19-1266; Rev 2; 1/07 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators ____________________________Features The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating voltage ranges from +2.5V to +5.5V, making them ideal for both 3V and 5V systems. These comparators also operate with ±1.25V to ±2.75V dual supplies. They consume only 48µA per comparator while achieving a 120ns propagation delay. Input bias current is typically 1.0pA, and input offset voltage is typically 0.5mV. Internal hysteresis ensures clean output switching, even with slow-moving input signals. The output stage’s unique design limits supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output stage that sinks as well as sources current. Large internal output drivers allow rail-to-rail output swing with loads up to 8mA. The MAX988/MAX992/MAX996 have an open-drain output stage that can be pulled beyond VCC to 6V (max) above VEE. These open-drain versions are ideal for level translators and bipolar to singleended converters. The single MAX987/MAX988 are available in tiny 5-pin SC70 packages, while the dual MAX991/MAX992 are available in ultra-small 8-pin SOT23 and µMAX® packages. ♦ 120ns Propagation Delay Selector Guide PART COMPARATORS PER PACKAGE OUTPUT STAGE MAX987 1 Push-Pull MAX988 1 Open-Drain MAX991 2 Push-Pull MAX992 2 Open-Drain MAX995 4 Push-Pull MAX996 4 Open-Drain Applications Portable/BatteryPowered Systems Mobile Communications Zero-Crossing Detectors Window Comparators Level Translators Threshold Detectors/ Discriminators Ground/Supply Sensing IR Receivers Digital Line Receivers µMAX is a registered trademark of Maxim Integrated Products, Inc. ♦ 48µA Quiescent Supply Current ♦ +2.5V to +5.5V Single-Supply Operation ♦ Common-Mode Input Voltage Range Extends 250mV Beyond the Rails ♦ Push-Pull Output Stage Sinks and Sources 8mA Current (MAX987/MAX991/MAX995) ♦ Open-Drain Output Voltage Extends Beyond VCC (MAX988/MAX992/MAX996) ♦ Unique Output Stage Reduces Output Switching Current, Minimizing Overall Power Consumption ♦ 100µA Supply Current at 1MHz Switching Frequency ♦ No Phase Reversal for Overdriven Inputs ♦ Available in Space-Saving Packages: 5-Pin SOT23 (MAX987/MAX988) 8-Pin µMAX (MAX991/MAX992) _______________Ordering Information PART PIN-PACKAGE PKG CODE TOP MARK MAX987EXK-T 5 SC70-5 X5-1 ABM MAX987EUK-T 5 SOT23-5 U5-1 ABZB S8-2 MAX987ESA 8 SO — Ordering Information continued at end of data sheet. Note: All devices specified over the -40°C to +85°C operating temperature range. Typical Application Circuit appears at end of data sheet. Pin Configurations TOP VIEW OUT 1 VCC 2 5 VEE 4 IN- MAX987 MAX988 IN+ 3 SOT23/SC70 Pin Configurations continued at end of data sheet. ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 ________________General Description MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators ABSOLUTE MAXIMUM RATINGS Supply Voltage (VCC to VEE) ...................................................6V IN_-, IN_+ to VEE .......................................-0.3V to (VCC + 0.3V) Current into Input Pins .....................................................±20mA OUT_ to VEE MAX987/MAX991/MAX995 ....................-0.3V to (VCC + 0.3V) MAX988/MAX992/MAX996 ..................................