POWERINT DER-48

Design Example Report
1.6W Dual Output Flyback Converter
using LNK304P
Title
Input: 85-265VAC
Specification Output: 15V / 25mA (non-isolated) and 12V /
100mA (isolated)
Application
Motor Control
Author
Power Integrations Applications Department
Document
Number
DER-48
Date
April 20, 2005
Revision
1.0
Summary and Features
•
•
•
•
•
•
•
•
•
•
Dual output design provides non-isolated and isolated (Class II) output
17 components including EMI filter
Loop Fault Protection
Short Circuit Protection
Hysteretic Thermal Shutdown
Non-isolated Output is Referenced to Neutral
Precise Output Voltage control
Frequency Jitter
Excellent Conducted EMI (>10dB margin across spectrum)
Extremely low standby power consumption (<100mW!)
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found
at www.powerint.com.
Power Integrations
5245 Hellyer Avenue, San Jose, CA 95138 USA.
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
Table Of Contents
1
2
3
4
5
6
7
Introduction................................................................................................................. 3
Power Supply Specification ........................................................................................ 4
Schematic................................................................................................................... 5
Circuit Description ...................................................................................................... 6
PCB Layout ................................................................................................................ 7
Bill Of Materials .......................................................................................................... 8
Transformer Specification........................................................................................... 9
7.1
Electrical Diagram ............................................................................................... 9
7.2
Electrical Specifications....................................................................................... 9
7.3
Materials.............................................................................................................. 9
7.4
Transformer Build Diagram ............................................................................... 10
7.5
Transformer Construction.................................................................................. 10
7.6
Design Notes..................................................................................................... 11
8 Transformer Spreadsheets....................................................................................... 12
9 Performance Data .................................................................................................... 13
9.1
Cross-Regulation Data ...................................................................................... 13
9.2
No-load Input Power and Efficiency .................................................................. 14
9.3
Regulation ......................................................................................................... 15
9.3.1
Line and Load Regulation .......................................................................... 15
10
Waveforms............................................................................................................ 16
10.1 Drain Voltage and Current, Normal Operation .................................................. 16
10.2 Output Voltage Start-up Profile ......................................................................... 16
10.3 Drain Voltage and Current Start-up Profile........................................................ 17
10.4 Load Transient Response (50% to 100% Load Step) ....................................... 17
10.5 Output Ripple Measurements............................................................................ 18
10.5.1 Ripple Measurement Technique ................................................................ 18
10.5.2 Measurement Results ................................................................................ 19
11
Conducted EMI ..................................................................................................... 20
12
Revision History.................................................................................................... 21
Important Note:
Although this board is designed to satisfy safety isolation requirements, the engineering
prototype has not been agency approved. Therefore, all testing should be performed
using an isolation transformer to provide the AC input to the prototype board.
Design Reports contain a power supply design specification, schematic, bill of materials,
and transformer documentation. Performance data and typical operation characteristics
are included. Typically only a single prototype has been built.
Page 2 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
1 Introduction
This document is an engineering prototype report describing a universal input dual output
Flyback converter providing an isolated and non-isolated output voltage for a motor
application employing the LNK304P.
The document contains the power supply specification, schematic, bill-of-materials,
transformer documentation, printed circuit layout, and performance data.
+12VDC
Line
Isolated
GND
Neutral
+15VDC
Non-iso.
GND
Figure 1 – Populated Circuit Board Photograph.
Page 3 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
2 Power Supply Specification
Description
Symbol
Min
Typ
Max
Units
Comment
265
64
0.1
VAC
Hz
W
2 Wire – no P.E.
16.50
50
25
V
mV
mA
15.00
100
100
V
mV
mA
1.6
W
%
Input
Voltage
Frequency
No-load Input Power (230 VAC)
Output
Output Voltage 1
Output Ripple Voltage 1
Output Current 1
VIN
fLINE
85
47
50/60
VOUT1
VRIPPLE1
IOUT1
13.50
15
Output Voltage 2
Output Ripple Voltage 2
Output Current 2
VOUT1
VRIPPLE1
IOUT1
9.00
Total Output Power
Continuous Output Power
Efficiency
POUT
η
5
10
12
74
± 10%
20 MHz Bandwidth
± 25%
20 MHz Bandwidth
Measured at POUT (1.6 W), 25 oC
Environmental
Conducted EMI
Meets CISPR22B / EN55022B
Designed to meet IEC950, UL1950
Class II
Safety
Surge
4
kV
Surge
3
kV
Ambient Temperature
Page 4 of 22
TAMB
0
50
o
C
1.2/50 µs surge, IEC 1000-4-5,
Series Impedance:
Differential Mode: 2 Ω
Common Mode: 12 Ω
100 kHz ring wave, 500 A short
circuit current, differential and
common mode
Free convection, sea level
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
3 Schematic
Figure 2 – Schematic.
