RICHTEK RT9278GQV

RT9278
Preliminary
High Efficiency Boost LDO Converter & High Power White
LED Driver
General Description
Features
The RT9278 is a compact, high efficiency, synchronous
step-up converter, it provides a power supply solution for
products powered by either two-cell, three-cell Alkaline/
NiMH or one-cell Li-Ion/Li-polymer battery.
l
The RT9278 is boost converter with PWM control loop,
provide up to 95% efficiency by using a synchronous
rectifier. The maximum peak current in the internal switch
is limited to up to 2A.
l
l
l
l
l
l
l
It keeps the output voltage regulated when the input
voltage exceeds the setting output voltage. The output
voltage can be set by an external resister divider, or be
fixed to reduce external components. It integrates a linear
controller for linear regulator.
l
l
l
l
l
95% Efficiency Synchronous Boost Converter
High Supply Capability
2A Current Limit
Input Voltage Range : 1.5V to 5.5V
600kHz Fixed Switching Rate
Adjustable Output Voltage Options Up to 5.5V
Output Voltage Keep Regulated when Input Voltage
Exceed Setting Output Voltage
1µA Supply Current in Shutdown Mode
External Compensation Network
Build in Linear Controller for Linear Regulator
Over Temperature Protection
Small 10-Lead VDFN Package
RoHS Compliant and 100% Lead (Pb)-Free
RT9278 is available in VDFN-10L 3x3 package.
Applications
Ordering Information
l
RT9278
l
Package Type
QV : VDFN-10L 3x3 (V-Type)
Operating Temperature Range
P : Pb Free with Commercial Standard
G : Green (Halogen Free with Commercial Standard)
l
l
Digital Still Camera
Camera White LED Flash Light
PDAs
Portable Device
Pin Configurations
(TOP VIEW)
Note :
}RoHS compliant and compatible with the current requirements of IPC/JEDEC J-STD-020.
}Suitable for use in SnPb or Pb-free soldering processes.
}100% matte tin (Sn) plating.
FB
COMP
GND
EN
LX
1
10
2
9
3
GND
5
8
7
4
11
9
Richtek Pb-free and Green products are :
LFB
LDRI
PGND
VDD
VOUT
VDFN-10L 3x3
Marking Information
For marking information, contact our sales representative
directly or through a Richtek distributor located in your
area, otherwise visit our website for detail.
DS9278-04 August 2007
www.richtek.com
1
RT9278
Preliminary
Typical Application Circuit
Chip Enable
4 EN
Chip
Shutdown 100ms
L1
1 to 10uH
VIN
5 LX
8
C1
4.7uF
R1 2.2k
VDD 7
RT9278
Q1
AO7401
VOUT 6
PGND
2 COMP
3
GND
C2
12nF
C3
1uF
C4
2.2uF
FB 1
LDRI 9
LFB 10
700mA
100ms
D1
Power LED
R2
300k
R3
0.28
Figure 1. Novel Up-Down Driver for Power LED with Strobe Mode
Note : Patent Pending.
Chip Enable
4
L1
1 to 10uH Chip Shutdown
VIN
5 LX
8
C1
4.7uF
R1 2.2k
C2
12nF
EN
VDD 7
RT9278
Istrobe
C3
1uF
Q1
AO3403
VOUT 6
PGND
2 COMP
3 GND
C4
2.2uF
1
FB
LDRI 9
LFB 10
IMovie
700mA
2.8V
GPIO
R2
300k
200mA
100ms
0V
D1
Power LED
R4 1k
R3
0.28
R5
18.2k
GPIO
R4 = 1kΩ
0.2
R3 =
IStrobe
(GPIO_HI − 0.2) x R4
R5 =
0.2 − (IMovie x R3)
Figure 2. Novel Up-Down Driver for Power LED with Strobe Mode and Movie Mode
Note :
l
Patent Pending.
l
The GPIO Signal has to pull high before enable IC.