-0.3V to +6V OUT_ Short-Circuit Duration to VEE or VCC ...........................10s Continuous Power Dissipation (TA = +70°C) 5-Pin SC70 (derate 3.1mW/°C above +70°C) ...............247mW 5-Pin SOT23 (derate 7.10mW/°C above +70°C)...........571mW 8-Pin SOT23 (derate 9.1mW/°C above +70°C).............727mW 8-Pin SO (derate 5.88mW/°C above +70°C).................471mW 8-Pin µMAX (derate 4.5mW/°C above +70°C) ..............362mW 14-Pin TSSOP (derate 9.1mW/°C above +70°C) ..........727mW 14-Pin SO (derate 8.33mW/°C above +70°C)...............667mW Operating Temperature Range ...........................-40°C to +85°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10s) .................................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (Note 1) (VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER Supply Voltage Supply Current per Comparator Power-Supply Rejection Ratio Common-Mode Voltage Range (Note 2) Input Offset Voltage (Note 3) Input Hysteresis SYMBOL VCC CONDITIONS TA = +25°C VCC = 5V UNITS 5.5 V 80 80 µA 96 55 80 VEE 0.25 TA = -40°C to +85°C VOS 48 TA = -40°C to +85°C TA = +25°C MAX 96 TA = +25°C 2.5V ≤ VCC ≤ 5.5V Full common-mode range 53 TA = -40°C to +85°C VCC = 2.7V VCMR TYP 2.5 Inferred from PSRR test ICC PSRR MIN VEE TA = +25°C dB VCC + 0.25 V VCC ±0.5 TA = -40°C to +85°C ±5 ±7 mV VHYST ±2.5 IB 0.001 Input Offset Current IOS 0.5 Input Capacitance CIN 1.0 pF 80 dB Input Bias Current (Note 4) Common-Mode Rejection Ratio CMRR Output Leakage Current (MAX988/MAX992/ MAX996 only) ILEAK Output Short-Circuit Current OUT Output-Voltage Low OUT Output-Voltage High (MAX987/MAX991/ MAX995 Only) 2 ISC VOL VOH 50 VOUT = high mV 10 pA 1.0 Sourcing or sinking, VOUT = VEE or VCC VCC = 5V 95 VCC = 2.7V 35 VCC = 5V, ISINK = 8mA TA = +25°C 0.2 VCC = 2.7V, ISINK = 3.5mA TA = +25°C VCC = 5V, ISOURCE = 8mA TA = +25°C 4.6 TA = -40°C to +85°C 4.45 VCC = 2.7V, ISOURCE = 3.5mA TA = +25°C 2.4 TA = -40°C to +85°C 2.3 TA = -40°C to +85°C TA = -40°C to +85°C µA mA 0.4 0.55 0.15 nA 0.3 V 0.4 4.85 2.55 _______________________________________________________________________________________ V High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators (VCC = +2.7V to +5.5V, VEE = 0V, VCM = 0V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA = +25°C.) PARAMETER SYMBOL OUT Rise Time (MAX987/MAX991/ MAX995 Only) tRISE OUT Fall Time tFALL tPDPropagation Delay tPD+ Power-Up Time tPU CONDITIONS VCC = 5.0V VCC = 5.0V MIN TYP CL = 15pF 15 CL = 50pF 20 CL = 200pF 40 CL = 15pF 15 CL = 50pF 20 CL = 200pF 40 MAX987/MAX991/ 10mV overdrive MAX995 only 100mV overdrive 210 CL = 15pF, MAX988/MAX992/ 10mV overdrive VCC = 5V MAX996 only, RPULLUP = 5.1kΩ 100mV overdrive MAX987/MAX991/MAX995 only, CL = 15pF, VCC = 5V MAX UNITS ns ns 120 210 ns 120 10mV overdrive 210 100mV overdrive 120 25 µs Note 1: All device specifications are 100% production tested at TA = +25°C. Limits over the extended temperature range are guaranteed by design, not production tested. Note 2: Inferred from the VOS test. Either or both inputs can be driven 0.3V beyond either supply rail without output phase reversal. Note 3: VOS is defined as the center of the hysteresis band at the input. Note 4: IB is defined as the average of the two input bias currents (IB-, IB+). _______________________________________________________________________________________ 3 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 ELECTRICAL CHARACTERISTICS (continued) Typical Operating Characteristics (VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.) SUPPLY CURRENT PER COMPARATOR