Page 5 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
4 Circuit Description
In this motor control application, the AC input is half-wave rectified and filtered by D1, C1
and C2 to create a high voltage DC bus that is connected to T1. Inductor L1 forms a pifilter in conjunction with C1 and C2. The frequency jitter in LNK304 allows the unit to
meet worldwide conducted EMI standards using a simple pi-filter. C3, R1 and D3 form a
clamp circuit that limits the turn-off voltage spike to a safe level on the LNK304 DRAIN
pin. C4 is a VCC storage capacitor for U1.
The isolated secondary winding is rectified and filtered by D4 and C5 to give the 12VDC
output. The non-isolated output is rectified and filtered by D5 and C6. The potential
divider formed by R2 and R3 determines the 15VDC output voltage. Capacitor C7 acts to
monotonically increase the output voltages at start-up.
The transformer is wound using the ESHIELDTM winding technique to help reduce the
common-mode noise generated by the transformer windings and help improve conducted
EMI performance.
Page 6 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
5 PCB Layout
Figure 3 – Printed Circuit Layout.
Page 7 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
6 Bill Of Materials
Item
Qty
Reference
Description
P/N
Manufacturer
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
1
2
1
1
1
1
1
1
1
1
1
2
1
1
1
1
1
U1
C1, C2
C3
C4
C5
C6
C7
RF1
R1
R2
R3
D1, D2
D3
D4
D5
L1
T1
LNK-TN Switch
4.7uF/400V
2200pF/1kV
0.1uF/50V
100uF/25V
82uF/35V
1uF/50V
8R2 1W Fusible
330k 1/2W
16.5k 1%
2.05k 1%
Standard Rec. 1A/800V
Fast Rec. 1A/1000V
Fast Rec. 1A/200V
Switching Diode
1mH/250mA
EE13 Transformer (custom)
LNK304P
Power Integrations
Page 8 of 22
1N4006
1N4937
1N4933
1N4148
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
7 Transformer Specification
7.1
Electrical Diagram
Figure 4 –Transformer Electrical Diagram
7.2
Electrical Specifications
Electrical Strength
Primary Inductance
(Pin 1 to Pin 2)
Resonant Frequency
Primary Leakage
Inductance
60Hz 1minute, from Pins 1-4 to Pins
7-8
N/A
All windings open
1.8mH +/- 10%
All windings open
500 kHz min.
L12 with pins 7-8 shorted
100µH max.
7.3 Materials
Item
Description
[1]
Core: EE13, TDK Gapped for AL = 111 nH/T2
[2]
Bobbin: Horizontal 8 pins
[3]
Magnet Wire: #36 AWG
[4]
Magnet Wire: #28 AWG
[5]
Magnet Wire: #29 AWG
[6]
Magnet Wire: #30 TIW
[7]
Tape: 3M 1298 Polyester Film (white) 0.311” x 2 mils
[8]
Varnish
Page 9 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
7.4
Dual Output LNK304 Flyback
April 20, 2005
Transformer Build Diagram
Figure 5 – Transformer Build Diagram.
7.5
Transformer Construction
Place the bobbin on the winding machine with pins 1-4 on the right side and pins 5-8 on
the left side.
W1
Wind 22 turns of #29AWG in a single uniform layer, starting at pin 4 and
(Bias/Core
leaving finish end unterminated.
Cancellation Winding)
Insulation
W2 (Primary Winding)
Insulation
W3 (+15V)
Insulation
W4 (+12V)
Insulation
W5 (Shield)
Outer Insulation
Final Assembly
Page 10 of 22
Add 2 layers of tape [7] for insulation.
