Design Example Report 1.6W Dual Output Flyback Converter using LNK304P Title Input: 85-265VAC Specification Output: 15V / 25mA (non-isolated) and 12V / 100mA (isolated) Application Motor Control Author Power Integrations Applications Department Document Number DER-48 Date April 20, 2005 Revision 1.0 Summary and Features • • • • • • • • • • Dual output design provides non-isolated and isolated (Class II) output 17 components including EMI filter Loop Fault Protection Short Circuit Protection Hysteretic Thermal Shutdown Non-isolated Output is Referenced to Neutral Precise Output Voltage control Frequency Jitter Excellent Conducted EMI (>10dB margin across spectrum) Extremely low standby power consumption (<100mW!) The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138 USA. Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 Table Of Contents 1 2 3 4 5 6 7 Introduction................................................................................................................. 3 Power Supply Specification ........................................................................................ 4 Schematic................................................................................................................... 5 Circuit Description ...................................................................................................... 6 PCB Layout ................................................................................................................ 7 Bill Of Materials .......................................................................................................... 8 Transformer Specification........................................................................................... 9 7.1 Electrical Diagram ............................................................................................... 9 7.2 Electrical Specifications....................................................................................... 9 7.3 Materials.............................................................................................................. 9 7.4 Transformer Build Diagram ............................................................................... 10 7.5 Transformer Construction.................................................................................. 10 7.6 Design Notes..................................................................................................... 11 8 Transformer Spreadsheets....................................................................................... 12 9 Performance Data .................................................................................................... 13 9.1 Cross-Regulation Data ...................................................................................... 13 9.2 No-load Input Power and Efficiency .................................................................. 14 9.3 Regulation ......................................................................................................... 15 9.3.1 Line and Load Regulation .......................................................................... 15 10 Waveforms............................................................................................................ 16 10.1 Drain Voltage and Current, Normal Operation .................................................. 16 10.2 Output Voltage Start-up Profile ......................................................................... 16 10.3 Drain Voltage and Current Start-up Profile........................................................ 17 10.4 Load Transient Response (50% to 100% Load Step) ....................................... 17 10.5 Output Ripple Measurements............................................................................ 18 10.5.1 Ripple Measurement Technique ................................................................ 18 10.5.2 Measurement Results ................................................................................ 19 11 Conducted EMI ..................................................................................................... 20 12 Revision History.................................................................................................... 