vs. TEMPERATURE 80 70 VCC = 5.5.V 60 50 VCC = 2.5.V MAX987 TOC2 1000 SUPPLY CURRENT (µA) VIN+ > VIN- SUPPLY CURRENT (µA) SUPPLY CURRENT PER COMPARATOR vs. OUTPUT TRANSITION FREQUENCY MAX9879 TOC1 90 VCC = 5.5V 100 VCC = 2.5V 40 30 10 -40 -20 0 20 40 60 80 100 0.01 TEMPERATURE (°C) VIN+ > VINOUTPUT HIGH VOLTAGE (mV) (VCC - VOH) 1000 VCC = 2.7V VCC = 5.0V 1 0.1 1 100 1000 10,000 VIN+ < VIN1000 0.1 0.01 10 10,000 OUTPUT LOW VOLTAGE (mV) (VOL) MAX987-04 10,000 10 1 OUTPUT LOW VOLTAGE vs. OUTPUT SINK CURRENT OUTPUT HIGH VOLTAGE vs. OUTPUT SOURCE CURRENT 100 0.1 OUTPUT TRANSITION FREQUENCY (kHz) 10 MAX987-03a -60 VCC = 2.7V 100 VCC = 5.0V 10 1 100 0.01 OUTPUT SOURCE CURRENT (mA) 0.1 1 10 100 OUTPUT SINK CURRENT (mA) OUTPUT SHORT-CIRCUIT CURRENT vs. TEMPERATURE INPUT OFFSET VOLTAGE vs. TEMPERATURE 80 70 60 50 40 30 0.9 OFFSET VOLTAGE (mV) VCC = 5.0V MAX987 06 110 100 90 0.7 0.5 0.3 0.1 VCC = 2.7V 20 10 -0.1 0 -0.3 -60 -40 -20 0 20 40 TEMPERATURE (°C) 4 1.1 MAX987 05 120 OUTPUT SINK CURRENT (mA) MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 60 80 100 -60 -40 -20 0 20 40 60 TEMPERATURE (°C) _______________________________________________________________________________________ 80 100 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 1000 VOD = 50mV 190 PROPAGATION DELAY (ns) VOD = 50mV PROPAGATION DELAY (ns) 200 MAX987 TOC8 10,000 MAX987 TOC9 PROPAGATION DELAY vs. TEMPERATURE PROPAGATION DELAY vs. CAPACITIVE LOAD 180 170 VCC = 2.5.V 160 150 140 VCC = 5.5.V 130 120 110 100 0.01 100 0.1 1 10 100 1000 -40 -20 0 20 40 60 80 TEMPERATURE (°C) PROPAGATION DELAY vs. INPUT OVERDRIVE MAX987/MAX991/MAX995 PROPAGATION DELAY (tPD+) 250 100 MAX987-11 MAX987 TOC10 300 PROPAGATION DELAY (ns) -60 CAPACITIVE LOAD (nF) VOD = 50mV 50mV/div IN+ 200 VCC = 2.5V 150 VCC = 5.5V 100 2V/div OUT 50 0 0 20 40 60 80 100 120 140 100ns/div INPUT OVERDRIVE (mV) MAX987/MAX991/MAX995 SWITCHING CURRENT, OUT RISING PROPAGATION DELAY (tPD-) MAX987-12 MAX987-13 VOD = 50mV 50mV/div 50mV/div IN+ IN+ 2V/div OUT 2V/div OUT 2mA/div ICC VOD = 50mV 100ns/div 200ns/div _______________________________________________________________________________________ 5 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 Typical Operating Characteristics (continued) (VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.) MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators Typical Operating Characteristics (continued) (VCC = +5V, VCM = 0V, TA = +25°C, unless otherwise noted.) SWITCHING CURRENT, OUT FALLING 1MHZ RESPONSE MAX987-14 MAX987-15 VOD = 50mV IN+ 50mV/div OUT 2V/div ICC 2mA/div IN+ 50mV/div OUT 2V/div VOD = 50mV 200ns/div 200ns/div POWER-UP DELAY MAX987-16 VIN- = 50mV VIN+ = 0V 2V/div VCC 2V/div OUT 5µs/div 6 _______________________________________________________________________________________ High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators PIN MAX987 MAX988 MAX991 MAX996 MAX995 MAX996 NAME FUNCTION SOT23/ SC70 SO SO/µMAX/ SOT23 SO/ TSSOP 1 6 — — OUT Comparator Output 2 7 8 4 VCC Positive Supply Voltage 3 3 — — IN+ Comparator Noninverting Input 4 2 — — IN- Comparator Inverting Input 5 4 4 11 VEE Negative Supply Voltage — — 1 1 OUTA — — 2 2 INA- Comparator A Inverting Input — — 3 3 INA+ Comparator A Noninverting Input — — 5 5 INB+ Comparator B Noninverting Input — — 6 6 INB- Comparator B Inverting Input — — 7 7 OUTB Comparator B Output — — — 8 OUTC Comparator C Output — — — 9 INC- Comparator C