Start at pin 2 with #36AWG and wind 42 turns, apply a layer of tape [7]
and continue on the second layer with 42 turns, apply a layer of tape [7]
and wind an additional 43 turns on the third and final layer. Finish winding
on pin 1.
Add 2 layer of tape [7] for insulation.
Staring at pin 3 wind 20 turns uniformly across entire bobbin window with
#28AWG, finish on pin 4.
Add 2 layers of tape [7] for insulation.
Staring at pin 8 wind 16 turns uniformly across entire bobbin window with
#30 T.I.W., finish on pin 7.
Add 2 layers of tape [7] for insulation.
Wind 11 bifilar turns of #29AWG in a single uniform layer, starting
temporarily on pin 6 and finishing on pin 3.
Add 3 layers of tape [7] for insulation.
Use guidelines specified in AN-24 for audio noise suppression techniques
in the transformer construction.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
7.6
Dual Output LNK304 Flyback
April 20, 2005
Design Notes
Power Integrations Device
Frequency of Operation
Mode
Peak Current
Reflected Voltage (Secondary to Primary)
Maximum AC Input Voltage
Page 11 of 22
LNK304P
66 KHz
Discontinuous
0.23 A
100V
265 V
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
8 Transformer Spreadsheets
Rev 1.0
INPUT
ENTER APPLICATION VARIABLES
VACMIN
85
VACMAX
fL
VO
PO
n
Z
VB
tC
CIN
OUTPUT
Volts
265
50
15
1.575
0.6
0.5
12
3
4.7
Volts
Hertz
Volts
Watts
Maximum AC Input Voltage
AC Mains Frequency
Output Voltage
Output Power
Efficiency Estimate
Loss Allocation Factor
Volts
Bias Voltage
mSeconds Bridge Rectifier Conduction Time Estimate
uFarads
Input Filter Capacitor
ENTER TinySwitch-II VARIABLES
lnk304
TNY-II
Chosen
Device
ILIMITMIN
ILIMITMAX
fS
fSmin
fSmax
VOR
VDS
VD
VDB
KP
LNK304
TinySwitch-II_022001.xls: TINYSwitch-II Continuous/Discontinuous
Flyback Transformer Design Spreadsheet
Dual Output LNK304 Flyback
Minimum AC Input Voltage
Universal
5.5W
0.233 Amps
0.267 Amps
Hertz
57000 Hertz
74000 Hertz
Volts
Volts
Volts
Volts
Power Out
66000
100
10
0.7
0.7
3.00
115/230V
8W
Typical Switching Frequency
Minimum Switching Frequency (inc jitter deviation)
Maximum Switching Frequency (inc jitter deviation)
Reflected Output Voltage
TOPSwitch on-state Drain to Source Voltage
Output Winding Diode Forward Voltage Drop
Bias Winding Diode Forward Voltage Drop
Bias Winding Diode Forward Voltage Drop
ENTER TRANSFORMER CORE/CONSTRUCTION VARIABLES
ee13
#N/A
P/N:
#N/A
#N/A
P/N:
#N/A
AE
0.171
cm^2
Core Effective Cross Sectional Area
LE
3.02
cm
Core Effective Path Length
AL
1130
nH/T^2
Ungapped Core Effective Inductance
BW
7.4
mm
Bobbin Physical Winding Width
M
0
mm
Safety Margin Width (Half the Primary to Secondary Creepage Distance)
L
3
Number of Primary Layers
NS
20
Number of Secondary Turns
Core Type
Core
Bobbin
DC INPUT VOLTAGE PARAMETERS
VMIN
VMAX
81 Volts
375 Volts
CURRENT WAVEFORM SHAPE PARAMETERS
DMAX
0.32
IAVG
0.03
IP
0.20
IP Effective
0.20
IP Actual
0.233
fSact
IR
0.20
IRMS
0.07
Minimum DC Input Voltage
Maximum DC Input Voltage
Amps
Amps
Maximum Duty Cycle
Average Primary Current