21 Important Note: Although this board is designed to satisfy safety isolation requirements, the engineering prototype has not been agency approved. Therefore, all testing should be performed using an isolation transformer to provide the AC input to the prototype board. Design Reports contain a power supply design specification, schematic, bill of materials, and transformer documentation. Performance data and typical operation characteristics are included. Typically only a single prototype has been built. Page 2 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 1 Introduction This document is an engineering prototype report describing a universal input dual output Flyback converter providing an isolated and non-isolated output voltage for a motor application employing the LNK304P. The document contains the power supply specification, schematic, bill-of-materials, transformer documentation, printed circuit layout, and performance data. +12VDC Line Isolated GND Neutral +15VDC Non-iso. GND Figure 1 – Populated Circuit Board Photograph. Page 3 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 2 Power Supply Specification Description Symbol Min Typ Max Units Comment 265 64 0.1 VAC Hz W 2 Wire – no P.E. 16.50 50 25 V mV mA 15.00 100 100 V mV mA 1.6 W % Input Voltage Frequency No-load Input Power (230 VAC) Output Output Voltage 1 Output Ripple Voltage 1 Output Current 1 VIN fLINE 85 47 50/60 VOUT1 VRIPPLE1 IOUT1 13.50 15 Output Voltage 2 Output Ripple Voltage 2 Output Current 2 VOUT1 VRIPPLE1 IOUT1 9.00 Total Output Power Continuous Output Power Efficiency POUT η 5 10 12 74 ± 10% 20 MHz Bandwidth ± 25% 20 MHz Bandwidth Measured at POUT (1.6 W), 25 oC Environmental Conducted EMI Meets CISPR22B / EN55022B Designed to meet IEC950, UL1950 Class II Safety Surge 4 kV Surge 3 kV Ambient Temperature Page 4 of 22 TAMB 0 50 o C 1.2/50 µs surge, IEC 1000-4-5, Series Impedance: Differential Mode: 2 Ω Common Mode: 12 Ω 100 kHz ring wave, 500 A short circuit current, differential and common mode Free convection, sea level Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 3 Schematic Figure 2 – Schematic. Page 5 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 4 Circuit Description In this motor control application, the AC input is half-wave rectified and filtered by D1, C1 and C2 to create a high voltage DC bus that is connected to T1. Inductor L1 forms a pifilter in conjunction with C1 and C2. The frequency jitter in LNK304 allows the unit to meet worldwide conducted EMI standards using a simple pi-filter. C3, R1 and D3 form a clamp circuit that limits the turn-off voltage spike to a safe level on the LNK304 DRAIN pin. C4 is a VCC storage capacitor for U1. The isolated secondary winding is rectified and filtered by D4 and C5 to give the 12VDC output. The non-isolated output is rectified and filtered by D5 and C6. The potential divider formed by R2 and R3 determines the 15VDC output voltage. Capacitor C7 acts to monotonically increase the output voltages at start-up. The transformer is wound using the ESHIELDTM winding technique to help reduce the common-mode noise generated by the transformer windings and help improve conducted EMI performance. Page 6 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 5 PCB Layout Figure 3 – Printed Circuit Layout. Page 7 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 6 Bill Of Materials Item Qty Reference Description P/N Manufacturer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 U1 C1, C2 C3 C4 C5 C6 C7 RF1 R1 R2 R3 D1, D2 D3 D4 D5 L1 T1 LNK-TN Switch 4.7uF/400V 2200pF/1kV 0.1uF/50V 100uF/25V 82uF/35V 1uF/50V 8R2 1W Fusible 330k 1/2W 16.5k 1% 2.05k 1% Standard Rec. 1A/800V Fast Rec. 1A/1000V Fast Rec. 1A/200V Switching Diode 1mH/250mA EE13 Transformer (custom) LNK304P Power Integrations Page 8 of 22 1N4006 1N4937 1N4933 1N4148 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 7 Transformer Specification 7.1 Electrical Diagram Figure 4 –Transformer Electrical Diagram 7.2 Electrical Specifications Electrical Strength Primary Inductance (Pin 1 to Pin 2) Resonant Frequency Primary Leakage Inductance 60Hz 1minute, from Pins 1-4 to Pins 7-8 N/A All windings open 1.8mH +/- 10% All windings open 500 kHz min. L12 with pins 7-8 shorted 100µH max. 7.3 Materials Item Description [1] Core: EE13, TDK Gapped for AL = 111 nH/T2 [2] Bobbin: Horizontal 8 pins [3] Magnet Wire: #36 AWG [4] Magnet Wire: #28 AWG [5] Magnet Wire: #29 AWG [6] Magnet Wire: #30 TIW [7] Tape: 3M 1298 Polyester Film (white) 0.311” x 2 mils [8] Varnish Page 9 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 7.4 Dual Output LNK304 Flyback April 20, 2005 Transformer Build Diagram Figure 5 – Transformer Build Diagram. 