Inverting Input — — — 10 INC+ Comparator C Noninverting Input — — — 12 IND+ Comparator D Noninverting Input — — — 13 IND- Comparator D Inverting Input — — — 14 OUTD — 1, 5, 8 — — N.C. Comparator A Output Comparator D Output No Connection. Not internally connected. _______________________________________________________________________________________ 7 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 ______________________________________________________________Pin Description MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators Detailed Description Applications Information The MAX987/MAX988/MAX991/MAX992/MAX995/ MAX996 are single/dual/quad low-power, low-voltage comparators. They have an operating supply voltage range between +2.5V and +5.5V and consume only 48µA per comparator, while achieving 120ns propagation delay. Their common-mode input voltage range extends 0.25V beyond each rail. Internal hysteresis ensures clean output switching, even with slow-moving input signals. Large internal output drivers allow rail-torail output swing with up to 8mA loads. The output stage employs a unique design that minimizes supply-current surges while switching, virtually eliminating the supply glitches typical of many other comparators. The MAX987/MAX991/MAX995 have a push-pull output structure that sinks as well as sources current. The MAX988/MAX992/MAX996 have an opendrain output stage that can be pulled beyond VCC to an absolute maximum of 6V above VEE. Additional Hysteresis Input Stage Circuitry The devices’ input common-mode range extends from -0.25V to (VCC + 0.25V). These comparators may operate at any differential input voltage within these limits. Input bias current is typically 1.0pA if the input voltage is between the supply rails. Comparator inputs are protected from overvoltage by internal body diodes connected to the supply rails. As the input voltage exceeds the supply rails, these body diodes become forward biased and begin to conduct. Consequently, bias currents increase exponentially as the input voltage exceeds the supply rails. Output Stage Circuitry These comparators contain a unique output stage capable of rail-to-rail operation with up to 8mA loads. Many comparators consume orders of magnitude more current during switching than during steady-state operation. However, with this family of comparators, the supply-current change during an output transition is extremely small. The Typical Operating Characteristics Supply Current vs. Output Transition Frequency graph shows the minimal supply-current increase as the output switching frequency approaches 1MHz. This characteristic eliminates the need for power-supply filter capacitors to reduce glitches created by comparator switching currents. Battery life increases substantially in high-speed, battery-powered applications. MAX987/MAX991/MAX995 The MAX987/MAX991/MAX995 have ±2.5mV internal hysteresis. Additional hysteresis can be generated with three resistors using positive feedback (Figure 1). Unfortunately, this method also slows hysteresis response time. Use the following procedure to calculate resistor values for the MAX987/MAX991/MAX995. 