Chip Enable
L1
4.7uH
4
Chip Shutdown
VIN
R1 2.5k
C1
10uF
C2
2.2nF
VDD 7
EN
RT9278
5 LX
6
2 COMP VOUT
8 PGND
9
10
LDRI
LFB
1
3
FB
GND
C3
1uF
C4
10uF
Q1
AO3403
R2
510k
VOUT
3.3V
C5
100pF
R3
470k
R4
150k
Figure 3. Synchronous Boost Converter with Load Disconnect in Shutdown
www.richtek.com
2
DS9278-04 August 2007
RT9278
Preliminary
VIN
1.6V to 5V
L1
4.7uH
4 EN
GPIO
5 LX
8
C1
10uF
R1 51k
VDD 7
RT9278
C3
1uF
PGND
FB 1
2 COMP
C4
10pF
R2
732k
C5
20uF
VOUT
3.3V
R5
620k
R4
510k
R3
226k
3 GND
C2
3.3nF
Q1
AO3403
VOUT 6
LDRI 9
10
LFB
C6
22pF
C7
1uF
R6
40.2k
Figure 4. Boost-LDO Application for Constant Output Voltage
VIN
1.6V to 3.0V
L1
4.7uH
GPIO
4 EN
5 LX
8
C1
20uF
R1 3.9k
C2
1.5nF
VDD 7
RT9278
VOUT1
3.3V/300mA
C3
1uF
Q1
AO3403
VOUT 6
PGND
2 COMP
3
GND
FB
1
C4
10pF
R2
470k
C5
40uF
R3
150k
VOUT2
1.8V/150mA
R5
887k
R4
510k
LDRI 9
10
LFB
C6
22pF
C7
30uF
R6
110k
Figure 5. Synchronous Boost Converter Driver for Dual Output Voltage
Chip Enable
L
Chip Shutdown
4 EN
VDD 7
RT9278
5 LX
9 LDRI
VIN
C1
10uF
CCOMP
VOUT
PVD
10 LFB
RCOMP
C3
1uF
CFF
2 COMP
1
FB
3
GND
PGND 8
R2
C OUT
40uF
R1
Figure 6. Synchronous Boost Converter
DS9278-04 August 2007
www.richtek.com
3
RT9278
Preliminary
Table 1. Component Selection for Figure 6 (L=2.2µH)
Input Voltage Output Voltage
(V)
(V)
L
(µH)
COUT
(µF)
R1
(kΩ)
R2
(kΩ)
RCOMP
(kΩ)
CCOMP
(nF)
C FF
(pF)
1.5~3.0
3.3
2.2
40
150
470
43
5.6
18
1.5~3.3
5.0
2.2
40
130
680
24
8.2
12
3.0~4.5
5.0
2.2
40
130
680
24
3.9
12
Table 2. Component Selection for Figure 6 (L=4.7µH)
Input Voltage Output Voltage
(V)
(V)
L
(µH)
COUT
(µF)
R1
(kΩ)
R2
(kΩ)
RCOMP
(kΩ)
CCOMP
(nF)
C FF
(pF)
1.5~3.0
3.3
4.7
40
150
470
24
10
18
1.5~3.3
5.0
4.7
40
130
680
24
15
12
3.0~4.5
5.0
4.7
40
130
680
24
8.2
12
Table 3. Component Selection for Figure 6 (L=6.8µH)
Input Voltage Output Voltage
(V)
(V)
L
(µH)
COUT
(µF)
R1
(kΩ)
R2
(kΩ)
RCOMP
(kΩ)
CCOMP
(nF)
CFF
(pF)
1.5~3.0
3.3
6.8
40
150
470
24
15
18
1.5~3.3
5.0
6.8
40
130
680
24
22
12
3.0~4.5
5.0
6.8
40
130
680
24
12
12
Table 4. Component Selection for Figure 6 (L=10µH)
Input Voltage Output Voltage
(V)
(V)
L
(µH)
COUT
(µF)
R1
(kΩ)
R2
(kΩ)
RCOMP
(kΩ)
CCOMP
(nF)
C FF
(pF)
1.5~3.0
3.3
10
40
150
470
24
22
18
1.5~3.3
5.0
10
40
130
680
24
33
12
3.0~4.5
5.0
10
40
130
680
24
18
12
www.richtek.com
4
DS9278-04 August 2007
RT9278
Preliminary
Functional Pin Description
Pin No.
