, and output for bus writes. The data bus is used for external 8051 program and data memory. The data bus is active only for external bus accesses, and is driven LOW in suspend. 88 D7 I/O/Z Z 39 PSEN# Output H Program Store Enable. This active-LOW signal indicates an 8051 code fetch from external memory. It is active for program memory fetches from 0x2000–0xFFFF when the EA pin is LOW, or from 0x0000–0xFFFF when the EA pin is HIGH. BKPT Output L Breakpoint. This pin goes active (HIGH) when the 8051 address bus matches the BPADDRH/L registers and breakpoints are enabled in the BREAKPT register (BPEN = 1). If the BPPULSE bit in the BREAKPT register is HIGH, this signal pulses HIGH for eight 12-/24-/48-MHz clocks. If the BPPULSE bit is LOW, the signal remains HIGH until the 8051 clears the BREAK bit (by writing 1 to it) in the BREAKPT register. Input N/A Active LOW Reset. Resets the entire chip. This pin is normally tied to VCC through a 100K resistor, and to GND through a 0.1-µF capacitor. 34 28 99 77 49 42 RESET# Note: 5. Unused inputs should not be left floating. Tie either HIGH or LOW as appropriate. Outputs should only be pulled up or down to ensure signals at power-up and in standby. Document #: 38-08012 Rev. *E Page 16 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN 35 Name Type Default Description EA Input N/A External Access. This pin determines where the 8051 fetches code between addresses 0x0000 and 0x1FFF. If EA = 0 the 8051 fetches this code from its internal RAM. IF EA = 1 the 8051 fetches this code from external memory. Input N/A Crystal Input. Connect this signal to a 24-MHz parallel-resonant, fundamental mode crystal and load capacitor to GND. It is also correct to drive XTALIN with an external 24 MHz square wave derived from another clock source. N/A Crystal Output. Connect this signal to a 24-MHz parallelresonant, fundamental mode crystal and load capacitor to GND. If an external clock is used to drive XTALIN, leave this pin open. 12 11 12 5 XTALIN 11 10 11 4 XTALOUT Output 1 100 5 54 CLKOUT O/Z 12 MHz 12-, 24- or 48-MHz clock, phase locked to the 24-MHz input clock. The 8051 defaults to 12-MHz operation. The 8051 may tri-state this output by setting CPUCS.1 = 1. 82 67 40 33 PA0 or INT0# I/O/Z I Multiplexed pin whose function is selected by: (PA0) PORTACFG.0 PA0 is a bidirectional IO port pin. INT0# is the active-LOW 8051 INT0 interrupt input signal, which is either edge triggered (IT0 = 1) or level triggered (IT0 = 0). 83 68 41 34 PA1 or INT1# I/O/Z I Multiplexed pin whose function is selected by: (PA1) PORTACFG.1 PA1 is a bidirectional IO port pin. INT1# is the active-LOW 8051 INT1 interrupt input signal, which is either edge triggered (IT1 = 1) or level triggered (IT1 = 0). 84 69 42 35 PA2 or SLOE I/O/Z I Multiplexed pin whose function is selected by two bits: (PA2) IFCONFIG[1:0]. PA2 is a bidirectional IO port pin. SLOE is an input-only output enable with programmable polarity (FIFOPOLAR.4) for the slave FIFOs connected to FD[7..0] or FD[15..0]. 85 70 43 36 PA3 or WU2 I/O/Z I Multiplexed pin whose function is selected by: (PA3) WAKEUP.7 and OEA.3 PA3 is a bidirectional I/O port pin. WU2 is an alternate source for USB Wakeup, enabled by WU2EN bit (WAKEUP.1) and polarity set by WU2POL (WAKEUP.4). If the 8051 is in suspend and WU2EN = 1, a transition on this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Asserting this pin inhibits the chip from suspending, if WU2EN=1. 89 71 44 37 PA4 or FIFOADR0 I/O/Z I Multiplexed pin whose function is selected by: (PA4) IFCONFIG[1..0]. PA4 is a bidirectional I/O port pin. FIFOADR0 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. 90 72 45 38 PA5 or FIFOADR1 I/O/Z I Multiplexed pin whose function is selected by: (PA5) IFCONFIG[1..0]. PA5 is a bidirectional I/O port pin. FIFOADR1 is an input-only address select for the slave FIFOs connected to FD[7..0] or FD[15..0]. 91 73 46 39 PA6 or PKTEND I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1:0] (PA6) bits. PA6 is a bidirectional I/O port pin. PKTEND is an input-only packet end with programmable polarity (FIFOPOLAR.5) for the slave FIFOs connected to FD[7..0] or FD[15..0]. Port A Document #: 38-08012 Rev. *E Page 17 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN Name Type Default Description 74 47 40 PA7 or FLAGD or SLCS# I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1:0] (PA7) and PORTACFG.7 bits. PA7 is a bidirectional I/O port pin. FLAGD is a programmable slave-FIFO output status flag signal. SLCS# gates all other slave FIFO enable/strobes 44 34 25 18 PB0 or FD[0] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB0) IFCONFIG[1..0]. PB0 is a bidirectional I/O port pin. FD[0] is the bidirectional FIFO/GPIF data bus. 45 35 26 19 PB1 or FD[1] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB1) IFCONFIG[1..0]. PB1 is a bidirectional I/O port pin. FD[1] is the bidirectional FIFO/GPIF data bus. 46 36 27 20 PB2 or FD[2] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB2) IFCONFIG[1..0]. PB2 is a bidirectional I/O port pin. FD[2] is the bidirectional FIFO/GPIF data bus. 47 37 28 21 PB3 or TXD1 or FD[3] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB3) IFCONFIG[1..0]. PB3 is a bidirectional I/O port pin. FD[3] is the bidirectional FIFO/GPIF data bus. 54 44 29 22 PB4 or FD[4] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB4) IFCONFIG[1..0]. PB4 is a bidirectional I/O port pin. FD[4] is the bidirectional FIFO/GPIF data bus. 55 45 30 23 PB5 or FD[5] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB5) IFCONFIG[1..0]. PB5 is a bidirectional I/O port pin. FD[5] is the bidirectional FIFO/GPIF data bus. 56 46 31 24 PB6 or FD[6] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB6) IFCONFIG[1..0]. PB6 is a bidirectional I/O port pin. FD[6] is the bidirectional FIFO/GPIF data bus. 57 47 32 25 PB7 or FD[7] I/O/Z I Multiplexed pin whose function is selected by the following bits: (PB7) IFCONFIG[1..0]. PB7 is a bidirectional I/O port pin. FD[7] is the bidirectional FIFO/GPIF data bus. 92 Port B PORT C 72 57 PC0 or GPIFADR0 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.0 (PC0) PC0 is a bidirectional I/O port pin. GPIFADR0 is a GPIF address output pin. 73 58 PC1 or GPIFADR1 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.1 (PC1) PC1 is a bidirectional I/O port pin. GPIFADR1 is a GPIF address output pin. 74 59 PC2 or GPIFADR2 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.2 (PC2) PC2 is a bidirectional I/O port pin. GPIFADR2 is a GPIF address output pin. 75 60 PC3 or GPIFADR3 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.3 (PC3) PC3 is a bidirectional I/O port pin. GPIFADR3 is a GPIF address output pin. 76 61 PC4 or GPIFADR4 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.4 (PC4) PC4 is a bidirectional I/O port pin. GPIFADR4 is a GPIF address output pin. Document #: 38-08012 Rev. *E Page 18 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN Name Type Default Description 77 62 PC5 or GPIFADR5 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.5 (PC5) PC5 is a bidirectional I/O port pin. GPIFADR5 is a GPIF address output pin. 78 63 PC6 or GPIFADR6 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.6 (PC6) PC6 is a bidirectional I/O port pin. GPIFADR6 is a GPIF address output pin. 79 64 PC7 or GPIFADR7 I/O/Z I Multiplexed pin whose function is selected by PORTCCFG.7 (PC7) PC7 is a bidirectional I/O port pin. GPIFADR7 is a GPIF address output pin. PORT D 102 80 52 45 PD0 or FD[8] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD0) and EPxFIFCFG.0 (wordwide) bits. FD[8] is the bidirectional FIFO/GPIF data bus. 103 81 53 46 PD1 or FD[9] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD1) and EPxFIFCFG.0 (wordwide) bits. FD[9] is the bidirectional FIFO/GPIF data bus. 104 82 54 47 PD2 or FD[10] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD2) and EPxFIFCFG.0 (wordwide) bits. FD[10] is the bidirectional FIFO/GPIF data bus. 105 83 55 48 PD3 or FD[11] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD3) and EPxFIFCFG.0 (wordwide) bits. FD[11] is the bidirectional FIFO/GPIF data bus. 121 95 56 49 PD4 or FD[12] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD4) and EPxFIFCFG.0 (wordwide) bits. FD[12] is the bidirectional FIFO/GPIF data bus. 122 96 1 50 PD5 or FD[13] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD5) and EPxFIFCFG.0 (wordwide) bits. FD[13] is the bidirectional FIFO/GPIF data bus. 123 97 2 51 PD6 or FD[14] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD6) and EPxFIFCFG.0 (wordwide) bits. FD[14] is the bidirectional FIFO/GPIF data bus. 124 98 3 52 PD7 or FD[15] I/O/Z I Multiplexed pin whose function is selected by the IFCONFIG[1..0] (PD7) and EPxFIFCFG.0 (wordwide) bits. FD[15] is the bidirectional FIFO/GPIF data bus. Port E 108 86 PE0 or T0OUT I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.0 (PE0) bit. PE0 is a bidirectional I/O port pin. T0OUT is an active-HIGH signal from 8051 Timer-counter0. T0OUT outputs a high level for one CLKOUT clock cycle when Timer0 overflows. If Timer0 is operated in Mode 3 (two separate timer/counters), T0OUT is active when the low byte timer/counter overflows. 