Peak Primary Current
Amps
Amps
Actual IP figure = Device I_LIMIT
Actual Effective Switching Frequency
Primary Ripple Current
Primary RMS Current
TRANSFORMER PRIMARY DESIGN PARAMETERS
LP
1795 uHenries
NP
127
NB
16
ALG
111
nH/T^2
1669 Gauss
BM
BP
2200 Gauss
BAC
835
Gauss
ur
1588
LG
0.18 mm
BWE
22.2
mm
OD
0.17 mm
INS
0.04
mm
DIA
0.14 mm
AWG
36 AWG
CM
25
Cmils
CMA
385 Cmils/Amp
Primary Inductance
Primary Winding Number of Turns
Bias Winding Number of Turns
Gapped Core Effective Inductance
Maximum Flux Density at PO, VMIN (BM<3000)
Peak Flux Density (BP<4200)
AC Flux Density for Core Loss Curves (0.5 X Peak to Peak)
Relative Permeability of Ungapped Core
Gap Length (Lg > 0.1 mm)
Effective Bobbin Width
Maximum Primary Wire Diameter including insulation
Estimated Total Insulation Thickness (= 2 * film thickness)
Bare conductor diameter
Primary Wire Gauge (Rounded to next smaller standard AWG value)
Bare conductor effective area in circular mils
Primary Winding Current Capacity (200 < CMA < 500)
TRANSFORMER SECONDARY DESIGN PARAMETERS (SINGLE OUTPUT / SINGLE OUTPUT EQUIVALENT)
Page 12 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
9 Performance Data
All measurements performed at room temperature, 60 Hz input frequency.
9.1
Cross-Regulation Data
Vin = 85VAC
+15V
+12V
Pin
Eff
No Load
15.94
6.3%
13.12
9.3%
0.05
0.0%
15.95
12.33
0.32
63.5%
I
No Load
15.95
6.3%
13.46
12.2%
0.07
0.0%
15.96
12.37
0.33
62.6%
No Load
16.01
6.7%
12.65
5.4%
0.09
0.0%
15.97
12.37
0.38
53.6%
No Load
16.00
6.7%
12.64
5.3%
0.96
0.0%
15.97
12.37
0.39
52.2%
6.3%
2.8%
II
15.88
11.58
2.11
73.7%
5.9%
-3.5%
III
16.08
13.69
0.70
77.0%
7.2%
14.1%
IV
15.87
9.20
1.45
68.8%
5.8%
-23.3%
Vin = 120VAC
+15V
+12V
Pin
Eff
I
6.4%
3.1%
II
15.94
11.63
2.09
74.8%
6.3%
-3.1%
III
16.04
12.97
0.72
73.5%
6.9%
8.1%
IV
15.88
9.21
1.47
68.1%
5.9%
-23.3%
Vin = 240VAC
+15V
+12V
Pin
Eff
I
6.5%
3.1%
II
15.93
11.63
2.38
65.5%
6.2%
-3.1%
III
16.07
13.01
0.81
65.7%
7.1%
8.4%
IV
15.89
9.33
1.65
61.4%
5.9%
-22.3%
Vin = 265VAC
+15V
+12V
Pin
Eff
Load
Current
(ADC)
+15V
I
II
III
IV
I
6.5%
3.1%
II
15.92
11.64
2.41
64.8%
6.1%
-3.0%
III
16.07
13.02
0.82
64.9%
7.1%
8.5%
IV
15.88
9.34
1.68
60.3%
+12V
0
0.005
0.025
0.025
0.005
Page 13 of 22
0
0.01
0.1
0.01
0.1
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
5.9%
-22.2%
DER-48
9.2
Dual Output LNK304 Flyback
April 20, 2005
No-load Input Power and Efficiency
80.0%
0.12
Standby Power
Consumption (W)
0.10
75.0%
0.08
70.0%
0.06
0.04
65.0%
0.02
Efficiency at Full Load (%)
0.00
0
50
100
150
200
250
60.0%
300
Input Voltage (VAC)
Figure 6- Zero Load Input Power/(Full Load) Efficiency vs. Input Line Voltage, Room Temperature, 60 Hz.
Page 14 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
9.3
Dual Output LNK304 Flyback
April 20, 2005
Regulation
9.3.1 Line and Load Regulation
120.0%
100.0%
I
II
III
IV
+12V @ 265VAC
O
+12V @ 85VAC
60.0%
+15V @ 85VAC
80.0%
+15V @ 265VAC
+15V @ 85VAC
+12V @ 85VAC
+15V @ 265VAC
+12V @ 265VAC
Figure 7 –Load Regulation, Room Temperature.