Pin Name
Pin Function
1
FB
Feedback Input Pin.
2
COMP
Feedback Compensation Pin.
3
GND
Ground.
4
EN
Enable Input Pin
5
LX
Switch Node.
6
VOUT
Output Pin
7
VDD
Device Input Power Pin.
8
PGND
Power Ground.
9
LDRI
Linear Controller Driver Output.
10
LFB
Linear Controller Feedback Input.
The exposed pad must be soldered to a large PCB and connected to
Exposed Pad (11) GND
GND for maximum power dissipation.
Function Block Diagram
COMP
Error
AMPLIFIER
-
FB
VREF = 0.8V
+
VOUT
Error
Comparator
+
VDD
Control
and
Driver
Logic
LX
GND
Oscillator
and
Shutdown
Control
EN
Slope
Compensation
Current
Sense
PGND
LDRI
LFB
VREF = 0.2V
DS9278-04 August 2007
+
www.richtek.com
5
RT9278
Preliminary
Operation
RT9278 integrates a high-efficiency step-up DC-DC converter and a linear regulator controller. The boost converter is
based on a fixed frequency, pulse-width-modulation (PWM) controller using a synchronous rectifier to obtain maximum
efficiency. Current mode control with external compensation network makes it easy to stabilize the system and keep
maximum flexibility. The linear regulator controller can use to drive the external P-Channel MOSFET switch for load
disconnection. It keeps the output voltage regulated even when the input voltage exceeds the nominal output voltage,
and keeps the output voltage completely disconnected from input voltage (battery) when the chip is in shutdown mode
Soft-start
When the chip is enabled. Soft-start is achieved by ramping up the PWM duty from very small to normal operation. The
ramping up PWM duty is achieved by sourcing 1uA from error amplifier to the compensation capacitor. When the output
voltage is regulated, the PWM duty enters the normal operation, and the error amplifier can sink and source up to 22uA.
The soft-start time is set by the following formula :
TSS =
(1V - 1µA x RCOMP ) x CCOMP
1µA
RCOMP and CCOMP are compensation components.
Current limit
The current of NMOS is sensed cycle by cycle to prevent over current. When over current limit, then the NMOS is off.
This state is latched and then reset automatically at next clock cycle.
Over voltage
When the chip voltage is higher than 6.5V, Switch is off. When the Over Voltage Protection is relieved, the chip operates
well again.
Thermal protection
Thermal protection function is integrated in the chip. When the chip temperature is higher than 180°C, the controllers
are shutdown. 20°C is the hysteresis range of temperature to prevent unstable operation when the thermal protection
happens. When the thermal protection is relieved, the chip operates well again.
www.richtek.com
6
DS9278-04 August 2007
RT9278
Preliminary
Absolute Maximum Ratings
l
l
l
l
l
l
l
l
l
(Note 1)
Supply Voltage, VDD ------------------------------------------------------------------------------------------------- 7V
LX Pin Voltage -------------------------------------------------------------------------------------------------------- − 0.3V to 7V
The Other pins -------------------------------------------------------------------------------------------------------- − 0.3V to 7V
Power Dissipation, PD @ TA = 25°C