109 87 PE1 or T1OUT I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.1 (PE1) bit. PE1 is a bidirectional I/O port pin. T1OUT is an active-HIGH signal from 8051 Timer-counter1. T1OUT outputs a high level for one CLKOUT clock cycle when Timer1 overflows. If Timer1 is operated in Mode 3 (two separate timer/counters), T1OUT is active when the low byte timer/counter overflows. Document #: 38-08012 Rev. *E Page 19 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN Name Type Default Description 110 88 PE2 or T2OUT I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.2 (PE2) bit. PE2 is a bidirectional I/O port pin. T2OUT is the active-HIGH output signal from 8051 Timer2. T2OUT is active (HIGH) for one clock cycle when Timer/Counter 2 overflows. 111 89 PE3 or RXD0OUT I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.3 (PE3) bit. PE3 is a bidirectional I/O port pin. RXD0OUT is an active-HIGH signal from 8051 UART0. If RXD0OUT is selected and UART0 is in Mode 0, this pin provides the output data for UART0 only when it is in sync mode. Otherwise it is a 1. 112 90 PE4 or RXD1OUT I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.4 (PE4) bit. PE4 is a bidirectional I/O port pin. RXD1OUT is an active-HIGH output from 8051 UART1. When RXD1OUT is selected and UART1 is in Mode 0, this pin provides the output data for UART1 only when it is in sync mode. In Modes 1, 2, and 3, this pin is HIGH. 113 91 PE5 or INT6 I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.5 (PE5) bit. PE5 is a bidirectional I/O port pin. INT6 is the 8051 INT5 interrupt request input signal. The INT6 pin is edge-sensitive, active HIGH. 114 92 PE6 or T2EX I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.6 (PE6) bit. PE6 is a bidirectional I/O port pin. T2EX is an active-high input signal to the 8051 Timer2. T2EX reloads timer 2 on its falling edge. T2EX is active only if the EXEN2 bit is set in T2CON. 115 93 PE7 or GPIFADR8 I/O/Z I Multiplexed pin whose function is selected by the PORTECFG.7 (PE7) bit. PE7 is a bidirectional I/O port pin. GPIFADR8 is a GPIF address output pin. 4 3 8 1 RDY0 or SLRD Input N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY0 is a GPIF input signal. SLRD is the input-only read strobe with programmable polarity (FIFOPOLAR.3) for the slave FIFOs connected to FDI[7..0] or FDI[15..0]. 5 4 9 2 RDY1 or SLWR Input N/A Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. RDY1 is a GPIF input signal. SLWR is the input-only write strobe with programmable polarity (FIFOPOLAR.2) for the slave FIFOs connected to FDI[7..0] or FDI[15..0]. 6 5 RDY2 Input N/A RDY2 is a GPIF input signal. 7 6 RDY3 Input N/A RDY3 is a GPIF input signal. 8 7 RDY4 Input N/A RDY4 is a GPIF input signal. 9 8 RDY5 Input N/A RDY5 is a GPIF input signal. Document #: 38-08012 Rev. *E Page 20 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN Name Type Default Description 69 54 36 29 CTL0 or FLAGA Output H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL0 is a GPIF control output. FLAGA is a programmable slave-FIFO output status flag signal. Defaults to programmable for the FIFO selected by the FIFOADR[1:0] pins. 70 55 37 30 CTL1 or FLAGB Output H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL1 is a GPIF control output. FLAGB is a programmable slave-FIFO output status flag signal. Defaults to FULL for the FIFO selected by the FIFOADR[1:0] pins. 71 56 38 31 CTL2 or FLAGC Output H Multiplexed pin whose function is selected by the following bits: IFCONFIG[1..0]. CTL2 is a GPIF control output. FLAGC is a programmable slave-FIFO output status flag signal. Defaults to EMPTY for the FIFO selected by the FIFOADR[1:0] pins. 66 51 CTL3 Output H CTL3 is a GPIF control output. 67 52 CTL4 Output H CTL4 is a GPIF control output. 98 76 CTL5 Output H CTL5 is a GPIF control output. 32 26 IFCLK I/O/Z Z Interface Clock, used for synchronously clocking data into or out of the slave FIFOs. IFCLK also serves as a timing reference for all slave FIFO control signals and GPIF. When internal clocking, IFCONFIG.7 = 1, is used the IFCLK pin can be configured to output 30/48 MHz by bits IFCONFIG.5 and IFCONFIG.6. IFCLK may be inverted, whether internally or externally sourced, by setting the bit IFCONFIG.4 =1. 28 22 INT4 Input N/A INT4 is the 8051 INT4 interrupt request input signal. The INT4 pin is edge-sensitive, active HIGH. 106 84 INT5# Input N/A INT5# is the 8051 INT5 interrupt request input signal. The INT5 pin is edge-sensitive, active LOW. 31 25 T2 Input N/A T2 is the active-HIGH T2 input signal to 8051 Timer2, which provides the input to Timer2 when C/T2 = 1. When C/T2 = 0, Timer2 does not use this pin. 30 24 T1 Input N/A T1 is the active-HIGH T1 signal for 8051 Timer1, which provides the input to Timer1 when C/T1 is 1. When C/T1 is 0, Timer1 does not use this bit. 29 23 T0 Input N/A T0 is the active-HIGH T0 signal for 8051 Timer0, which provides the input to Timer0 when C/T0 is 1. When C/T0 is 0, Timer0 does not use this bit. 53 43 RXD1 Input N/A RXD1is an active-HIGH input signal for 8051 UART1, which provides data to the UART in all modes. 52 42 TXD1 Output H 51 41 RXD0 Input N/A 50 40 TXD0 Output H TXD0 is the active-HIGH TXD0 output from 8051 UART0, which provides the output clock in sync mode, and the output data in async mode. CS# Output H CS# is the active-LOW chip select for external memory. WR# Output H WR# is the active-LOW write strobe output for external memory. 42 41 32 20 13 Document #: 38-08012 Rev. *E TXD1is an active-HIGH output pin from 8051 UART1, which provides the output clock in sync mode, and the output data in async mode. RXD0 is the active-HIGH RXD0 input to 8051 UART0, which provides data to the UART in all modes. Page 21 of 48 CY7C68013 Table 4-1. FX2 Pin Descriptions (continued)[5] 128 100 56 56 TQFP TQFP SSOP QFN 40 31 38 Name Type Default Description RD# Output H RD# is the active-LOW read strobe output for external memory. OE# Output H OE# is the active-LOW output enable for external memory. 33 27 21 14 Reserved Input N/A Reserved. Connect to ground. 101 79 51 44 WAKEUP Input N/A USB Wakeup. If the 8051 is in suspend, asserting this pin starts up the oscillator and interrupts the 8051 to allow it to exit the suspend mode. Holding WAKEUP asserted inhibits the EZ-USB chip from suspending. This pin has programmable polarity (WAKEUP.4). 36 29 22 15 SCL OD Z Clock for the I2C-compatible interface. Connect to VCC with a 2.2K resistor, even if no I2C-compatible peripheral is attached. 37 30 23 16 SDA OD Z Data for I2C-compatible interface. Connect to VCC with a 2.2K resistor, even if no I2C-compatible peripheral is attached. 2 1 6 55 VCC Power N/A VCC. Connect to 3.3V power source. 17 16 14 7 VCC Power N/A VCC. Connect to 3.3V power source. 26 20 18 11 VCC Power N/A VCC. Connect to 3.3V power source. 43 33 24 17 VCC Power N/A VCC. Connect to 3.3V power source. 48 38 34 27 VCC Power N/A VCC. Connect to 3.3V power source. 64 49 39 32 VCC Power N/A VCC. Connect to 3.3V power source. 68 53 50 43 VCC Power N/A VCC. Connect to 3.3V power source. 81 66 VCC Power N/A VCC. Connect to 3.3V power source. 100 78 VCC Power N/A VCC. Connect to 3.3V power source. 107 85 VCC Power N/A VCC. Connect to 3.3V power source. 3 2 4 53 GND Ground N/A Ground. 20 19 7 56 GND Ground N/A Ground. 27 21 17 10 GND Ground N/A Ground. 49 39 19 12 GND Ground N/A Ground. 58 48 33 26 GND Ground N/A Ground. 65 50 35 28 GND Ground N/A Ground. 80 65 48 41 GND Ground N/A Ground. 93 75 GND Ground N/A Ground. 116 94 GND Ground N/A Ground. 125 99 GND Ground N/A Ground. 14 13 NC N/A N/A No-connect. This pin must be left open. 15 14 NC N/A N/A No-connect. This pin must be left open. 16 15 NC N/A N/A No-connect. This pin must be left open. Document #: 38-08012 Rev. *E Page 22 of 48 CY7C68013 5.0 Register Summary FX2 register bit definitions are described in the FX2 TRM in greater detail. Table 5-1. FX2 Register Summary Hex Size Name Description GPIF Waveform Memories E400 128 WAVEDATA GPIF Waveform Descriptor 0, 1, 2, 3 data b7 b6 b5 b4 b3 b2 b1 b0 Default Access D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW 0 IFCLKSRC 0 3048MHZ PORTCSTB IFCLKOE CLKSPD1 IFCLKPOL CLKSPD0 ASYNC CLKINV GSTATE CLKOE IFCFG1 8051RES IFCFG0 00000010 rrbbbbbr 11000000 RW E480 384 reserved GENERAL CONFIGURATION E600 E601 1 1 CPUCS IFCONFIG CPU Control & Status Interface Configuration (Ports, GPIF, slave FIFOs) E602 1 PINFLAGSAB[6] E603 1 PINFLAGSCD [6] Slave FIFO FLAGA and FLAGB Pin Configuration Slave FIFO FLAGC and FLAGD Pin Configuration E604 1 FIFORESET[6] E605 1 BREAKPT Restore FIFOS to default state Breakpoint Control E606 E607 1 1 BPADDRH BPADDRL Breakpoint Address H Breakpoint Address L E608 1 UART230 E609 1 E60A 1 REVID Chip Revision E60B 1 REVCTL[6] 1 UDMA GPIFHOLDTIME 3 reserved E60C FLAGB3 FLAGB2 FLAGB1 FLAGB0 FLAGA3 FLAGA2 FLAGA1 FLAGA0 00000000 RW FLAGD3 FLAGD2 FLAGD1 FLAGD0 FLAGC3 FLAGC2 FLAGC1 FLAGC0 01000000 RW NAKALL 0 0 0 EP3 EP2 EP1 EP0 xxxxxxxx W 0 0 0 0 BREAK BPPULSE BPEN 0 A15 A7 A14 A6 A13 A5 A12 A4 A11 A3 A10 A2 A9 A1 A8 A0 0 0 0 0 0 0 230UART1 0 0 PKTEND SLOE SLRD SLWR EF FF 00000000 rrbbbbbb rv7 rv6 rv5 rv4 rv3 rv2 rv1 rv0 Chip Revision Control 