Page 15 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
10 Waveforms
10.1 Drain Voltage and Current, Normal Operation
Figure 8 - 85 VAC, Full Load.
Upper: IDRAIN, 0.1 A / div
Lower: VDRAIN, 100 V, 10 µs / div
Figure 9 - 265 VAC, Full Load
Upper: IDRAIN, 0.1 A / div
Lower: VDRAIN, 200 V / div, 10 µs / div
10.2 Output Voltage Start-up Profile
+15V Output
+12V Output
Figure 10 - Start-up Profile, 115VAC
5 V, 10 ms / div.
Page 16 of 22
+15V Output
+12V Output
Figure 11 - Start-up Profile, 230 VAC
5 V, 10 ms / div.
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
10.3 Drain Voltage and Current Start-up Profile
Figure 12 - 85 VAC Input and Maximum Load.
Upper: IDRAIN, 0.1 A / div.
Lower: VDRAIN, 100 V & 500µs / div.
Figure 13 - 265 VAC Input and Maximum Load.
Upper: IDRAIN, 0.1 A / div.
Lower: VDRAIN, 200 V & 500µs / div.
10.4 Load Transient Response (50% to 100% Load Step)
In the figures shown below, signal averaging was used to better enable viewing the load
transient response. The oscilloscope was triggered using the load current step as a
trigger source. Since the output switching and line frequency occur essentially at random
with respect to the load transient, contributions to the output ripple from these sources
will average out, leaving the contribution only from the load step response. The load on
the +12V output was set to maximum (100mA).
+15V
(100mV/div)
+12V
(1V/div)
+15V Load
Current
(20mA/div)
Figure 14 – Transient Response, 115 VAC, 50-100-50% Load Step.
10 ms / div.
Page 17 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
10.5 Output Ripple Measurements
10.5.1 Ripple Measurement Technique
For DC output ripple measurements, a modified oscilloscope test probe must be utilized
in order to reduce spurious signals due to pickup. Details of the probe modification are
provided in Figure 15 and Figure 16.
The 5125BA probe adapter is affixed with two capacitors tied in parallel across the probe
tip. The capacitors include one (1) 0.1 µF/50 V ceramic type and one (1) 1.0 µF/50 V
aluminum electrolytic. The aluminum electrolytic type capacitor is polarized, so
proper polarity across DC outputs must be maintained (see below).
Probe Ground
Probe Tip
Figure 15 - Oscilloscope Probe Prepared for Ripple Measurement. (End Cap and Ground Lead Removed)
Figure 16 - Oscilloscope Probe with Probe Master 5125BA BNC Adapter. (Modified with wires for probe
ground for ripple measurement, and two parallel decoupling capacitors added)
Page 18 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
10.5.2 Measurement Results
Figure 17 +15V Ripple, 85 VAC, Full Load.
5 ms, 20 mV / div
Figure 18 +15 V Ripple, 265 VAC, Full Load.
5 ms, 20 mV / div
Figure 19 +12V Ripple, 85 VAC, Full Load.
5 ms, 50 mV /div
Figure 20 +12V Ripple, 265 VAC, Full Load.
5 ms, 50 mV /div
Page 19 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
11 Conducted EMI
Figure 21 - Conducted EMI, Maximum Steady State Load, 115 VAC, 60 Hz, and EN55022 B Limits.
Figure 22 - Conducted EMI, Maximum Steady State Load, 230 VAC, 60 Hz, and EN55022 B Limits.
Page 20 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
12 Revision History
Date
April 20, 2005
Page 21 of 22
Author
RSP
Revision
1.0
Description & changes
Initial Release
Reviewed
VC / AM
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com
DER-48
Dual Output LNK304 Flyback
April 20, 2005
For the latest updates, visit our Web site: www.powerint.com
Power Integrations may make changes to its products at any time. Power Integrations has no liability arising from your
use of any information, device or circuit described herein nor does it convey any license under its patent rights or the
rights of others. POWER INTEGRATIONS MAKES NO WARRANTIES HEREIN AND SPECIFICALLY DISCLAIMS
ALL WARRANTIES INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.