VDFN-10L 3x3 -------------------------------------------------------------------------------------------------------- 1.43W
Package Thermal Resistance (Note 4)
VDFN-10L 3x3, θJA --------------------------------------------------------------------------------------------------- 70°C/W
Lead Temperature (Soldering, 10 sec.)-------------------------------------------------------------------------- 260°C
Operation Temperature Range ------------------------------------------------------------------------------------ −40°C to 85°C
Storage Temperature Range --------------------------------------------------------------------------------------- − 65°C to 150°C
ESD Susceptibility (Note 2)
HBM (Human Body Mode) ----------------------------------------------------------------------------------------- 2kV
Recommended Operating Conditions
l
l
(Note 3)
Ambient Temperature Range -------------------------------------------------------------------------------------- 0°C to 70°C
Junction Temperature Range -------------------------------------------------------------------------------------- 0°C to 125°C
Electrical Characteristics
(VBAT = 1.8V, VOUT = 3.3V, TA = 25°C, unless otherwise specified)
Parameter
Symbol
Test Conditions
Min
Typ
Max
Units
--
1.5
--
V
Start-Up Voltage
VST
Operating Voltage Range, After start-up
VBAT
1.1
--
5.5
V
VOUT Output Voltage Range
VOUT_ADJ
2.4
--
5.5
V
--
6.5
--
V
IL = 1mA
VOUT Over Voltage Protection
Switch-off Current I (VBAT)
ISW OFF
VOUT = 3.3V, VFB = 0.9V
--
200
350
µA
Shutdown Current
IOFF
EN Pin = 0V, Open Loop
--
0.01
1
µA
Feedback Reference Voltage
VFB
Close Loop, V OUT = 3.3V
0.784
0.8
0.816
V
Switching Frequency
FS
--
650
--
kHz
Maximum Duty
D(MAX)
--
85
--
%
SWN Switch ON Resistance
VOUT = 3.3V
--
210
--
mΩ
SWP Switch ON Resistance
VOUT = 3.3V
--
240
--
mΩ
VOUT = 3.3V
--
2
--
A
GM
--
0.2
--
ms
Compensation Source Current
--
22
--
uA
Compensation Sink Current
--
22
--
uA
Current Limit Setting
ISW
Error Amplifier
To be continued
DS9278-04 August 2007
www.richtek.com
7
RT9278
Parameter
Preliminary
Symbol
Test Conditions
Min
Typ
Max
Units
--
0.2
--
V
EN Input High Level Threshold
--
--
1.3
V
EN Input Low Level Threshold
0.4
--
--
V
Linear Controller
Feedback Voltage for Linear Controller
VLFB
Thermal Shutdown
TSD
--
180
--
°C
Thermal Shutdown Hysterises
∆TSD
--
20
--
°C
Note 1.Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. Devices are ESD sensitive. Handling precaution recommended.
Note 3. The device is not guaranteed to function outside its operating conditions.
Note 4. θJA is measured in the natural convection at T A = 25°C on a high effective thermal conductivity test board of
JEDEC 51-7 (2S2P, 4-Layers) thermal measurement standard.
www.richtek.com
8
DS9278-04 August 2007
RT9278
Preliminary
Typical Operating Characteristics
Reference Voltage vs. Temperature
Frequency vs. Temperature
0.804
700
0.803
Reference Voltage (V)
660
640
620
600
0.802
0.801
0.8
0.799
0.798
0.797
VDD = 3.3V
VDD = 3.3V
0.796
580
-40 -20
0
20
40
60
-40 -20
80 100 120 140 160 180
0
Efficiency vs. Output Current
80 100 120 140 160 180
60
=
=
=
=
3.0V
2.5V
2.0V
1.5V
50
40
30
20
10
VOUT = 5.0V
90
80
Efficiency (%)
VIN
VIN
VIN
VIN
70
100