1) Select R3. Leakage current at IN is under 10nA; therefore, the current through R3 should be at least 1µA to minimize errors caused by leakage current. The current through R3 at the trip point is (VREF VOUT) / R3. Considering the two possible output states and solving for R3 yields two formulas: R3 = V REF / 1µA or R3 = (V REF - V CC) / 1µA. Use the smaller of the two resulting resistor values. For example, if VREF = 1.2V and VCC = 5V, then the two R3 resistor values are 1.2MΩ and 3.8MΩ. Choose a 1.2MΩ standard value for R3. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = R3 x (VHB / VCC) For this example, insert the values R1 = 1.2MΩ x (50mV / 5V) = 12kΩ. 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. For this example, choose 3V. VCC R3 R1 0.1µF VIN VCC R2 OUT VEE VREF MAX987 MAX991 MAX995 Figure 1. Additional Hysteresis (MAX987/MAX991/MAX995) 8 _______________________________________________________________________________________ High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators R2 = 1 = 8.03kΩ ⎛ 1 1 3.0V ⎞ − ⎜ ⎟ − 12kΩ 2.2MΩ ⎝ 1.2 x 12kΩ ⎠ 6) Verify trip voltages and hysteresis as follows: ⎛ 1 1 1⎞ + + VIN rising: VTHR = VREF x R1 x ⎜ ⎟ R2 R3 ⎠ ⎝ R1 ⎛ R1 x VCC ⎞ VIN falling : VTHF = VTHR − ⎜ ⎟ R3 ⎝ ⎠ Use the following procedure to calculate resistor values: 1) Select R3 according to the formulas R3 = VREF / 1µA or R3 = (VREF - VCC) / 1µA - R4. Use the smaller of the two resulting resistor values. 2) Choose the hysteresis band required (VHB). For this example, choose 50mV. 3) Calculate R1 according to the following equation: R1 = (R3 + R4) x (VHB / VCC) 4) Choose the trip point for VIN rising (VTHR; VTHF is the trip point for VIN falling). This is the threshold voltage at which the comparator switches its output from low to high as VIN rises above the trip point. 5) Calculate R2 as follows: R2 = Hysteresis = VTHR − VTHF MAX988/MAX992/MAX996 The MAX988/MAX992/MAX996 have ±2.5mV internal hysteresis. They have open-drain outputs and require an external pullup resistor (Figure 2). Additional hysteresis can be generated using positive feedback, but the formulas differ slightly from those of the MAX987/MAX991/MAX995. 1 ⎛ VTHR ⎞ 1 1 ⎜V ⎟ − R1 − R 3 + R4 ⎝ REF x R1⎠ 6) Verify trip voltages and hysteresis as follows: VIN rising: VTHR = VREF x R1 x ⎛ 1 ⎞ 1 1 + + ⎜ ⎟ R2 R3 + R4 ⎠ ⎝ R1 ⎛ R1 x VCC ⎞ VIN falling : VTHF = VTHR − ⎜ ⎟ ⎝ R3 + R4 ⎠ VCC Hysteresis = VTHR − VTHF R3 0.1µF R4 R1 VIN VCC R2 OUT VEE VREF MAX988 MAX992 MAX996 Figure 2. Additional Hysteresis (MAX988/MAX992/MAX996) Circuit Layout and Bypassing These comparators’ high-gain bandwidth requires design precautions to maximize their high-speed capability. The recommended precautions are: 1) Use a PCB with an unbroken, low-inductance ground plane. 2) Place a decoupling capacitor (a 0.1µF ceramic capacitor is a good choice) as close to V CC as possible. 3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators. 4) Solder the devices directly to the PCB instead of using a socket. _______________________________________________________________________________________ 9 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 5) Calculate R2 as shown. For this example, choose an 8.2kΩ standard value: 1 R2 = ⎛ VTHR ⎞ 1 1 − − ⎜V ⎟ R1 R3 ⎝ REF x R1⎠ MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators Zero-Crossing Detector Logic-Level Translator Figure 3 shows a zero-crossing detector application. The MAX987’s inverting input is connected to ground, and its noninverting input is connected to a 100mVp-p signal source. As the signal at the noninverting input crosses 0V, the comparator’s output changes state. Figure 4 shows an application that converts 