0 0 0 0 0 0 dyn_out enh_pkt Rev A, B 00000000 Rev C, D 00000010 Rev E 00000100 00000000 rrrrrrbb MSTB Hold Time (for UDMA) 0 0 0 0 0 0 HOLDTIME1 HOLDTIME0 00000000 rrrrrrbb 230 Kbaud internally generated ref. clock FIFOPINPOLAR[6] Slave FIFO Interface pins polarity 00000000 rrrrbbbr xxxxxxxx xxxxxxxx 230UART0 00000000 RW RW rrrrrrbb R ENDPOINT CONFIGURATION E610 1 EP1OUTCFG 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr 1 EP1INCFG Endpoint 1-OUT Configuration Endpoint 1-IN Configuration VALID E611 VALID 0 TYPE1 TYPE0 0 0 0 0 10100000 brbbrrrr E612 E613 1 1 EP2CFG EP4CFG Endpoint 2 Configuration Endpoint 4 Configuration VALID VALID DIR DIR TYPE1 TYPE1 TYPE0 TYPE0 SIZE 0 0 0 BUF1 0 BUF0 0 10100010 bbbbbrbb 10100000 bbbbrrrr E614 E615 1 1 EP6CFG EP8CFG Endpoint 6 Configuration Endpoint 8 Configuration VALID VALID DIR DIR TYPE1 TYPE1 TYPE0 TYPE0 SIZE 0 0 0 BUF1 0 BUF0 0 11100010 bbbbbrbb 11100000 bbbbrrrr E618 2 1 reserved EP2FIFOCFG[6] Endpoint 2 / slave FIFO configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb Endpoint 4 / slave FIFO configuration Endpoint 6 / slave FIFO configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb Endpoint 8 / slave FIFO configuration 0 INFM1 OEP1 AUTOOUT AUTOIN ZEROLENIN 0 WORDWIDE 00000101 rbbbbbrb 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW E619 1 EP4FIFOCFG[6] E61A 1 EP6FIFOCFG[6] E61B 1 EP8FIFOCFG[6] 4 reserved E620 1 E621 1 EP2AUTOINLENH Endpoint 2 AUTOIN Packet [6] Length H EP2AUTOINLENL Endpoint 2 AUTOIN Packet [6] Length L E622 1 E623 1 E624 1 E625 1 E626 1 E627 1 E630 H.S. E630 F.S. E631 H.S. EP4AUTOINLENH Endpoint 4 AUTOIN Packet [6] Length H EP4AUTOINLENL Endpoint 4 AUTOIN Packet [6] Length L EP6AUTOINLENH Endpoint 6 AUTOIN Packet [6] Length H EP6AUTOINLENL Endpoint 6 AUTOIN Packet [6] Length L EP8AUTOINLENH Endpoint 8 AUTOIN Packet [6] Length H EP8AUTOINLENL Endpoint 8 AUTOIN Packet [6] Length L 8 1 reserved EP2FIFOPFH[6] 1 EP2FIFOPFH[6] 1 [6] EP2FIFOPFL 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 PL10 PL9 PL8 00000010 rrrrrbbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW 0 0 0 0 0 0 PL9 PL8 00000010 rrrrrrbb PL7 PL6 PL5 PL4 PL3 PL2 PL1 PL0 00000000 RW Endpoint 2 / slave FIFO Programmable Flag H DECIS PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0] OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 PFC8 Endpoint 2 / slave FIFO Programmable Flag H Endpoint 2 / slave FIFO Programmable Flag L DECIS PKTSTAT OUT:PFC12 OUT:PFC11 OUT:PFC10 0 PFC9 PFC7 PFC6 PFC2 PFC1 PFC5 PFC4 PFC3 10001000 bbbbbrbb IN:PKTS[2] 10001000 bbbbbrbb OUT:PFC8 PFC0 00000000 RW Note: 6. Read and writes to these register may require synchronization delay, see Technical Reference Manual for “Synchronization Delay.” Document #: 38-08012 Rev. *E Page 23 of 48 CY7C68013 Table 5-1. FX2 Register Summary (continued) Hex Size Name Description E631 F.S E632 H.S. 1 EP2FIFOPFL[6] 1 EP4FIFOPFH[6] E632 F.S E633 H.S. 1 EP4FIFOPFH[6] 1 EP4FIFOPFL[6] E633 F.S E634 H.S. 1 EP4FIFOPFL[6] 1 EP6FIFOPFH[6] E634 F.S E635 H.S. 1 EP6FIFOPFH[6] 1 EP6FIFOPFL[6] E635 F.S E636 H.S. 1 EP6FIFOPFL[6] 1 EP8FIFOPFH[6] E636 F.S E637 H.S. 1 EP8FIFOPFH[6] 1 EP8FIFOPFL [6] 1 EP8FIFOPFL[6] 8 reserved E640 1 EP2ISOINPKTS E641 1 EP4ISOINPKTS E642 1 EP6ISOINPKTS E643 1 EP8ISOINPKTS 4 reserved E648 E649 1 7 INPKTEND[6] OUTPKTEND[6] E650 1 INTERRUPTS EP2FIFOIE[6] E651 1 EP2FIFOIRQ[6] E652 1 EP4FIFOIE[6] 1 EP4FIFOIRQ[6] E637 F.S E653 E654 [6] 1 EP6FIFOIE E655 1 EP6FIFOIRQ[6] E656 1 EP8FIFOIE[6] E657 1 EP8FIFOIRQ[6] E658 1 IBNIE b7 b6 b5 b4 b3 b2 b1 b0 Default Access IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW 0 IN: PKTS[1] IN: PKTS[0] OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 0 0 PFC8 10001000 bbrbbrrb PFC7 PFC6 PFC5 PFC2 PFC1 PFC0 00000000 RW PFC2 PFC1 PFC0 00000000 RW 0 PFC9 PFC8 00001000 bbbbbrbb 0 PFC9 Endpoint 2 / slave FIFO Pro- IN:PKTS[1] grammable Flag L OUT:PFC7 Endpoint 4 / slave FIFO ProDECIS grammable Flag H Endpoint 4 / slave FIFO Programmable Flag H Endpoint 4 / slave FIFO Programmable Flag L PFC4 PFC3 Endpoint 4 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0] PFC5 PFC4 PFC3 grammable Flag L OUT:PFC7 OUT:PFC6 Endpoint 6 / slave FIFO ProDECIS PKTSTAT IN:PKTS[2] IN:PKTS[1] IN:PKTS[0] grammable Flag H OUT:PFC12 OUT:PFC11 OUT:PFC10 Endpoint 6 / slave FIFO Programmable Flag H Endpoint 6 / slave FIFO Programmable Flag L DECIS PKTSTAT PFC7 PFC6 PFC5 IN:PKTS[0] OUT:PFC6 PKTSTAT PFC5 0 IN: PKTS[1] IN: PKTS[0] OUT:PFC10 OUT:PFC9 DECIS PKTSTAT 0 OUT:PFC10 OUT:PFC9 PFC7 PFC6 PFC5 PFC4 PFC5 Endpoint 6 / slave FIFO Pro- IN:PKTS[1] grammable Flag L OUT:PFC7 Endpoint 8 / slave FIFO ProDECIS grammable Flag H Endpoint 8 / slave FIFO Programmable Flag H Endpoint 8 / slave FIFO Programmable Flag L Endpoint 8 / slave FIFO Pro- IN: PKTS[1] IN: PKTS[0] grammable Flag L OUT:PFC7 OUT:PFC6 OUT:PFC12 OUT:PFC11 OUT:PFC10 IN:PKTS[2] 00001000 bbbbbrbb OUT:PFC8 PFC0 00000000 RW PFC4 PFC3 PFC2 PFC1 PFC4 PFC3 PFC2 PFC1 PFC0 00000000 0 0 PFC8 00001000 bbrbbrrb 0 0 PFC8 00001000 bbrbbrrb PFC3 PFC2 PFC1 PFC0 00000000 RW PFC4 PFC3 PFC2 PFC1 PFC0 00000000 RW RW EP2 (if ISO) IN Packets per frame (1-3) EP4 (if ISO) IN Packets per frame (1-3) 0 0 0 0 0 0 INPPF1 INPPF0 00000001 rrrrrrbb 0 0 0 0 0 0 INPPF1 INPPF0 00000001 rrrrrrbb EP6 (if ISO) IN Packets per frame (1-3) EP8 (if ISO) IN Packets per frame (1-3) 0 0 0 0 0 0 INPPF1 INPPF0 00000001 rrrrrrbb 0 0 0 0 0 0 INPPF1 INPPF0 00000001 rrrrrrbb Skip Skip 0 0 0 0 0 0 EP3 EP3 EP2 EP2 EP1 EP1 EP0 EP0 xxxxxxxx xxxxxxxx R/W W Endpoint 2 slave FIFO Flag Interrupt Enable Endpoint 2 slave FIFO Flag Interrupt Request 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000xxx RW Endpoint 4 slave FIFO Flag Interrupt Enable Endpoint 4 slave FIFO Flag Interrupt Request 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000xxx RW Endpoint 6 slave FIFO Flag Interrupt Enable Endpoint 6 slave FIFO Flag Interrupt Request 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000xxx RW Endpoint 8 slave FIFO Flag Interrupt Enable Endpoint 8 slave FIFO Flag Interrupt Request 0 0 0 0 EDGEPF PF EF FF 00000000 RW 0 0 0 0 0 PF EF FF 00000xxx RW IN-BULK-NAK Interrupt Enable IN-BULK-NAK interrupt Request 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00000000 RW 0 0 EP8 EP6 EP4 EP2 EP1 EP0 00xxxxxx RW Endpoint Ping-NAK / IBN Interrupt Enable Endpoint Ping-NAK / IBN Interrupt Request EP8 EP6 EP4 EP2 EP1 EP0 0 IBN 00000000 RW EP8 EP6 EP4 EP2 EP1 EP0 0 IBN xxxxxxxx RW 0 0 EP0ACK EP0ACK HSGRANT HSGRANT URES URES SUSP SUSP SUTOK SUTOK SOF SOF SUDAV SUDAV 00000000 0xxxxxxx RW RW EP8 EP8 EP6 EP6 EP4 EP4 EP2 EP2 EP1OUT EP1OUT EP1IN EP1IN EP0OUT EP0OUT EP0IN EP0IN 00000000 xxxxxxxx RW RW 0 0 0 0 0 0 0 0 0 0 0 0 GPIFWF GPIFWF GPIFDONE 00000000 GPIFDONE 000000xx RW RW RW RW Force IN Packet End Force OUT Packet End E659 1 IBNIRQ E65A 1 NAKIE E65B 1 NAKIRQ E65C E65D 1 1 USBIE USBIRQ USB Int Enables USB Interrupt Requests E65E E65F 1 1 EPIE EPIRQ Endpoint Interrupt Enables Endpoint Interrupt Requests E660 E661 1 1 GPIFIE[6] GPIFIRQ[6] GPIF Interrupt Enable GPIF Interrupt Request E662 E663 1 1 USBERRIE USBERRIRQ USB Error Interrupt Enables USB Error Interrupt Requests ISOEP8 ISOEP8 ISOEP6 ISOEP6 ISOEP4 ISOEP4 ISOEP2 ISOEP2 0 0 0 0 0 0 ERRLIMIT ERRLIMIT E664 E665 1 1 ERRCNTLIM CLRERRCNT USB Error counter and limit Clear Error Counter EC3:0 EC3 x EC2 x EC1 x EC0 x LIMIT3 x LIMIT2 x LIMIT1 x LIMIT0 x E666 E667 1 1 INT2IVEC INT4IVEC Interrupt 2 (USB) Autovector Interrupt 4 (slave FIFO & GPIF) Autovector 0 1 I2V4 0 I2V3 I4V3 I2V2 I4V2 I2V1 I4V1 I2V0 I4V0 0 0 0 0 00000000 10000000 R R E668 1 INTSETUP Interrupt 2&4 Setup 0 0 0 0 AV2EN 0 INT4SRC AV4EN 00000000 RW Document #: 38-08012 Rev. *E 00000000 xxxx000x xxxx0100 rrrrbbbb xxxxxxxx W Page 24 of 48 CY7C68013 Table 5-1. FX2 Register Summary (continued) Hex Size Name E669 7 reserved INPUT / OUTPUT E670 1 PORTACFG E671 1 PORTCCFG E672 1 PORTECFG E673 5 reserved E678 1 I2CS E679 1 I2DAT E67A 1 I2CTL E67B 1 XAUTODAT1 E67C 1 XAUTODAT2 Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access FLAGD SLCS 0 0 0 0 INT1 INT0 00000000 RW GPIFA7 GPIFA6 GPIFA5 GPIFA4 GPIFA3 GPIFA2 GPIFA1 GPIFA0 00000000 RW I/O PORTE Alternate Configuration GPIFA8 T2EX INT6 RXD1OUT RXD0OUT T2OUT T1OUT T0OUT 00000000 RW I²C-Compatible Bus Control & Status I²C-Compatible Bus Data START STOP LASTRD ID1 ID0 BERR ACK DONE 000xx000 bbbrrrrr d7 d6 d5 d4 d3 d2 d1 d0 xxxxxxxx RW 0 0 0 0 0 0 STOPIE 400KHZ 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW CRC15 CRC7 CRC14 CRC6 CRC13 CRC5 CRC12 CRC4 CRC11 CRC3 CRC10 CRC2 CRC9 CRC1 CRC8 CRC0 01001010 10111010 RW RW I/O PORTA Alternate Configuration I/O PORTC Alternate Configuration I²C-Compatible Bus Control Autoptr1 MOVX access, when APTREN=1 Autoptr2 MOVX access, when APTREN=1 UDMA CRC E67D E67E 1 1 UDMACRCH [6] UDMACRCL[6] UDMA CRC MSB UDMA CRC LSB E67F 1 UDMACRCQUALIFIER USB CONTROL UDMA CRC Qualifier QENABLE 0 0 0 QSTATE QSIGNAL2 QSIGNAL1 QSIGNAL0 00000000 brrrbbbb E680 E681 1 1 USBCS SUSPEND USB Control & Status Put chip into suspend HSM x 0 x 0 x 0 x DISCON x NOSYNSOF x RENUM x SIGRSUME x0000000 rrrrbbbb x xxxxxxxx W E682 E683 1 1 WAKEUPCS TOGCTL Wakeup Control & Status Toggle Control WU2 Q WU S WU2POL