Refer to Application Circuit Figure 3
VOUT = 3.3V
80
Efficiency (%)
60
Efficiency vs. Output Current
90
VIN
VIN
VIN
VIN
VIN
VIN
VIN
70
60
50
40
30
=
=
=
=
=
=
=
4.5V
4.0V
3.5V
3.0V
2.5V
2.0V
1.5V
20
10
0
0
1
10
100
1000
1
10
Output Current (mA)
100
1000
Output Current (mA)
Input Voltage vs. Output Voltage
Input Voltage vs. Output Voltage
3.350
5.150
3.325
5.100
Output Voltage (V)
Output Voltage (V)
40
Temperature (°C)
Temperature (°C)
100
20
Refer to Application Circuit Figure 3
Frequency (kHz)
680
3.300
3.275
3.250
5.050
5.000
4.950
4.900
3.225
VOUT = 3.3V
VOUT = 5.0V
3.200
4.850
1.6
1.8
2.0
2.2
2.4
Input Voltage (V)
DS9278-04 August 2007
2.6
2.8
3.0
1.6
1.925
1.93 2.25 2.575
2.58
2.9
3.225
3.23 3.55 3.875
3.88
4.2
Input Voltage (V)
www.richtek.com
9
RT9278
Preliminary
Output Voltage vs. Output Current
4.98
3.305
3.300
4.97
4.96
3.295
4.95
Output Voltage (V)
Output Voltage (V)
Output Voltage vs. Output Current
3.310
3.290
3.285
3.280
3.275
3.270
VIN
VIN
VIN
VIN
3.265
3.260
3.255
=
=
=
=
3.0V
2.5V
2.0V
1.5V
VOUT = 3.3V
3.250
1
10
100
4.91
4.90
4.89
4.88
4.87
4.86
4.85
VIN
VIN
VIN
VIN
VIN
VIN
VIN
VOUT = 5.0V
1
10
=
=
=
=
=
=
=
4.2V
4.0V
3.5V
3.0V
2.5V
2.0V
1.5V
100
Output Current (mA)
Power LED Efficiency vs. Input Voltage
Normal Operation
80
70
60
50
40
30
20
Vf = 3.5V, ILED = 200mA, L = 4.7µH
Refer to Application Circuit Figure 1
Output Current (mA)
90
Power LED Efficiency (%)
4.92
1000
100
10
4.94
4.93
1000
VOUT
(10mV/Div)
(5V/Div)
VLX
(1V/Div)
VIN
II N
(500mA/Div)
VIN = 1.5V, VOUT = 5V, ILOAD = 100mA
0
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 4.3
Time (1µs/Div)
Input Voltage (V)
Normal Operation
Normal Operation
VOUT
VOUT
(10mV/Div)
(10mV/Div)
(5V/Div)
VIN
(1V/Div)
VLX
VLX
(1V/Div)
VIN
II N
(1A/Div)
II N
VIN = 1.5V, VOUT = 5V, ILOAD = 300mA
Time (1µs/Div)
www.richtek.com
10
(5V/Div)
(500mA/Div)
VIN = 4.2V, VOUT = 5V, ILOAD = 100mA
Time (1µs/Div)
DS9278-04 August 2007
RT9278
Preliminary
Normal Operation
VIN = 1.5V, VOUT = 5V, ILOAD = 100mA to 300mA
(1V/Div)
VLX
(5V/Div)
II N
(500mA/Div)
VIN = 4.2V, VOUT = 5V, ILOAD = 300mA
Output Voltage
Deviation (mV)
Load Current
(mA)
(10mV/Div)
VOUT
VIN
Load Transient Regulation
400
200
0
50
0
-50
Time (1µs/Div)
Time (1ms/Div)
Load Transient Regulation
Flash LED
Load Current
(mA)
VIN = 4.2V, VOUT = 5V, ILOAD = 100mA to 400mA
VIN = 3.0V, Power LED = 200mA to 700mA
VIN
400
200
(100mV/Div)
0
(2V/Div)
Output Voltage
Deviation (mV)
GPIO
(500mA
/Div)
100
0
ILED
-100
II N
(500mA/Div)
Time (1ms/Div)
Time (10ms/Div)
Flash LED
Flash LED
VIN = 3.77V, Power LED = 200mA to 700mA
VIN
VIN = 4.3V, Power LED = 200mA to 700mA
VIN
(100mV/Div)
(100mV/Div)
(2V/Div)
(2V/Div)
GPIO
GPIO
(500mA
/Div)
(500mA/Div)
ILED
ILED
II N
(500mA/Div)
Mode Transition
Time (10ms/Div)
DS9278-04 August 2007
II N
(500mA/Div)
Time (10ms/Div)
www.richtek.com
11
RT9278
Preliminary
Application Information
RT9278 integrates a high-efficiency synchronous rectifier
step-up DC-DC converter and a linear regulator controller.
To fully utilize its advantages, peripheral components
should be appropriately selected. The following information
provides basic considerations for component selection.