5V logic levels to 3V logic levels. The MAX988 is powered by the +5V supply voltage, and the pullup resistor for the MAX988’s open-drain output is connected to the +3V supply voltage. This configuration allows the full 5V logic swing without creating overvoltage on the 3V logic inputs. For 3V to 5V logic-level translation, simply connect the +3V supply to VCC and the +5V supply to the pullup resistor. +5V (+3V) VCC 0.1µF 0.1µF +3V (+5V) 2 2 VCC 100mV 100kΩ 4 IN+ VCC 4 RPULLUP IN- OUT 1 OUT 1 100kΩ 3 IN- 3 3V (5V) LOGIC OUT IN+ MAX987 MAX988 VEE VEE 5 5 5V (3V) LOGIC IN Figure 3. Zero-Crossing Detector Figure 4. Logic-Level Translator Pin Configurations (continued) TOP VIEW N.C. 1 IN- 2 IN+ 3 MAX987 MAX988 VEE 4 SO 8 N.C. OUTA 1 7 VCC INA- 2 6 OUT INA+ 3 5 N.C. VEE 4 MAX991 MAX992 8 VCC 7 OUTB 6 INB- 5 INB+ OUTA 1 14 OUTD INA- 2 13 IND12 IND+ INA+ 3 SO/µMAX/SOT23 VCC 4 INB+ 5 MAX995 MAX996 10 INC+ INB- 6 9 INC- OUTB 7 8 OUTC SO/TSSOP 10 11 VEE ______________________________________________________________________________________ High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators __Ordering Information (continued) VCC PART VIN 0.1µF VCC *RPULLUP IN+ OUT IN- MAX98_ MAX99_ VEE VREF * MAX988/MAX992/MAX996 ONLY THRESHOLD DETECTOR PKG CODE PIN-PACKAGE TOP MARK MAX988EXK-T 5 SC70-5 X5-1 ABN MAX988EUK-T 5 SOT23-5 U5-1 ABZC MAX988ESA 8 SO S8-2 — MAX991EKA-T 8 SOT23-8 K8-5 AAEB MAX991EUA-T 8 µMAX-8 U8-1 — MAX991ESA 8 SO S8-2 — MAX992EKA-T 8 SOT23-8 K8-5 AAEC MAX992EUA-T 8 µMAX-8 U8-1 — MAX992ESA 8 SO S8-2 — MAX995EUD 14 TSSOP U14-1 — MAX995ESD 14 SO S14-4 — MAX996EUD 14 TSSOP U14-1 — MAX996ESD 14 SO S14-4 — Note: All devices specified over the -40°C to +85°C operating temperature range. __________________________________________________Tape-and-Reel Information 4.0 ±0.1 1.0 ±0.1 2.0 ±0.05 1.5 +0.1/-0.0 DIAMETER 1.75 ±0.1 A 3.5 ±0.05 8.0 ±0.3 2.2 ±0.1 0.5 RADIUS TYPICAL 4.0 ±0.1 A0 A Bo 0.30 ±0.05 0.8 ±0.05 1.0 MINIMUM Ko Ao = 3.1mm ±0.1 Bo = 2.7mm ±0.1 Ko = 1.2mm ±0.1 NOTE: DIMENSIONS ARE IN MM. AND FOLLOW EIA481-1 STANDARD. 0.30R MAX. ______________________________________________________________________________________ 11 MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 Typical Application Circuit Package Information (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.) SOT-23 5L .EPS MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 12 ______________________________________________________________________________________ High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 8 INCHES DIM A A1 A2 b E Ø0.50±0.1 H c D e E H 0.6±0.1 L 1 1 α 0.6±0.1 S BOTTOM VIEW D MIN 0.002 0.030 MAX 0.043 0.006 0.037 0.014 0.010 0.007 0.005 0.120 0.116 0.0256 BSC 0.120 0.116 0.198 0.188 0.026 0.016 6° 0° 0.0207 BSC 8LUMAXD.EPS 4X S 8 MILLIMETERS MAX MIN 0.05 0.75 1.10 0.15 0.95 0.25 0.36 0.13 0.18 2.95 3.05 0.65 BSC 2.95 3.05 4.78 5.03 0.41 0.66 0° 6° 0.5250 BSC TOP VIEW A1 A2 A α c e b L SIDE VIEW FRONT VIEW PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE, 8L uMAX/uSOP APPROVAL DOCUMENT CONTROL NO. 21-0036 REV. J 1 1 Revision History Pages changed at Rev 2: 1–6, 8–13 Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 ____________________ 13 © 2007 Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc. MAX987/MAX988/MAX991/MAX992/MAX995/MAX996 Package Information (continued) (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maxim-ic.com/packages.)