R WUPOL IO 0 EP3 DPEN EP2 WU2EN EP1 WUEN EP0 E684 E685 1 1 USBFRAMEH USBFRAMEL USB Frame count H USB Frame count L 0 FC7 0 FC6 0 FC5 0 FC4 0 FC3 FC10 FC2 FC9 FC1 FC8 FC0 00000xxx xxxxxxxx R R E686 E687 1 1 MICROFRAME FNADDR Microframe count, 0-7 USB Function address 0 0 0 FA6 0 FA5 0 FA4 0 FA3 MF2 FA2 MF1 FA1 MF0 FA0 00000xxx 0xxxxxxx R R E688 2 reserved E68A E68B 1 1 EP0BCH[6] EP0BCL[6] Endpoint 0 Byte Count H Endpoint 0 Byte Count L (BC15) (BC7) (BC14) BC6 (BC13) BC5 (BC12) BC4 (BC11) BC3 (BC10) BC2 (BC9) BC1 (BC8) BC0 xxxxxxxx xxxxxxxx RW RW E68C E68D 1 1 reserved EP1OUTBC Endpoint 1 OUT Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW E68E E68F 1 1 reserved EP1INBC Endpoint 1 IN Byte Count 0 BC6 BC5 BC4 BC3 BC2 BC1 BC0 0xxxxxxx RW E690 E691 1 1 EP2BCH[6] EP2BCL[6] Endpoint 2 Byte Count H Endpoint 2 Byte Count L 0 BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 BC10 BC2 BC9 BC1 BC8 BC0 00000xxx xxxxxxxx RW RW E692 E694 2 1 reserved EP4BCH[6] Endpoint 4 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW E695 E696 1 2 EP4BCL[6] reserved Endpoint 4 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW E698 E699 1 1 EP6BCH[6] EP6BCL[6] Endpoint 6 Byte Count H Endpoint 6 Byte Count L 0 BC7/SKIP 0 BC6 0 BC5 0 BC4 0 BC3 BC10 BC2 BC9 BC1 BC8 BC0 00000xxx xxxxxxxx RW RW E69A E69C 2 1 reserved EP8BCH[6] Endpoint 8 Byte Count H 0 0 0 0 0 0 BC9 BC8 000000xx RW E69D E69E 1 2 EP8BCL[6] reserved Endpoint 8 Byte Count L BC7/SKIP BC6 BC5 BC4 BC3 BC2 BC1 BC0 xxxxxxxx RW E6A0 1 EP0CS HSNAK 0 0 0 0 0 BUSY STALL 10000000 bbbbbbrb E6A1 1 EP1OUTCS Endpoint 0 Control and Status Endpoint 1 OUT Control and Status 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb E6A2 1 EP1INCS 0 0 0 0 0 0 BUSY STALL 00000000 bbbbbbrb E6A3 1 EP2CS Endpoint 1 IN Control and Status Endpoint 2 Control and Status 0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb E6A4 1 EP4CS 0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00101000 rrrrrrrb E6A5 1 EP6CS Endpoint 4 Control and Status Endpoint 6 Control and Status 0 NPAK2 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb E6A6 1 EP8CS 0 0 NPAK1 NPAK0 FULL EMPTY 0 STALL 00000100 rrrrrrrb E6A7 1 EP2FIFOFLGS Endpoint 8 Control and Status Endpoint 2 slave FIFO Flags 0 0 0 0 0 PF EF FF 00000010 R E6A8 E6A9 1 1 EP4FIFOFLGS EP6FIFOFLGS Endpoint 4 slave FIFO Flags Endpoint 6 slave FIFO Flags 0 0 0 0 0 0 0 0 0 0 PF PF EF EF FF FF 00000010 00000110 R R E6AA E6AB 1 1 EP8FIFOFLGS EP2FIFOBCH Endpoint 8 slave FIFO Flags Endpoint 2 slave FIFO total byte count H 0 0 0 0 0 0 0 BC12 0 BC11 PF BC10 EF BC9 FF BC8 00000110 00000000 R R xx000101 bbbbrbbb xxxxxxxx rbbbbbbb ENDPOINTS Document #: 38-08012 Rev. *E Page 25 of 48 CY7C68013 Table 5-1. FX2 Register Summary (continued) Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access E6A C E6A D 1 EP2FIFOBCL BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 1 EP4FIFOBCH Endpoint 2 slave FIFO total byte count L Endpoint 4 slave FIFO total byte count H 0 0 0 0 0 BC10 BC9 BC8 00000000 R E6AE 1 EP4FIFOBCL BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R E6AF 1 EP6FIFOBCH Endpoint 4 slave FIFO total byte count L Endpoint 6 slave FIFO total byte count H 0 0 0 0 BC11 BC10 BC9 BC8 00000000 R E6B0 1 EP6FIFOBCL BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R 1 EP8FIFOBCH Endpoint 6 slave FIFO total byte count L Endpoint 8 slave FIFO total byte count H BC7 E6B1 0 0 0 0 0 BC10 BC9 BC8 00000000 R E6B2 1 EP8FIFOBCL BC7 BC6 BC5 BC4 BC3 BC2 BC1 BC0 00000000 R E6B3 1 SUDPTRH Endpoint 8 slave FIFO total byte count L Setup Data Pointer high address byte A15 A14 A13 A12 A11 A10 A9 A8 xxxxxxxx RW E6B4 1 SUDPTRL A6 A5 A4 A3 A2 A1 0 1 SUDPTRCTL Setup Data Pointer low address byte Setup Data Pointer Auto Mode A7 E6B5 0 0 0 0 0 0 0 SDPAUTO 00000001 RW E6B8 2 8 reserved SETUPDAT 8 bytes of SETUP data D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx R FIFOWR0 0 FIFORD1 0 FIFORD0 IDLEDRV 11100100 10000000 RW RW xxxxxxx0 bbbbbbbr SETUPDAT[0] = bmRequestType SETUPDAT[1] = bmRequest SETUPDAT[2:3] = wValue SETUPDAT[4:5] = wIndex SETUPDAT[6:7] = wLength GPIF E6C0 E6C1 1 1 GPIFWFSELECT Waveform Selector SINGLEWR1 SINGLEWR0 SINGLERD1 SINGLERD0 FIFOWR1 GPIFIDLECS GPIF Done, GPIF IDLE drive DONE 0 0 0 0 mode E6C2 E6C3 1 1 GPIFIDLECTL GPIFCTLCFG Inactive Bus, CTL states CTL Drive Type 0 TRICTL 0 0 CTL5 CTL5 CTL4 CTL4 CTL3 CTL3 CTL2 CTL2 CTL1 CTL1 CTL0 CTL0 11111111 00000000 RW RW E6C4 E6C5 1 1 GPIFADRH [6] GPIF Address H GPIF Address L 0 GPIFA7 0 GPIFA6 0 GPIFA5 0 GPIFA4 0 GPIFA3 0 GPIFA2 0 GPIFA1 GPIFA8 GPIFA0 00000000 00000000 RW RW E6C6 1 FLOWSTATE FLOWSTATE FSE 0 0 0 0 FS2 FS1 FS0 E6C7 1 FLOWLOGIC Flowstate Logic LFUNC1 LFUNC0 TERMA2 TERMA1 TERMA0 TERMB2 TERMB1 TERMB0 00000000 RW E6C8 1 FLOWEQ0CTL CTL0E3 CTL0E2 CTL1 CTL0 00000000 RW FLOWEQ1CTL CTL0E3 CTL0E2 CTL0E0/ CTL4 CTL0E0/ CTL4 CTL2 1 CTL0E1/ CTL5 CTL0E1/ CTL5 CTL3 E6C9 CTL-Pin States in Flowstate (when Logic = 0) CTL-Pin States in Flowstate (when Logic = 1) E6C A E6C B 1 FLOWHOLDOFF Holdoff Configuration 1 FLOWSTB E6C C E6C D 1 FLOWSTBEDGE Flowstate Rising/Falling Edge Configuration FLOWSTBPERI- Master-Strobe Half-Period OD E6C E E6CF 1 GPIFTCB3[6] 1 GPIFTCB2[6] 1 GPIFTCB1 [6] 1 GPIFTCB0[6] 2 reserved reserved E6D0 E6D1 1 E6D2 1 E6D3 1 E6D4 1 3 E6D A 1 E6D B E6D C 1 GPIFADRL[6] Flowstate Enable and Selector Flowstate Strobe Configuration CTL3 HOPERIOD3 HOPERIOD2 HOPERIOD1 HOPERIOD0 HOSTATE 00000000 brrrrbbb CTL2 CTL1 CTL0 00000000 RW HOCTL2 HOCTL1 HOCTL0 00010010 RW SLAVE RDYASYNC CTLTOGL SUSTAIN 0 MSTB2 MSTB1 MSTB0 00100000 RW 0 0 0 0 0 0 FALLING RISING 00000001 rrrrrrbb D7 D6 D5 D4 D3 D2 D1 D0 00000010 RW GPIF Transaction Count Byte 3 GPIF Transaction Count Byte 2 TC31 TC30 TC29 TC28 TC27 TC26 TC25 TC24 00000000 RW TC23 TC22 TC21 TC20 TC19 TC18 TC17 TC16 00000000 RW GPIF Transaction Count Byte 1 GPIF Transaction Count Byte 0 TC15 TC14 TC13 TC12 TC11 TC10 TC9 TC8 00000000 RW TC7 TC6 TC5 TC4 TC3 TC2 TC1 TC0 00000001 RW 00000000 RW 00000000 RW FIFO2FLAG 00000000 RW reserved EP2GPIFFLGSEL Endpoint 2 GPIF Flag select [6] EP2GPIFPFSTOP Endpoint 2 GPIF stop transaction on prog. flag EP2GPIFTRIG[6] Endpoint 2 GPIF Trigger 0 0 0 0 0 0 FS1 0 0 0 0 0 0 0 x x x x x x x 0 0 0 0 0 0 FS1 0 0 0 0 0 0 0 x x x x x x x FS0 x xxxxxxxx W FS0 00000000 RW FIFO4FLAG 00000000 RW reserved reserved reserved EP4GPIFFLGSEL Endpoint 4 GPIF Flag select [6] 1 EP4GPIFPFSTOP Endpoint 4 GPIF stop transaction on GPIF Flag EP4GPIFTRIG[6] Endpoint 4 GPIF Trigger 3 reserved Document #: 38-08012 Rev. *E x xxxxxxxx W Page 26 of 48 CY7C68013 Table 5-1. FX2 Register Summary (continued) Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access FS0 00000000 RW FIFO6FLAG 00000000 RW reserved reserved E6E2 1 EP6GPIFFLGSEL Endpoint 6 GPIF Flag select 0 0 0 0 0 0 FS1 E6E3 1 EP6GPIFPFSTOP Endpoint 6 GPIF stop transaction on prog. flag 0 0 0 0 0 0 0 1 3 EP6GPIFTRIG[6] x x x x x x x E6E4 [6] Endpoint 6 GPIF Trigger x xxxxxxxx W FS0 00000000 RW FIFO8FLAG 00000000 RW reserved reserved reserved E6EA 1 EP8GPIFFLGSEL Endpoint 8 GPIF Flag select 0 0 0 0 0 0 FS1 E6EB 1 EP8GPIFPFSTOP Endpoint 8 GPIF stop transaction on prog. flag 0 0 0 0 0 0 0 E6E C 1 EP8GPIFTRIG[6] x x x x x x x x xxxxxxxx W 3 reserved E6F0 1 D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW E6F1 1 XGPIFSGLDATH GPIF Data H (16-bit mode only) XGPIFSGLDATLX Read/Write GPIF Data L & trigger transaction D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E6F2 1 xxxxxxxx R E6F3 1 E6F4 1 E6F5 E6F6 1 2 [6] Endpoint 8 GPIF Trigger XGPIFSGLDATL- Read GPIF Data L, no transNOX action trigger GPIFREADYCFG Internal RDY, Sync/Async, RDY pin states D7 D6 D5 D4 D3 D2 D1 D0 INTRDY SAS TCXRDY5 0 0 0 0 0 GPIFREADYSTAT GPIF Ready Status 0 0 RDY5 RDY4 RDY3 RDY2 RDY1 RDY0 00xxxxxx R GPIFABORT reserved x x x x x x x x xxxxxxxx W ENDPOINT BUFFERS E740 64 EP0BUF EP0-IN/-OUT buffer D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW E780 64 EP10UTBUF E7C0 64 EP1INBUF EP1-OUT buffer EP1-IN buffer D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 xxxxxxxx xxxxxxxx RW RW 512/1024-byte EP 2 / slave FIFO buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW RW 512 byte EP 4 / slave FIFO buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW F800 1024 EP6FIFOBUF 512/1024-byte EP 6 / slave FIFO buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW FC00 512 EP8FIFOBUF 512 byte EP 8 / slave FIFO buffer (IN or OUT) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW 0 DISCON 0 0 0 0 0 400KHZ xxxxxxxx n/a 2048 reserved F000 1024 EP2FIFOBUF F400 512 EP4FIFOBUF Abort GPIF Waveforms 00000000 bbbrrrrr F600 512 reserved FE00 512 reserved xxxx I²C Compatible Configuration Byte [8] Special Function Registers (SFRs) 80 81 1 1 IOA[7] SP Port A (bit addressable) Stack Pointer D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 xxxxxxxx 00000111 RW RW 82 83 1 1 DPL0 DPH0 Data Pointer 0 L Data Pointer 0 H A7 A15 A6 A14 A5 A13 A4 A12 A3 A11 A2 A10 A1 A9 A0 A8 00000000 00000000 RW RW 84 85 1 1 DPL1[7] DPH1 [7] Data Pointer 1 L Data Pointer 1 H A7 A15 A6 A14 A5 A13 A4 A12 A3 A11 A2 A10 A1 A9 A0 A8 00000000 00000000 RW RW 86 87 1 1 DPS[7] PCON Data Pointer 0/1 select Power Control 0 SMOD0 0 x 0 1 0 1 0 GF1 0 GF0 0 STOP SEL IDLE 00000000 00110000 RW RW 88 1 TCON TF1 TR1 TF0 TR0 IE1 IT1 IE0 IT0 00000000 RW 89 1 TMOD Timer/Counter Control (bit addressable) Timer/Counter Mode Control GATE CT M1 M0 GATE CT M1 M0 00000000 RW 8A 8B 1 1 TL0 TL1 Timer 0 reload L Timer 1 reload L D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 00000000 00000000 RW RW 8C 8D 1 1 TH0 TH1 Timer 0 reload H Timer 1 reload H D15 D15 D14 D14 D13 D13 D12 D12 D11 D11 D10 D10 D9 D9 D8 D8 00000000 00000000 RW RW 8E 8F 1 1 CKCON[7] reserved Clock Control x x T2M T1M T0M MD2 MD1 MD0 00000001 RW 90 91 1 1 IOB[7] EXIF[7] Port B (bit addressable) External Interrupt Flag(s) D7 IE5 D6 IE4 D5 I²CINT D4 USBNT D3 1 D2 0 D1 0 D0 0 xxxxxxxx 00001000 RW RW 92 1 MPAGE[7] Upper Addr Byte of MOVX using @R0 / @R1 A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW 93 5 reserved 98 1 SCON0 SM0_0 SM1_0 SM2_0 REN_0 TB8_0 RB8_0 TI_0 RI_0 00000000 RW 99 1 SBUF0 D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Serial Port 0 Control (bit addressable) Serial Port 0 Data Buffer Notes: 7. SFRs not part of the standard 8051 architecture. 