Inductor Selection
For a better efficiency in high switching frequency
converter, the inductor selection has to use a proper core
material such as ferrite core to reduce the core loss and
choose low ESR wire to reduce copper loss. The most
important point is to prevent the core saturated when
handling the maximum peak current. Using a shielded
inductor can minimize radiated noise in sensitive
applications. The maximum peak inductor current is the
maximum input current plus the half of inductor ripple
current. The calculated peak current has to be smaller
than the current limitation in the electrical characteristics.
A typical setting of the inductor ripple current is 20% to
40% of the maximum input current. If the selection is
40%
1
IPK = IIN(MAX) + IRIPPLE = 1.2 × IIN(MAX)
2
 (IOUT(MAX) × VOUT 
= 1.2 × 

 η × VIN(MIN)

The minimum inductance value is derived from the following
equation:
L=
η × IIN(MIN)2 × [VOUT - VIN(MIN)]
0.4 × IOUT(MAX) × VOUT 2 × fOSC
Depending on the application, the recommended inductor
value is between 2.2µH and 10µH.
Output Capacitor Selection
For lower output voltage ripple, low-ESR ceramic capacitors
are recommended. The tantalum capacitors can be used
as well, but the ESR is bigger than ceramic capacitor. The
output voltage ripple consists of two components: one is
the pulsating output ripple current flows through the ESR,
and the other is the capacitive ripple caused by charging
and discharging.
VRIPPLE = VRIPPLE(ESR ) + VRIPPLE(C)
≅ IPEAK × ESRCOUT +
IPP
2× C× f
Output Voltage Setting
Referring to application circuits (Figure 6), the output
voltage of the switching regulator (VOUT ) can be set with
below equation :
R2
VOUT = (1 +
) × VFB,
R1
VFB = 0.8V (typ.)
Linear Regulator
Linear Regular MOSFETs Selection
The linear controller of RT9278 was designed to drive an
external P-Channel MOSFET. The main consideration of
pass MOSFETs of linear regulator is package selection
for efficient removal of heat. The power dissipation of a
linear regulator is
Plinear = (VIN-VOUT ) x IOUT
(W)
The criterion for selection of package is the junction
temperature below the maximum desired temperature with
the maximum expected ambient temperature.
Layout Guide
Input Capacitor Selection
For better input bypassing, low-ESR ceramic capacitors
are recommended for performance. A 10µF input capacitor
is sufficient for most applications. For a lower output power
requirement application, this value can be decreased.
www.richtek.com
12
l
l
l
A full GND plane without gap break.
VDD to GND noise bypass − Short and wide connection
for the 1µF MLCC capacitor between Pin7 and Pin3.
VIN to GND noise bypass − Add a capacitor close to L1
inductor, when VIN is not an ideal voltage source.
l
Minimized FB node copper area and keep far away
from noise sources.
l
The MOSFETs of linear regulator should have wide pad
to dissipate the heat.
DS9278-04 August 2007
RT9278
Preliminary
Outline Dimension
D2
D
L
E
E2
SEE DETAIL A
1
e
b
2
1
2
1
A
A1
A3
DETAIL A
Pin #1 ID and Tie Bar Mark Options
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
Symbol
Dimensions In Millimeters
Dimensions In Inches
Min
Max
Min
Max
A
0.800
1.000
0.031
0.039
A1
0.000
0.050
0.000
0.002
A3
0.175
0.250
0.007
0.010
b
0.180
0.300
0.007
0.012
D
2.950
3.050
0.116
0.120
D2
2.300
2.650
0.091
0.104
E
2.950
3.050
0.116
0.120
E2
1.500
1.750
0.059
0.069
e
L
0.500
0.350
0.020
0.450
0.014
0.018
V-Type 10L DFN 3x3 Package
Richtek Technology Corporation
Richtek Technology Corporation
Headquarter
Taipei Office (Marketing)
5F, No. 20, Taiyuen Street, Chupei City
8F, No. 137, Lane 235, Paochiao Road, Hsintien City
Hsinchu, Taiwan, R.O.C.
Taipei County, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Tel: (8862)89191466 Fax: (8862)89191465
Email: [email protected]
DS9278-04 August 2007
www.richtek.com
13