7.5 Transformer Construction Place the bobbin on the winding machine with pins 1-4 on the right side and pins 5-8 on the left side. W1 Wind 22 turns of #29AWG in a single uniform layer, starting at pin 4 and (Bias/Core leaving finish end unterminated. Cancellation Winding) Insulation W2 (Primary Winding) Insulation W3 (+15V) Insulation W4 (+12V) Insulation W5 (Shield) Outer Insulation Final Assembly Page 10 of 22 Add 2 layers of tape [7] for insulation. Start at pin 2 with #36AWG and wind 42 turns, apply a layer of tape [7] and continue on the second layer with 42 turns, apply a layer of tape [7] and wind an additional 43 turns on the third and final layer. Finish winding on pin 1. Add 2 layer of tape [7] for insulation. Staring at pin 3 wind 20 turns uniformly across entire bobbin window with #28AWG, finish on pin 4. Add 2 layers of tape [7] for insulation. Staring at pin 8 wind 16 turns uniformly across entire bobbin window with #30 T.I.W., finish on pin 7. Add 2 layers of tape [7] for insulation. Wind 11 bifilar turns of #29AWG in a single uniform layer, starting temporarily on pin 6 and finishing on pin 3. Add 3 layers of tape [7] for insulation. Use guidelines specified in AN-24 for audio noise suppression techniques in the transformer construction. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 7.6 Dual Output LNK304 Flyback April 20, 2005 Design Notes Power Integrations Device Frequency of Operation Mode Peak Current Reflected Voltage (Secondary to Primary) Maximum AC Input Voltage Page 11 of 22 LNK304P 66 KHz Discontinuous 0.23 A 100V 265 V Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 8 Transformer Spreadsheets Rev 1.0 INPUT ENTER APPLICATION VARIABLES VACMIN 85 VACMAX fL VO PO n Z VB tC CIN OUTPUT Volts 265 50 15 1.575 0.6 0.5 12 3 4.7 Volts Hertz Volts Watts Maximum AC Input Voltage AC Mains Frequency Output Voltage Output Power Efficiency Estimate Loss Allocation Factor Volts Bias Voltage mSeconds Bridge Rectifier Conduction Time Estimate uFarads Input Filter Capacitor ENTER TinySwitch-II VARIABLES lnk304 TNY-II Chosen Device ILIMITMIN ILIMITMAX fS fSmin fSmax VOR VDS VD VDB KP LNK304 TinySwitch-II_022001.xls: TINYSwitch-II Continuous/Discontinuous Flyback Transformer Design Spreadsheet Dual Output LNK304 Flyback Minimum AC Input Voltage Universal 5.5W 0.233 Amps 0.267 Amps Hertz 57000 Hertz 74000 Hertz Volts Volts Volts Volts Power Out 66000 100 10 0.7 0.7 3.00 115/230V 8W Typical Switching Frequency Minimum Switching Frequency (inc jitter deviation) Maximum Switching Frequency (inc jitter deviation) Reflected Output Voltage TOPSwitch on-state Drain to Source Voltage Output Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop Bias Winding Diode Forward Voltage Drop ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES ee13 #N/A P/N: #N/A #N/A P/N: #N/A AE 0.171 cm^2 Core Effective Cross Sectional Area LE 3.02 cm Core Effective Path Length AL 1130 nH/T^2 Ungapped Core Effective Inductance BW 7.4 mm Bobbin Physical Winding Width M 0 mm Safety Margin Width (Half the Primary to Secondary Creepage Distance) L 3 Number of Primary Layers NS 20 Number of Secondary Turns Core Type Core Bobbin DC INPUT VOLTAGE PARAMETERS VMIN VMAX 81 Volts 375 Volts CURRENT WAVEFORM SHAPE PARAMETERS DMAX 0.32 IAVG 0.03 IP 0.20 IP Effective 0.20 IP Actual 0.233 fSact IR 0.20 IRMS 0.07 Minimum DC Input Voltage Maximum DC Input Voltage Amps Amps Maximum Duty Cycle Average Primary Current Peak Primary Current Amps Amps Actual IP figure = Device I_LIMIT Actual Effective Switching Frequency Primary Ripple Current Primary RMS Current TRANSFORMER PRIMARY DESIGN PARAMETERS LP 1795 uHenries NP 127 NB 16 ALG 111 nH/T^2 1669 Gauss BM BP 2200 Gauss BAC 835 Gauss ur 1588 LG 0.18 mm BWE 22.2 mm OD 0.17 mm INS 0.04 mm DIA 0.14 mm AWG 36 AWG CM 25 Cmils CMA 385 Cmils/Amp Primary Inductance Primary Winding Number of Turns Bias Winding Number of Turns Gapped Core Effective