8. If no EEPROM is detected by the SIE then the default is 00000000. Document #: 38-08012 Rev. *E Page 27 of 48 CY7C68013 Table 5-1. FX2 Register Summary (continued) Hex Size Name Description b7 b6 b5 b4 b3 b2 b1 b0 Default Access 9A 9B 1 1 AUTOPTRH1[7] AUTOPTRL1[7] Autopointer 1 Address H Autopointer 1 Address L A15 A7 A14 A6 A13 A5 A12 A4 A11 A3 A10 A2 A9 A1 A8 A0 00000000 00000000 RW RW 9C 9D 1 1 reserved AUTOPTRH2[7] Autopointer 2 Address H A15 A14 A13 A12 A11 A10 A9 A8 00000000 RW 9E 9F 1 1 AUTOPTRL2[7] reserved Autopointer 2 Address L A7 A6 A5 A4 A3 A2 A1 A0 00000000 RW A0 A1 1 1 IOC[7] Port C (bit addressable) Interrupt 2 clear D7 x D6 x D5 x D4 x D3 x D2 x D1 x D0 x xxxxxxxx xxxxxxxx RW W A2 A3 1 5 INT4CLR[7] reserved Interrupt 4 clear x x x x x x x x xxxxxxxx W A8 1 IE Interrupt Enable (bit addressable) EA ES1 ET2 ES0 ET1 EX1 ET0 EX0 00000000 RW INT2CLR[7] A9 1 reserved AA AB 1 1 EP2468STAT[7] Endpoint 2,4,6,8 status flags EP24FIFOFLGS[7] Endpoint 2,4 slave FIFO status flags EP8F 0 EP8E EP4PF EP6F EP4EF EP6E EP4FF EP4F 0 EP4E EP2PF EP2F EP2EF EP2E EP2FF 01011010 00100010 R R AC 1 0 EP8PF EP8EF EP8FF 0 EP6PF EP6EF EP6FF 01100110 R AD 2 EP68FIFOFLGS[7] Endpoint 6,8 slave FIFO status flags reserved AF 1 Autopointer 1&2 Setup 0 0 0 0 0 APTR2INC APTR1INC APTREN 00000110 RW B0 1 AUTOPTRSETUP[7] IOD[7] Port D (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 xxxxxxxx RW B1 B2 1 1 IOE[7] OEA[7] Port E (NOT bit addressable) Port A Output Enable D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 xxxxxxxx 00000000 RW RW B3 B4 1 1 OEB[7] OEC[7] Port B Output Enable Port C Output Enable D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 00000000 00000000 RW RW B5 B6 1 1 OED[7] Port D Output Enable Port E Output Enable D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 00000000 00000000 RW RW B7 B8 1 1 reserved IP 1 PS1 PT2 PS0 PT1 PX1 PT0 PX0 10000000 RW B9 BA 1 1 reserved EP01STAT[7] EP0BSY 00000000 R BB 1 GPIFTRIG[7] [6] BC 1 reserved BD 1 GPIFSGLDATH[7] GPIF Data H (16-bit mode only) OEE[7] Interrupt Priority (bit addressable) Endpoint 0&1 Status 0 0 0 0 0 DONE 0 0 0 0 RW EP1 EP0 D15 D14 D13 D12 D11 D10 D9 D8 xxxxxxxx RW D7 D7 D6 D6 D5 D5 D4 D4 D3 D3 D2 D2 D1 D1 D0 D0 xxxxxxxx xxxxxxxx RW R Serial Port 1 Control (bit addressable) Serial Port 1 Data Buffer SM0_1 SM1_1 SM2_1 REN_1 TB8_1 RB8_1 TI_1 RI_1 00000000 RW D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Timer/Counter 2 Control (bit addressable) TF2 EXF2 RCLK TCLK EXEN2 TR2 CT2 CPRL2 00000000 RW Capture for Timer 2, auto-reload, up-counter D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Capture for Timer 2, auto-reload, up-counter Timer 2 reload L D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW Endpoint 2,4,6,8 GPIF slave FIFO Trigger [7] GPIF Data L w/ Trigger GPIF Data L w/ No Trigger EP1INBSY EP1OUTBSY 10000xxx brrrrbbb BE BF 1 1 GPIFSGLDATLX GPIFSGLDATLNOX[7] C0 1 SCON1[7] C1 1 SBUF1[7] C2 C8 6 1 reserved T2CON C9 CA 1 1 reserved RCAP2L CB 1 RCAP2H CC 1 TL2 D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW CD CE 1 2 TH2 reserved Timer 2 reload H D15 D14 D13 D12 D11 D10 D9 D8 00000000 RW D0 1 PSW Program Status Word (bit addressable) CY AC F0 RS1 RS0 OV F1 P 00000000 RW D1 7 reserved D8 D9 1 7 EICON[7] reserved External Interrupt Control SMOD1 1 ERESI RESI INT6 0 0 0 01000000 RW E0 1 ACC Accumulator (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW E1 7 reserved E8 E9 1 7 EIE[7] reserved External Interrupt Enable(s) 1 1 1 EX6 EX5 EX4 EI²C EUSB 11100000 RW F0 F1 1 7 B reserved B (bit addressable) D7 D6 D5 D4 D3 D2 D1 D0 00000000 RW F8 1 EIP[7] External Interrupt Priority Control 1 1 1 PX6 PX5 PX4 PI²C PUSB 11100000 RW F9 7 reserved Document #: 38-08012 Rev. *E Page 28 of 48 CY7C68013 6.0 Absolute Maximum Ratings 7.0 Operating Conditions Storage Temperature .................................. –65°C to +150°C TA (Ambient Temperature Under Bias) ............. 0°C to +70°C Ambient Temperature with Power Supplied ...... 0°C to +70°C Supply Voltage ...............................................+3.0V to +3.6V Supply Voltage to Ground Potential ............... –0.5V to +4.0V Ground Voltage ................................................................. 0V DC Input Voltage to Any Input Pin ............................... 5.25V FOSC (Oscillator or Crystal Frequency) ... 24 MHz ± 100 ppm Parallel Resonant DC Voltage Applied to Outputs in High Z State ...................................... –0.5V to VCC + 0.5V Power Dissipation .................................................... 936 mW Static Discharge Voltage .......................................... > 2000V Max Output Current, per I/O port ................................ 10 mA Max Output Current, all five I/O ports (128- and 100-pin packages) ....................... 50 mA 8.0 DC Characteristics Table 8-1. DC Characteristics Parameter Description Conditions VCC Supply Voltage VIH Input HIGH Voltage VIL Input LOW Voltage II Input Leakage Current 0< VIN < VCC VOH Output Voltage HIGH IOUT = 4 mA VOL Output LOW Voltage IOUT = –4 mA Min. Typ. 3.0 3.3 2 –0.5 Max. Unit 3.6 V 5.25 V 0.8 V ±10 µA 0.4 V 2.4 V IOH Output Current HIGH 4 mA IOL Output Current LOW 4 mA CIN Input Pin Capacitance ISUSP ICC TRESET 8.1 Suspend Current Supply Current Reset Time after valid power Except D+/D– 10 pF D+/D– 15 pF Connected 250 400 µA Disconnected 30 180 µA 8051 running, connected to USB HS 200 260 mA 8051 running, connected to USB FS 90 150 mA VCC min. = 3.0V 1.91 ms USB Transceiver USB 2.0-certified in full- and high-speed modes. Note: 9. Connected to the USB includes 1.5k-ohm internal pull-up. Disconnected has the 1.5k-ohm internal pull-up excluded. Document #: 38-08012 Rev. *E Page 29 of 48 CY7C68013 9.0 AC Electrical Characteristics 9.1 USB Transceiver USB 2.0-certified in full- and high-speed modes. 9.2 Program Memory Read tCL CLKOUT[10] tAV tAV A[15..0] tSTBH tSTBL PSEN# [11] tACC1 D[7..0] tDH data in tSOEL OE# tSCSL CS# Figure 9-1. Program Memory Read Timing Diagram Table 9-1. Program Memory Read Parameters Parameter tCL Description Min. 1/CLKOUT Frequency Typ. Max. Notes 20.83 ns 48 MHz 41.66 ns 24 MHz ns 12 MHz 83.2 0 Unit tAV Delay from Clock to Valid Address 10.7 ns tSTBL Clock to PSEN Low 0 8 ns tSTBH Clock to PSEN High 0 8 ns tSOEL Clock to OE Low 11.1 ns tSCSL Clock to CS Low 13 ns tDSU Data Set-up to Clock tDH Data Hold Time 9.6 ns 0 ns Notes: 10. CLKOUT is shown with positive polarity. 11. tACC1 is computed from the above parameters as follows: tACC1(24 MHz) = 3*tCL – t AV –tDSU = 106 ns tACC1(48 MHz) = 3*tCL – t AV – tDSU = 43 ns. Document #: 38-08012 Rev. *E Page 30 of 48 CY7C68013 9.3 Data Memory Read tCL Stretch = 0 CLKOUT[10] tAV tAV A[15..0] t STBH t STBL RD# tSCSL CS# tSOEL OE# tDSU [12] tDH tACC1 D[7..0] data in Stretch = 1 tCL CLKOUT[10] tAV A[15..0] RD# CS# tDSU [12] tACC1 D[7..0] tDH data in Figure 9-2. Data Memory Read Timing Diagram Parameter Description Min. 1/CLKOUT Frequency tCL tAV Delay from Clock to Valid Address tSTBL Clock to RD LOW tSTBH tSCSL tSOEL Clock to OE LOW tDSU Data Set-up to Clock tDH Data Hold Time Typ. Max. 20.83 Unit Notes ns 48 MHz 41.66 ns 24 MHz 83.2 ns 12 MHz 10.7 ns 11 ns Clock to RD HIGH 11 ns Clock to CS LOW 13 ns 11.1 ns 9.6 ns 0 ns Note: 12. tACC2 and tACC3 are computed from the above parameters as follows: tACC2(24 MHz) = 3*tCL – tAV –t DSU = 106 ns tACC2(48 MHz) = 3*tCL – tAV – tDSU = 43 ns tACC3(24 MHz) = 5*tCL – tAV –t DSU = 190 ns tACC3(48 MHz) = 5*tCL – tAV – tDSU = 86 ns. Document #: 38-08012 Rev. *E Page 31 of 48 CY7C68013 9.4 Data Memory Write tCL CLKOUT tAV tSTBL tSTBH tAV A[15..0] WR# tSCSL CS# tON1 tOFF1 data out D[7..0] Stretch = 1 tCL CLKOUT tAV A[15..0] WR# CS# tON1 tOFF1 data out D[7..0] Figure 9-3. Data Memory Write Timing Diagram Table 9-2. Data Memory Write Parameters Parameter Description Min. Max. Unit 0 10.7 ns tAV Delay from Clock to Valid Address tSTBL Clock to WR Pulse LOW 0 11.2 ns tSTBH Clock to WR Pulse HIGH 0 11.2 ns tSCSL Clock to CS Pulse LOW 13.0 ns tON1 Clock to Data Turn-on 0 13.1 ns tOFF1 Clock to Data Hold Time 0 13.1 ns Document #: 38-08012 Rev. *E Notes Page 32 of 48 CY7C68013 9.5 GPIF Synchronous Signals tIFCLK IFCLK tSGA GPIFADR[8:0] RDYX tSRY tRYH DATA(input) valid tSGD tDAH CTLX tXCTL DATA(output) N N+1 tXGD Figure 9-4. GPIF Synchronous Signals Timing Diagram [13] Table 9-3. GPIF Synchronous Signals Parameters with Internally Sourced IFCLK[14, 15] Parameter Description tIFCLK IFCLK Period Min. Max. 20.83 tSRY RDYX to Clock Set-up Time tRYH Clock to RDYX Unit ns 8.9 ns 0 ns tSGD GPIF Data to Clock Set-up Time tDAH GPIF Data Hold Time 9.2 ns 0 ns tSGA Clock to GPIF Address Propagation Delay 7.5 ns tXGD Clock to GPIF Data Output Propagation Delay 11 ns tXCTL Clock to CTLX Output Propagation Delay 6.7 ns Min. Max. Unit 20.83 200 ns Table 9-4. GPIF Synchronous Signals Parameters with Externally Sourced IFCLK [15] Parameter Description tIFCLK IFCLK Period tSRY RDYX to Clock Set-up Time 2.9 ns tRYH Clock to RDYX 3.7 ns tSGD GPIF Data to Clock Set-up Time 3.2 ns tDAH GPIF Data Hold Time 4.5 tSGA Clock to GPIF Address Propagation Delay tXGD Clock to GPIF Data Output Propagation Delay tXCTL Clock to CTLX Output Propagation Delay ns 11.5 ns 15 ns 10.7 ns Notes: 13. Dashed lines denote signals with programmable polarity. 