PATENT INFORMATION
The products and applications illustrated herein (including circuits external to the products and transformer
construction) may be covered by one or more U.S. and foreign patents or potentially by pending U.S. and foreign
patent applications assigned to Power Integrations. A complete list of Power Integrations’ patents may be found at
www.powerint.com.
The PI Logo, TOPSwitch, TinySwitch, LinkSwitch, and EcoSmart are registered trademarks of Power
Integrations. PI Expert and DPA-Switch are trademarks of Power Integrations.
© Copyright 2004, Power Integrations.
WORLD HEADQUARTERS
Power Integrations
5245 Hellyer Avenue,
San Jose, CA 95138, USA
Main:
+1-408-414-9200
Customer Service:
Phone: +1-408-414-9665
Fax:
+1-408-414-9765
e-mail:
[email protected]
CHINA (SHENZHEN)
Power Integrations
International Holdings, Inc.
Rm# 1705, Bao Hua Bldg.
1016 Hua Qiang Bei Lu,
Shenzhen, Guangdong,
518031, China
Phone: +86-755-8367-5143
Fax:
+86-755-8377-9610
e-mail: [email protected]
ITALY
Power Integrations s.r.l.
Via Vittorio Veneto 12,
Bresso, Milano,
20091, Italy
Phone: +39-028-928-6001
Fax: +39-028-928-6009
e-mail:
[email protected]
SINGAPORE (ASIA PACIFIC
HEADQUARTERS)
Power Integrations, Singapore
51 Newton Road,
#15-08/10 Goldhill Plaza,
Singapore, 308900
Phone: +65-6358-2160
Fax:
+65-6358-2015
e-mail:
[email protected]
AMERICAS
Power Integrations, Inc.
4335 South Lee Street,
Suite G,
Buford, GA 30518, USA
Phone: +1-678-714-6033
Fax:
+1-678-714-6012
e-mail:
[email protected]
GERMANY
Power Integrations, GmbH
Rueckerstrasse 3,
D-80336, Munich, Germany
Phone: +49-895-527-3910
Fax:
+49-895-527-3920
e-mail: [email protected]
JAPAN
Power Integrations, K.K.
Keihin-Tatemono 1st Bldg.
12-20 Shin-Yokohama,
2-Chome,
Kohoku-ku, Yokohama-shi,
Kanagawa 222-0033, Japan
Phone: +81-45-471-1021
Fax:
+81-45-471-3717
e-mail:
[email protected]
TAIWAN
Power Integrations
International Holdings, Inc.
17F-3, No. 510,
Chung Hsiao E. Rd., Sec. 5,
Taipei, Taiwan 110, R.O.C.
Phone: +886-2-2727-1221
Fax:
+886-2-2727-1223
e-mail:
[email protected]
CHINA (SHANGHAI)
Power Integrations
International Holdings, Inc.
Rm 807, Pacheer,
Commercial Centre,
555 Nanjing West Road,
Shanghai, 200041, China
Phone: +86-21-6215-5548
Fax:
+86-21-6215-2468
e-mail:
[email protected]
INDIA (TECHNICAL SUPPORT)
Innovatech
261/A, Ground Floor
7th Main, 17th Cross,
Sadashivanagar
Bangalore, India, 560080
Phone: +91-80-5113-8020
Fax:
+91-80-5113-8023
e-mail: [email protected]
KOREA
Power Integrations
International Holdings, Inc.
8th Floor, DongSung Bldg.
17-8 Yoido-dong,
Youngdeungpo-gu,
Seoul, 150-874, Korea
Phone: +82-2-782-2840
Fax:
+82-2-782-4427
e-mail:
[email protected]
UK (EUROPE & AFRICA
HEADQUARTERS)
1st Floor, St. James’s House
East Street
Farnham, Surrey GU9 7TJ
United Kingdom
Phone: +44-1252-730-140
Fax:
+44-1252-727-689
e-mail: [email protected]
APPLICATIONS HOTLINE
World Wide +1-408-414-9660
APPLICATIONS FAX
World Wide +1-408-414-9760
Page 22 of 22
Power Integrations
Tel: +1 408 414 9200 Fax: +1 408 414 9201
www.powerint.com