Inductance Maximum Flux Density at PO, VMIN (BM<3000) Peak Flux Density (BP<4200) AC Flux Density for Core Loss Curves (0.5 X Peak to Peak) Relative Permeability of Ungapped Core Gap Length (Lg > 0.1 mm) Effective Bobbin Width Maximum Primary Wire Diameter including insulation Estimated Total Insulation Thickness (= 2 * film thickness) Bare conductor diameter Primary Wire Gauge (Rounded to next smaller standard AWG value) Bare conductor effective area in circular mils Primary Winding Current Capacity (200 < CMA < 500) TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT) Page 12 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 9 Performance Data All measurements performed at room temperature, 60 Hz input frequency. 9.1 Cross-Regulation Data Vin = 85VAC +15V +12V Pin Eff No Load 15.94 6.3% 13.12 9.3% 0.05 0.0% 15.95 12.33 0.32 63.5% I No Load 15.95 6.3% 13.46 12.2% 0.07 0.0% 15.96 12.37 0.33 62.6% No Load 16.01 6.7% 12.65 5.4% 0.09 0.0% 15.97 12.37 0.38 53.6% No Load 16.00 6.7% 12.64 5.3% 0.96 0.0% 15.97 12.37 0.39 52.2% 6.3% 2.8% II 15.88 11.58 2.11 73.7% 5.9% -3.5% III 16.08 13.69 0.70 77.0% 7.2% 14.1% IV 15.87 9.20 1.45 68.8% 5.8% -23.3% Vin = 120VAC +15V +12V Pin Eff I 6.4% 3.1% II 15.94 11.63 2.09 74.8% 6.3% -3.1% III 16.04 12.97 0.72 73.5% 6.9% 8.1% IV 15.88 9.21 1.47 68.1% 5.9% -23.3% Vin = 240VAC +15V +12V Pin Eff I 6.5% 3.1% II 15.93 11.63 2.38 65.5% 6.2% -3.1% III 16.07 13.01 0.81 65.7% 7.1% 8.4% IV 15.89 9.33 1.65 61.4% 5.9% -22.3% Vin = 265VAC +15V +12V Pin Eff Load Current (ADC) +15V I II III IV I 6.5% 3.1% II 15.92 11.64 2.41 64.8% 6.1% -3.0% III 16.07 13.02 0.82 64.9% 7.1% 8.5% IV 15.88 9.34 1.68 60.3% +12V 0 0.005 0.025 0.025 0.005 Page 13 of 22 0 0.01 0.1 0.01 0.1 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com 5.9% -22.2% DER-48 9.2 Dual Output LNK304 Flyback April 20, 2005 No-load Input Power and Efficiency 80.0% 0.12 Standby Power Consumption (W) 0.10 75.0% 0.08 70.0% 0.06 0.04 65.0% 0.02 Efficiency at Full Load (%) 0.00 0 50 100 150 200 250 60.0% 300 Input Voltage (VAC) Figure 6- Zero Load Input Power/(Full Load) Efficiency vs. Input Line Voltage, Room Temperature, 60 Hz. Page 14 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 9.3 Dual Output LNK304 Flyback April 20, 2005 Regulation 9.3.1 Line and Load Regulation 120.0% 100.0% I II III IV +12V @ 265VAC O +12V @ 85VAC 60.0% +15V @ 85VAC 80.0% +15V @ 265VAC +15V @ 85VAC +12V @ 85VAC +15V @ 265VAC +12V @ 265VAC Figure 7 –Load Regulation, Room Temperature. Page 15 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 10 Waveforms 10.1 Drain Voltage and Current, Normal Operation Figure 8 - 85 VAC, Full Load. Upper: IDRAIN, 0.1 A / div Lower: VDRAIN, 100 V, 10 µs / div Figure 9 - 265 VAC, Full Load Upper: IDRAIN, 0.1 A / div Lower: VDRAIN, 200 V / div, 10 µs / div 10.2 Output Voltage Start-up Profile +15V Output +12V Output Figure 10 - Start-up Profile, 115VAC 5 V, 10 ms / div. Page 16 of 22 +15V Output +12V Output Figure 11 - Start-up Profile, 230 VAC 5 V, 10 ms / div. Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 10.3 Drain Voltage and Current Start-up Profile Figure 12 - 85 VAC Input and Maximum Load. Upper: IDRAIN, 0.1 A / div. Lower: VDRAIN, 100 V & 500µs / div. Figure 13 - 265 VAC Input and Maximum Load. Upper: IDRAIN, 0.1 A / div. Lower: VDRAIN, 200 V & 500µs / div. 10.4 Load Transient Response (50% to 100% Load Step) In the figures shown below, signal averaging was used to better enable viewing the load transient response. The oscilloscope was triggered using the load current step as a trigger source. Since the output switching and line frequency occur essentially at random with respect to the load transient, contributions to the output ripple from these sources will average out, leaving the contribution only from the load step response. The load on the +12V output was set to maximum (100mA). +15V (100mV/div) +12V (1V/div) +15V Load Current (20mA/div) Figure 14 – Transient Response, 115 VAC, 50-100-50% Load Step. 10 ms / div. Page 17 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 10.5 Output Ripple Measurements 10.5.1 Ripple Measurement Technique For DC output ripple measurements, a modified oscilloscope test probe must be utilized in order to reduce spurious signals due to pickup. Details of the probe modification are