14. GPIF asynchronous RDYx signals have a minimum set-up time of 50 ns when using internal 48-MHz IFCLK. 15. IFCLK must not exceed 48 MHz. Document #: 38-08012 Rev. *E Page 33 of 48 CY7C68013 9.6 Slave FIFO Synchronous Read tIFCLK IFCLK tSRD tRDH SLRD tXFLG FLAGS DATA N tOEon N+1 tXFD tOEoff SLOE Figure 9-5. Slave FIFO Synchronous Read Timing Diagram[13] Table 9-5. Slave FIFO Synchronous Read Parameters with Internally Sourced IFCLK [15] Parameter Description Min. Max. Unit tIFCLK IFCLK Period 20.83 ns tSRD SLRD to Clock Set-up Time 18.7 ns tRDH Clock to SLRD Hold Time tOEon SLOE Turn-on to FIFO Data Valid 10.5 tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns tXFLG Clock to FLAGS Output Propagation Delay 9.5 ns tXFD Clock to FIFO Data Output Propagation Delay 11 ns Min. Max. Unit 200 0 ns ns Table 9-6. Slave FIFO Synchronous Read Parameters with Externally Sourced IFCLK[15] Parameter Description tIFCLK IFCLK Period 20.83 tSRD SLRD to Clock Set-up Time 12.7 ns tRDH Clock to SLRD Hold Time 3.7 tOEon SLOE Turn-on to FIFO Data Valid tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns tXFLG Clock to FLAGS Output Propagation Delay 13.5 ns tXFD Clock to FIFO Data Output Propagation Delay 15 ns ns ns 10.5 ns R = all bits read-only W = all bits write-only r = read-only bit w = write-only bit b = both read/write bit Document #: 38-08012 Rev. *E Page 34 of 48 CY7C68013 9.7 Slave FIFO Asynchronous Read tRDpwh SLRD tRDpwl FLAGS tXFD tXFLG DATA N+1 N tOEon tOEoff SLOE Figure 9-6. Slave FIFO Asynchronous Read Timing Diagram[13] Table 9-7. Slave FIFO Asynchronous Read Parameters[16] Parameter Description Min. Max. Unit tRDpwl SLRD Pulse Width LOW 50 tRDpwh SLRD Pulse Width HIGH 50 tXFLG SLRD to FLAGS Output Propagation Delay tXFD SLRD to FIFO Data Output Propagation Delay 15 ns tOEon SLOE Turn-on to FIFO Data Valid 10.5 ns tOEoff SLOE Turn-off to FIFO Data Hold 10.5 ns Max. Unit ns ns ns ns ns ns 9.8 ns ns 70 ns Slave FIFO Synchronous Write tIFCLK IFCLK SLWR DATA tSWR tWRH N Z tSFD Z tFDH FLAGS tXFLG Figure 9-7. Slave FIFO Synchronous Write Timing Diagram [13] Table 9-8. Slave FIFO Synchronous Write Parameters with Internally Sourced IFCLK [15] Parameter tIFCLK tSWR tWRH tSFD tFDH tXFLG Description IFCLK Period SLWR to Clock Set-up Time Clock to SLWR Hold Time FIFO Data to Clock Set-up Time Clock to FIFO Data Hold Time Clock to FLAGS Output Propagation Time Min. 20.83 18.1 0 9.2 0 9.5 Note: 16. Slave FIFO asynchronous parameter values use internal IFCLK setting at 48 MHz. Document #: 38-08012 Rev. *E Page 35 of 48 CY7C68013 Table 9-9. Slave FIFO Synchronous Write Parameters with Externally Sourced IFCLK[15] Parameter tIFCLK tSWR tWRH tSFD tFDH tXFLG 9.9 Description IFCLK Period SLWR to Clock Set-up Time Clock to SLWR Hold Time FIFO Data to Clock Set-up Time Clock to FIFO Data Hold Time Clock to FLAGS Output Propagation Time Min. 20.83 12.1 3.6 3.2 4.5 Max. 200 13.5 Unit ns ns ns ns ns ns Max. Unit Slave FIFO Asynchronous Write tWRpwh SLWR/SLCS# tWRpwl tSFD tFDH DATA tXFD FLAGS Figure 9-8. Slave FIFO Asynchronous Write Timing Diagram[13] Table 9-10. Slave FIFO Asynchronous Write Parameters with Internally Sourced IFCLK [16] Parameter Description Min. tWRpwl SLWR Pulse LOW 50 ns tWRpwh SLWR Pulse HIGH 70 ns tSFD SLWR to FIFO DATA Set-up Time 10 ns tFDH FIFO DATA to SLWR Hold Time 10 ns tXFD SLWR to FLAGS Output Propagation Delay 9.10 70 ns Slave FIFO Synchronous Packet End Strobe IFCLK tPEH PKTEND tSPE FLAGS tXFLG Figure 9-9. Slave FIFO Synchronous Packet End Strobe Timing Diagram[13] Table 9-11. Slave FIFO Synchronous Packet End Strobe Parameters with Internally Sourced IFCLK [15] Parameter Description Min. Max. Unit tIFCLK IFCLK Period 20.83 tSPE PKTEND to Clock Set-up Time 14.6 ns tPEH Clock to PKTEND Hold Time 0 ns tXFLG Clock to FLAGS Output Propagation Delay Document #: 38-08012 Rev. *E ns 9.5 ns Page 36 of 48 CY7C68013 Table 9-12. Slave FIFO Synchronous Packet End Strobe Parameters with Externally Sourced IFCLK [15] Parameter Description Min. Max. 20.83 200 tIFCLK IFCLK Period tSPE PKTEND to Clock Set-up Time 8.6 tPEH Clock to PKTEND Hold Time 2.5 tXFLG Clock to FLAGS Output Propagation Delay Unit ns ns ns 13.5 ns There is no specific timing requirement that needs to be met for asserting PKTEND pin with regards to asserting SLWR. PKTEND can be asserted with the last data value clocked into the FIFOs or thereafter. The only consideration is the set-up time tSPE and the hold time tPEH must be met. clock cycle after the rising edge that caused the last byte/word to be clocked into the previous auto committed packet. Figure 9-10 below shows this scenario. X is the value the AUTOINLEN register is set to when the IN endpoint is configured to be in auto mode. Although there are no specific timing requirement for the PKTEND assertion, there is a specific corner case condition that needs attention while using the PKTEND to commit a one byte/word packet. There is an additional timing requirement that need to be met when the FIFO is configured to operate in auto mode and it is desired to send two packets back to back: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte/word packet committed manually using the PKTEND pin. In this particular scenario, user must make sure to assert PKTEND at least one Figure 9-10 shows a scenario where two packets are being committed. The first packet gets committed automatically when the number of bytes in the FIFO reaches X (value set in AUTOINLEN register) and the second one byte/word short packet being committed manually using PKTEND. Note that there is at least one IFCLK cycle timing between the assertion of PKTEND and clocking of the last byte of the previous packet (causing the packet to be committed automatically). Failing to adhere to this timing, will result in the FX2 failing to send the one byte/word short packet. tIFCLK IFCLK tSFA tFAH FIFOADR >= tWRH >= tSWR SLWR tSFD X-4 DATA tFDH tSFD X-3 tFDH tSFD X-2 tFDH tSFD X-1 tFDH tSFD X tFDH tSFD tFDH 1 At least one IFCLK cycle tSPE tPEH PKTEND Figure 9-10. Slave FIFO Synchronous Write Sequence and Timing Diagram Document #: 38-08012 Rev. *E Page 37 of 48 CY7C68013 9.11 Slave FIFO Asynchronous Packet End Strobe tPEpwh PKTEND tPEpwl FLAGS tXFLG Figure 9-11. Slave FIFO Asynchronous Packet End Strobe Timing Diagram[13] Table 9-13. Slave FIFO Asynchronous Packet End Strobe Parameters[16] Parameter Description Min. Max. Unit tPEpwl PKTEND Pulse Width LOW 50 ns tPWpwh PKTEND Pulse Width HIGH 50 ns tXFLG PKTEND to FLAGS Output Propagation Delay 9.12 115 ns Max. Unit Slave FIFO Output Enable SLOE tOEon DATA tOEoff Figure 9-12. Slave FIFO Output Enable Timing Diagram[13] Table 9-14. Slave FIFO Output Enable Parameters Parameter Description Min. tOEon SLOE Assert to FIFO DATA Output 10.5 ns tOEoff SLOE Deassert to FIFO DATA Hold 10.5 ns Max. Unit 9.13 Slave FIFO Address to Flags/Data FIFOADR [1.0] tXFLG FLAGS tXFD DATA N N+1 Figure 9-13. Slave FIFO Address to Flags/Data Timing Diagram [13] Table 9-15. Slave FIFO Address to Flags/Data Parameters Parameter Description Min. tXFLG FIFOADR[1:0] to FLAGS Output Propagation Delay 10.7 ns tXFD FIFOADR[1:0] to FIFODATA Output Propagation Delay 14.3 ns Document #: 38-08012 Rev. *E Page 38 of 48 CY7C68013 9.14 Slave FIFO Synchronous Address IFCLK SLCS/FIFOADR [1:0] tSFA tFAH Figure 9-14. Slave FIFO Synchronous Address Timing Diagram Table 9-16. Slave FIFO Synchronous Address Parameters [15] Parameter Description Min. Max. Unit 20.83 200 ns tIFCLK Interface Clock Period tSFA FIFOADR[1:0] to Clock Set-up Time 25 ns tFAH Clock to FIFOADR[1:0] Hold Time 10 ns 9.15 Slave FIFO Asynchronous Address SLCS/FIFOADR [1:0] tSFA tFAH SLRD/SLWR/PKTEND Figure 9-15. Slave FIFO Asynchronous Address Timing Diagram[13] Table 9-17. Slave FIFO Asynchronous Address Parameters[16] Parameter Description Min. Max. Unit tSFA FIFOADR[1:0] to RD/WR/PKTEND Set-up Time 10 ns tFAH SLRD/PKTEND to FIFOADR[1:0] Hold Time 20 ns tFAH SLWR/PKTEND to FIFOADR[1:0] Hold Time 70 ns Document #: 38-08012 Rev. *E Page 39 of 48 CY7C68013 9.16 Sequence Diagram 9.16.1 Single and Burst Synchronous Read Example tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSRD T=0 tRDH >= tSRD >= tRDH SLRD t=3 t=2 T=3 T=2 SLCS tXFLG FLAGS tXFD tXFD Data Driven: N DATA N+1 N+1 N+2 N+3 tOEon tOEoff tOEon tXFD tXFD N+4 tOEoff SLOE t=4 t=1 T=4 T=1 Figure 9-16. Slave FIFO Synchronous Read Sequence and Timing Diagram IFCLK FIFO POINTER N IFCLK IFCLK N N+1 SLOE FIFO DATA BUS Not Driven IFCLK N+1 N+1 SLOE SLRD SLRD Driven: N IFCLK N+1 SLOE Not Driven IFCLK N+2 IFCLK N+3 IFCLK N+4 SLRD N+1 IFCLK SLRD N+2 N+3 N+4 IFCLK N+4 N+4 SLOE N+4 Not Driven Figure 9-17. Slave FIFO Synchronous Sequence of Events Diagram Figure 9-16 shows the timing relationship of the SLAVE FIFO signals during a synchronous FIFO read using IFCLK as the synchronizing clock. The diagram illustrates a single read followed by a burst read. • At t = 0 the FIFO address is stable and the signal SLCS is asserted (SLCS may be tied low in some applications). Note: tSFA has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address set-up time is more than one IFCLK cycle. • At = 1, SLOE is asserted. SLOE is an output enable only, whose sole function is to drive the data bus. The data that is driven on the bus is the data that the internal FIFO pointer is currently pointing to. In this example it is the first data value in the FIFO. Note: the data is pre-fetched and is driven on the bus when SLOE is asserted. • At t = 2, SLRD is asserted. SLRD must meet the setup time of tSRD (time from asserting the SLRD signal to the rising edge of the IFCLK) and maintain a minimum hold time of tRDH (time from the IFCLK edge to the de-assertion of the SLRD signal). If the SLCS signal is used, it must be asserted Document #: 38-08012 Rev. *E with SLRD, or before SLRD is asserted (i.e. the SLCS and SLRD signals must both be asserted to start a valid read condition). • The FIFO pointer is updated on the rising edge of the IFCLK, while SLRD is asserted. This starts the propagation of data from the newly addressed location to the data bus. After a propagation delay of tXFD (measured from the rising edge of IFCLK) the new data value is present. N is the first data value read from the FIFO. In order to have data on the FIFO data bus, SLOE MUST also be asserted. The same sequence of events are shown for a burst read and are marked with the time indicators of T = 0 through 5. Note: For the burst mode, the SLRD and SLOE are left asserted during the entire duration of the read. In the burst read mode, when SLOE is asserted, data indexed by the FIFO pointer is on the data bus. During the first read cycle, on the rising edge of the clock the FIFO pointer is updated and increments to point to address N+1. For each subsequent rising edge of IFCLK, while the SLRD is asserted, the FIFO pointer is incremented and the next data value is placed on the data bus. Page 40 of 48 CY7C68013 9.16.2 Single and Burst Synchronous Write tIFCLK IFCLK tSFA tSFA tFAH tFAH FIFOADR t=0 tSWR tWRH >= tWRH >= tSWR T=0 SLWR t=2 T=2 t=3 T=5 SLCS tXFLG tXFLG FLAGS tSFD tFDH tSFD N+1 N DATA t=1 tFDH T=1 tSFD tSFD tFDH N+3 N+2 T=3 tFDH T=4 tSPE tPEH PKTEND Figure 9-18. Slave FIFO Synchronous Write Sequence and Timing Diagram[13] The Figure 9-18 shows the timing relationship of the SLAVE FIFO signals during a synchronous write using IFCLK as the synchronizing clock. The diagram illustrates a single write followed by burst write of three bytes and committing all four bytes as a short packet using the PKTEND pin. • At t = 0 the FIFO address is stable and the signal SLCS is asserted. (SLCS may be tied low in some applications) Note: tSFA has a minimum of 25 ns. This means when IFCLK is running at 48 MHz, the FIFO address setup time is more than one IFCLK cycle. • At t = 1, the external master/peripheral must outputs the data value onto the data bus with a minimum set up time of tSFD before the rising edge of IFCLK. • At t = 2, SLWR is asserted. The SLWR must meet the setup time of tSWR (time from asserting the SLWR signal to the rising edge of IFCLK) and maintain a minimum hold time of tWRH (time from the IFCLK edge to the deassertion of the SLWR signal). If SLCS signal is used, it must be asserted with SLWR or before SLWR is asserted. (i.e., the SLCS and SLWR signals must both be asserted to start a valid write condition). • While the SLWR is asserted, data is written to the FIFO and on the rising edge of the IFCLK, the FIFO pointer is incremented. The FIFO flag will also be updated after a delay of tXFLG from the rising edge of the clock. The same sequence of events are also shown for a burst write and are marked with the time indicators of T = 0 through 5. Note: For the burst mode, SLWR and SLCS are left asserted for the entire duration of writing all the required data values. In this burst write mode, once the SLWR is asserted, the data on the FIFO data bus is written to the FIFO on every rising edge Document #: 38-08012 Rev. *E of IFCLK. The FIFO pointer is updated on each rising edge of IFCLK. In Figure 9-18, once the four bytes are written to the FIFO, SLWR is de-asserted. The short 4-byte packet can be committed to the host by asserting the PKTEND signal. There is no specific timing requirement that needs to be met for asserting PKTEND signal with regards to asserting the SLWR signal. PKTEND can be asserted with the last data value or thereafter. The only requirement is that the set-up time tSPE and the hold time tPEH must be met. In the scenario of Figure 9-18, the number of data values committed includes the last value written to the FIFO. In this example, both the data value and the PKTEND signal are clocked on the same rising edge of IFCLK. PKTEND can also be asserted in subsequent clock cycles. The FIFOADDR lines should be held constant during the PKTEND assertion. Although there is no specific timing requirement for the PKTEND assertion, there is a specific corner case condition that needs attention while using the PKTEND to commit a one byte/word packet. Additional timing requirements exists when the FIFO is configured to operate in auto mode and it is desired to send two packets: a full packet (full defined as the number of bytes in the FIFO meeting the level set in AUTOINLEN register) committed automatically followed by a short one byte/word packet committed manually using the PKTEND pin. In this case, the external master must make sure to assert the PKTEND pin at least one clock cycle after the rising edge that caused the last byte/word to be clocked into the previous auto committed packet (the packet with the number of bytes equal to what is set in the AUTOINLEN register). Refer to Figure 910 for further details on this timing. Page 41 of 48 CY7C68013 9.16.3 Sequence Diagram of a Single and Burst Asynchronous Read tSFA tFAH tSFA tFAH FIFOADR t=0 tRDpwl tRDpwh tRDpwl T=0 tRDpwl tRDpwh tRDpwl tRDpwh tRDpwh SLRD t=2 t=3 T=2 T=3 T=5 T=4 T=6 SLCS tXFLG tXFLG FLAGS tXFD Data (X) Driven DATA tXFD tXFD N N N+3 N+2 tOEon tOEoff tOEon tXFD N+1 tOEoff SLOE t=4 t=1 T=1 T=7 Figure 9-19. Slave FIFO Asynchronous Read Sequence and Timing Diagram SLOE FIFO POINTER SLRD FIFO DATA BUS Not Driven SLRD SLOE SLOE SLRD SLRD SLRD SLRD SLOE N N N+1 N+1 N+1 N+1 N+2 N+2 N+3 N+3 Driven: X N N Not Driven N N+1 N+1 N+2 N+2 Not Driven N Figure 9-20. Slave FIFO Asynchronous Read Sequence of Events Diagram Figure 9-19 diagrams the timing relationship of the SLAVE FIFO signals during an asynchronous FIFO read. It shows a single read followed by a burst read. • At t = 0 the FIFO address is stable and the SLCS signal is asserted. • At t = 1, SLOE is asserted. This results in the data bus being driven. The data that is driven on to the bus is previous data, it data that was in the FIFO from a prior read cycle. • At t = 2, SLRD is asserted. The SLRD must meet the minimum active pulse of tRDpwl and minimum de-active pulse width of tRDpwh. If SLCS is used then, SLCS must be in asserted with SLRD or before SLRD is asserted (i.e., the SLCS and SLRD signals must both be asserted to start a valid read condition). Document #: 38-08012 Rev. *E • The data that will be driven, after asserting SLRD, is the updated data from the FIFO. This data is valid after a propagation delay of tXFD from the activating edge of SLRD. In Figure 9-19, data N is the first valid data read from the FIFO. For data to appear on the data bus during the read cycle (i.e., SLRD is asserted), SLOE MUST be in an asserted state. SLRD and SLOE can also be tied together. The same sequence of events is also shown for a burst read marked with T = 0 through 5. Note: In burst read mode, during SLOE is assertion, the data bus is in a driven state and outputs the previous data. Once SLRD is asserted, the data from the FIFO is driven on the data bus (SLOE must also be asserted) and then the FIFO pointer is incremented. Page 42 of 48 CY7C68013 9.16.4 Sequence Diagram of a Single and Burst Asynchronous Write tSFA tFAH tSFA tFAH FIFOADR t=0 tWRpwl tWRpwh T=0 tWRpwl tWRpwl tWRpwh tWRpwl tWRpwh tWRpwh SLWR t =1 t=3 T=1 T=3 T=4 T=6 T=7 T=9 