provided in Figure 15 and Figure 16. The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so proper polarity across DC outputs must be maintained (see below). Probe Ground Probe Tip Figure 15 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed) Figure 16 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe ground for ripple measurement, and two parallel decoupling capacitors added) Page 18 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 10.5.2 Measurement Results Figure 17 +15V Ripple, 85 VAC, Full Load. 5 ms, 20 mV / div Figure 18 +15 V Ripple, 265 VAC, Full Load. 5 ms, 20 mV / div Figure 19 +12V Ripple, 85 VAC, Full Load. 5 ms, 50 mV /div Figure 20 +12V Ripple, 265 VAC, Full Load. 5 ms, 50 mV /div Page 19 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 11 Conducted EMI Figure 21 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits. Figure 22 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits. Page 20 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 12 Revision History Date April 20, 2005 Page 21 of 22 Author RSP Revision 1.0 Description & changes Initial Release Reviewed VC / AM Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com DER-48 Dual Output LNK304 Flyback April 20, 2005 For the latest updates, visit our Web site: www.powerint.com Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your use of any information, device or circuit described herein nor does it convey any license under its patent rights or the rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS. PATENT INFORMATION The products and applications illustrated herein (including circuits external to the products and transformer construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at www.powerint.com. The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations. © Copyright 2004, Power Integrations. WORLD HEADQUARTERS Power Integrations 5245 Hellyer Avenue, San Jose, CA 95138, USA Main: +1-408-414-9200 Customer Service: Phone: +1-408-414-9665 Fax: +1-408-414-9765 e-mail: [email protected] CHINA (SHENZHEN) Power Integrations International Holdings, Inc. Rm# 1705, Bao Hua Bldg. 1016 Hua Qiang Bei Lu, Shenzhen, Guangdong, 518031, China Phone: +86-755-8367-5143 Fax: +86-755-8377-9610 e-mail: [email protected] ITALY Power Integrations s.r.l. Via Vittorio Veneto 12, Bresso, Milano, 20091, Italy Phone: +39-028-928-6001 Fax: +39-028-928-6009 e-mail: [email protected] SINGAPORE (ASIA PACIFIC HEADQUARTERS) Power Integrations, Singapore 51 Newton Road, #15-08/10 Goldhill Plaza, Singapore, 308900 Phone: +65-6358-2160 Fax: +65-6358-2015 e-mail: [email protected] AMERICAS Power Integrations, Inc. 4335 South Lee Street, Suite G, Buford, GA 30518, USA Phone: +1-678-714-6033 Fax: +1-678-714-6012 e-mail: [email protected] GERMANY Power Integrations, GmbH Rueckerstrasse 3, D-80336, Munich, Germany Phone: +49-895-527-3910 Fax: +49-895-527-3920 e-mail: [email protected] JAPAN Power Integrations, K.K. Keihin-Tatemono 1st Bldg. 12-20 Shin-Yokohama, 2-Chome, Kohoku-ku, Yokohama-shi, Kanagawa 222-0033, Japan Phone: +81-45-471-1021 Fax: +81-45-471-3717 e-mail: [email protected] TAIWAN Power Integrations International Holdings, Inc. 17F-3, No. 510, Chung Hsiao E. Rd., Sec. 5, Taipei, Taiwan 110, R.O.C. Phone: +886-2-2727-1221 Fax: +886-2-2727-1223 e-mail: [email protected] CHINA (SHANGHAI) Power Integrations International Holdings, Inc. Rm 807, Pacheer, Commercial Centre, 555 Nanjing West Road, Shanghai, 200041, China Phone: +86-21-6215-5548 Fax: +86-21-6215-2468 e-mail: [email protected] INDIA (TECHNICAL SUPPORT) Innovatech 261/A, Ground Floor 7th Main, 17th Cross, Sadashivanagar Bangalore, India, 560080 Phone: +91-80-5113-8020 Fax: +91-80-5113-8023 e-mail: [email protected] KOREA Power Integrations International Holdings, Inc. 8th Floor, DongSung Bldg. 17-8 Yoido-dong, Youngdeungpo-gu, Seoul, 150-874, Korea Phone: +82-2-782-2840 Fax: +82-2-782-4427 e-mail: [email protected] UK (EUROPE & AFRICA HEADQUARTERS) 1st Floor, St. James’s House East Street Farnham, Surrey GU9 7TJ United Kingdom Phone: +44-1252-730-140 Fax: +44-1252-727-689 e-mail: [email protected] APPLICATIONS HOTLINE World Wide +1-408-414-9660 APPLICATIONS FAX World Wide +1-408-414-9760 Page 22 of 22 Power Integrations Tel: +1 408 414 9200 Fax: +1 408 414 9201 www.powerint.com