SLCS tXFLG tXFLG FLAGS tSFD tFDH tSFD tFDH tSFD tFDH tSFD tFDH N+1 N+2 N+3 N DATA t=2 T=2 T=5 T=8 tPEpwl tPEpwh PKTEND Figure 9-21. Slave FIFO Asynchronous Write Sequence and Timing Diagram [13] Figure 9-21 diagrams the timing relationship of the SLAVE FIFO write in an asynchronous mode. The diagram shows a single write followed by a burst write of three bytes and committing the 4-byte-short packet using PKTEND. • At t = 0 the FIFO address is applied, insuring that it meets the setup time of tSFA. If SLCS is used, it must also be asserted (SLCS may be tied low in some applications). • At t = 1 SLWR is asserted. SLWR must meet the minimum active pulse of tWRpwl and minimum de-active pulse width of tWRpwh. If the SLCS is used, it must be in asserted with SLWR or before SLWR is asserted. • At t = 2, data must be present on the bus tSFD before the deasserting edge of SLWR. • At t = 3, deasserting SLWR will cause the data to be written from the data bus to the FIFO and then increments the FIFO pointer. The FIFO flag is also updated after tXFLG from the deasserting edge of SLWR. Document #: 38-08012 Rev. *E The same sequence of events is shown for a burst write and is indicated by the timing marks of T = 0 through 5. Note: In the burst write mode, once SLWR is deasserted, the data is written to the FIFO and then the FIFO pointer is incremented to the next byte in the FIFO. The FIFO pointer is post incremented. In Figure 9-21 once the four bytes are written to the FIFO and SLWR is deasserted, the short 4-byte packet can be committed to the host using the PKTEND. The external device should be designed to not assert SLWR and the PKTEND signal at the same time. It should be designed to assert the PKTEND after SLWR is deasserted and met the minimum deasserted pulse width. The FIFOADDR lines are to be held constant during the PKTEND assertion. Page 43 of 48 CY7C68013 10.0 Ordering Information Table 10-1. Ordering Information Ordering Code Package Type RAM Size # Prog I/Os 8051 Address/Data Buses CY7C68013-128AC 128 TQFP 8K 40 16/8 bit CY7C68013-100AC 100 TQFP 8K 40 – CY7C68013-56PVC 56 SSOP 8K 24 – CY7C68013-56LFC 56 QFN 8K 24 – CY7C68013-128AXC 128 TQFP Lead-Free Package 8K 40 16/8 bit CY7C68013-100AXC 100 TQFP Lead-Free Package 8K 40 – CY7C68013-56PVXC 56 SSOP Lead-Free Package 8K 24 – CY7C68013-56LFXC 56 QFN Lead-Free Package 8K 24 – CY3681 EZ-USB FX2 Xcelerator Development Kit Document #: 38-08012 Rev. *E Page 44 of 48 CY7C68013 11.0 Package Diagrams The FX2 is available in four packages: • 56-pin SSOP • 56-pin QFN • 100-pin TQFP • 128-pin TQFP. 51-85062-*C Figure 11-1. 56-lead Shrunk Small Outline Package O56 TOP VIEW BOTTOM VIEW SIDE VIEW 0.08[0.003] C 1.00[0.039] MAX. 7.90[0.311] 8.10[0.319] A 0.05[0.002] MAX. 0.80[0.031] MAX. 7.70[0.303] 7.80[0.307] 0.18[0.007] 0.28[0.011] 0.20[0.008] REF. 0.80[0.031] DIA. PIN1 ID 0.20[0.008] R. N N 1 1 2 2 0.45[0.018] 6.45[0.254] 6.55[0.258] 7.90[0.311] 8.10[0.319] 7.70[0.303] 7.80[0.307] E-PAD (PAD SIZE VARY BY DEVICE TYPE) 0.30[0.012] 0.50[0.020] 0°-12° 0.50[0.020] C SEATING PLANE 0.24[0.009] 0.60[0.024] (4X) 6.45[0.254] 6.55[0.258] 51-85144-*D Figure 11-2. 56-Lead QFN 8 x 8 MM LF56A Document #: 38-08012 Rev. *E Page 45 of 48 © Cypress Semiconductor Corporation, 2005. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress CY7C68013 51-85050-*A Figure 11-3. 100-Pin Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A101 51-85101-*B Figure 11-4. 128-Lead Thin Plastic Quad Flatpack (14 x 20 x 1.4 mm) A128 Document #: 38-08012 Rev. *E Page 46 of 48 CY7C68013 12.0 PCB Layout Recommendations[17] The following recommendations should be followed to ensure reliable high-performance operation. • At least a four-layer impedance controlled boards are required to maintain signal quality. • Specify impedance targets (ask your board vendor what they can achieve). • To control impedance, maintain trace widths and trace spacing. • Minimize stubs to minimize reflected signals. • Connections between the USB connector shell and signal ground must be done near the USB connector. • Bypass/flyback caps on VBus, near connector, are recommended. • DPLUS and DMINUS trace lengths should be kept to within two mm of each other in length, with preferred length of 2030 mm. • Maintain a solid ground plane under the DPLUS and DMINUS traces. Do not allow the plane to be split under these traces. • It is preferred is to have no vias placed on the DPLUS or DMINUS trace routing. • Isolate the DPLUS and DMINUS traces from all other signal traces by no less than 10 mm. 13.0 Quad Flat Package No Leads (QFN) Package Design Notes Electrical contact of the part to the Printed Circuit Board (PCB) is made by soldering the leads on the bottom surface of the package to the PCB. Hence, special attention is required to the heat transfer area below the package to provide a good thermal bond to the circuit board. A Copper (Cu) fill is to be designed into the PCB as a thermal pad under the package. Heat is transferred from the FX2 through the device’s metal paddle on the bottom side of the package. Heat from here, is conducted to the PCB at the thermal pad. It is then conducted from the thermal pad to the PCB inner ground plane by a 5 x 5 array of via. A via is a plated through hole in the PCB with a finished diameter of 13 mil. The QFN’s metal die paddle must be soldered to the PCB’s thermal pad. Solder mask is placed on the board top side over each via to resist solder flow into the via. The mask on the top side also minimizes outgassing during the solder reflow process. For further information on this package design please refer to the application note “Surface Mount Assembly of AMKOR’s MicroLeadFrame (MLF) Technology.” This application note can be downloaded from AMKOR’s website from the following URL: “www.amkor.com/products/notes_papers/MLF_AppNote_090 2.pdf”. The application note provides detailed information on board mounting guidelines, soldering flow, rework process, etc. Figure 13-1 below display a cross-sectional area underneath the package. The cross section is of only one via. The solder paste template needs to be designed to allow at least 50% solder coverage. The thickness of the solder paste template should be 5 mil. It is recommended that “No Clean”, type 3 solder paste is used for mounting the part. Nitrogen purge is recommended during reflow. Figure 13-2 is a plot of the solder mask pattern and Figure 133 displays an X-Ray image of the assembly (darker areas indicate solder.). 0.017” dia Solder Mask Cu Fill Cu Fill PCB Material Via hole for thermally connecting the QFN to the circuit board ground plane. 0.013” dia PCB Material This figure only shows the top three layers of the circuit board: Top Solder, PCB Dielectric, and the Ground Plane Figure 13-1. Cross-section of the Area Underneath the QFN Package Figure 13-2. Plot of the Solder Mask (White Area) Figure 13-3. X-ray Image of the Assembly Note: 17. Source for recommendations: EZ-USB FX2™PCB Design Recommendations, http:///www.cypress.com/cfuploads/support/app_notes/FX2_PCB.pdf and High Speed USB Platform Design Guidelines, http://www.usb.org/developers/data/hs_usb_pdg_r1_0.pdf. Purchase of I2C components from Cypress, or one of its sublicensed Associated Companies, conveys a license under the Philips 2 2 2 I C Patent Rights to use these components in an I C system, provided that the system conforms to the I C Standard Specification as defined by Philips. EZ-USB FX2 and ReNumeration are trademarks, and EZ-USB is a registered trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders. Document #: 38-08012 Rev. *E Page 47 of 48 CY7C68013 Document History Page Document Title: CY7C68013 EZ-USB FX2™ USB Microcontroller High-speed USB Peripheral Controller Document Number: 38-08012 REV. ECN NO. Issue Date Orig. of Change Description of Change ** 111753 11/15/01 DSG Changed from Spec number: 38-00929 to 38-08012 *A 111802 02/20/02 KKU Updated functional changes between revision D part and revision E part Changed timing data from simulation data to revision E characterization data *B 115480 06/26/02 KKU Added new 56-pin Quad Flatpack No Lead package and pinout Revised pin description table to reflect new package Corrected Figure 9-8 by moving tsfd parameter location Corrected labels on Dplus and Dminus in Table 4-1 Removed Preliminary from spec title *C 120776 01/06/03 KKU Added bus powered references and PCB layout recommendations and QFN package design notes Updated QFN package drawing 51-85144 to current revision *D 288810 See ECN MON Added lead-free packages Added timing sequence diagrams for slave FIFO read and write Changed PKTEND to FLAGS output propagation delay (asynchronous interface) in Table 9-13from a max value of 70 ns to 115 ns Changed FIFOADR[2:0] Hold Time (tFAH) for Asynchronous FIFO Interface as follows: SLRD/PKTEND to FIFOADR[2:0] Hold Time: 20 ns SLWR to FIFOADR[2:0] Hold Time: 70 ns *E 317674 See ECN MON Provided additional timing restrictions and requirement regarding the use of PKTEND pin to commit a short one byte/word packet subsequent to committing a packet automatically (when in auto mode). Document #: 38-08012 Rev. *E Page 48 of 48